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ABSTRACT
A parallel, adaptive overlay grid procedure is proposed for use in generating all-hex and tetrahedral
meshes for stochastic (SVE) and representative (RVE) volume elements in computational materials
modeling. The mesh generation process is outlined including several new advancements such as data
󱤏󱢑ltering to improve mesh quality from voxelated and 3D image sources, improvements to the primal
contouring method for constructing material interfaces and pillowing to improve mesh quality at
boundaries. We show speci󱤏󱢑c examples in various applications that have bene󱤏󱢑tted from the proposed
mesh generation procedure and illustrate results of the procedure with several practical mesh examples.
We also include an extended Appendix with practical examples for using the proposed methods.
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1. INTRODUCTION

Determining relationships between material behavior at dif󱤎erent length scales is an active area of
research and a key part of current integrated computational materials engineering initiatives [14][30].
Computational materials modeling ef󱤎orts that explicitly resolve microstructure and/or meso-scale
material features play an important role in understanding mechanical behavior, deformation and failure
mechanisms that ultimately drive macroscale material behavior. However, most materials have features
at this scale that are geometrically irregular and present many challenges for mesh generation.
Furthermore, it is often necessary to simulate the response of many unique realizations of the material
microstructure to capture stochastic ef󱤎ects of variability in feature arrangement and to ensure that the
predicted response is not unique to local features in any particular realization. This is particularly
important when smaller stochastic volume elements (SVEs) are used to mitigate computational expense
if the required size of a representative volume element (RVE) is large. Although tetrahedral meshes may
be acceptable, in some cases, hex meshes may be necessary to enable certain features of the analysis or
maintain compatibility with other meshed components. The meshing step can quickly become
prohibitively expensive unless the complex microstructural features can be meshed in an automated
way. Thus, a robust meshing algorithm that can quickly generate meshes on hundreds of material
volume elements (RVE or SVE) is an enabling feature to perform comprehensive computational studies
of material microstructure behavior.

Current methods for automatic hexahedral mesh generation can be classi󱤏󱢑ed as geometry-first, or
mesh-first. Where an explicit geometry representation such as a CAD design model is used,
geometry-󱤏󱢑rst approaches can be used to generate high quality, crafted meshes using block-structuring
[3] [1] and pave and sweep [33] procedures. These methods begin with reference geometry that must be
interactively cleaned-up and decomposed to admit a limited set of topologic meshing primitives.
Geometry-󱤏󱢑rst methods are impractical for computational materials modeling where methods must be
completely automated and where the input can come from 3D image based data with highly complex
material interactions. Instead, we utilize a mesh-󱤏󱢑rst approach that begins with an overlay grid that is
locally modi󱤏󱢑ed to incorporate microstructural features that will result in a conformal hexahedral mesh
of the RVE.

A limited set of literature is available describing conformal hexahedral meshing procedures for
computational materials modeling. Qian [32] and Zhang [39] propose procedures that build complex
microstructures based upon the dual contouring approach introduced in [38]. Both hexahedral and
tetrahedral approaches are described where meshes are generated for multiple material grain structures
including procedures for identifying and resolving complex topological interactions as well as the ability
to produce smooth interfaces using geometric 󱤐󱤔ow-based smoothing. These works illuminate
important aspects peculiar to microstructures, however reported mesh quality [32] can be marginal at
grain interfaces and do not appear to provide for distributed algorithms for scalable applications.
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For our purposes we seek both tetrahedral and all-hex meshing procedures for application to
computational materials modeling that is fully automatic. Methods that require any user interaction to
clean or decompose the geometry are impractical for this application. The ability to control the
execution of the meshing tool via scripting is also desirable to facilitate rapid execution of hundreds of
stochastic simulations. We note that the target analysis codes require computable quality hex or tet
elements with smooth conformal interfaces between materials. The mesh generation method should
also support multiple input sources including voxelated, volume fraction and analytic geometry.
Topologic complexity with hundreds or even thousands of separate grain structures are also necessary
for this application. Finally, the ability to rapidly run hundreds of stochastic models with meshes
exceeding tens of millions of elements make distributed computing a vital requirement.

This work proposes an overlay grid procedure that builds on Sandia National Laboratories’ Sculpt [21].
In [26, 27] we 󱤏󱢑rst introduced a parallel overlay grid procedure based on volume fractions for arbitrary
geometry and later describe the smoothing procedures for this method in [19]. In [22, 23] we provide a
validation of meshes produced from Sculpt in application with computational mechanics codes and in
[24, 25], the method is extended to incorporate a new adaptive 2-re󱤏󱢑nement technique. This work
extends and revises [20] which addresses the speci󱤏󱢑c problems encountered in computational materials
modeling. New procedures are introduced to ensure the preceding requirements are met and that the
resulting meshing tool can be used for practical, robust and ef󱤎icient computational materials modeling.
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2. ALGORITHM

2.1. OVERVIEW

The proposed methodologies are based upon an overlay grid method where a Cartesian grid or any
unstructured mesh is used as the basis for a 󱤏󱢑nite element mesh. The proposed procedure works directly
from a volume fraction representation where

󰁓k
j=0 vf(i, j) = 1, with i a cell index and j a material

index. With no explicit geometric or topology representation from which to work, the procedure
extracts a boundary representation (B-Rep) topology and recovers approximated geometric interfaces
from the volume fraction data.

2.1.1. Meshing Procedure

In this work we propose a series of steps or procedures that have proven ef󱤎ective in building hexahedral
and tetrahedral meshes for computational materials modeling on stochastic or representative volume
elements. The following is an outline of the procedure used for generating hex and tet meshes with their
corresponding section in this document:

The following methods are common to generating both hex and tet meshes

1. Define overlay grid: De󱤏󱢑ne or import a grid or mesh overlapping the domain that will serve as the
basis for the 󱤏󱢑nal hex or tet mesh. (󱤏󱢑g. 2-1(a))(sec. 2.2)

2. Process input data: Import and convert material data to volume fractions if not already. (󱤏󱢑g.
2-1(a))(sec. 2.3)

3. Distribute data for parallelism: Distribute Cartesian volume fraction data to multiple processors
via MPI. (sec. 2.4)

4. Refine or coarsen: Adaptively re󱤏󱢑ne or coarsen the Cartesian grid to build a conformal
unstructured base grid on which to build the geometry and mesh. (sec. 2.5)

5. Compute material gradients: A gradient 󱤏󱢑eld is approximated in order to establish normal vectors
at material interfaces. (󱤏󱢑g. 2-1(b))(sec. 2.6)

6. Filter input data: Assign each cell of the base grid to its dominant material. Modify the
assignment to eliminate non-manifold conditions and reduce potential mesh quality issues.(󱤏󱢑g.
2-1(c))(sec. 2.7)

7. Construct B-Rep topology graph: Construct volumes, surfaces, curves and vertices and their mesh
entity associations. (󱤏󱢑g. 2-1(g))(sec. 2.8)
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Figure 2-1. A visual representation of the steps used for generat-
ing a hex mesh from volume fraction data: (a) Establish parallel
Cartesian grid. (b) Estimate gradients at cell centers. (c) Assign
materials to cells. (d) Resolve non-manifold cases. (e) Com-
pute dual edge crossings. (f) Move grid points to iso-surface.
(g) Create geometry definition. (h) Insert hex buffer layer. (i)
Smooth.

8. Recover geometric interfaces: Compute initial placement of nodes to approximate material
interfaces. (󱤏󱢑g. 2-1(e-f))(sec. 2.9)

For tet mesh generation: (sec. 2.10)

9. Split surface quads: Split quadrilaterals de󱤏󱢑ning the interface surfaces into triangles, ensuring
acceptable quality triangles are maintained. (sec. 2.10.1)
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10. Collapse small edge and surfaces: Collapse small curves and surfaces and update geometric
topology to avoid poor quality tets. (sec. 2.10.2)

11. Build tet mesh: Export faceted representation of interfaces and their topology. Tet mesh is
generated in Cubit with third party meshing solution. (sec. 2.10.3)

For hex mesh generation: (sec. 2.11)

9. Build interior hex elements: Construct topology for hex elements from the overlay grid
de󱤏󱢑nition. (sec. 2.11.1)

10. Insert pillow layers: Insert layers of hexes to improve topology of hexes at interfaces. (󱤏󱢑g.
2-1(h))(sec. 2.11.2)

11. Perform smoothing: Perform smoothing on nodes assigned to curves, surfaces and volumes to
optimize mesh quality. (󱤏󱢑g. 2-1(i))(sec. 2.12)

A description of some of the procedures and algorithms involved in the preceding steps has been
outlined in [19]–[27], and for brevity are not included in this work. Instead we focus on the aspects of
the work 󱤐󱤔ow that are unique to computational materials modeling or that improve upon known
methods in the literature.

2.2. DEFINE OVERLAY GRID

Overlay grid ormesh-first methods require an initial mesh that overlaps the geometry. This mesh serves
as the basis for meshing procedures described in this report. The regular, structured overlay grid is often
de󱤏󱢑ned in terms of minimum and maximum coordinates of an axis-aligned Cartesian grid along with
interval counts in each dimension. While a Cartesian grid is perhaps the simplest method for prescribing
the domain, any hexahedral mesh may be used as the base overlay grid. A general hex mesh is usually
generated in an external application such as Cubit [33], so that it conforms to a particular geometry. For
example 󱤏󱢑gure 2-2(a) shows an unstructured mesh of a cylindrical shape that was generated using a
sweep scheme in Cubit. The resulting microstructure mesh based on the cylindrical overlay grid is
shown in 2-2(b). Overlay grids from simple primitive geometry can also be generated inline using
Pamgen[11], a parallel tool for generating simple hex meshes from a prescribed analytic description.

2.3. PROCESS INPUT DATA

The data for microstructure computational models can come from a variety of sources. Three principle
sources are considered, illustrated in 󱤏󱢑gure 2-3 are analytic geometry, voxel data, and volume fraction
data.

Analytic geometry may be given by a series of geometric primitive speci󱤏󱢑cations. For example, in 󱤏󱢑gure
2-3(a), analytic de󱤏󱢑nitions of concentric spheres are used to represent microballoons. Voxel data,
illustrated in 2-3(b) is provided as a dense set of integers on a Cartesian grid where the integer represents
the dominant material in each cell. Figure 2-3(c) illustrates the phase-󱤏󱢑eld representation of a crystalline
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(a) (b)

Figure 2-2. (a) Overlay grid defined by an unstructured mesh. (b)
Resulting microstructure mesh generated on unstructured grid in
(a)

Figure 2-3. Types of input data used for microstructures mesh
generation. (a) analytic geometry, (b) voxel data and (c) volume
fraction data

material which is given as volume fractions on a Cartesian grid. For analytic geometry and voxel data the
input must 󱤏󱢑rst be converted into a volume fraction representation to be processed. For analytic
geometry, a series of inside-outside tests are performed on a uniform grid of sampled locations within
each cell to approximate the volume fraction of each material present. For voxel data, the volume
fraction is simply set to 1.0 for the cell’s dominant material and 0.0 for all others.

In many cases, the geometry for the overlay grid is implied by the input data. For example, input data in
the form ofN ×M × L integers would result in a 󱤏󱢑nal mesh with resolutionN ×M × Lwhere each
cell is assumed to be of unit size. Where the overlay grid is prescribed, such as that shown in 󱤏󱢑gure
2-2(a), the data may be associated with each element of the unstructured mesh by including it as element
data in an Exodus mesh 󱤏󱢑le.

Figure 2-4 illustrates another example of input data. Figure 2-4(a) represents an ascii 󱤏󱢑le with integers
de󱤏󱢑ning materials for each cell of a Cartesian grid. In this example, the overlay grid is de󱤏󱢑ned in terms of
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the unstructured mesh shown in (b). The data for this example, must be interpolated using an inverse
distance weighting method from the Cartesian ascii representation to the unstructured mesh. With the
data on the unstructured overlay grid, the proposed meshing procedures can be run resulting in the
mesh in 2-4(c).

(a) (b) (c)

Figure 2-4. Interpolation of input data to unstructured grid. (a)
Material data is provided as an ascii file with one integer per cell
on a Cartesian grid (b) Data is interpolated to the hexes of an
unstructured overlay grid (c) final mesh generated with Sculpt.

2.4. DISTRIBUTE DATA FOR PARALLELISM

The tools described in this report are intended to be scalable and parallel. To accomplish this, the base
mesh is distributed among multiple processors with each processor generating a separate mesh for its
portion of the domain. Communication is accomplished through the Message Passing Interface (MPI)
to maintain parallel consistent, conforming hex meshes.

For Cartesian grids, the distribution is accomplished via a trivial decomposition as shown in 󱤏󱢑gure 2-5.
We can de󱤏󱢑ne the Cartesian grid on processor rank p asΩp

M = {M r
i |r = 0, 1, 2, 3}where for example

M0 is a node of the grid,M1 is an edge, and so forth, as illustrated in 󱤏󱢑gure 2-6. The location of grid
nodes and size of cells ofΩp

M is established by de󱤏󱢑ning three independent arrays in each coordinate
direction:
XΩ = {x0, x1, x2, · · · , xnx+1} , YΩ = {y0, y1, y2, · · · , yny+1} , ZΩ = {z0, z1, z2, · · · , znz+1},
where nx, ny and nz are the number of cells in the grid in coordinate directions x, y and z respectively.
Subsequent algorithms described here, utilize the entitiesM r

i |r = 0, 1, 2, 3, however for our purposes,
a lightweight representation ofΩp

M is established, implicitly de󱤏󱢑ningM r
i only as needed.

In the proposed primal contouring approach, the nodes of the gridM0, become the actual nodes in the
󱤏󱢑nal FEM hexahedral mesh. This has the consequence of the need to establish dual nodes, edges, faces
and cells (shown in 󱤏󱢑gure 2-6) when de󱤏󱢑ning our algorithms and procedures. Rather than explicitly
de󱤏󱢑ning these dual entities we can de󱤏󱢑ne a correspondence between primal and dual entities and utilize
only the primal de󱤏󱢑nition for implementation purposes.
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(a) (b)

Figure 2-5. (a) Cartesian grid with a 4 processor decomposition.
(b) Exploded view of processor decomposition showing ghosted
cells on each processor.

Figure 2-6. The primal grid entities are illustrated and identified
by M r|r = 0, 1, 2, 3. Corresponding entities in the dual are also
illustrated.

Ghosted cells are set up at the boundaries of processors where they meet a neighboring processor. For
our purposes we utilize 2 layers of ghost cells which duplicate geometry and data from neighboring
processors. Figure 2-7 illustrates ghosting on a domain composed of two processors. The cells in region
A on processor 0, shown in (a), are duplicated and added to the cells at the boundary of processor 1
shown in (b). In a similar manner, the cells in regionB on processor 1 are duplicated and added to
processor 0.

2.4.1. Unstructured Decomposition

For unstructured meshes, the mesh must 󱤏󱢑rst be decomposed into roughly equivalent regions. To
accomplish this we use the decomp application which is part of the SEACAS [35] tool suite. The
decomp tool incorporates Sandia’s Zoltan [5] software for distribution and load balancing. To ensure
conforming hexes, ghost cells are extracted and used as a mechanism for communication.
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Table 2-1. Correspondence between primal and dual entities
M i Primal Dual
M0 node cell
M1 edge face
M2 face edge
M3 cell node

Figure 2-7. (a) Domain defined on two separate processors. Cells
in regions A and B are owned by processors 0 and 1 respectively.
(b) Ghost cells in regions A and B are copied and added to to
processors 0 and 1 respectively.

2.4.2. Periodic Ghosting

Periodic meshes can be generated by ensuring that nodes and faces on opposite sides of the RVEmatch
exactly. This can be accomplished by using standard ghosting procedures with MPI. Without
periodicity, when multiple processors are used, cells are duplicated only on neighboring processors that
share common nodes and faces. Periodic meshes also share common nodes and faces on opposite sides
of the RVE domain. Periodic ghosting can be set up by copying cells from one side of the mesh domain
to the opposite side, applying a translation of one period to the nodes. As an example, Figure 2-8(a)
shows the same two processor domain shown in 󱤏󱢑gure 2-7. For the periodic case, we de󱤏󱢑ne regions of
cells on all boundaries and corners of the domain that will be duplicated to opposite sides. We note that
ghosting between neighboring processors in regionsA andB are handled the same as the non-periodic
case. For all other boundaries, cells are duplicated to opposite sides which may be on the same processor,
as in regionsE andD or another processor, as in regionsC and F
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We note that periodicity de󱤏󱢑ned in this manner assumes that the underlying geometry is also periodic.
While this approach will work, even if the geometry is not periodic, true periodicity requires that the
geometry is periodic.

Figure 2-8. Periodic ghosting: (a) two processor example show-
ing cells ghosted on the same or neighboring processor. (b) Cells
added to boundary of each processor that are copied from either
the opposite side of the same processor or from the neighboring
processor.

2.5. MESH ADAPTIVITY

(a) 1-template (b) 2-template (c) 3-template (d) 4-template

Figure 2-9. Complete set of 3D 2-refinement templates. Tem-
plates are identified based on the number of marked nodes on a
hex.

22



2.5.1. Refinement

The input overlay grid provides the initial base resolution for the mesh. This initial resolution can be
modi󱤏󱢑ed using the 2-re󱤏󱢑nement method described in [24, 25], which uses a template-based approach
for subdividing cells of the overlay grid. Figure 2-9 illustrates the templates used for subdivision. Since
we require a conformal mesh where no hanging nodes are present, the templates provide a solution for
transitioning from the 󱤏󱢑ne resolution to coarse. Reference [25] describes methods for marking nodes
based on geometric criteria. One of the 4 templates shown in 󱤏󱢑gure 2-9 are then applied successively in
the three Cartesian directions based upon the marked nodes.

(a) (b) (c)

Figure 2-10. (a) Example 3D refinement showing first level of
refinement from green elements. Green elements will serve as
transition zone for second level of refinement from uniformly re-
fined red elements. (b) Transition elements for second level of
refinement added. (c) Smoothing applied.

Re󱤏󱢑nement can also be applied successively, to subdivide cells multiple times. Figure 2-10 illustrates two
levels of re󱤏󱢑nement. In this example, the green cells in (a) show the 󱤏󱢑rst level of re󱤏󱢑nement with the
transition templates applied surrounding them within the white cells. In (b) the red cells illustrate a
second level of uniform re󱤏󱢑nement. These elements also require transition templates which are placed
within the green cells. (c) shows the same mesh after it has been smoothed.

We note that the 2-re󱤏󱢑nement technique outlined in [24, 25] is limited to a structured arrangement of
cells in the overlay grid such as a Cartesian grid or mapped mesh. This method relies on pairing of
adjacent layers of cells for the templates shown in 󱤏󱢑gure 2-9. As a result, general unstructured overlay
grids will not admit a 2-re󱤏󱢑nement procedure. We note however that 3-re󱤏󱢑nement procedures may be
applied using an external tool [33] prior to import.

2.5.2. Coarsening

For some cases, the volume fraction data provided on the overlay grid can be very high resolution. There
is currently no general method for coarsening a hexahedral mesh. Instead, when using a structured
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overlay grid, we can 󱤏󱢑rst rede󱤏󱢑ne the grid in terms of a coarse resolution and re󱤏󱢑ne cells only where
needed.

For coarsening from dense Cartesian data, we begin with a grid resolutionN ×M × L, where the
intervals in each coordinate direction can be de󱤏󱢑ned asN = 2cmaxN0, and whereN0 is the coarsest
allowable cell dimension and cmax is the user-de󱤏󱢑ned maximum number of coarsening levels permitted.
Based on this relationship, the coarsest dimensionsN0 ×M0 × L0 are determined. This serves as the
initial grid resolution, where one cell of the base grid contains 23cmax cells of the original dense grid. To
ensure all cells in the dense grid are used, the dimensionsN ,M and L should be evenly divisible by
2cmax . If not, then the remaining cells at the boundary of the dense grid will be discarded. Figure ??
illustrates this procedure on a 2D grid with two levels of coarsening (cmax = 2).

(a) (b)

(c)

Figure 2-11. (a) Initial dense resolution Cartesian grid, (b) Cells
of resolution 2cmax consolidated where data does not change. (c)
Transitions inserted to maintain conformal mesh

A cell in the coarse base grid is marked for uniform re󱤏󱢑nement if the children contained within the
parent cell contain volume fractions that dif󱤎er by less than a user-de󱤏󱢑ned threshold δ. This procedure
continues, adaptively applying uniform re󱤏󱢑nement to child cells up to cmax times.

An example of coarsening is shown in 󱤏󱢑gure 2-12. In this case, the initial grid resolution was
456× 456× 166 or approximately 34.5million cells. In this example, a high resolution scanned
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representation of apparatus and microstructure resulted in a resolution that would be too dense for
practical use. With a coarsening value cmax = 3 the initial coarsened resolution was reduced to
N0 ×M0 × L0 = 57× 57× 20 or 64, 980 cells. Once re󱤏󱢑nement is applied to the coarse grid, the
maximum resolution for the microstructure is recovered, but leaves most of the solid apparatus
structure at the coarser resolution.

Figure 2-12. Example of mesh coarsening. Initial data resolu-
tion is approximately 34.5 million cells. With 3 coarsening levels
(cmax = 3), and refinement, final hex mesh is approximately 4.6
million elements

2.6. GRADIENT ESTIMATION

As initial data is provided as pure cells or volume fractions, we must convert interfaces between
materials into a smooth representation. The key step of this procedure is the approximation of the
normals at material interfaces. This can be done by using a 󱤏󱢑nite dif󱤎erence approach to 󱤏󱢑rst
approximate the gradients of the materials throughout the model. We begin by approximating the
volume fraction gradient at cell centers for each material de󱤏󱢑ned on the domain. For each cell, exactly
Nmat scalar values vn = v0, v1, ...vNmat−1 are provided. We can represent the gradient for material n at
cell center (i, j, k) as▽vn(i, j, k) =

󰀓
∂vn
∂x

, ∂vn
∂y

, ∂vn
∂z

󰀔
. For each cellM3

i,j,k in the grid, the dif󱤎erences of
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26 neighboring values∆vn, and cell center coordinate locations (∆x,∆y,∆z) atM3
i±,j±,k± can be

used to approximate the gradient. Solving for
󰀓
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󰀔
in equation (2.1) produces the least

squares approximation to the gradient for material n.
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Note that the 󱤏󱢑nite dif󱤎erence calculation∆(vn)i in equation 2.1 for any cell center, requires the
dif󱤎erence of volume fractions between neighboring cells. As a consequence, the required primal node
of󱤎set for any nodeM0, will require volume fraction data from two layers of neighboring cells to
contribute to its 󱤏󱢑nal location. This fact motivates the need to establish two layers of ghost cells at
processor boundaries, ef󱤎ectively reducing the amount of required interprocessor communication.

The gradients in much of the grid will be unde󱤏󱢑ned where∆vn is small or zero. Since the interfaces we
seek are de󱤏󱢑ned only where |∆vn| > 0, we can ignore cases where the gradient is unde󱤏󱢑ned. In practice
we compute gradients only where |∆vn| > 1.0e− 6.

To compute gradients, we simply loop through all cells of the grid computing the required▽vn(i, j, k)
for every cell. Note also that for cells at the boundary of the grid, fewer than 26 adjacent cells are
available for the summations in equation (2.1). Where neighboring processors are present, this will
result in inconsistent results for gradients at the processor boundaries computed on the outer layer of
ghost cells. Since we have established two layers of ghost cells, these ef󱤎ects are normally minimal, but
can ef󱤎ect the 󱤏󱢑nal node positions. If not resolved, this may ef󱤎ect the smoothness of the grid across
processors and whether the nodes conform at all. To avoid this condition, once the gradients are
computed, communication is established with neighboring processors,Ωp±

M and gradients in the outer
layer of ghost cells on each processor are sent and received via MPI.

2.7. DATA FILTERING

As an initial approximation of the geometry, each cell is assigned a material ID based on its dominant
material. This initial approximation can include conditions that can make hex meshing impossible or
result in less than acceptable quality. Here we identify 󱤏󱢑ve speci󱤏󱢑c classes of problems and propose
solutions for 󱤏󱢑ltering the data by modifying the initial material assignment for a small number of cells.
These solutions include:

1. Non-manifold resolution: Identify and resolve cases where a commonmaterial is connected by a
single node or edge.

2. Defeaturing: Identify and remove small material volumes, protrusions and isthmus conditions.

3. Thickening: Add volume fraction to material boundaries to reduce noise in input data.

4. Reversal correction: Identify and resolve case at nodes where adjacent faces have opposite normals.

5. Expansion layer insertion: Add additional layer(s) to RVE boundaries to improve quality.
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The following sections provide additional details for each of these data 󱤏󱢑ltering solutions.

2.7.1. Non-manifold resolution

Raw data describing material arrangement within an RVE can often result in local non-manifold
conditions. Figure 2-13 illustrates two simple cases where a non-manifold condition exists in an overlay
grid. In this case a cell containing blue material is connected to an adjacent cell with blue material by
only an edge (a) or a node (b). The proposed mesh generation method requires that all materials
assigned to cells in the overlay grid maintain a manifold condition. In other words, all adjacent cells with
the same material must have at least one face in common. To achieve manifold conditions, it is usually
necessary to re-assign the material at nodes and edges exhibiting a non-manifold condition.

Figure 2-13. (a) Non manifold condition at an edge. (b) Non-
manifold condition at a node.

In [26, 27] we describe a technique for eliminating non-manifold conditions within a structured grid.
Where all interior nodes in the base grid have a valence of eight, a limited set of seven non-manifold
cases, illustrated in 󱤏󱢑gure 2-14 have been identi󱤏󱢑ed. For each non-manifold case, a corresponding set of
resolution options, where cells are either added or removed from the non-manifold set are identi󱤏󱢑ed.
The option resulting in the smallest change to the target volume fraction is selected.

Figure 2-14. Seven cases for non-manifold conditions at a node are illustrated.

With a relatively small set of non-manifold conditions possible for structured grids, it is a manageable
task to implement a set of hard-coded resolution strategies. Following conformal re󱤏󱢑nement of the
structured Cartesian grid, the valence at any node in the grid may be variable. Figure 2-15 illustrates a few
examples of non-manifold conditions that can exist in an unstructured grid. To identify non-manifold
conditions for the general case, we utilize the Euler numberE, given by equation 2.2, a standard
measure for characterizing the completeness of a mesh based on a count of nodes, edges and faces.
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Figure 2-15. Examples of unstructured non-manifold cases at a node

E = Nnodes −Nedges +Nfaces (2.2)

whereNnodes,Nedges andNfaces are the boundary nodes, edges and faces respectively of a
three-dimensional mesh. For a hexahedral mesh, to be free of non-manifold conditions, the Euler
number must be exactly equal to 2 for every material present at a node. The Euler number is computed
for sets of cells at a node i that share a commonmaterial j. Non-manifold conditions at node i are then
identi󱤏󱢑ed whereE(i)j ∕= 2 for any material j.

To resolve non-manifold connections, we identify a series of potential options that will resolve the
non-manifold condition by compiling a list of options where material IDs are reassigned at node i to
ensureE(i)j = 2. With multiple options identi󱤏󱢑ed, we choose the option that will result in the
minimum deviation from the underlying volume fraction data.

The Euler number computed at a node for each material present, will be a valid measure of
manifoldness whether structured or unstructured. In practice however, since the structured case is
usually most common, for ef󱤎iciency we distinguish the structured case and utilize the hard-coded
resolution strategies outlined in [26, 27]. For the unstructured cases, we compute the Euler number and
a series of modi󱤏󱢑cations that can be tested to ensureE(i)j = 2 is met for each material at a node.

We also observe that a solution that will resolve the non-manifold condition at one node, may otherwise
introduce a new non-manifold condition at a neighboring node. Similarly, neighboring nodes, both
with non-manifold conditions, may select con󱤐󱤔icting solutions. To avoid these cases we utilize a
coloring approach that ef󱤎ectively isolates the kernel of cells that will be involved in a single
non-manifold resolution operation. This is accomplished by 󱤏󱢑rst identifying all possible non-manifold
resolution cases along with their kernel of surrounding cells and their corresponding resolution strategy
to minimize deviation from the underlying volume fractions. For cells that would otherwise be involved
in more than a single non-manifold resolution operation, the operation with the minimum volume
fraction deviation is selected and the others discarded for the current iteration. Once a unique set of
independent kernels have been identi󱤏󱢑ed, the actual modi󱤏󱢑cations to the cell material assignments are
made. In a subsequent iteration, the non-manifold nodes that were discarded are again identi󱤏󱢑ed and
included in the coloring selection procedure.

Although the proposed coloring procedure succeeds in isolating individual non-manifold resolution
operations, it is possible that some amount of oscillation may occur where the same cells may be added
or removed multiple times. To avoid this condition we introduce a small delta (δ) volume fraction value
to cells that have been changed in the current iteration. For example, if the volume fraction of material
A in a cell is x, the new volume fraction for materialA in the cell will either be x+ δ or x− δ
depending on whether the cell was added or removed frommaterialA. The δ value is progressively
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increased for each iteration for which the cell’s material assignment is changed. The result is that the
oscillation will be inhibited resulting in most models converging within four or 󱤏󱢑ve iterations.

We note that the proposed coloring procedure is ef󱤎ective in providing a reproducible and parallel
consistent result that minimizes deviation from the underlying volume fraction data. To ensure parallel
consistency, communication of the proposed resolution kernels must be ef󱤎ected for cells at processor
boundaries. This is to ensure that cases that involve material regions spanning neighboring processors
will be identi󱤏󱢑ed and selected in a consistent manner.

2.7.2. Defeaturing

The resolution of all non-manifold conditions is a prerequisite for the proposed primal contouring hex
mesh generation method as subsequent geometry and smoothing operations will otherwise fail. We
have noted however that computable quality hex elements can be dif󱤎icult or impossible to produce
based on some cases of material cell assignment. The cases described in 󱤏󱢑gure 2-16 illustrate conditions
that can otherwise result in poor quality along with their proposed resolutions.

Figure 2-16. Three cases of cell material assignment that can
result in poor quality elements and their proposed resolutions: (a)
Island: small number of cells grouped together, (b) Protrusion:
one or more cells surrounded by another material on at least 4
sides, (c) Isthmus: single cell connecting two larger groupings of
cells of the same material.

For small volumes, shown in 󱤏󱢑gure 2-16(a), a user de󱤏󱢑ned minimum number of cells per volume, Smin is
used. Small volumes are identi󱤏󱢑ed by collecting groupings of the same material through a recursive
search of surrounding cells. Parallel communication is also required where volumes with less than Smin

cells are at the boundary of a processor domain.

Peninsula and isthmus conditions can be identi󱤏󱢑ed by enumerating the cells of a dif󱤎erent material at
the six faces of a cell. Cells with at least 4 faces with adjacent cells of a dif󱤎erent material are selected for
modi󱤏󱢑cation. Update of the material assignment for defeaturing criteria is ef󱤎ected in the same manner
as used for non-manifold resolution. A coloring procedure, where each cell identi󱤏󱢑ed as a potential
change is included in a kernel de󱤏󱢑ned by its immediate neighbors. Defeaturing options are discarded
from the current iteration when its kernel cells are included in more than one option. In these cases the
option with the minimum change in volume fraction will be selected and the others discarded for the
current iteration.
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Figure 2-17. Example of defeaturing operations on a microstruc-
ture model. (a) Initial microstructure with colors representing
different grains. (b) Red cells indicate those that satisfy one of
the criteria shown in figure 2-16. (c) Resulting microstructure
after reassignment of materials.

Figure 2-17(a) illustrates a simple microstructure prior to defeaturing. The red cells in 2-17(b) indicate
the cells that have been identi󱤏󱢑ed for defeaturing that meet one of the criteria shown in 󱤏󱢑gure 2-16. The
microstructure following defeaturing is shown in 󱤏󱢑gure 2-17(c).

We note that it is possible that criteria used to resolve defeaturing conditions may introduce
non-manifold conditions. Likewise non-manifold resolution may introduce conditions that will need
to be defeatured. To ensure all cases are ef󱤎ectively resolved, the defeaturing and non-manifold
resolution are done in a loop and continue until no further changes are necessary.

2.7.3. Resolving Reversals

An additional case that presents a problem for some forms of smoothing is illustrated in 󱤏󱢑gure 2-18(a).
In order to insert a buf󱤎er layer at the interface between materials, an approximate normal is computed
for the surface. A normal vector at an interface node can be computed by averaging the face normals of
surrounding interface faces. Averaging face normals for the con󱤏󱢑guration of cells illustrated in 󱤏󱢑gure
2-18 (a) can produce negative quality buf󱤎er layer hexes.

To avoid the reversal case, we can re-assign materials at the node in a similar manner we correct for
non-manifold conditions. Figures 2-18 (b)-(e) illustrate the options used for the structured case for
modifying the reversal case in (a). Similar to the non-manifold resolution criteria, the option selected
attempts to minimize the change in local volume fraction for cells attached to the node.

For the unstructured case, we can identify a reversal by comparing local face normals at a node using the
following criteria:

Ni ·Nj < −(1− δ) (2.3)
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whereNi andNj are a pair of face normals at the same node. Equation 2.3 identi󱤏󱢑es faces that have
normals facing in nearly opposite directions where δ de󱤏󱢑nes a small threshold. When a reversal is
encountered, local changes to materials are identi󱤏󱢑ed and updated in a similar manner to the
unstructured non-fold resolution case described in section 2.7.1.

Figure 2-18. (a) Example reversal case where adjacent faces have
opposite facing normals. (b)-(e) shows possible resolution states
for reversal.

2.7.4. Thickening

(a) (b)

(c)

Figure 2-19. Effect of applying thickening. Light blue illustrates
the relative amount of thickening applied to each cell. The result-
ing material assignment is shown at right for each case. Larger
values of thickening (c) result in more neighboring cells reassigned
and a more continuous material definition

For particularly noisy data, the thickening process has the ef󱤎ect of 󱤏󱢑lling in gaps to create more
continuity in the material interfaces. While the defeaturing procedure tends to remove cells from
material, the thickening process will add volume fraction at material boundaries.

To thicken a material, a target volume fraction value, vfi is speci󱤏󱢑ed that will be added at all boundaries
of materialMi. Figure 2-19 illustrates how thickening is applied at the cell level and its ef󱤎ect. The
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relative sizes of the light blue boxes indicate the relative size of vfi and the 󱤏󱢑gures on the right indicate
the change in material assignment as a result. Each neighboring cell to those with material assignment
Mi adds some portion of vfi to its volume fraction data. Since we must maintain

󰁓k
j=0 vf(i, j) = 1

for the sum of volume fractions in the cells, other materials present in the cell must also be reduced by
the same amount. Cells may then reassigned to a newmaterial based upon the dominant material
present in the cell after addition of vfi.

Figure 2-20 illustrates the ef󱤎ect of thickening over a range of thickening values combined with
defeaturing on an example 3D data set. Normally thickening is applied before defeaturing. Images on
the top row show the ef󱤎ect of changing vfi ranging from vfi = 0 (no thickening) to vfi = 1
(maximum thickening). The second row of images illustrate the ef󱤎ect of defeaturing the thickened cells
and the bottom row shows the 󱤏󱢑nal mesh.

Thickening can also be applied to multiple materials in a user speci󱤏󱢑ed order. This can result in
competing thickening operations where materials are adjacent by removing or adding material to the
same cells. Some trial and error may be necessary to determine which materials and values for vfi should
be used.

Figure 2-20. Effect of thickening on an example 3D data set.
Top row shows the effect of different values of thickening applied
to the cells of one material. Middle row illustrates the effect
of defeaturing on the thickened cells. Bottom row shows the
resulting hex mesh based on the thickened cells.

2.7.5. Expansion Layers

When observing meshes that have been generated with the proposed method, we often observe cases
where material interfaces are almost tangent or form very small angles with the RVE boundary. An

32



example of this condition is illustrated in 󱤏󱢑gure 2-21(a) where the quality of the hexes is constrained at
the boundary.

Figure 2-21. Example of introducing expansion layers to control
element quality. (a) Resulting hex mesh where material interface
intersects RVE boundary at small angle without expansion layers
(b) Single expansion layer has been inserted. (c) Two expansion
layers inserted.

To resolve this, we can optionally introduce one or more expansion layers to the boundary of the RVE.
Each expansion layer adds an additional two cells to the intervals of the RVE in each Cartesian direction.
The new cells in the expansion layers are assigned the volume fractions from their immediate neighbors
in the grid. For cells at the corners and vertices of the RVE, the volume fraction data is repeated based on
its closest cell in the base grid.

By adding the expansion layers, material interfaces where acute intersections occur at the RVE
boundaries will ef󱤎ectively be modi󱤏󱢑ed to exit the RVE at close to an orthogonal angle, after smoothing
has been completed. The ef󱤎ect of inserting one and two expansion layers are illustrated in 󱤏󱢑gure 2-21(b)
and (c) respectively with the orthogonality increasing with the number of inserted layers.

2.7.6. Data Filtering Accuracy

We note that when using the data 󱤏󱢑ltering tools as described above, signi󱤏󱢑cant changes to the
underlying data may be necessary in order to achieve acceptable results. A tool that compares input data
with the 󱤏󱢑nal mesh is provided to check for accuracy. The volume of each material present upon input
and the volume of elements in each material in the 󱤏󱢑nal mesh are computed and compared. A relative
error measure can then be determined. In many cases, modifying the thickening values for dif󱤎erent
materials can greatly ef󱤎ect the error measures.

2.8. BREP CONSTRUCTION

With the cell material assignment completed, it is now possible to construct a BREP topology graph of
the model. A BREP is necessary to help facilitate subsequent pillowing and smoothing operations. The
BREP includes a set of connected volumes, surfaces, curves and vertices which each serve as containers
for mesh entities. BREP construction is done by selectively grouping and assigning cells, faces, edges and
nodes of the grid to an owner volume, surface, curve and vertex respectively.
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Figure 2-22. Example BREP extracted from a 100 x 100 x 100 cell
microstructure voxel model. (a) shows the initial Cartesian grid
with cells colored according to their initial material assignment,
(b) 6395 curves, 3086 vertices, (c) 3946 surfaces and 636 volumes
extracted from the voxel data.

One volume is created for each contiguous set of cells assigned a commonmaterial ID. Surfaces can then
be identi󱤏󱢑ed and assigned faces that have common pairs of adjacent cells that have been assigned to
dif󱤎erent volumes. Curves are then identi󱤏󱢑ed and assigned edges that have a common set of unique
surfaces. Finally, vertices are created where adjacent edges have been assigned to dif󱤎erent curves.

Topology containers must also be distinguished by their location with respect to one of the following
classi󱤏󱢑cations: 1. interior of the RVE, 2. the RVE domain boundary or 3. processor boundary. Distinct
pillowing and smoothing operations are performed based on its classi󱤏󱢑cation with respect to one of
these three types.

An example BREP is illustrated in 󱤏󱢑gure 2-22 for a microstructure with 636 grains . In 2-22(a), the initial
100 x 100 x 100 Cartesian grid with each cell colored by its material assignment is shown. 2-22(b) the
curves and vertices, 2-22(b) surfaces and volumes extracted from the voxel data are illustrated.

2.9. PRIMAL CONTOURING

The primal contouring procedure is a method for approximating the interfaces between materials.
Reference [26, 27] describes a procedure for computing a minimizer location for cell nodes between two
materials. This method is similar to the dual contouring method described in [38], however instead of
forming elements from the dual of the base grid, leaving the underlying grid unchanged, we instead
modify the base grid itself, adjusting locations of the primal nodes of the cells of the grid. This approach
better lends itself to parallel distribution, where cells can be distributed onto dif󱤎erent processors
without having to de󱤏󱢑ne elements across processor boundaries.

As outlined in 2.8, a B-Rep is constructed based on the topology of the material assignments in each of
the cells. With this construction the set of curves and surfaces are assigned their appropriate groupings
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of edges and faces. The primal contouring procedure consists of moving the nodes on these entities to
de󱤏󱢑ne a smooth interface approximation that best maintains the underlying volume fraction data. Here
we propose an improved and generalized procedure over that described in [26, 27], for assigning
locations for nodes on curves and surfaces built from an unstructured base grid.

2.9.1. Locating nodes on surfaces

Figures 2-23(a) and (b) illustrate the basic approach for locating a node pab that lies on a surface between
materials a (yellow) and b (blue). We assume that volume fractions for materials a and b are provided for
each adjacent cell, and their approximated normals. In [26, 27] we describe a method for computing
normals for materials in each cell based upon a 󱤏󱢑nite dif󱤎erence approximation between volume
fractions and a least squares 󱤏󱢑t from the 26 neighbors of an interior cell. This method can also be
generalized for unstructured grids where any number of neighboring cells can be used to approximate
normals for a given cell. With this information we approximate a set of planes that intersect the edges of
a polygon that is de󱤏󱢑ned by the centroids,Ci, of the neighboring cells to pab. In 󱤏󱢑gure 2-23(a) we show
two planes intersecting the virtual edgesC1 − C2 andC3 − C4 respectively. The intersecting planes are
de󱤏󱢑ned by locations x(ab)12 and x(ab)34 and normals which have been interpolated from volume
fractions at the cells. Node pab can then be projected to these planes to produce points p12 and p34.
Finally, as illustrated in 2-23(b), node location p′ab is computed as the weighted average of locations p12
and p34. For the general unstructured case, any number of locations pij can contribute to locating pab.
The set of projected points pij will be computed for all dual edges corresponding to adjacent cell faces to
pab with dif󱤎erent materials on either side.

2.9.2. Improved edge-cross locations

Of critical importance to the interface approximation is accurately approximating the edge-cross
locations. For the example in 󱤏󱢑gure 2-23(a) the edge-cross locations corresponds to points x(ab)12 and
x(ab)34. Figure 2-24(a) illustrates the case where two adjacent cells have been assigned to dif󱤎erent
materials a and b. In this example CellC1 contains volume fractions v(a1) = 0.6 and v(b1) = 0.4. Cell
C2 contains volume fractions v(a2) = 0.3 and v(b2) = 0.7. Our objective in this example is to de󱤏󱢑ne a
parametric location t12 on a line segment connecting the centroids ofC1 andC2 where we expect the
interface of materials a and b to cross the line segment.

We observe that linear curves with slope v(a2)− v(a1) and v(b2)− v(b1) can be de󱤏󱢑ned describing the
approximate change in volume fractions betweenC1 andC2 for materials a and b. For this example, the
curves are illustrated in 󱤏󱢑gure 2-24(b). We then compute the intersection of these curves at t12 as the
most probable parametric location of the interface ab along line segmentC1 − C2 which is given by
equation 2.4.

t12 =
v(b1)− v(a1)

v(a2)− v(a1)− v(b2) + v(b1)
(2.4)

We can improve upon this approximation by incorporating the normal information at cellsC1 andC2.
Rather than linear line segments associated with materials a and b between cell centroidsC1 andC2 we
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Figure 2-23. Examples of relocating nodes pab and pabc on surfaces
and curves. (a) and (b) describe relocating surface node pab at
the interface between materials a and b by projecting to planes
defined by edge cross locations x(ab)ij. (c) and (d) describe re-
locating node pabc on a curve at the interface between materials
a, b and c. Edge cross locations define multiple planes that are
intersected to form linear curves to which pabc is projected.

can incorporate normal information to represent two hermite curves a(t), b(t) as illustrated in 󱤏󱢑gure
2-24(c) and given by equations 2.5 and 2.6.

a(t) = v(a1)(2t
3 − 3t2 + 1) + v(a2)(−2t3 + 3t2) + n(a1)(t

3 − 2t2 + t) + n(a2)(t
3 − t2) (2.5)

b(t) = v(b1)(2t
3 − 3t2 + 1) + v(b2)(−2t3 + 3t2) + n(b1)(t

3 − 2t2 + t) + n(b2)(t
3 − t2) (2.6)

where n(ai) and n(bi) are the scalar components of normalsN(ai) andN(bi) in the direction of the
segmentC1 − C2. The intersection of curves a(t) and b(t)will yield an improved interface location t′12.
Because the solution of the intersection of the cubic equations in 2.5 and 2.6 is non-trivial, we instead
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employ a numerical root 󱤏󱢑nding method to ef󱤎iciently compute location t′12 using t12 as an initial
guess.

Figure 2-24. Example of computing parametric edge cross loca-
tion t12 on dual edge C1 −C2. (a) Two adjacent cells with differ-
ent materials a and b with their associated volume fraction data
v(ai), v(bi) and normals N(ai), N(bi). (b) Line segments defined
by slopes v(i2) − v(i1) are intersected to define parametric edge
cross location t12 using equation 2.4. (c) Improved parametric
edge cross location t′12 computed by intersecting hermite curves
a(t) and b(t) defined by equations 2.5 and 2.6.

2.9.3. Locating nodes on curves

To locate nodes on curves we must take into account the interfaces between three or more materials.
Figures 2-23(c) and (d) illustrate the placement of node pabc which lies at the interface between materials
a (yellow), b (blue) and c (green). We note in 󱤏󱢑gure 2-23(c) that three edge-cross locations on dual edges
surrounding pabc are computed. For dual edgeC1 −C2, the edge cross location x(ab)12 is de󱤏󱢑ned. This
serves as the basis for a planeQ(ac)which is an approximation of the interface between materials a and
c. Similarly, edge-cross location x(cb)24 is located on dual edgeC2 − C4 which serves as the basis for
planeQ(cb). Finally a third plane,Q(ab) is computed from location x(ab)34 on dual edgeC3 − C4.
The three planes,Q(ac),Q(cb) andQ(ab) now form the basis for relocating node pabc. To do this we
󱤏󱢑rst intersect pairs of surfaces to de󱤏󱢑ne linear curves. For example, 󱤏󱢑gure 2-23(c) shows lac,cb as the
intersection between planeQ(ac) andQ(cb). In the 2D 󱤏󱢑gure 2-23(c), lac,cb is represented as a point,
however in 3D the intersection of planes is in fact a linear curve. We can then project point pabc to linear
curve lac,cb to get location pac,cb. Similarly we can intersect planesQ(ac)−Q(ab) andQ(ab)−Q(cb)
to arrive at locations pac,ab and pab,cb. A weighted average of these three points will yield location p′abc.
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Generalizing this procedure for an arbitrary number of adjacent materials, we form n planes
Q(ij)(i = 1...n, j = 1...n, i ∕= j)where n is the number of dual edges de󱤏󱢑ned by faces at pabc and
where adjacent material i ∕= j. Intersecting unique pairs of planes will de󱤏󱢑ne k linear curves where
k =

󰁓n−1
i=1 i. The weighted average of the projection of point pi,j,...n onto the k linear curves will yield

point p′i,j,...n.

We note that the procedures for relocating nodes on curves and surfaces described above and illustrated
in 󱤏󱢑gures 2-23 and 2-24 are relevant for nodes interior to the RVE boundary. Nodes on the RVE domain
boundary are subsequently projected to one of the six planes, twelve edges or eight vertices of the
bounding domain depending upon their classi󱤏󱢑cation.

2.10. TET MESHING

The Sculpt application does not currently provide the ability to generate tetrahedral meshes directly.
Instead, the proposed methods are used to extract and simplify geometry based on volume fraction data
to generate a facet-based geometry that can be meshed in an external tool. For our purposes we utilize
Cubit [33] which integrates the third party tools CAD-Surf [8] for surface meshing and
Tetra-Meshgems [9] for volume meshing. This allows us to take advantage of the full features of Cubit
for assigning and controlling sizes and mesh quality, while using Sculpt as means for generating
geometry and topology of the microstructures.

The tet meshing procedure involves the same methods used in hex meshing, however interior hexes and
pillowing operations are not performed. To generate the facet-based surfaces, the cell faces contained by
each of the surfaces are 󱤏󱢑rst split into triangles, geometry is simpli󱤏󱢑ed and then exported for use in
Cubit. An overview of the procedure is illustrated in 󱤏󱢑gures 2-25 and 2-26.

2.10.1. Surface Triangulation

After a boundary representation (see sec. 2.8) has been de󱤏󱢑ned, a set of surfaces and curves will exist at
the interfaces of materials. Surfaces, composed of quad faces, can be split to de󱤏󱢑ne triangles that are used
for the geometry description. We note that these triangles are not used directly in the 󱤏󱢑nal tet mesh, but
are used only to describe the geometric de󱤏󱢑nition of the material interfaces. While this reduces the
requirement for triangle mesh quality, all triangles must however must be non-inverted. For quads that
have nodes projected to curves near the boundaries, this involves 󱤏󱢑rst checking for potential triangle
inversion cases and splitting a quad at the best diagonal to avoid inversion. In rare cases where three or
more nodes of the same quad are associated with the same curve, the quad can be split into three or four
triangles to avoid inversion.

2.10.2. Triangle Collapsing

In practice, the curves and surfaces generated by this procedure can be problematic for tet meshing.
Small curves and surfaces can result in poor quality tetrahedra. To address this issue, small curves and
surfaces can be automatically collapsed resulting in an improved geometric representation. To ef󱤎ect
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(a) (b)

(c) (d)

Figure 2-25. Example generation of tetrahedral mesh (a) Initial
Cartesian grid with pure cell material assignment (b) Curves de-
fined by Sculpt boundary representation. (c) Facet mesh defined
by Sculpt (exported to file) (d) Surface and tet mesh generated
in Cubit.

these collapse operations, curves containing a single triangle edge are collapsed into a vertex and surfaces
containing less than three triangles are collapsed into a curve. Figure 2-27 shows the microstructure
geometry where an automatic curve collapse has been performed.

2.10.3. Facet Export

Smoothing operations are also performed on the surface facets. A simple laplacian smoothing
procedure is used for the triangles which results in reasonably smooth surfaces.

Once an acceptable geometry representation is developed in Sculpt, the resulting facet-based
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(a) (b)

Figure 2-26. Cut-away and closeup of Tet mesh shown in figure 2-25

representation can be exported as mesh 󱤏󱢑le containing triangles only. To assist Cubit in geometry
construction, an additional 󱤏󱢑le is also exported that de󱤏󱢑nes the geometry entities and their association
to the facets. An example work󱤐󱤔ow for generating tetrahedral meshes from volume fraction input data
for an RVE is described in Appendix J.

2.11. HEX MESHING

To generate hexahedral elements, we 󱤏󱢑rst construct hexahedral elements based on the overlay grid
de󱤏󱢑nition followed by a pillowing procedure that inserts layers of hexes at the geometric interfaces.

2.11.1. Generate Interior Hexes

The overlay grid de󱤏󱢑nition provides the interior de󱤏󱢑nition for the hexahedral elements. After the BREP
de󱤏󱢑nition has been de󱤏󱢑ned (see sec. 2.8), each cell, will have been assigned to a speci󱤏󱢑c material and
volume. These cells are used to construct interior hexahedral elements for use in the 󱤏󱢑nal mesh and are
assigned materials based on their enclosing volume.

2.11.2. Pillowing

After relocating nodes to curves and surfaces, while cells interior to volumes are generally of good
quality, those hexes with nodes on surfaces and curves can often be unacceptable for analysis. To
improve mesh quality around surfaces and curves we introduce three separate pillowing operations:
volume pillowing, surface pillowing and boundary pillowing. For non-manifold multi-material CAD
models, two stage pillowing techniques are introduced in [22] and [31]. This work extends and applies
this technique for complex non-manifold grain geometries in an RVE.
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(a)

(b) (c)

Figure 2-27. Example of curve collapse operation (a) Initial mi-
crostructure geometry defined from triangles. (b) Wireframe ge-
ometry showing close-up of small curve detected in geometry. (c)
Close-up showing small curve collapsed into a vertex.

Pillowing is a technique for inserting a layer of hexes into an existing mesh with the objective of
modifying the local hex topology to allow more freedom for smoothing and optimization to improve
the mesh quality. This is done by 󱤏󱢑rst selecting a contiguous set of hexes as a shrink set. These hexes are
ef󱤎ectively pulled or shrunk away from their neighboring hexes not in the shrink set. This duplicates the
nodes and faces where they are pulled apart creating two identical and parallel discrete surfaces. Each
node and face on these parallel surfaces has a corresponding node and face on the other surface, but
separated by a small distance orthogonal to their local tangent planes. Connecting the paired nodes and
faces on the parallel surfaces is done to form hexes that de󱤏󱢑ne a continuous pillow layer. Subsequent
smoothing operations are also done to improve local element quality of the hexes in the pillow layer and
those hexes surrounding it.
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2.11.3. Volume pillowing

Upon relocating nodes to surfaces, it is likely that multiple faces of the same hex lie on the same surface
resulting in dihedral angles close to 180 degrees. When this occurs, it is impossible for smoothing to
improve the mesh quality. The volume pillowing operation can remedy this condition. As illustrated in
󱤏󱢑gure 2-28, pillowing operations are performed on each volume independently, selecting all of the hexes
in the volume as the shrink set. The new pillow layer will form a new hex from each of the faces that lie
on the surface, ensuring that no more than one face from a hex lies on the same surface. Figure 2-28(a)
shows an example of a B-Rep topology extracted from a base grid. In 󱤏󱢑gure 2-28(b) the pillow layers
generated at the volume boundaries for this model are illustrated, with 󱤏󱢑gure 2-28(c) displaying the full
mesh following pillowing. We note that hexes are only inserted at interior surfaces, allowing the pillow
layer to terminate at the RVE boundary.

2.11.4. Surface pillowing

Following the volume pillowing operations, although hexes attached to faces on the interior of surfaces
will be improved, it is likely that two or more edges of the same hex will lie on a common curve
bounding the surfaces. Figure 2-28(d) illustrates the volume pillow layer for a single grain geometry. In
this case, a curve separates two of its surfaces A and B. Here we note that two edges of some of the hex
faces lie on this curve resulting in angles close to 180 degrees. Once again, this makes it impossible for
smoothing operations to correct mesh quality at these locations. To improve this condition we
introduce the surface pillowing operation, shown in 󱤏󱢑gures 2-28(e) and (f). This is done by visiting each
interior surface in the model. All hexes that share a face on the surface are selected as the shrink set. This
will include hexes in the two volumes immediately adjacent to the surface. This introduces a layer of
hexes that completely wraps and encloses each interior surface of the model as illustrated in 󱤏󱢑gure
2-28(e). This has two positive ef󱤎ects on the mesh. Most importantly it introduces a layer of quads
surrounding each curve on the interior of the RVE and ensures no hex will share more than a single edge
on a curve. Secondly it introduces an additional orthogonal layer of good quality hexes at each interior
surface which provides an ef󱤎ective boundary layer between grains as illustrated in 2-28(c).

2.11.5. RVE Domain boundary pillowing

One additional option for pillowing is the introduction of a single layer of hexes at each of the six faces
of the RVE. This may be necessary as a result of re󱤏󱢑nement operations performed on the initial
Cartesian grid. Reference [24, 25] describes the 3-template as an operation that can manage re󱤏󱢑nement
of convex regions. When a 3-template is performed at the boundary of the RVE it may result in a hex
with two of its faces on a common surface, resulting in a case that will not improve with smoothing.
Introducing an additional pillow layer at each of the six faces of the RVE, as illustrated in 󱤏󱢑gure 2-29,
will correct for this condition and allow smoothing to generate quality elements at the boundaries.
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Figure 2-28. Example of volume and surface pillowing operations
(a) Initial topology of microstructure grains, (b) Pillow layers
displayed at interface boundaries for all materials. (c) Solid view
with volume pillows inserted. (d) Single grain following volume
pillowing. Hexes at curve interface between surfaces A and B
contain faces with 3 nodes on the curve. (e) Pillow layers shown
following surface pillow operation. (f) Solid view following sur-
face pillowing

2.12. SMOOTHING

Among the challenges faced with grid-based hex meshing methods is the critical mesh quality issue.
Although grid-based methods can be general purpose and fully automatic, typical results can often yield
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Figure 2-29. Illustration of domain boundary pillowing. (a) Pil-
lows inserted at 6 faces of RVE. (b) Close-up view of pillow
layers before smoothing. (c) Close-up view of pillow layers after
smoothing.

unusable elements near the boundaries. In this report we present a practical approach to mesh quality
improvement through smoothing of hexahedral meshes. We also focus, on the parallel problem and the
challenges of smoothing in a distributed environment.

To begin, we limit our application of smoothing to volumetric domains bounded by implicit surface
representations common to computational materials models. Numerical procedures relying on a
geometric decomposition of the domain often generate small dif󱤎erences in the solution, based upon
the number of processors used or the selected decomposition strategy. For this application, parallel
consistency where the exact same result is expected, regardless of the number of processors used or
decomposition strategy employed. This work also advocates and leverages the work of prior authors and
practitioners in this 󱤏󱢑eld [6, 15, 10, 16, 17].

2.12.1. Scaled Jacobian Metric

For our purposes, we de󱤏󱢑ne acceptable quality in terms of the minimum scaled Jacobian, Js of the
element. The eight scaled Jacobian values, (Js)I at the nodes of a hex can be computed by taking the
determinant of its three ordered normalized edge vectorsEi,j,k as illustrated in 󱤏󱢑gure 2-30 and equation
(2.7). The scaled Jacobian metric for a hex is then taken as the minimum of the eight determinant
calculations as in equation (2.8).

(Js)I = det
󰁱
ÊiÊjÊk

󰁲⊤
(2.7)

Js = min ((Js)I , I = 0, 1, ...7) (2.8)

A value of Js = 1.0, indicates an ideal element where all angles are precisely 90 degrees, however a value
of Js ≤ 0.0 normally indicates an unacceptable element for computational purposes. Initial projection
of nodes to interfaces and insertion of the boundary hex layer can result in many elements where Js ≤ 0
or inverted. Depending on the requirements of the analysis, an acceptable value for scaled Jacobian can
vary, but normally a value of Js ≥ 0.2 is permissible. Smoothing methods are intended to increase the
value for Js for all elements in the mesh to acceptable standards for computation.
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Figure 2-30. Ordered edges Ei, Ej, and Ek are used to compute
Scaled Jacobian at 1

While scaled Jacobian is often used as an objective for mesh quality improvement, it does not take into
account aspect ratio or target mesh size. Since edge vectors ÊiÊjÊk are normalized, a high aspect ratio
parallelepiped may yield the same result as an equilateral cube. In the same manner, a tiny isotropic
element with respect to a target mesh size, will yield the same result as a large element provided all edges
are proportionally scaled.

To control for aspect ratio and target mesh size, we propose a size scale factor Sf on the scaled Jacobian
as shown in equation 2.9.

(Js)I = Sfdet
󰁱
ÊiÊjÊk

󰁲⊤
(2.9)

Sf =

󰀝
es ≤ St,

es
St

es > St,
St

es

󰀞
(2.10)

es = min(󰀂Ei󰀂 , 󰀂Ej󰀂 , 󰀂Ek󰀂) (2.11)

where St is a target mesh size.

2.12.2. Smoothing Overview

Our method includes a tiered approach to smoothing to improve element quality. It starts by applying
smoothing to all nodes in the mesh and progressively restricts the smoothing operations to only those
nodes that fall below a user-de󱤏󱢑ned scaled Jacobian threshold. The three smoothing phases include:

• Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach to improve quality,
but can result in degraded element quality if applied to excess. Laplacian smoothing is normally
done in combination with optimization smoothing.
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• Optimization Smoothing: Applied only to elements who’s scaled Jacobian falls below a threshold
parameter (default 0.6) and their surrounding elements. This approach uses a more expensive
optimization technique to improve regions of elements simultaneously. Because this method
optimizes node locations simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

• Parallel Color Smoothing: Applied only to elements who’s element quality falls below a threshold
parameter (default 0.2). This technique is the most expensive of the techniques, but focusses only
on nodes that are immediately adjacent to poor quality hexes. Each node is smoothed
independently of its neighbors, and may require a high number of iterations to achieve desired
results.

We provide details for each of these methods in the sections that follow.

2.12.2.1. Parallel Considerations

Smoothing on domains that are distributed across multiple processors, present some interesting
challenges. Since we require a parallel-consistent result, dif󱤎erences in the node locations resulting from
a particular distribution strategy are unacceptable for our application. To meet this objective, we 󱤏󱢑rst
utilize a Jacobi-based approach for smoothing followed by parallel coloring. Both approaches are used
to ensure parallel consistency.

Figure 2-31. Illustration of the difference between Jacobi and
Gauss-Siedel smoothing.

In most serial applications, a Gauss-Seidel approach is normally used. Figure 2-31 illustrates the
dif󱤎erence between Gauss-Siedel and Jacobi-vbased smoothing. For Gauss-Seidel smoothing, mesh
quality improvement is normally performed through multiple iterations of visiting each node of the
mesh. New node locations are computed as a function of neighboring node locations, themselves
having been potentially moved during the same iteration. The traditional Gauss-Seidel approach
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unfortunately results in order-dependency that cannot be guaranteed for dif󱤎erent distributions. We
note that in 󱤏󱢑gure 2-31 that smoothed locations for nodes B and C for the Gauss-Seidel case are based on
having previously moved node A.

Jacobi-based methods, however rely only on the initial state of the nodes at the beginning of an
iteration. Once node locations are determined, a single update is performed to change node locations in
preparation for a subsequent iteration. Locations for nodes B and C in 󱤏󱢑gure 2-31 for the Jacobi case, are
based only on the initial locations of all surrounding nodes allowing them to be order-independent.

Gauss-Seidel approaches will normally convergence faster since improved node locations can be
achieved within a single iteration based on neighboring nodes that have already been improved and
updated. In practice, however, the Jacobi procedure we present appears to improve mesh quality to
acceptable levels within very few iterations.

Parallel coloring is also an attempt to avoid order dependency needed for our application. Coloring is a
common technique used in parallel computing [4][10] that attempts to isolate independent sets of
items in a graph-based domain for separate treatment.

2.12.3. Combined Laplacian and Optimization Smoothing

Figure 2-32 summarizes the Jacobi-based procedure used for combined Laplacian/Optimization based
smoothing. We begin with a distributed grid-based mesh that we de󱤏󱢑ne asΩM that contains the set of
mesh entities,M i, i = 0, 1, 2, 3 as nodes, edges, faces and hexes. We also begin with an associated
implicit geometry de󱤏󱢑nitionΩG, containing geometric entities,Gi, i = 0, 1, 2, 3, vertices, curves,
surfaces and volumes respectively. Individual processors within the distributed domain,ΩM are de󱤏󱢑ned
asΩp

M that have been established to include ghosted nodes and elements at their boundaries, as outlined
in [26, 27].

Following the establishment of mesh and geometry, parallel communication is 󱤏󱢑rst initialized for
ghosted nodes, followed by several iterations of smoothing operations. The smoothing operations
consist of curve and surface smoothing operations that project to an implicit geometry, followed by
volume smoothing operations. Initial smoothing iterations smooth all nodes using a fast Laplace
method, while later iterations, focus only on hex elements that fall below a designated threshold using
an Optimization approach.

2.12.3.1. Laplacian Smoothing

As outlined in 󱤏󱢑gure 2-32, this work depends heavily on initial Laplacian smoothing to improve node
locations. Laplacian smoothing is an iterative method that averages the node locations from
surrounding elements. In practice, applying only two iterations of Jacobi-based Laplacian smoothing,
appears to correct the majority of inverted elements.
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Figure 2-32. Procedure used for combined Laplacian and Optimization smoothing

2.12.3.2. Optimization Smoothing

Following Laplacian smoothing, we utilize a targeted optimization to those nodes near elements that
fall below a threshold quality metric. We choose Js ≤ 0.6 as the threshold criteria and expand one layer
of elements to include additional nodes in the smoothing domain.

For optimization, we propose dual objective functions. When all elements attached to a node have
positive Js, then maximizing the local Scaled Jacobian value at a node can be used as the objective.
However, if Js < 0, then maximization of the local negative volume Vn at the node must be used. We
note that the Scaled Jacobian value is well behaved for Js > 0. However, for Js < 0, with standard
optimization techniques, the gradient of Js is not guaranteed to be monotonically increasing. As a
result, we switch to maximizing Vn when elements become inverted.

The technique of maximizing the local negative volume at a node is also referred to as untangling as it
tends to un-invert or untangle severely distorted elements to a point where the Scaled Jacobian objective
can take over.

To facilitate parallel-consistent Jacobi-based smoothing, we propose a simple node-by-node
optimization method as outlined below:

1. Compute the minimum scaled Jacobian Js from the hexes attached to nodeM0
i . If Js > 0 for all

adjacent hexes, then use Scaled Jacobian as the objective, otherwise use the MinimumVolume Vn

at the node as the objective.
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2. Compute the numerical gradient,∇Js or∇Vn by of󱤎setting the location ofM0
i in the positive x,

y, and z directions a small value, ε.

3. Find an improved Js or Vn by incrementally movingM0
i in the direction∇Js or∇Vn

These steps are repeated until a convergence criteria is achieved or a maximum number of iterations has
been reached. For our purposes, 2 or 3 iterations were suf󱤎icient to raise the mesh quality to a
computable range for most cases. We also note that the objective function may switch between
optimizing Vn to Js should the quality improve suf󱤎iciently such that all hexes exhibit Js > 0. In a
similar manner, the objective function may switch to optimizing negative volume, should hex quality
drop below zero.

When all adjacent hexes have positive volume, the objective function is the minimum scaled Jacobian at
the node from equation 2.7. While only the node we are optimizing will be in motion, the angle at its
three attached nodes may also be af󱤎ected by its movement. Therefore we use the minimum scaled
Jacobian from the node and its three attached nodes. For example in 󱤏󱢑gure 2-30, the scaled Jacobian at
nodes 1, 0, 2 and 5 contribute to Js at node 1. Since other nodes on the hex do not move, we can neglect
the scaled Jacobian at other nodes on the hex.

For the untangling case, negative volume at a node is computed as the oriented volume of the
tetrahedron de󱤏󱢑ned by the node and its 3 attached nodes. We compute Vn by summing the negative
volume at the node and all of its attached nodes in the hex. Nodes where local volume at the node is
positive, are neglected in the calculation of Vn, so the maximum value for Vn will be zero.

The objective function is therefore one of either:

Js = min ((Js)I , I = 0, 1, ...nhex) (2.12)

Vn = min ((Vn)I , I = 0, 1, ...nhex) (2.13)

where (Js)I and (Vn)I is the scaled Jacobian and negative volume respectively at the node for the I th
adjacent hex and nhex is the number of adjacent hexes.

2.12.3.3. Volume Optimization

The numerical gradient∇Js and∇Vn is computed by of󱤎setting the location of the node in the x, y and
z directions and recomputing Js or Vn at three locations. For example the x component of∇Js and
∇Vn are computed as:

(∇Js)x =

󰀝
Js(x0 + εx)− Js(x0)

ε

󰀞
(2.14)

(∇Vn)x =

󰀝
Vn(x0 + εx)− Vn(x0)

ε

󰀞
(2.15)
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where x0 is the initial location at the node and εx is the vector {ε, 0, 0}. The components, (∇Js)y,
(∇Js)z , (∇Vn)y and (∇Vn)z are computed in a similar manner using εy = {0, ε, 0} and
εz = {0, 0, ε}.

2.12.3.4. Surface Optimization

When applying optimization to nodes on surfaces, the same steps can apply, however, the movement of
the node must be restricted to the surface manifold. We can also utilize the Js of the adjacent hexes to
the surface as the objective function for the optimization. To restrict the motion of the node to the
surface manifold, we can compute∇Js on a tangent plane to the surface. Orthogonal tangent vector Tu

and Tv are computed numerically based upon the surrounding facets on the surface to the node.

(∇Js)u =

󰀝
Js(x0 + εu)− Js(x0)

ε

󰀞
(2.16)

(∇Js)v =

󰀝
Js(x0 + εv)− Js(x0)

ε

󰀞
(2.17)

where εu = εT̂u and εv = εT̂v. Surface node optimization can then proceed in the same manner as
volume optimization, except that following computation of a new xn, described below, the location is
updated by projecting to the surface de󱤏󱢑nition prior to computing Js(xn).

Line Search: Once a vector gradient∇Js or∇Vn is established, we can begin searching for a new
location xn that provides an improved value for Js or Vn along the gradient direction.

xn = x0 + α∇Ĵs (2.18)

We note that the same procedure is used for untangling, but use maximizing scaled Jacobian as our
example. We choose a maximum value for α as the initial average edge length at the node and do a few
iterations of a binary chop to zero in on an improved value for Js. We do so by computing at each
location xn, a new Js(xn) and compare to the previous Js(xn−1). If Js(xn) > Js(xn−1), then we
update the location of the node. Otherwise the previous value at xn−1 is maintained. Since only the
minimum (Js)I is optimized, it is necessary that we do not severely distort other surrounding elements
in the process. To do so, we count the initial number of (Js)I < 0 and do not update the node location
unless the number of negative (Js)I is maintained or improved.

In practice, since we are not necessarily searching for an optimum, but rather an improved or
computable value for Js, it was not necessary to iterate on the α extensively. For our application, 4
iterations was suf󱤎icient, in general, to achieve an acceptable mesh.
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2.12.3.5. Damping

Jacobi smoothing methods can sometimes result in oscillations, where the optimal location for a node
con󱤐󱤔icts with the optimal location for an immediate neighbor node. To reduce this ef󱤎ect we can
employ a damping factor, df to the 󱤏󱢑nal smoothed locations. For example, if the smoothing current
iteration is n of nmax possible iterations, we can compute the damping factor as:

df =
n

nmax

(2.19)

and the damped locationX as:

X = Xi + df (X
′
i −Xi) (2.20)

whereXi is the initial location for NodeNi prior to optimization andX′
i is the optimized location.

Applying a damping factor has the ef󱤎ect of moving the node slowly to its destination over multiple
iterations, reducing the chance for oscillation.

2.12.3.6. Conjugate Gradient

For most optimization applications, a conjugate gradient update, that will modify the direction of the
gradient, following an initial line search, can improve accuracy and ef󱤎iciency. As we are moving the
location of the node, however, it is likely that the actual hex computed as the minimum (Js)I will
change based on our choice of α or the objective function may change from untangling to maximizing
scaled Jacobian. This can cause the actual gradient 󱤏󱢑eld to be discontinuous. This did not seem to
adversely af󱤎ect our method, however, as a consequence, applying conjugate gradient updates of the line
search direction did not improve accuracy or reduce computational time. In practice, increasing the
total number of iterations beyond 2 or 3 made only minor improvements in mesh quality. As a
consequence, setting the maximum number of iterations to 2 proved suf󱤎icient for most cases. We also
limited the iterations, based upon the minimum (Js)I at the node. If the value for Js exceeded our
threshold of 0.2, no additional optimization would be performed.

2.12.4. Parallel Coloring Smoothing

The application of combined Laplacian and optimization-based smoothing including damping and
untangling proved successful for most cases, however a small number poor quality elements can persist.
As a result, parallel coloring smoothing is invoked on nodes where adjacent hexes fall below a user
de󱤏󱢑ned threshold which is defaulted to 0.2.

Parallel coloring smoothing uses at its core the same optimization-based methods described above in
2.12.3.2. What dif󱤎erentiates the two procedures is its application to parallel coloring. The combined
Laplacian-optimization described above utilizes a Jacobi-based method that will update all node
locations after a single iteration. We note that updating all nodes simultaneously, can result in
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neighboring nodes con󱤐󱤔icting or oscillating. While damping can reduce this ef󱤎ect, it does not eliminate
it. Figure 2-33 shows an overview of the method proposed in this work.

Figure 2-33. Smoothing procedure used for paralleling color method

The set of nodes identi󱤏󱢑ed as poor,N, de󱤏󱢑ned as nodes with adjacent elements with Js ≤ 0.2 are
considered for smoothing. For each node inNwith initial locationsXi and quality qi, we compute a
potential optimal locationX′

i and potential mesh quality q′i by using the optimization methods
described in section 2.12.3.2. We note that qi and q′i may be either a scaled Jacobian or negative volume
metric.

Following a communication step to ensure parallel consistency, independent sets are determined. For
our purposes, an independent set includes the set of adjacent hexes to a node where no hex is used more
than once for any individual set. To ensure nodes are independent, we eliminate nodes with con󱤐󱤔icting
hexes based upon the following prioritization where nodeNi is compared with nodeNj that share at
least one common hex:

1. Initial mesh quality: if qi < qj thenNi is selected andNj is eliminated.

2. Potential mesh quality: if qi ≈ qj then choose on the basis of q′i and q′j . if q′i > q′j thenNi is
selected andNj is eliminated.

3. Location: if qi ≈ qj and q′i ≈ q′j then choose based on the magnitude of coordinatesXi andXj

atNi andNj . if 󰀂Xi󰀂 ≤ 󰀂Xj󰀂 thenNi is selected andNj is eliminated.

Once con󱤐󱤔icts are resolved to maintain unique independent sets, a further communication step is
performed. Node locations de󱤏󱢑ned by the surviving independent sets are then updated to the
previously computed locationsX′

i.

This procedure then repeats until a maximum number of iterations is reached or no further progress is
detected. We de󱤏󱢑ne progress as at least one node increasing its mesh quality, qi during a single
smoothing iteration.
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2.12.5. Geometry Considerations

Node smoothing and projection consists of several iterations of successively smoothing and projecting
nodesM0

j on geometric entities starting with verticesG0
i (M

0
j ), curvesG1

i (M
0
j ), surfacesG2

i (M
0
j ), and

then volumesG3
i (M

0
j ).

Vertices, curves and surfaces can be identi󱤏󱢑ed as either interior,GI or exteriorGE . It is necessary to
distinguish betweenGI andGE so that projection operations for every nodeM0

j can be accurately
established based upon an underlying geometric de󱤏󱢑nition. For interior entities, the geometry is
described implicitly using the methods described in section 2.9 or from a local quadratic approximation,
while exterior entities are described by analytic or mesh-based methods.

2.12.5.1. Exterior Geometry

For an RVE represented by an overlay Cartesian grid the geometric representation can be described by
analytically de󱤏󱢑ned planes, curves and vertices. The exterior surfaces,G2E can be de󱤏󱢑ned by the six
axis-aligned planes of the Cartesian grid boundaries. Similarly, exterior curves,G1E and vertices,G0E

can be represented by its 12 linear curves and 8 vertices.

For the unstructured case, however, where the geometry is de󱤏󱢑ned by an arbitrary hexahedral mesh, a
boundary geometry must 󱤏󱢑rst be extracted consisting of entitiesG0E ,G1E , andG2E . In this case, A
mesh-based geometry description is 󱤏󱢑rst derived where the boundary curves and surfaces are
represented as a set of piecewise linear triangles and segments. Curve and vertex topology is also
extracted in this procedure based upon a prescribed feature angle. Reference [28] describes a similar
procedure for extracting a mesh-based geometry representation from an input mesh.

2.12.5.2. Interior Geometry

Nodes on interior geometric entitiesG0I ,G1I , andG2I are normally smoothed by either a Laplacian or
optimization-based procedure described above. Projection to an implicitly de󱤏󱢑ned curve or surface can
then be performed using the methods described in section 2.9. We note however, that this can
sometimes result in noisy or bumpymaterial interfaces. To reduce this ef󱤎ect, we utilize a quadratic
approximation of the local surface nodes.

For interior surfaces, since an explicit representation of the surface is not available, the quadric
approximation of the nodesM0

surf similar to reference [13] is used. For this approach we seek a
projected node location de󱤏󱢑ned by Pk(xk, yk, zk).

Qk(x, y) = zk + ak2(x− xk) + ak3(y − yk) + ak4(x− xk)
2

+ak5(x− xk)(y − yk) + ak6(y − yk)
2 (2.21)

We 󱤏󱢑rst transform nodes attached by edges to Pk to a local coordinate system centered at Pk with
orientation de󱤏󱢑ned by (Nk, T1, T2) as shown in 󱤏󱢑gure 2-34, whereNk is the surface normal at Pk and
(T1, T2) are orthogonal tangent vectors. Coef󱤎icients ak2,k3,...,k6 for equation (2.21) can then be
computed by solving the linear system:
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Figure 2-34. Quadric approximation of surface from surrounding
nodes at Pk is performed
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where x = xi − xk, y = yi − yk, z = zi − zk andwi is an inverse distance weight. A Laplacian or
optimization-based smoothing operation can then be performed on node Pk to get a smoothed location
P ′
k in the local coordinate system. The point P ′

k is then projected to the quadric surface, also in the local
coordinate system using:

(Pk)local =

󰀻
󰀿

󰀽

(P ′
k − Pk) · T1

(P ′
k − Pk) · T2

ak2xk + ak3yk + ak4x
2
k + ak5xkyk + ak6y

2
k

󰀼
󰁀

󰀾 (2.23)

Finally, the new location (Pk)new in the original coordinate system is computed as:

(Pk)new = Pk + (Pk)
T
local

󰀻
󰀿

󰀽

T1

T2

Nk

󰀼
󰁀

󰀾 (2.24)

2.12.6. Geometry-Free Smoothing

In most cases, we have found that projection of nodes to an underlying geometry representation as
described in section 2.12.5 provides good results. For some cases, however, the geometry description
built from the material data will tend to produce noisy or non-smooth surfaces. In addition, the
geometry can also constrain element shapes such that mesh quality improvement is impossible at
interior curves and vertices. By relaxing requirements for strict conformance to geometry, smoothness
and mesh quality can be improved.
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2.12.6.1. Material Interface Smoothness

A consequence of extracting voxelized or coarse volume fraction data to use as the basis for geometry
can be noisy or non-smooth surfaces. While there are many options for smoothing noisy surfaces
[36, 37], one of the simplest and most ef󱤎ective is to take advantage of the Laplacian smoothing
operation without a subsequent projection operation. Figure 2-35 illustrates the ef󱤎ect of removing the
projections step following Laplacian smoothing.

(a) (b)

Figure 2-35. Effect of smoothing without surface projections. (a)
Surfaces smoothed with projections using implicit surface defini-
tion. (b) Surfaces smoothed without surface projections.

While ef󱤎ective, because Laplacian smoothing will average neighboring node locations, it can have the
consequence of reducing or shrinking volume. In the case illustrated in 󱤏󱢑gure 2-35 where surface
curvature is minimal or where curvature is limited to one parametric direction, Laplacian smoothing is
most ef󱤎ective in removing noise without adversely ef󱤎ecting volume. We note that limiting the number
of user-de󱤏󱢑ned Laplacian iterations applied can also limit the ef󱤎ects of shrinking, while still
maintaining acceptable results.

To improve curve smoothness, it is advantageous to use a hermite interpolation method to smooth the
curve de󱤏󱢑nition rather than projecting to the implicit curve de󱤏󱢑nition outlined in section 2.9.3. For a
node,N associated with a curve with coordinatesXwe would like to 󱤏󱢑nd a locationX′ that improves
smoothness of the curve. We can identify the two immediately adjacent nodesNa andNb on the curve
with coordinatesXa andXb respectively. We 󱤏󱢑rst de󱤏󱢑ne tangent vector atNa andNb by averaging the
adjacent line segment vectors to compute δXa and δXb. We can then 󱤏󱢑nd a location forN from:

X′ =
Xa +Xb

2
+

δXa + δXb

8
(2.25)
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(a) (b)

Figure 2-36. Effect of hermite smoothing on curves. (a) Curve
smoothing using default curve projections. (b) Resulting curves
following curve hermite smoothing

The ef󱤎ect of curve hermite smoothing is illustrated in 󱤏󱢑gure 2-36. Note that without hermite
smoothing, the curve interfaces can produce a wavy characteristic as in 2-36(a). For this example, 2-36(b)
shows improved smoothness of the curves.

2.12.6.2. Mesh Quality Improvement at Curves and Vertices

As noted, it can sometimes be ef󱤎ective to loosen the geometric constraints on some nodes in order to
improve mesh quality. This is especially signi󱤏󱢑cant at material interfaces where 3 or more materials meet.
Pillowing can provide a good solution for these cases by inserting an additional layer of hexes at curves
to allow additional freedom for smoothing. In practice, however, for very complex geometry
arrangements, insertion of an additional layer of hexes can introduce additional complexity and
constraints that cannot be easily be resolved with smoothing.

One solution employed in these cases, rather than inserting pillows to resolve curve interfaces, is to relax
the geometric constraints on curves to allow nodes to float of󱤎 of the curves and vertices to improve
mesh quality. A curve optimization threshold,COT can be de󱤏󱢑ned by the user. COT indicates the value
for scaled Jacobian where if a node that falls on a curve that has neighboring quads with Js less than this
value, then the smoothing will no longer honor the curve de󱤏󱢑nition. Instead the optimization smoother
will attempt to place the node to optimize the neighboring mesh quality without regard for its
placement on its owning curve.

NormallyCOT is set at 0.1 to avoid too many nodes from 󱤐󱤔oating of󱤎 of their owning curves, however,
if mesh quality is constrained by curve geometry, setting this value higher can help to avoid bad or poor
quality elements. For most stochastic models where material interfaces are statistically determined,
minor deviations in curve representations caused by increasing the value forCOT are usually acceptable
and can improve mesh quality considerably.
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2.12.7. Smoothing Results

To evaluate the ef󱤎ectiveness of the proposed smoothing procedures, an informal study was conducted
using a total of 52 geometry models. A representative sampling of the models are shown in 󱤏󱢑gure 2-37.
For this study, we evaluate the ef󱤎ectiveness and performance of Laplacian, Optimization and Parallel
Coloring Options as well as the use of Damping.

Figure 2-37. A sample of the 52 models used for smoothing tests

Table 2.12.7 and 󱤏󱢑gure 2-38 illustrate the results from four dif󱤎erent test cases. For each test, all 52 models
were meshed and smoothed using one of four dif󱤎erent options:

1. No Damping: Combined Laplacian and optimization-based smoothing was run using default
options, however damping was not applied.

2. Damping: Same as the 󱤏󱢑rst test, except damping as described in section 2.12.3.5.

3. No Damping & Color: Combined Laplacian, optimization-based and parallel-coloring
smoothing were used, except damping was turned of󱤎.

4. Damping & Color: Same as third test except damping was turned on.

Js < 0 0 < Js < 0.1 0.1 < Js < 0.2 Js > 0.2 average Js
NoDamping 10 14 11 20 0.083
Damping 6 9 14 26 0.144
No Damping & Color 2 1 3 49 0.217
Damping & Color 2 1 3 49 0.223

Table 2-2. Results from smoothing tests. Four different tests per-
formed using different smoothing options. Table shows number
of tests out of 52 that had elements with minimum scaled Jaco-
bian, Js within each range. Results are also illustrated in figure
2-38

The results indicate a signi󱤏󱢑cant improvement in mesh quality when using damping when combined
only with Jacobi-based Laplacian and optimization-based smoothing. A similar improvement is also
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Figure 2-38. Results from smoothing tests illustrating expected
minimum mesh quality when using optimization, damping and
parallel coloring to smooth meshes

noted when adding parallel coloring even without damping. This would suggest that both parallel
coloring and damping provide similar improvement characteristics. Adding both damping and coloring
provided a minor increase in average minimum quality as illustrated in 󱤏󱢑gure 2-39(a). We note however
that for our tests, once the threshold of Js ≥ 0.2was achieved, that no further smoothing is performed.
Modifying the threshold may result in additional improvement.

(a) (b)

Figure 2-39. (a) Comparison of average minimum mesh quality
using different smoothing options. (b) Time Comparison for dif-
ferent smoothing methods
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We also illustrate in 󱤏󱢑gure 2-39(b) the relative performance of the dif󱤎erent smoothing methods on the
test models. The tests measured the total cumulative clock time taken in each smoothing procedure to
execute all 52 models. We observed that the Jacobi-based optimization procedures took the majority of
time with the parallel coloring procedure taking the least. We note that modifying default thresholds for
optimization and parallel coloring will change the performance metrics, and some trial and error is
worthwhile to increase overall mesh quality.
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3. EXAMPLES

For purposes of this study we present a few representative examples of computational materials
modeling research for which the proposed meshing methods have been successfully applied.

3.1. CRYSTAL PLASTICITY

Figure 3-1. FE model containing 143 grains used for crystal plas-
ticity analysis generated from voxelated data. (a) Full FEA mesh
generated from 200x100x100 grid, (b) close-up of mesh, (c) view
of three grains in FEA mesh.

The proposed methodology provides accurate representation and discretization of microstructural
features, such as grains and grain boundaries [18]. Meso-scale computational models that incorporate
these microstructural features such as crystal plasticity 󱤏󱢑nite element (CP-FE), use a polycrystalline RVE
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to model mechanical behaviors of grain aggregates. Most three-dimensional RVEs are generated by
voxelated, or stair-step hexahedral 󱤏󱢑nite elements which are dif󱤎icult to accurately resolve curved grain
boundaries and triple junctions.

Figure 3-1 shows the 󱤏󱢑nite element discretization of 143 grains using an initial voxelization of
200× 100× 100. Here, the three-dimensional microstructure is generated by the Monte Carlo Potts
grain growth model in the Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) developed at
Sandia National Laboratories [12][34]. It is shown that the reconstructed hex mesh in 󱤏󱢑gure 3-1 from
SPPARKS simulations accurately reproduces smooth interfaces and junctions between grains. Lim et al.
[18] showed that the FE mesh generated with the proposed methods is able to signi󱤏󱢑cantly reduce errors
at grain boundaries and triple junctions in mechanical simulations when compared with an equivalent
stair-step representation.

Figure 3-2 shows the FE meshes generated from experimental data created from electron backscatter
dif󱤎raction (EBSD) measurement using a Scanning ElectronMicroscope (SEM) as illustrated in 󱤏󱢑gure
3-2a. An EBSD technique characterizes microstructural features such as crystallography and phase of
materials within a scanning grid. Crystallographic information from EBSD data is processed to have
unique grain ids for each cell of a Cartesian grid that is used as input for the FE mesh generation
procedure. Simulation results also showed that the smooth interfaces (󱤏󱢑gure 3-2c) were able to mitigate
arti󱤏󱢑cial stress localization commonly observed in stair-step interfaces.

A mesh generation example using Sculpt for generating a similar mesh shown in 󱤏󱢑gures 3-2 and 3-1 is
illustrated in Appending G. In this example, volume fraction data at each cell of a Cartesian grid is
provided in a .tex 󱤏󱢑le.

Figure 3-2. EBSD and FE discretizations of experimental data for
modeling crystal plasticity.

3.2. SYNTACTIC FOAM MATERIALS

Syntactic foammaterials, which consist of hollow spherical particles embedded in a matrix material,
constitute another example of materials with complex microstructural features that present many
challenges for 3-D meshing algorithms. Key features of the microstructure are the thin wall thickness of
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Figure 3-3. (a) SEM image of elastomeric syntactic foam mi-
crostructure showing narrow, irregular shaped regions in the ma-
trix where many microballoons are clustered together. (b) Differ-
ent SVE realizations of syntactic foam synthetic microstructures,
(c) : Comparison of the large deformation uniaxial compression
behavior of elastomeric syntactic foams for (Top) simulated syn-
thetic microstructure with damaged elements shown in red and
(Bottom) X-Ray Computed Tomography.

the hollow particles and irregularly shaped regions of the matrix where multiple particles are located
close together. Such features are illustrated in Figure 3-3(a), which shows a SEM image of elastomeric
syntactic foam 󱤏󱢑lled with hollow glass microballoons

For synthetic microstructures based on this material, the matrix meshmust be 󱤏󱢑ne enough to adequately
resolve these irregular areas, and consist of hex elements to maintain a conformal mesh interface with
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quadrilateral shell elements used to represent the hollow particles. This requires the matrix to have an
element size smaller than the minimum spacing present between particles and can lead to large numbers
of elements needed to mesh the entire SVE model unless meshing adaptivity features are enabled.

Additionally, many realizations of individual stochastic volume elements are needed for any analysis to
capture the stochastic ef󱤎ects of variability in particle spacing and arrangement. This requires a meshing
algorithm which can robustly generate hexahedral meshes for many dif󱤎erent realizations of synthetic
microstructure geometry without requiring any user interactions such as manual geometry
decomposition. Figure 3-3(b) shows several dif󱤎erent SVE realizations of synthetic syntactic foam
microstructures meshed with Sculpt. For this example, the shell elements used to represent the hollow
microballoons are colored blue, and hexahedral matrix elements are grey. Each SVE realization in Figure
3-3(b) has a unique geometry with randomized microballoon locations that were generated by a separate
algorithm and passed to Sculpt as analytic geometry inputs.

Element quality analysis of the resulting meshes showed minimum scaled Jacobian values of
approximately 0.2 over realization of 100 dif󱤎erent SVE models. The location of shell elements
representing microballoons in the meshes were also compared with the input geometric sphere
locations, and resulted in dif󱤎erences of less than 0.2󰟏when the background element size was 25 times
less than the sphere radius.

This capability to rapidly generate and mesh synthetic microstructures with physically representative
features enables high-󱤏󱢑delity microstructural simulations that can be used to study complex behaviors
in these materials. Figure 3-3(c) shows a comparison of balloon breakage in elastomeric syntactic foams
with increasing strain.

Mesh generation for this application is illustrated in Appendix K. In this case, the geometry is
represented by a a set of analytic sphere de󱤏󱢑nitions described in a .diatom 󱤏󱢑le.

3.3. ENERGETIC MATERIALS

This example, illustrated in 󱤏󱢑gure 3-4, demonstrates mesoscale modeling to represent thermal damage
evolution in an ammonium perchlorate (AP) based rocket propellant. Studies have shown that exposure
to elevated temperature produces thermally induced mechanical damage, including connected porosity.
It is believed that this connected porosity can allow rapid 󱤐󱤔ame spread and subsequent violent reaction
in an accidental cook-of󱤎 scenario (munition in a 󱤏󱢑re). Sculpt was used to generate a conforming all-hex
mesh of a collection of AP particles within a polymer binder to simulate behavior at the mesoscale. A
temperature-dependent reaction model was used to determine gas generation rates from the surface of
the particles, which induces a local pressure at the particle-binder interfaces. A viscoelastic constitutive
model was used for the polymer binder and a cohesive zone model was used to represent the bonded
interface between each particle and the binder. During the simulation, void spaces around the particles
grew asymmetrically, based on variations of the local stress state resulting from proximity of neighboring
particles. Two-dimensional slices of the model showed crescent-shaped voids which are similar to those
observed by X-Ray Computed Tomography (CT) scans of thermally damaged AP propellant samples.
These techniques should be applicable to other materials such as plastic-bonded explosives as well.
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Figure 3-4. (Left) X-Ray Computed Tomography (CT) scan of
a sample of ammonium perchlorate (AP) propellant which had
been held at 215ÂřC for 2 hours. Crescent-shaped voids (dark
gray) surround some of the large round AP particles. (Right)
2-D slice from interior of the 3-D simulation of AP particles sur-
rounded by a polymer binder. A temperature-depended chemical
decomposition reaction led to production of gases from the par-
ticles which induces local pressures and leads to void formation.
Crescent-shaped voids occur in this simulation due to preferential
gas expansion into regions with lower stress.

Mesh generation for this example is also illustrated in Appendix K where sphere de󱤏󱢑nitions are
represented analytically.

3.4. POLYMER MATERIALS

Figure 3-5 is an RVE of an idealized carbon-black polymer from an automotive tire. Sculpt was used to
generate an adaptive mesh of 1300 numerically sized and located spheres. Similar to the previous
examples, polymer materials may be represented using a similar mesh generation procedure. To generate
geometry for this example, Sandia’s LAMMPS [29] tool was used. LAMMPS is a molecular dynamics
code that models ensembles of particles in a liquid, solid or gaseous state, the result of which, in this
example, is a list of sphere centers and radii. Appendix K illustrates the procedure used for generating
the mesh from analytic sphere data as well as the re󱤏󱢑nement operation illustrated in 󱤏󱢑gure 3-5.
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Figure 3-5. RVE model of an idealized carbon-black polymer
from an automotive tire. It uses 1300 numerically sized and
located spheres from analytic data. (a) View of FE mesh of
spheres. (b) closeup demonstrating 4 levels of adaptive mesh
at RVE boundary (c) View of spheres meshed with 2 adaptive
levels (d) View of spheres meshed with 4 adaptive levels. Model
courtesy of Goodyear Tire Company.

3.5. SPRAY-FORMED MATERIAL

Advances in thermal-spraying technologies present new opportunities for developing tailored,
high-performance materials for a variety of applications through thermal-spray additive manufacturing.
Their stochastic microstructure presents challenges for conformal mesh generation. Grain anisotropies,
non-uniform pore distributions and interfacial roughness in multiphase materials create complex
geometries that can be dif󱤎icult to resolve. In this example, simulation is targeted at examining the
ef󱤎ects of material microstructure on shock generation, propagation and material failure in a subset of
spray-formed materials. Geometry for these examples comes from radiographic or metallographic
imaging of material specimens. Two example meshes are illustrated in 󱤏󱢑gure 3-6.

A mesh study including 40 dif󱤎erent data sets generated with stochastic methods was performed and
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Figure 3-6. Examples of stochastic RVE meshes

results included in section 4.1 of this document. Appendix M also includes an example Sculpt input 󱤏󱢑le
for generating the meshes illustrated here.
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Figure 3-7. Adaptive RVE model of two-phase experimental poly-
crystalline microstructure generated with DREAM.3D [2] soft-
ware. (a) View of both phases. (b) View of single phase. (c)
Close-up of mesh of single phase illustrating smooth interior sur-
faces and adaptivity.
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4. PERFORMANCE

We illustrate performance details from the proposed methods on several relevant RVEmodels in table
4-1. This table provide details from seven separate runs frommodels illustrated in 󱤏󱢑gures 3-1 (grains), 3-5
(spheres) and 3-7 (2-phase). The columns are de󱤏󱢑ned as follows:

1. Name of test case

2. Fig: Figure reference from this document

3. num mats: Total number of dif󱤎erent materials represented in the input data

4. num hexes: Resulting number of hex elements in mesh

5. min S.J.: Minimum scaled Jacobian metric for any single hex in the mesh

6. num< 0.0: Number of hexes with scaled Jacobian less than 0.0

7. num< 0.2: Number of hexes with scaled Jacobian less than 0.2

8. adapt levels:Maximum number of levels of uniform 2-re󱤏󱢑nement applied (see sec. 2.5)

9. num procs: number of processors case was run on

10. time: CPU time taken for total mesh generation process on indicated number of processors.

Note that meshes with negative Jacobian elements are not intended to be used for analysis. They are
documented here only to contrast the ef󱤎ect of using the expand and defeature options.

The 󱤏󱢑rst example, cases 1 and 2 (grains), is a crystal plasticity model illustrated in 󱤏󱢑gure 3-1. It shows
results both with (case 1) and without (case 2) the expansion layer capability described in section 2.7.5.

Fig. num
mats

num
hexes

min
S.J.

num
< 0.0

num
< 0.2

adapt
levels

num
procs

time
(sec.)

1 grains w/ expand 3-1 143 3,655,878 0.0749 0 73 0 12 201.2
2 grains w/o expand 3-1 143 3,359,218 -0.114* 1 142 0 12 223.9
3 spheres L1 3-5 2 3,614,934 0.1689 0 13 1 128 33.48
4 spheres L2 3-5 2 14,105,616 0.1334 0 21 2 128 192.4
5 spheres L3 3-5 2 50,278,564 0.1365 0 20 3 128 1015.4
6 2-phase w/ defeature 3-7 2 1,412,340 0.1211 0 11 1 8 181.2
7 2-phase w/o defeature 3-7 2 1,454,870 -0.949* 48 781 1 8 141.1

Table 4-1. Example cases from previous figures used to illustrate
Sculpt performance
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We note that without the expansion layer, exactly one negative Jacobian element is present making the
mesh unusable. The addition of the expansion layer improves the mesh quality so the mesh is now
computable with minimum Scaled Jacobian 0.075.

The second example, cases 3-5 (spheres), illustrated in 󱤏󱢑gure 3-5, is an RVEmodel of an idealized
carbon-black polymer used to represent the microstructure of an automotive tire. This example uses
1300 numerically placed and sized spheres that have been adaptively and conformally meshed within a
separate matrix material. Here we demonstrate three dif󱤎erent meshes using one, two and three adaptive
levels respectively on 128 processors and note the algorithms’ ability to scale to over 50 million hexes in
about 17 minutes on 128 processors.

Finally, cases 6-7 demonstrate the ef󱤎ect of the defeature option described in section 2.7.2 with the
2-phasemodel illustrated in 󱤏󱢑gure 3-7. We note that without defeaturing (case 7) we are unable to
achieve usable quality elements on a small number of elements. However including the defeature
option (case 6), while increasing the compute time a modest amount, improves the mesh quality
suf󱤎iciently to allow for FEA analysis. In addition, we note that the coarsening feature, described in
section 2.5 is also illustrated in this model.

4.1. SPRAY-FORMED MATERIAL MESH STUDY

A series of 40 test cases were used to characterize Sculpt’s capabilities to generate an all-hex mesh on
highly stochastic input data. For this study, input was provided as pure cells (.spn 󱤏󱢑le) on a Cartesian
grid of resolution 100× 100× 100 representing grain structures from radiographic or metallographic
imaging of material specimens. Each of these specimens contained three dif󱤎erent materials, including
one material (block 1) representing pore space. Eight dif󱤎erent primary con󱤏󱢑gurations of input data were
used with 5 variations of each, for a total of 40 models. Figures 4-2 and 4-3 showmesh images of the 󱤏󱢑rst
variation from each category. Table 4.1 shows the details from each of the 40 meshes

Due to the stochastic nature of the data, we utilized the defeaturing and thickening capabilities
described in section 2.7.2 to improve mesh quality. We also used the smoothing methods described in
section 2.12.6.1 to improve material grain interface smoothness as well as the curve optimization
threshold,COT described in section 2.12.6.2 to improve quality at curve interfaces.

Figures 4-2 and 4-3 show three dif󱤎erent images from each input data set. Colors represent the three
dif󱤎erent materials present in the model where block 1 = green (pore space), block 2 = yellow and block 3 =
magenta. The image on the left shows one slice of the raw 100× 100× 100 Cartesian cells colored
according to their assigned material. The middle images show the 󱤏󱢑nal mesh of the same slice after
thickening, defeaturing, non-manifold resolution, pillowing and smoothing procedures have been
performed. The image on the right is an isometric view of the RVE with a cutting plane to illustrate the
interior structure of the model.

Table 4.1 shows the details from the 40 meshes generated to simulate spray-formed materials. The
following describes the data from each column of table 4.1.

1. case name: Eight categories of con󱤏󱢑gurations with 󱤏󱢑ve variations of each for a total of 40 models

69



2. num hexes: Final number of hexes in RVE. Each model begins with one million cells from raw
input data (.spn 󱤏󱢑le). Additional hexes are created at interfaces due to pillowing (see sec. 2.11.2)

3. min S.J.: Minimum scaled Jacobian in 󱤏󱢑nal mesh for any single hex element. (see sec. 2.12.1). Note
that average S.J. is greater than 0.8 for all models. Minimum S.J. typically controls whether the
model is useful for analysis, where S.J.< 0.0 is generally considered unusable.

4. num < 0.0: Number of hex elements with scaled Jacobian< 0.0. These meshes would be
considered unusable in their current state.

5. num < 0.2: Number of hex elements with scaled Jacobian< 0.2. Some elements with S.J.< 0.2
are expected. Minimizing this number is advantageous.

6. percent error: The percent error by volume for each material based on the dif󱤎erence between the
raw input data to the 󱤏󱢑nal hexahedral mesh. (see sec. 2.7.6) This value is generally af󱤎ected by
defeauturing and thickening. A percent error near zero is desirable for most cases.

7. time (sec.): CPU time taken to generate the mesh on 12 processors.

Figure 4-1. Spray-formed material meshes ordered by bad and
poor quality elements.

Figure 4-1 illustrates the number of bad and poor quality elements for each of the 40 meshes ordered
based on their total bad and poor quality elements. Note that bad elements are those with S.J.< 0.0
and poor are those with S.J.< 0.2. From this data we point out that six of the 40 meshes resulted in at
least one bad element, representing an 85󰟏 success rate. In practice, these six meshes would be discarded
and not used in a simulation. For this application, data can readily be generated using stochastic
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methods. As a result, this meshing success rate is suf󱤎icient to provide a representative sample of the
material characteristics.

We also point out that the meshing outcome will be signi󱤏󱢑cantly af󱤎ected by modifying defeaturing and
thickening parameters. For this application we found that small clusters of isolated cells, as well as
narrow protrusions for localized material regions, resulted in unacceptable meshing results without
using the defeaturing option. However, application of defeaturing in this case resulted in signi󱤏󱢑cant
volumetric error compared with the initial input data. Figure 4-4(a) shows the initial raw cell
assignment for block 1 on a small slice of representative input data. Compare with Figure 4-4(b) that
illustrates the ef󱤎ect of defeaturing on the material assignment. As intended, the small clusters and
protrusions have been removed, resulting in the mesh shown in 4-4(c). This mesh however has a
volumetric percent error of 22󰟏when compared with the volume of block 1 material in the input. To
correct for this, the thickening option is used, which adds material to the boundaries of block 1. A
trial-and-error approach is used to reduce the volumetric error. Figures 4-4(d) - (f) showmesh results
using dif󱤎erent thickening parameters. In this case, we settled on thickening=0.35 (󱤏󱢑gure 4-4(f)) which
resulted in a volumetric percent error for block 1 of -1.7󰟏.

Note that the volumetric percent error for each material block is reported in table 4.1. For consistency, A
constant set of thickening values was used for all 40 mesh cases. (block 1 = 0.33, block 2 = 0, block 3 =
0.2). Because of the widely varying characteristics of the input data, signi󱤏󱢑cant dif󱤎erences are noted in
the volumetric error between cases. In practice, we would recommend an approach to minimize
volumetric error by adjusting thickening parameters for individual mesh cases.

Figure 4-4(g) shows an overlay of the initial raw input cell material assignment for block 1 displayed with
the 󱤏󱢑nal mesh where thickening has been set to 0.35. We point out that judgement should be employed
in determining whether the 󱤏󱢑nal mesh, that has been signi󱤏󱢑cantly adjusted and simpli󱤏󱢑ed to control
element quality, is indeed representative of the intended physical characteristics to be modeled.

Appendix M provides an example of an input 󱤏󱢑le and data for the mesh study case,
dump.spray-100-1-5.1, in this study.
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Table 4-2. Spray-formed materials mesh study results
num min num num percent error time

case name hexes S.J. < 0.0 < 0.2 block 1 block 2 block 3 (sec.)
dump.spray-100-1-5.1 1,629,018 0.144 0 38 -1.36 1.15 -2.47 99.82
dump.spray-100-1-5.2 1,656,084 0.119 0 31 -6.00 1.74 -1.07 91.96
dump.spray-100-1-5.3 1,761,378 0.095 0 80 -0.75 1.29 -2.32 113.98
dump.spray-100-1-5.4 1,693,294 0.148 0 25 4.36 -0.83 -1.29 96.85
dump.spray-100-1-5.5 1,682,310 0.110 0 46 4.66 -0.57 -2.68 106.03
dump.spray-100-1-75.1 1,714,808 0.099 0 62 1.36 -0.39 -0.01 94.39
dump.spray-100-1-75.2 1,796,816 -0.022 1 122 -15.89 1.23 2.58 100.88
dump.spray-100-1-75.3 1,828,360 0.112 0 54 -7.90 1.92 -0.40 112.98
dump.spray-100-1-75.4 1,749,288 0.112 0 49 2.08 -1.68 1.40 108.74
dump.spray-100-1-75.5 1,741,482 0.126 0 50 -4.80 1.34 -0.15 96.88
dump.spray-100-2-25.1 1,758,634 0.128 0 53 3.32 -0.58 -1.62 101.96
dump.spray-100-2-25.2 1,781,898 0.091 0 38 -9.60 1.11 0.97 99.46
dump.spray-100-2-25.3 1,793,948 0.111 0 42 -13.83 2.40 0.05 107.03
dump.spray-100-2-25.4 1,760,298 0.134 0 37 -23.54 1.91 1.34 97.63
dump.spray-100-2-25.5 1,747,262 -0.002 1 96 -16.22 1.85 1.32 94.54
dump.spray-100-2.1 1,743,950 0.118 0 33 6.75 -1.29 -2.34 120.86
dump.spray-100-2.2 1,726,572 0.129 0 51 4.50 -1.17 -2.30 109.14
dump.spray-100-2.3 1,743,946 0.133 0 55 3.78 0.81 -4.31 113.06
dump.spray-100-2.4 1,766,348 0.117 0 73 -1.45 -1.48 2.94 97.02
dump.spray-100-2.5 1,694,232 0.111 0 36 -3.08 1.18 -1.18 101.07
dump.spray-25-1-5.1 1,723,080 0.082 0 43 -12.51 2.22 -0.49 108.13
dump.spray-25-1-5.2 1,666,462 -0.228 1 101 -19.13 2.74 -0.61 102.81
dump.spray-25-1-5.3 1,763,740 0.111 0 51 2.63 -0.14 -1.29 105.55
dump.spray-25-1-5.4 1,716,754 -0.007 0 44 -9.79 1.50 0.31 104.13
dump.spray-25-1-5.5 1,760,418 0.131 1 84 -3.57 -0.24 1.85 106.56
dump.spray-25-1-75.1 1,817,064 0.133 0 41 -20.37 3.02 0.20 120.49
dump.spray-25-1-75.2 1,768,866 0.125 0 64 -30.17 2.22 2.34 132.07
dump.spray-25-1-75.3 1,763,262 0.115 0 35 -35.08 2.33 2.88 106.01
dump.spray-25-1-75.4 1,748,762 0.119 0 40 -29.17 2.34 1.58 103.87
dump.spray-25-1-75.5 1,822,654 0.114 0 61 -15.39 2.35 0.24 108.20
dump.spray-25-2-25.1 1,789,410 0.120 0 46 -44.28 3.10 1.88 93.59
dump.spray-25-2-25.2 1,777,166 0.140 0 38 -41.37 2.93 1.45 108.44
dump.spray-25-2-25.3 1,730,820 0.119 0 58 -31.57 3.53 0.03 95.69
dump.spray-25-2-25.4 1,760,298 0.134 0 37 -23.54 1.91 1.34 99.53
dump.spray-25-2-25.5 1,803,822 0.130 0 40 -28.94 1.62 2.94 103.06
dump.spray-25-2.1 1,746,548 0.115 0 54 -7.00 2.29 -2.09 104.00
dump.spray-25-2.2 1,738,320 0.113 0 64 -10.38 0.67 1.80 103.53
dump.spray-25-2.3 1,743,474 -0.149 1 110 3.89 -0.12 -2.73 111.31
dump.spray-25-2.4 1,783,298 -0.243 6 81 -26.73 2.10 2.56 101.86
dump.spray-25-2.5 1,733,680 0.114 0 40 -6.72 1.83 -0.79 103.63
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dump.spray-100-1-5.1

dump.spray-100-1-75.1

dump.spray-100-2-25.1

dump.spray-100-2.1

Figure 4-2. Examples of spray-formed material RVE meshes 73



dump.spray-25-1-5.1

dump.spray-25-1-75.1

dump.spray-25-2-25.1

dump.spray-25-2.1

Figure 4-3. Examples of spray-formed material RVE meshes.74



(a) initial raw input (b) after defeaturing (c) mesh without thickening

(d) thickening = 0.1 (e) thickening = 0.2 (f) thickening = 0.35

(g) overlay raw input with mesh
(thickening=0.35)

Figure 4-4. A representative slice of one of the RVE models show-
ing block 1 cells (pore space) only. Illustrates the effect of de-
featuring and thickening on one material.
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5. CONCLUSION

This work presents new methods for generating hexahedral and tetrahedral meshes for computational
materials modeling. The proposed algorithms build upon overlay grid techniques previously
introduced. This work contributes new innovations that have proven necessary for meshing data for
modeling of representative volume elements. Newmethods have been introduced for data 󱤏󱢑ltering,
including generalized non-manifold resolution, defeaturing, thickening and layer expansion. These
󱤏󱢑ltering methods were shown to directly in󱤐󱤔uence mesh quality producing meshes that would
otherwise contain inverted or poor quality elements. Improvements to the primal contouring method
for constructing interfaces on a generalized unstructured grid with multiple materials were also
introduced. A generalized procedure for improving hexahedral topology through pillowing at material
interfaces was introduced and shown to be ef󱤎ective with the complex topologies needed to represent
detailed grain structures. In addition, new methods for generating exact periodic meshes on RVE
models were introduced. We have also shown that the methods introduced are directly applicable and
an enabling capability for materials science research in a variety of applications.
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F. SCULPT EXAMPLES

The following examples are intended to illustrate a few basic use cases for generating hex and tet meshes
for microstructures. These examples assume that you will have access to both sculpt and cubit and
that you can run sculpt command line from a unix prompt. For Sandia staf󱤎, both sculpt and
cubit are available on the CEE-LAN at /projects/cubit or can be downloaded from
http://cubit.sandia.gov/downloads.htmlwith a Kerberos password. For external access,
check the licensing page at http://cubit.sandia.gov/licensing.html to obtain a copy.

For more information on setup and running sculpt, see the Sculpt User Manual available online at
https://cubit.sandia.gov/public/15.4/help_manual/WebHelp/mesh_generation/
meshing_schemes/parallel/sculpt.htm or the SANDReport: Sculpt: Automatic Parallel
Hexahedral Mesh Generation. Help on sculpt command line options are also available by using the
-h argument followed by the sculpt option. For example:

sculpt -h pillow_surfaces

will display details of the pillow_surfaces option. To display a summary of all sculpt options, use:
"sculpt -h" with no additional arguments.

All data 󱤏󱢑les used in these examples can be downloaded from cubit.sandia.gov/tutorials.html
from the examples link.
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G. EXAMPLE: VOLUME FRACTION
DATA

Representative volume elements (RVE) can often be de󱤏󱢑ned in terms of volume fractions on the overlay
grid. For this type of data, volume fractions for every material present in the RVE are included for each
cell or element of the overlay grid. Two dif󱤎erent formats are available for representing volume
fractions.

1. input_micro = <filename.tec>: This option will import an ascii format 󱤏󱢑le on a Cartesian
grid. A simple example of the ascii .tec format is illustrated in 󱤏󱢑gure G-1. Each cell of the grid
occupies one row of the 󱤏󱢑le where the 󱤏󱢑rst three columns identify the centroid of a cell, and the
remaining columns de󱤏󱢑ne the volume fraction for each material present in the model. The sum
of these columns should be 1.0. The required header information includes a title, variable names
associated with each column and the zone which de󱤏󱢑nes the number of cells in x, y and z
Cartesian directions.

Figure G-1. Example .tec file describing volume fractions in each
cell of a Cartesian grid

For the input_micro option, the size of each cell of the grid is assumed to be a unit cube with
dimensions 1.0× 1.0× 1.0. The locations identi󱤏󱢑ed in the 󱤏󱢑rst three columns (x, y, z) de󱤏󱢑ne
the centroid location for each cell. For this format, the bounding box and interval speci󱤏󱢑ers
(xmin, ymin, zmin, xmax, ymax, zmax, nelx, nely, nely) are not required in the
input, but rather implied by the header information in the .tec 󱤏󱢑le. To illustrate, the example

82



shown in 󱤏󱢑gure G-1 would result in a grid with dimensions 2.0× 2.0× 2.0with coordinate
dimensions ranging from min = -0.5 to max = 1.5.

2. input_mesh = <filename.exo>: This option will import a binary exodus format 󱤏󱢑le for any
structured or unstructured mesh. For this option, element variables are required at each element
of the exodus mesh. Each element should contain volume fractions for every material present in
the mesh where the sum of volume fractions for each cell is 1.0. Although the exodus 󱤏󱢑le format is
binary, open source tools are available from http://github.com for reading and writing
exodus 󱤏󱢑les.

This example uses the 󱤏󱢑le micro.tec, which de󱤏󱢑nes a grid of 96× 96× 96 cells with 20 dif󱤎erent
materials. Example 󱤏󱢑les for this and all examples in this report are available from
http://cubit.sandia.gov/tutorials.html.

Figure G-2 shows the resulting hex mesh that should be generated from micro.tec

Figure G-2. Hex mesh generated from example micro.tec

The following Sculpt input 󱤏󱢑le can be used for this example. Create a 󱤏󱢑le with suggested name
micro.i, and copy the following text into it:

Begin Sculpt
input_micro = micro.tec
exodus_file = micro
micro_expand = 2
pillow_surfaces = true

End Sculpt

To run sculpt with the designated input, make sure the 󱤏󱢑le micro.tec is in the same directory and
issue the following command at the unix prompt:
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sculpt -i micro.i -j 8

This should execute Sculpt on 8 processors and export 8 separate exodus 󱤏󱢑les to your working directory
of the form micro.e.8.x, where x is (0, 1, 2, ...7).

These 󱤏󱢑les can be combined into a single 󱤏󱢑le using the SEACAS epu tool. epu should be installed with a
standard Cubit installation, but is also available with the SEACAS tools from github.com. To combine
the 󱤏󱢑les, use the following command from the unix prompt:

epu -p 8 micro

A 󱤏󱢑le with the name micro.e should be created. To view the mesh, any tool that can visualize exodus
󱤏󱢑les can be used. For this example, we import the mesh using Cubit. First make sure your current
working directory is correctly set. Use the pwd and cd cubit commands to set the directory. From the
Cubit command prompt, to import the mesh, use the following command.

import mesh "micro.e" no_geom

This will import the mesh as a free mesh. This means that the elements are not associated with any
geometry (volumes, surfaces, curves).

To display the elements with each material or block represented as a dif󱤎erent color, use the following
command:

draw block all

To view the interior of the mesh, you may want to use the clipping tool. The arrow in 󱤏󱢑gure G-3
illustrates the clipping tool in the graphical user interface.

In addition, it may be useful to display the mesh quality of the elements. Cubit provides many options
for displaying mesh quality. The following option will display fringes of the Scaled Jacobian metric:

quality hex all scaled jacobian draw mesh

Expansion Layers: For this example, it may be useful to experiment with the expansion layers
(micro_expand) option. The input 󱤏󱢑le in this example used a value of micro_expand = 2. Figure
2-21 in the body of this report illustrates the ef󱤎ect of expansion layers. This option will add additional
cells to the boundary of the Cartesian grid and copy the volume fraction from the closest cells at the
boundary to the new cells. This can improve quality at the boundaries of the RVE where the material
interfaces meet boundary at an acute angle. For a value of micro_expand = 2, 2 layers would be
added to each side of the Cartesian grid resulting in a data size of 100× 100× 100 from the original
96× 96× 96 cells de󱤏󱢑ned in the micro.tec 󱤏󱢑le.

84



Figure G-3. Displaying the interior of hex mesh in Cubit using the
clipping plane tool.

Pillowing: We note that for this example we use the pillow_surfaces = true option. Since this
example contains many materials, we assume that triple-junctions will occur. A triple-junction occurs
when three or more materials share a common curve interface. The curves de󱤏󱢑ned at these interfaces
tend to result in poor quality elements when nodes are projected. The option pillow_surfaces =
truewill introduce the additional layers illustrated in 󱤏󱢑gure 2-28 to ensure mesh quality at
triple-junctions.
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H. EXAMPLE: CARTESIAN
EXODUS

For this example, we illustrate the use of the input_cart_exo option to use an Exodus 󱤏󱢑le as the
source of the microstructure data. The exodus block de󱤏󱢑nes a grouping of elements with a common
material. For example, If 20 grains are to be represented, 20 dif󱤎erent blocks would be de󱤏󱢑ned in the
exodus 󱤏󱢑le with each hex element grouped according to its predominant material. For this case, the cells
or elements of the input mesh de󱤏󱢑ne a purematerial. In contrast to a volume fraction description that
can vary continuously between 0.0 and 1.0, a pure cell assumes a volume fraction = 1.0 for the speci󱤏󱢑ed
material.

Figure H-1. Left: Initial Cartesian Exodus mesh displaying ele-
ments colored according to block ID. Right: Final mesh with
smooth/conforming interface after running sculpt.

This format requires that the Exodus mesh be a regular Cartesian grid. While the dimensions may be
any size, each cell must be a regular cube. This format dif󱤎ers from the input_mesh format described in
Appendix G, as the input_cart_exo option is limited to a Cartesian grid and the element variables are
not used to de󱤏󱢑ne material regions, but instead are distinguished by their exodus block assignment.

For this example we use the 󱤏󱢑le micro2D.e, illustrated in 󱤏󱢑gure H-1. This is an exodus 󱤏󱢑le with hex
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elements arranged as a Cartesian grid. For this example, the size of the mesh is exactly one layer thick in
the Z-dimension. This is done to represent a 2-dimensional microstructure.

$ micro2D.i Sculpt input file for 2D microstructure
BEGIN SCULPT

input_cart_exo = micro2D.e
exodus_file = micro_3D

END SCULPT

To run sculpt use the following command from the unix prompt:

sculpt -i micro2D.i -j 8

This will generate a mesh with eight processors resulting in 8 separate exodus meshes on disk. Use the
same methods described in Appendix G to combine the 󱤏󱢑les with epu and import the mesh into cubit
for visualization and to check quality.

Figure H-1 Right shows a portion of the 󱤏󱢑nal mesh generated with Sculpt. Rotating the mesh slightly in
Cubit reveals the one-layer thickness as illustrated in 󱤏󱢑gure H-2

Figure H-2. Final mesh with smooth/conforming interface after
running sculpt. The one-layer thick Cartesian grid illustrates the
use of 2-dimensional data to build a mesh.
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I. EXAMPLE: SPN FILE

The SPN 󱤏󱢑le format also de󱤏󱢑nes a set of pure cells. It is an ascii 󱤏󱢑le with integers representing the
material IDs present in the model. One integer is de󱤏󱢑ned per cell representing the dominant material in
each cell.

Figure I-1. Simple example of a SPN file showing two different materials

Any positive integer may be used to represent the material IDs. The resulting exodus mesh that Sculpt
generates will have one block for each unique material ID de󱤏󱢑ned in the .spn 󱤏󱢑le.

Note: Amaterial ID of zero may be used in the .spn 󱤏󱢑le, however, since a block ID of zero is not
permitted in Exodus, the resulting block ID in the exodus mesh for any element identi󱤏󱢑ed with zero will
be 1 + IDmax, where IDmax is the maximummaterial ID present in the 󱤏󱢑le.

Since the .spn 󱤏󱢑le format de󱤏󱢑nes only one integer per cell, it is much more compact than the volume
fraction format .tec 󱤏󱢑le described in Appendix G. However, the resulting geometry of the material
interfaces may not be as accurate or smooth for the .spn format compared with the .tec format.

Ordering of integers in the .spn 󱤏󱢑le is important as it will determine the placement of each cell within
the RVE. The default ordering of the integers is represented by the following C code:

for (i=0; i<nelx; i++)
for (j=0; j<nely; j++)

for (k=0; k<nelz; k++)
// read next value from file

where (nelx, nely, nelz) are the number of cells in each dimension. For the default case
illustrated, sculpt will read cells in the Z-axis 󱤏󱢑rst, followed by Y, then X. For data that is not ordered in
this manner, the spn_xyz_order option can be used to specify the ordering of cells.

An example sculpt input 󱤏󱢑le for a .spn 󱤏󱢑le is as follows:
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$ TwoPhase.i Sculpt input file to generate 2-phase microstructure
BEGIN SCULPT

input_spn = TwoPhase.spn
exodus_file = TwoPhase

$ number of cells (required)
nelx = 64
nely = 64
nelz = 64

$ smoothing options
smooth = fixed_bbox
csmooth = vfrac
laplacian_iters = 10
max_opt_iters = 20

END SCULPT

Note that unlike the .tec format, the values for (nelx, nely, nelz)must be speci󱤏󱢑ed as part of
the input.

For this example we use the 󱤏󱢑le TwoPhase.spnwhich contains two dif󱤎erent materials representing a
viscous 󱤐󱤔uid. Running sculpt with the above input 󱤏󱢑le and TwoPase.spn results in the meshes in
󱤏󱢑gures I-2 - I-3.

Smoothing: This input 󱤏󱢑le also includes additional options for smoothing. Since the raw data from pure
cells is stair-step in nature, additional experimentation with smoothing parameters may be worthwhile
to achieve desired smooth material interfaces. The smoothing methods used for surfaces and curves are
set using the smooth and csmooth options respectively. The setting smooth = fixed_bbox ensures
that the six faces of the RVE box will remain planar. Increasing the number of iterations for smoothing
using the laplacian_iters and max_opt_iters options can ef󱤎ect the smoothness of the surfaces,
but can also ef󱤎ect mesh quality. See the sculpt help for more information on curve and surface
smoothing.

As an additional example, it is possible to increase the smoothness of the material interfaces by using the
surface and curve smoothing methods as described in section 2.12.6.1 of this report.

smooth = no_surface_projections
csmooth = hermite

The smoothing procedures will improve element quality by moving interior nodes to optimize quality.
Nodes that are associated with material interfaces are projected to the approximated surfaces and curves
as described in section 2.9.1 and 2.9.3. When using the option smooth =
no_surface_projections, nodes associated with surfaces are not projected to interfaces, but instead
are free to float to improve quality. This has the ef󱤎ect of creating very smooth surfaces, however can
result in volumes collapsing or losing geometric volume, especially for concave shapes. The curve
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Figure I-2. Mesh generated from TwoPhase.spn file showing only
one of the resulting material blocks.

smoothing method csmooth = hermitewill also smooth curve interfaces using a hermite
approximation of the curve, but can also result in a collapasing ef󱤎ect for some cases.

Figure I-4 illustrates the ef󱤎ect of using both options. Some control over the amount of collapsing or
loss of volume can be controlled by modifying the number of laplacian smoothing iteration using the
option laplacian_iters option. In most cases just 2 or 3 laplacian iterations may be suf󱤎icient to
achieve results when using smooth = no_surface_projections.
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Figure I-3. Closeup of meshes from figure I-2. Right shows mesh
at surface of RVE.

Figure I-4. Closeup of mesh from figure I-2. Illustrates the
use of options smooth = no_surface_projections and csmooth =
hermite. Compare with figure I-3 with default smoothing options.
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J. EXAMPLE: TETRAHEDRAL
MESH

The Sculpt tool currently provides only options for hexahedral mesh generation. To generate a
tetrahedral mesh with Sculpt, we 󱤏󱢑rst generate the geometry from one of the standard microstructure
format 󱤏󱢑les (input_micro, input_cart_exo, input_mesh, input_spn) using Sculpt. We can
then use Cubit as our tetrahedral meshing tool to generate the 󱤏󱢑nal mesh on the resulting geometry that
Sculpt produces.

To generate a tetrahedral mesh, we 󱤏󱢑rst build a geometry in Sculpt that Cubit can use for tet meshing.
Normally, when generating a hex mesh in Sculpt we must 󱤏󱢑rst build geometric curves and surfaces
before generating the hexes. We can use this same procedure in sculpt for building geometry for tets.
Once the geometry is built, it can be exported as two separate 󱤏󱢑les for use in Cubit:

1. Exodus File: Contains triangle elements describing only the material interfaces and
boundaries.

2. Sculpt to Geometry File (S2G): Contains description of curves and surfaces and their
association to surface triangles contained in the exodus 󱤏󱢑le.

These 󱤏󱢑les can then be used to construct amesh-based geometry in Cubit that can be used as the basis for
a tetrahedral mesh.

Figure J-1.

For example, 󱤏󱢑gure J-1 shows a hex mesh generated in Sculpt from the input_micro option. To
generate a tet mesh, instead of exporting the result as a hex mesh, we instead export an exodus and S2G
󱤏󱢑le to be used in Cubit. After import to Cubit, a mesh-based geometry is constructed and meshing sizes
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Figure J-2.

and schemes applied. Figure J-2 shows the resulting mesh-based geometry for this example. Figure J-2
also shows tet meshes at three dif󱤎erent resolutions, illustrating the ability to use various tet meshing
options to control the resolution and grading of the tet mesh.

For this example, we again use the 󱤏󱢑le micro.tecwhich contains 20 materials on a 96× 96× 96
Cartesian grid. To reduce run-rime for this example, we will use a clipping boundary to only utilize a
portion of the full grid. Copy the following text to an input 󱤏󱢑le and run it with the command sculpt
-i <filename>.i. We also note that the trimesh and write_geom options are currently limited to
serial execution. As a result, sculpt must be executed on a single processor for this case (-j 1).

$ micro_tet.i Sculpt input file to generate Cubit input for tet mesh
BEGIN SCULPT

input_micro = micro.tec
exodus_file = micro_clipped
trimesh = true
write_geom = true
defeature = 3
defeature_bbox = true
smooth = no_surface_projections

$ specify a clipping boundary so we don’t generate the full mesh
xmin = 52.145432
ymin = 87.530418
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zmin = 39.749386
xmax = 73.055649
ymax = 150.00000
zmax = 63.183693

END SCULPT

We note some additional options in this example:

Triangle Mesh: The trimesh = true option will generate triangles on the interfaces and boundaries
that are de󱤏󱢑ned in Sculpt and write them to an exodus 󱤏󱢑le. These triangles are the result of splitting the
quadrilaterals that would otherwise be de󱤏󱢑ned on the surfaces when generating a hex mesh. The
resulting exodus mesh using the trimesh option will contain only triangles of type TRI3.

Write Geometry: The write_geom = true option will export an ascii 󱤏󱢑le (.s2g) containing the
logical grouping of triangles de󱤏󱢑ned in the exodus 󱤏󱢑le into topological surfaces. This 󱤏󱢑le is used by
Cubit to construct the mesh-based geometry used for tet meshing.

Defeaturing: The option defeature = 3will do two main operations: 󱤏󱢑ltering and collapsing:

1. Filtering: Remove small volumes, protrusions and isthmus from the data as described in section
2.7 of this report.

2. Collapsing: Collapse small curves and surfaces as described in section 2.7 of this report.

Once sculpt has completed, two 󱤏󱢑les will have been generated:

micro_clipped.s2g
micro_clipped.e.1.0

From the Cubit command line, these 󱤏󱢑les may be imported with a single command. Note that the S2G
󱤏󱢑le format is currently a beta feature in Sculpt. As a result it is currently necessary to turn on a developer
mode. To do so, issue the following command in Cubit:

set dev on

To import the 󱤏󱢑les, Use the following command:

import s2g "micro_clipped"

This option should import both 󱤏󱢑les and build a mesh based geometry from them. For this simple
example, you should see 5 separate volumes that have their surfaces meshed with triangle elements that
were generated by Sculpt. These triangles are normally not of suf󱤎icient quality to use as the basis for tet
meshing, so we can delete these:

delete mesh
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Set a mesh size, set the meshing scheme to tetmesh and mesh the volumes:

vol all size 1.0
vol all scheme tetmesh
mesh vol all

A. CONTROLLING TET GRADING

One common requirement for microstructures is to have mesh sizes smaller at material interfaces, but
larger towards the interior of grains. The following illustrates one approach to generating a graded mesh
in Cubit with this characteristic. After importing the geometry, the following sequence of Cubit
commands can be used to generate the mesh shown in 󱤏󱢑gure J-4

Note that after setting up controls for the tet mesher, we create a group comprising all of the interior
surfaces as shown in 󱤏󱢑gure J-3. These surfaces are assigned a smaller mesh size than their surrounding
volumes.

#
# Cubit Script for defining a graded mesh with refinement at material interfaces
#
# set up tetmesher with maximum element optimization and gradient control
volume all scheme tetmesh
tetmesher optimize level 6 overconstrained off sliver off
trimesher surface gradation 1.2
trimesher volume gradation 1.2
trimesher geometry sizing off
volume all size 2.0
surface all size 2.0
curve all size 2.0

#create a group of interior surfaces (exclude those on the RVE boundary)
#{xmin = 52.145432}
#{ymin = 87.530418}
#{zmin = 39.749386}
#{xmax = 73.055649}
#{ymax = 96.5}
#{zmax = 63.183693}
#{eps = 0.001}
group "interior_surfs" add surface with x_coord > {xmin + eps} and \

x_coord < {xmax - eps} and with y_coord > {ymin + eps} and \
with y_coord < {ymax - eps} with z_coord > {zmin + eps} and \
with z_coord < {zmax - eps}
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# set a smaller size on the material interfaces
# mesh and smooth the interior surfaces first
surf in interior_surfs size 0.5
mesh surf all
surf in interior_surfs smooth scheme mean ratio
smooth surf in interior_surfs

#mesh with tets
mesh vol all

Figure J-3. Interior or material interface surfaces defined in group
"interior_surfs" in the above script. These surfaces are as-
signed a size of 0.5

Figure J-4. Mesh generated in Cubit using the above script.
Mesh is size 0.5 at the material interfaces transitioning to a size
of 2.0 on the interior of the grains.
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K. EXAMPLE: ANALYTIC
GEOMETRY

One option for generating data for microstructures is from analytic geometry. For our example, we use
spheres that are de󱤏󱢑ned by a center and radius. We use the Diatom format described in the CTH
documentation [7] which has various options for building primitive geometry types.

The following is an example Diatom format that de󱤏󱢑nes six separate spheres that overlap with common
centers but with progressively larger radii. When Diatom geometry overlaps, the 󱤏󱢑rst sphere in the list
takes precedence. This results in the concentric pattern of spheres shown in 󱤏󱢑gure K-1.

$ Diatom File: two_spheres.diatom
diatom

package "spheres1"
material 1
insert sphere

center = -5 0 0
radius = 4

endinsert
insert sphere

center = 5 0 0
radius = 4

endinsert
endpackage
package "spheres2"

material 2
insert sphere

center = -5 0 0
radius = 5

endinsert
insert sphere

center = 5 0 0
radius = 5

endinsert
endpackage
package "spheres3"

material 3
insert sphere
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center = -5 0 0
radius = 6

endinsert
insert sphere

center = 5 0 0
radius = 6

endinsert
endpackage

enddiatom

Figure K-1. Example mesh generated from analytic spheres defined from Diatoms

The following is a sculpt input 󱤏󱢑le for this use case.

$ Sculpt input file: two_spheres.i
BEGIN SCULPT

diatom_file = two_spheres.diatom
exodus_file = two_spheres
xmin = -15
ymin = -10
zmin = -10
xmax = 15
ymax = 10
zmax = 0
nelx = 60
nely = 40
nelz = 20
smooth = fixed_bbox
mesh_void = true
void_mat = 6

END SCULPT
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For this type of data, while the sphere geometry can be de󱤏󱢑ned in the diatom 󱤏󱢑le, the overlay grid
description must be included in the input 󱤏󱢑le (xmin, ymin, zmin, xmax, ymax, zmax, nelx,
nely, nelz). The smooth option smooth = fixed_bbox should also be used to ensure nodes at
boundaries will be projected to the 6 planar faces of the RVE.

Mesh Void: The mesh_void = true option ensures that the mesh will not only be generated in the
spheres de󱤏󱢑ned in the diatom description, but also in the void regions surrounding the spheres. While
the material or block ID for the individual spheres may be de󱤏󱢑ned in the diatom 󱤏󱢑le, the block ID for
the void region should be speci󱤏󱢑ed in the input 󱤏󱢑le. In this example, we have identi󱤏󱢑ed the elements in
the void region as block 6.

To run this simple example, create two 󱤏󱢑les from the above text named two_spheres.diatom and
two_sphere.i respectively. To run sculpt, use the command as follows:

sculpt -i two_spheres.i

This should result in a 󱤏󱢑le named two_spheres.e.1.0which is displayed in 󱤏󱢑gure K-1

Figure K-2. Example use of adaptivity on analytic geometry.
Compare to figure K-1 without adaptivity.

A. ADAPTIVE MESHING

Sculpt also provides the capability to adapt the mesh (re󱤏󱢑ne or coarsen) based upon various geometric
indicators. This example extends the analytic geometry example shown above to use the adapt capability.
Add or replace the following lines to the input 󱤏󱢑le two_spheres.i shown above and re-run sculpt.

nelx = 30
nely = 20
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nelz = 10
adapt_type = vfrac_average
adapt_threshold = 0.0001
adapt_levels = 2
pillow_boundaries = true

The resulting mesh is displayed in 󱤏󱢑gure K-2

Grid Resolution: Note that the initial overlay grid intervals can usually be decreased when using
adaptivity. The options nelx, nely, nelz are used to de󱤏󱢑ne the initial resolution before adaptively
splitting cells.

Adapt Type: The adapt_type option sets the criteria for adapting or splitting the cells into smaller
cells. Check the sculpt documentation for de󱤏󱢑nitions of the various criteria for adaptivity. The
adapt_levels = 2 sets the maximum number of times a hex may be split.

Pillowing: In this case the pillow_boundaries option is used since re󱤏󱢑nement extends to the
boundary of the RVE. Figure 2-29 illustrates the ef󱤎ect of using this option. Omitting
pillow_boundaries in this case, will result in elements with Scaled Jacobian of zero at boundaries
where elements are re󱤏󱢑ned.
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L. EXAMPLE: PERIODIC MESH

The following example illustrates the use of the periodic option. In some cases it is useful to model
the RVE as a continuous model where nodes and faces at the boundaries are matched precisely on
opposite sides. This example also demonstrates the use of adaptivity to reduce overall element counts.

This example uses the diatom 󱤏󱢑le format described in Appendix K that prescribes a set of analytic
spheres. To ensure a periodic mesh, the geometry must also be periodic. This may mean replicating
geometric structures over multiple periods in the diatom 󱤏󱢑le. Figure L-1 shows the geometry used for
this example with the cube shape representing the geometric period that is to be meshed.

Figure L-1. Spheres defined from a diatom file. Brick represents
one period in each Cartesian direction.

$ spheres_periodic.i Sculpt input file demonstrating periodic meshing
BEGIN SCULPT

diatom_file = spheres_periodic.diatom
xmin = -18.705510
ymin = -18.705510
zmin = -18.705510
xmax = 18.705510
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ymax = 18.705510
zmax = 18.705510
nelx = 38
nely = 38
nelz = 38
adapt_type = vfrac_average
adapt_levels = 1
adapt_threshold = 0.0001
periodic = true
exodus_file = spheres_periodic
mesh_void = true

END SCULPT

To run this example, create a 󱤏󱢑le named spheres_periodic.i from the above text. Ensure that you
also have the 󱤏󱢑le spheres_periodic.diatom containing the analytic sphere data in your working
directory. To run sculpt, use the command as follows:

sculpt -i spheres_periodic.i -j 16

Note that this option will generate 16 separate exodus 󱤏󱢑les in your working directory when you use the
-j 16 option. To combine these 󱤏󱢑les into a single 󱤏󱢑le use the epu tool as follows:

epu -p 16 spheres_periodic

This should result in a single 󱤏󱢑le, spheres_periodic.e being generated in your working directory.
To visualize the stair-step mesh in Cubit, use the following command in Cubit to import the mesh and
display the blocks as separate colors:

import mesh "spheres_periodic.e" no_geom
draw block all

Figure L-2 illustrates the resulting mesh for all blocks and just the spheres. To visualize mesh quality
using the scaled Jacobian metric, use the following from the Cubit command line:

quality hex all scaled jacobian draw mesh

We note several new options in the above input 󱤏󱢑le and discuss their implications here:

Adapt Type: This example illustrates the adapt_type = vfrac_average (4) option. While the
base Cartesian grid is de󱤏󱢑ned with intervals 38× 38× 38, introducing adapt_type =
vfrac_average (4) will re󱤏󱢑ne cells where the measured volume fraction of the sphere geometry
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Figure L-2. Periodic mesh of full mesh (left) and the spheres only (right).

Figure L-3. Scaled Jacobian metric displayed in periodic mesh

changes by a threshold de󱤏󱢑ned by the adapt_threshold option. We use a small value (0.0001) for
adapt_threshold to ensure re󱤏󱢑nement occurs at boundaries of all spheres.

We also use an adapt_levels value of 1. This limits the number of re󱤏󱢑nement levels to a single
iteration so that cells will be subdivided a maximum of one time where needed. Increasing this value to
2 or 3will resolve the spheres better, but increase the element count signi󱤏󱢑cantly. Adjusting the base
Cartesian grid resolution (nelx, nely, nelz) to be more coarse while increasing the adapt_levels
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is another way to control the overall element count while maintaining geometry resolution.

Periodic: Including this option should result in a periodic mesh where copying and transforming the
mesh a distance of one period should exactly match nodes and faces. As a consequence, we note that the
boundaries of a periodic mesh will appear ragged as illustrated in 󱤏󱢑gure L-2. Without the periodic
option the six faces of the Cartesian grid are imposed as geometric constraints on the boundary
elements. This can sometimes introduce arti󱤏󱢑cial restrictions that can reduce element quality. The
periodic option does not restrict boundary nodes to lie on one of these planes, instead allowing them to
adjust to optimize element quality while maintaining periodic equivalence.

Mesh Void: This option will ensure that the region outside of the spheres de󱤏󱢑ned in the diatom 󱤏󱢑le will
also me meshed. Without this option, only the spheres would be meshed.
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M. EXAMPLE: STOCHASTIC
MATERIALS

The following example uses the 󱤏󱢑le dump.spray-100-1-5.1.spn as input. It is a 100× 100× 100
data set comprised of 3 dif󱤎erent materials. It represents thermal spray material grain structures from
radiographic or metallographic imaging of material specimens. Figure 4-3(a) shows the front view of
raw input data colored by block ID. The expected mesh is shown in Figure M-1(b). Figure M-1(c) shows
an isometric view of the 󱤏󱢑nal mesh with a cut-away plane to reveal the interior elements.

(a) initial raw cell data (b) 󱤏󱢑nal mesh (c) isometric view of mesh

Figure M-1. Thermal spray material RVE mesh

A. STAIR-STEP MESH

It is possible to utilize the raw data in the .spn 󱤏󱢑le as a 󱤏󱢑nite element mesh without smoothing the
interfaces between elements. The stair option will simply convert each cell represented by an integer
in the .spn 󱤏󱢑le into a hex element. Each hex will be assigned to its appropriate material block in the
exodus format. The following input 󱤏󱢑le will generate the mesh shown in 󱤏󱢑gure M-1(a).

$ dump.spray-100-1-5.1-stair.i file for generating stair-step mesh
BEGIN SCULPT

stair = fast
input_spn = dump.spray-100-1-5.1.spn
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nelx = 100
nely = 100
nelz = 100
exodus_file = dump.spray-100-1-5.1-stair

END SCULPT

To run this example, create a 󱤏󱢑le named dump.spray-100-1-5.1-stair.i from the above text.
Ensure that you also have the 󱤏󱢑le dump.spray-100-1-5.1.spn containing the input data in your
working directory. To run sculpt, use the command as follows:

sculpt -i dump.spray-100-1-5.1-stair.i -j 16

Note that this option will generate 16 separate exodus 󱤏󱢑les in your working directory when you use the
-j 16 option. To combine these 󱤏󱢑les into a single 󱤏󱢑le use the epu tool as follows:

epu -p 16 dump.spray-100-1-5.1-stair

This should result in a single 󱤏󱢑le, dump.spray-100-1-5.1-stair.e being generated in your
working directory. To visualize the stair-step mesh in Cubit, use the following command in Cubit to
import the mesh and display the blocks as separate colors:

import mesh "dump.spray-100-1-5.1-stair.e" no_geom
draw block all

B. BASIC MESH GENERATION

We note that very few options are needed in order to generate a mesh from a .spn 󱤏󱢑le, as most options
can be defaulted. The following is an example of the minimum information required in the input 󱤏󱢑le.

$ dump.spray-100-1-5.1-basic.i Basic sculpt input file
BEGIN SCULPT

input_spn = dump.spray-100-1-5.1.spn
nelx = 100
nely = 100
nelz = 100

END SCULPT

Note that only the .spn 󱤏󱢑le name and the number of elements in each direction in the Cartesian grid are
required. (See the spn_xyz_order option to customize the expected ordering of the data in a .spn 󱤏󱢑le).
Other options are automatically defaulted. To check the options that will be used in addition to those
speci󱤏󱢑ed in the input 󱤏󱢑le, the –print_input option can be used. For example, for the above 󱤏󱢑le, issue
the following sculpt command:
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sculpt -i dump.spray-100-1-5.1-basic.i --print_input

This will display all options available in Sculpt along with their user set value or default value. We
should note however, for this example, the default options will not be suf󱤎icient to successfully generate
a mesh.

C. CONTROLLING FILTERING AND ELEMENT
QUALITY

For cases that include stochastic materials, represented by this example, the following illustrates options
that can be useful in controlling 󱤏󱢑ltering and element quality.

$ dump.spray-100-1-5.1.i Sculpt input file for generating thermal spray mesh
BEGIN SCULPT

input_spn = dump.spray-100-1-5.1.spn
nelx = 100
nely = 100
nelz = 100
exodus_file = dump.spray-100-1-5.1
defeature = 1
defeature_iters = 20
smooth = 3
csmooth = 4
laplacian_iters = 2
curve_opt_thresh = 0.2
thicken_material = 3 0.2
thicken_material = 1 0.33
compare_volume = true

END SCULPT

To run this example, create a 󱤏󱢑le named dump.spray-100-1-5.1.i from the above text. Ensure that
you also have the 󱤏󱢑le dump.spray-100-1-5.1.spn containing the input data in your working
directory. To run sculpt, use the command as follows:

sculpt -i dump.spray-100-1-5.1.i -j 16

Note that this option will generate 16 separate exodus 󱤏󱢑les in your working directory when you use the
-j 16 option. To combine these 󱤏󱢑les into a single 󱤏󱢑le use the epu tool as follows:

epu -p 16 dump.spray-100-1-5.1
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This should result in a single 󱤏󱢑le, dump.spray-100-1-5.1.e being generated in your working
directory. To visualize the mesh in Cubit, use the following command in Cubit to import the mesh and
display the material blocks as separate colors:

import mesh "dump.spray-100-1-5.1-stair.e" no_geom
draw block all

To visualize mesh quality using the scaled Jacobian metric, use the following from the Cubit command
line:

quality hex all scaled jacobian draw mesh

We note several new options in the above input 󱤏󱢑le and discuss their implications here:

Defeaturing: The defeature = 1 option will turn on the defeaturing option as described in section
2.7.2. This option is executed prior to generating the hex mesh and smoothing, and will attempt to
reassign materials to cells to avoid small clusters of the same material. The min_vol_cells option can
also be used to control the size of the clusters that will be reassigned. The default for this value is 5,
which indicates, any cluster with 5 or fewer cells will be reassigned to the predominant neighboring
surrounding material. Defeaturing will also reassign cells that are identi󱤏󱢑ed as protrusions or isthmus.

The defeature_iters = 20 option in the above input 󱤏󱢑le is used to increase the maximum number
of defeaturing iterations used. In most cases, where stochastic properties are not manifest, the
defeaturing operation will resolve in 2 or 3 iterations. For this case, however, we increase the maximum
from the default 10 iterations to 20 to allow the defeaturing to complete successfully. Some trial and
error may be required to set this value. Observing the sculpt output during the defeaturing procedure
will indicate whether suf󱤎icient defeaturing iterations were speci󱤏󱢑ed.

Smoothing: For this case we speci󱤏󱢑ed a surface smoothing option (smooth = 3) that will maintain the
bounding box of the RVE, but will not project nodes at material interfaces to the implicitly de󱤏󱢑ned
surfaces. This option tends to improve the smoothness of the material interfaces and is described in
more detail in section 2.12.6.1. In addition, for curve smoothing (csmooth = 4) we use the
neighbor_surface_normal (4) option which has proven most reliable for this type of data.

We also note the laplacian_iters = 2 option is used to limit the number of Laplacian smoothing
iterations. When using the smooth = 3 option to not project nodes to interfaces, using too many
Laplacian iterations can result in collapsing of some of the smaller volumes and reducing volume in
localized concave regions. As a result, a small number of Laplacian iterations is usually suf󱤎icient when
using this option for data such as this.

One additional option that has proven useful is the curve_opt_threshold orCOT , normally set to a
value of 0.1. Increasing this option to a value of 0.2will remove additional geometric constraints at
curves, allowing for improved element quality in some cases. This option is described in more detail in
section 2.12.6.2 of this document.

Thickening: The option to thicken individual materials is utilized in this input 󱤏󱢑le. This has the ef󱤎ect of
adding additional volume to the boundaries of the speci󱤏󱢑ed material. This is often done to counteract
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the ef󱤎ects of defeaturing, which can tend to reduce the volume of some materials. In this case, the
values of:

thicken_material = 3 0.2
thicken_material = 1 0.33

indicate that material 3 will 󱤏󱢑rst be thickened using a volume fraction of 0.2. This will be followed by a
thickening operation to material 1 with a volume fraction of 0.33. The thickening operation will visit
each cell at the boundary of the indicated material, adding the speci󱤏󱢑ed volume fraction to each
neighboring cell. In practice, the materials and values used for thickening are selected using a
trial-and-error approach in conjunction with the compare_volume option described below. See
section 2.7.4 for more details on the thickening operation.

Compare Volume: The compare_volume option will write a table to output when the Sculpt
procedure is completed. This provides details comparing the volume of each material from the raw
input data to the volume of the 󱤏󱢑nal hex mesh. The information in this table can be used to help adjust
thickening parameters as well as gauging the ef󱤎ect of smoothing and defeaturing options.
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N. EXAMPLE: UNSTRUCTURED
OVERLAY GRID

In many cases, the domain that contains microstructures, may not be de󱤏󱢑ned by a simple RVE or
rectangular domain. When this occurs, it is possible to use an unstructured input_mesh as the overlay
grid. In this example we use an unstructured hex mesh that was initially generated in Cubit as well as a
.spn 󱤏󱢑le to describe the microstructures geometry.

(a) balls.spn (b) multi_blocks.g (c) overlay of .spn and .g 󱤏󱢑les

Figure N-1. Thermal spray material RVE mesh

Figure N-1 illustrates the input used for this example. Microstructure data, de󱤏󱢑ned by a .spn 󱤏󱢑le, is
contained in balls.spn and illustrated in 󱤏󱢑gure N-1(a). For this example we also use the exodus mesh,
multi_blocks.g shown in 󱤏󱢑gure N-1(b), which includes multiple material blocks. Our intent is to
generate the microstructure mesh in only a designated set of blocks in the overlay grid. Figure N-1(c)
also illustrates the spatial relationship between the .spn and .g 󱤏󱢑les. We note that in this case, the .spn
data is smaller than the overlay unstructured mesh. While in most cases, the .spn data will match or
extend beyond the overlay unstructured mesh, this case demonstrates the ef󱤎ect when it is smaller. We
also note that while the .spn data contains only material information de󱤏󱢑ned by integers, sculpt will
interpret the size of each cell of a .spn 󱤏󱢑le as 1× 1× 1 units as well as its spatial location where the cell at
the smallest I-J-K location is de󱤏󱢑ned at the origin (0, 0, 0).

The following Sculpt input 󱤏󱢑le can be used to generate a mesh from an unstructured overlay grid. In
this case we restrict the mapping of the microstructures data to only blocks 2 and 4 on the input exodus
mesh. These are represented by the yellow and blue cylindrical volumes in 󱤏󱢑gure N-1(b). The 󱤏󱢑nal mesh
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will conform with the other blocks (1 and 3), however microstructures data will not be mapped to these
blocks.

$ multi_blocks.i Sculpt input file using an unstructured overlay grid
BEGIN SCULPT

input_spn = balls.spn
nelx = 26
nely = 26
nelz = 26
input_mesh = multi_blocks.g
input_mesh_blocks = 2 4
exodus_file = multi_blocks
mesh_void = true
laplacian_iters = 2
smooth = 3
csmooth = 4
defeature = 1

END SCULPT

(a)Block 3 (b)Block 1 and 2

Figure N-2. Sculpt mesh resulting from an unstructured overlay grid

Run this example using a single processor, similar to previous examples. Ensure that you have both 󱤏󱢑les
balls.spn and multi_blocks.g in your current working directory. Figure N-2 illustrates the result
of the above input 󱤏󱢑le.

sculpt -i multi_blocks.i -j 1
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In this case, a single mesh 󱤏󱢑le will be generated, so the epu tool is not necessary. Import the 󱤏󱢑le into
Cubit using the following command-line options.

import mesh "multi_blocks.e.1.0" no_geom
draw block all
draw block 1 2

To restrict the mapping of the microstructures data to a limited set of blocks in the input mesh, we used
the option input_mesh_blocks = 2 4, which maps the materials data in the .spn 󱤏󱢑le to only
elements contained in blocks 2 and 4 of the overlay unstructured mesh. Note that block 3 (magenta) in
Figure N-2(a) completely surrounds block 1 and 2 shown in Figure N-2(b) and does not contain any
microstructures. If the input_mesh_blocks is not used, no restriction will be placed on which blocks
of the input mesh will have microstructures data mapped on to it.

A. PARALLEL UNSTRUCTURED OVERLAY GRIDS

For Cartesian overlay grids, spatial decomposition and load balancing is accomplished internally in
Sculpt as part of the mesh generation process. For Cartesian grids, the domain is subdivided into a set of
roughly equally sized rectangular domains that are meshed on separate processors. For the unstructured
case, the input_mesh option does not internally decompose the exodus mesh for parallel processing,
instead it assumes the mesh has already been decomposed according to the speci󱤏󱢑ed number of
processors requested. To accomplish this, we 󱤏󱢑rst use the decomp tool which is part of the seacas tool
suite to decompose the input mesh.

(a) initial mesh without decomposition (b) mesh decomposed for 4 processors

Figure N-3. (a) initial mesh colored based on block ID (b) De-
composition applied for 4 processors. Additional colors represent
decomposition for parallel

Figure N-3 illustrates the decomposition of the example input mesh mesh_blocks.g. To apply
decomposition to mesh_blocks.g, ensure you have access to the decomp tool. Use the following
command to decompose the 󱤏󱢑le into four separate parallel 󱤏󱢑les:
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decomp -p 4 mesh_blocks.g

This should result in four separate 󱤏󱢑les that are written to your working directory:

multi_blocks.g.4.0
multi_blocks.g.4.1
multi_blocks.g.4.2
multi_blocks.g.4.3

With the initial decomposed mesh de󱤏󱢑ned, we can now execute the same input 󱤏󱢑le, except with four
processors instead of one. For example:

sculpt -i multi_blocks.i -j 4
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