
1

SAND Number: SAND2019-3478 W

Introduction | Environment | Geometry | Meshing | FE Model | Boundary Layers | ITEM | Tutorials | Appendix

CUBIT 15.5 User Documentation
Introduction - A quick overview of some of the main features and goals of the CUBIT

Mesh Generation Toolkit, licensing and distribution, hardware requirements, and where
to go for help.

Environment Control - A description of the CUBIT user environment, including using
the graphical user interface, session control, command line syntax, journal files, graphics,
entity picking, saving and restoring etc..

Geometry - A description of CUBIT's geometry features including building geometry
from scratch, manipulating geometry in CUBIT, importing and exporting geometry
formats, etc...

Mesh Generation - A description of CUBIT's mesh generation capabilities, including
how to mesh geometry, meshing and smoothing schemes, setting sizes and intervals,
importing a mesh, etc...

Finite Element Model - How to set up the finite element model for analysis, including
defining boundary conditions, material properties, exporting the finite element model, etc.

Boundary Layer Meshing - How to set up boundary layers.

Immersive Topology Environment for Meshing (ITEM) - A description of Cubit's
interactive meshing wizard including how to use the wizard, and a guide to geometry
clean-up, setting up the finite element model, mesh generation in ITEM, etc.

Step-By-Step Tutorials

Appendix

Credits

Quick Reference

Official CUBIT Web Page

http://cubit.sandia.gov/

CUBIT 15.5 User Documentation

2

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology

& Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA0003525.

i

Table of Contents
CUBIT 15.5 User Documentation .. 1

Introduction ... 5

Introduction .. 5

CUBIT Mailing Lists ... 5

Hardware Requirements .. 6

How to Use This Manual .. 6

Key Features ... 7

Geometry Creation, Modification, and Healing ... 7

Non-Manifold Topology .. 7

Geometry Decomposition ... 7

Mesh Generation .. 7

Boundary Conditions .. 8

Element Types ... 8

Graphics Display Capabilities .. 8

Graphical User Interface .. 8

Command Line Interface .. 8

Licensing, Distribution and Installation ... 9

Problem Reports and Enhancement Requests .. 9

Trademark Notice .. 9

Environment Control.. 11

Environment Control .. 11

session control ... 11

Session Control .. 11

Command Line Help .. 11

Command Syntax ... 12

Environment Commands .. 14

Environment Variables ... 17

Execution Command Syntax .. 19

Initialization Files .. 23

Interrupting Running Tasks .. 23

Saving and Restoring a Cubit Session ... 23

Starting and Exiting a CUBIT Session .. 25

recording and playback .. 27

Table of Contents

ii

Command Recording and Playback ... 27

Automatic Journal File Creation ... 27

Controlling Playback of Journal Files ... 29

Journal File Creation and Playback .. 30

Idless Journal Files .. 30

location direction specification ... 31

Location, Direction and Axis Specification ... 31

Drawing a Location, Direction, or Axis ... 32

Specifying an Axis .. 33

Specifying a Direction .. 34

Specifying a Location ... 38

Specifying a Location on a Curve ... 43

Specifying a Plane ... 45

listing information ... 51

Listing Information .. 51

List Cubit Environment ... 52

List Geometry ... 55

List Mesh .. 57

List Model Summary .. 57

List Special Entities .. 58

gui .. 58

Graphical User Interface .. 58

tree view ... 59

graphics window ... 89

drop down menus ... 96

control panel .. 102

CUBIT Application Window .. 110

Command Line Workspace .. 113

Journal File Editor .. 115

Property Editor ... 117

Toolbars ... 120

Toolbar Customization ... 123

graphics window control .. 139

Graphics Window Control .. 139

Cubit_15.5_User_Documentation

iii

Graphics Clipping Plane ... 140

Colors ... 142

Drawing, Locating, and Highlighting Entities .. 145

Drawing Locations, Lines and Polygons .. 149

Entity Labels .. 151

Graphics Camera ... 152

Graphics Modes ... 154

Graphics Window Size and Position .. 157

Hardcopy Output .. 158

Graphics Lighting Model .. 158

Mesh Visualization ... 159

Miscellaneous Graphics Options .. 160

Mouse Based View Navigation: Zoom, Pan and Rotate 165

Saving Graphics Views .. 169

Updating the Display .. 170

Geometry, Mesh, and BC Entity Visibility ... 170

Command Line View Navigation: Zoom, Pan and Rotate 172

entity selection and filtering ... 173

Entity Selection .. 173

Extended Selection Dialog ... 173

Command Line Entity Specification .. 182

Extended Command Line Entity Specification ... 185

Selecting Entities with the Mouse... 188

Geometry .. 195

Geometry ... 195

model definitions .. 195

CUBIT Geometry Formats ... 195

ACIS Geometry Kernel ... 197

Mesh-Based Geometry .. 197

geom creation .. 201

Geometry Creation ... 201

primitive geometry .. 202

bottom up creation ... 207

transforms .. 232

Table of Contents

iv

Geometry Transforms .. 232

Align Command .. 233

Copy Command ... 235

Move Command ... 236

Reflect Command .. 237

Rotate Command ... 238

Scale Command ... 238

booleans .. 239

Geometry Booleans ... 239

Intersect ... 239

Subtract .. 240

Unite ... 240

decomposition ... 240

Geometry Decomposition ... 240

web cutting ... 241

splitting geometry ... 248

Section Command .. 266

Separating Surfaces from Bodies ... 267

Separating Multi-Volume Bodies .. 267

cleanup and defeaturing .. 267

Geometry Cleanup and Defeaturing ... 267

healing ... 268

tweaking geometry ... 272

removing geometric features .. 291

auto clean .. 293

Debugging Geometry ... 297

Finding Surface Overlap .. 298

Geometry Accuracy .. 301

Regularizing Geometry .. 302

Stitching Sheet Bodies ... 302

Trimming and Extending Curves .. 302

Validating Geometry ... 304

Blunt Tangency .. 305

imprint merge ... 306

Cubit_15.5_User_Documentation

v

Geometry Imprinting and Merging .. 306

Examining Merged Entities .. 307

Imprinting Geometry ... 307

Merge Tolerance .. 309

Merging Geometry ... 310

Using Geometry Merging to Verify Geometry .. 312

Unmerging ... 312

virtual geometry ... 313

Virtual Geometry .. 313

collapse geometry .. 313

composite geometry ... 319

partitioned geometry .. 322

Deleting Virtual Geometry .. 328

Simplify Geometry .. 330

groups .. 333

Groups ... 333

propagated groups ... 333

Basic Group Operations ... 343

Groups in Graphics .. 346

Quality Groups ... 346

attributes .. 346

Geometry Attributes ... 346

persistent attributes .. 346

Entity IDs .. 349

Entity Names .. 351

metadata .. 354

Parts, Assemblies, and Metadata... 354

Importing and Exporting Metadata ... 355

Metadata Attributes .. 356

Working With Parts and Assemblies .. 359

import ... 363

Importing Geometry ... 363

Importing ACIS Files .. 364

Importing Facet Files .. 365

Table of Contents

vi

Importing FASTQ Files ... 369

Importing Granite Files ... 370

Importing IGES Files .. 370

Importing STEP Files ... 371

export ... 372

Exporting Geometry ... 372

Exporting ACIS Files .. 372

Exporting Facet Files ... 373

Exporting IGES Files .. 374

Exporting STEP Files ... 374

Geometry Deletion ... 375

Geometry Orientation .. 375

Adjusting Orientation .. 376

Entity Measurement ... 377

Measure Between .. 377

Measure Small ... 378

Measure Angle ... 378

Measure Void ... 378

Measure Volume .. 378

Measure Surface .. 379

Mesh Generation ... 381

Mesh Generation ... 381

Element Types ... 381

Mesh Generation Process .. 381

Meshing the Geometry .. 382

Default Scheme and Interval Selection .. 383

Continuing Meshing After a Mesh Failure .. 383

interval assignment .. 383

Interval Assignment .. 383

Additional Interval Constraints.. 384

Vertex Sizing and Automatic Curve Biasing ... 384

Explicit Specification of Intervals .. 385

Explicit Specification of Intervals Using Interval Size ... 385

Automatic Specification of Interval Size ... 386

Cubit_15.5_User_Documentation

vii

Interval Matching .. 388

Interval Firmness .. 390

Relative Intervals .. 391

Mesh Interval Preview .. 392

Periodic Intervals .. 392

meshing schemes .. 392

Meshing Schemes .. 392

duplication .. 394

conversion .. 397

traditional ... 403

parallel ... 460

Automatic Scheme Selection ... 578

free ... 582

mesh quality assessment .. 587

Automatic Mesh Quality Assessment ... 587

Coincident Node Check ... 588

Controlling Mesh Quality .. 589

Metrics for Edge Elements ... 590

Metrics for Hexahedral Elements ... 591

Mesh Quality Assessment .. 592

Mesh Quality Example Output.. 593

Mesh Quality Command Syntax ... 595

Metrics for Quadrilateral Elements ... 598

Metrics for Tetrahedral Elements ... 600

Mesh Topology Check ... 602

Metrics for Triangular Elements ... 605

Metrics for Wedge Elements .. 606

Measuring Number of Tets Through the Thickness ... 607

Finding Intersecting Mesh .. 607

mesh modification .. 611

Mesh Modification .. 611

mesh smoothing ... 611

Align Mesh ... 623

Collapsing Mesh Edges ... 624

Table of Contents

viii

Creating and Merging Mesh Elements ... 624

Mesh Cleanup .. 628

Remeshing ... 630

Edge Swapping .. 633

Matching Tetrahedral Meshes .. 634

Mesh Coarsening ... 635

Mesh Refinement ... 637

Mesh Scaling.. 651

Block Repositioning .. 659

Node and Nodeset Repositioning... 659

Mesh Pillowing ... 660

Mesh Column Operations .. 662

mesh import ... 666

Importing a Mesh ... 666

Importing Fluent Files ... 667

Importing 2D Exodus Files ... 667

Importing Abaqus Files .. 668

Importing Exodus II Files .. 669

Importing I-DEAS Files ... 679

Importing Nastran Files .. 680

Importing Patran Files .. 680

adaptivity and sizing functions ... 681

Geometry Adaptive Sizing for TriMesh and TetMesh Schemes 681

Mesh Adaptivity and Sizing Functions .. 681

Bias Sizing Function ... 683

Constant Sizing Function ... 689

Curvature Sizing Function .. 690

Exodus II-based Field Function .. 691

Geometry Adaptive Sizing Function (Skeleton Sizing) ... 694

Interval Sizing Function .. 700

Inverse Sizing Function .. 701

Linear Sizing Function .. 702

Free Meshes .. 703

Creating a free mesh .. 704

Cubit_15.5_User_Documentation

ix

Creating Mesh-Based Geometry to fit a Free Mesh ... 704

Merging a free mesh .. 705

Free Mesh Transformation Operations .. 705

Smoothing a free mesh .. 710

Mesh quality on a free mesh .. 711

Mesh refinement on a free mesh.. 711

Cleaning up a free mesh .. 711

Assigning boundary conditions .. 711

Skinning a free mesh ... 712

Deleting free mesh elements ... 712

Bottom-up element creation ... 713

Exporting free meshes ... 713

Mesh Deletion .. 713

Automatic Mesh Deletion ... 714

Mesh Validity ... 714

Skinning a Mesh .. 714

Lite Meshes ... 715

Creating a lite mesh ... 716

Graphics ... 716

Information ... 717

Modification to lite mesh ... 718

Exporting a lite mesh .. 718

Finite Element Model ... 719

Finite Element Model ... 719

Global Element IDs .. 719

Cubit Mesh Entity ID Spaces ... 719

Global Element IDs .. 719

export ... 720

Export Mesh and Its Geometry Association ... 720

Exporting Sierra Files ... 720

Defining PARAMS for NASTRAN ... 721

Instancing Parts with ABAQUS .. 721

Exporting an Exodus II File .. 721

Exporting the Finite Element Model ... 724

Table of Contents

x

Exporting Fluent Grid Files ... 728

Transforming Mesh Coordinates .. 730

exodus ... 731

Element Block Specification ... 731

Exodus II File Specification .. 743

Exodus II Model Title .. 744

Exodus Coordinate Frames ... 744

Defining Materials and Media Types .. 745

Exodus Boundary Conditions ... 748

Nodeset and Sideset Specification ... 750

non exodus .. 759

CUBIT Initial Conditions ... 759

Using Constraints ... 760

Cubit Boundary Conditions .. 761

Using CFD Boundary Conditions ... 762

Using Contact Surfaces ... 763

Using Loads ... 765

Miscellaneous Boundary Condition Commands ... 768

Using Restraints ... 769

Boundary Condition Sets ... 772

Boundary Layer Meshing .. 775

Boundary Layer Meshing ... 775

Step-by-Step Tutorials ... 783

Step-By-Step Tutorials ... 783

Additional Tutorials ... 783

item .. 784

ITEM Tutorial.. 784

ITEM Tutorial Step 1 .. 785

ITEM Tutorial Step 2 .. 786

ITEM Tutorial Step 3 .. 788

ITEM Tutorial Step 4 .. 794

ITEM Tutorial Step 5 .. 797

ITEM Tutorial Step 6 .. 801

ITEM Tutorial Step 7 .. 806

Cubit_15.5_User_Documentation

xi

ITEM Tutorial Step 8 .. 807

ITEM Tutorial Step 9 .. 812

power tools .. 813

Power Tools GUI Tutorial ... 813

Power Tools GUI Tutorial Step 1.. 815

Power Tools GUI Tutorial Step 2.. 820

Power Tools GUI Tutorial Step 3.. 824

Power Tools GUI Tutorial Step 4.. 827

Power Tools GUI Tutorial Step 5.. 829

Power Tools GUI Tutorial Step 6.. 833

Power Tools GUI Tutorial Step 7.. 840

Power Tools GUI Tutorial Step 8.. 846

Power Tools GUI Tutorial Step 9.. 849

Power Tools GUI Tutorial Step 10.. 850

Power Tools GUI Tutorial Step 11.. 859

decomposition ... 865

Decomposition Tutorial .. 865

Example 1. Sweeping multiple adjacent volumes .. 871

Example 2. Interlocking rings ... 874

Example 3. Webcutting using the sweep option ... 876

Example 4. Using the Loft command ... 878

Example 5. Multiple sweep directions .. 881

Example 6. Employing Symmetry .. 883

Example 7. Using virtual geometry in geometry decomposition 896

Example 8. Sweeping volumes with narrow angles and surfaces 907

gui .. 922

GUI Basic Tutorial .. 922

GUI Basic Tutorial Step 1 ... 924

GUI Basic Tutorial Step 2 ... 926

GUI Basic Tutorial Step 3 ... 929

GUI Basic Tutorial Step 4 ... 930

GUI Basic Tutorial Step 5 ... 931

GUI Basic Tutorial Step 6 ... 933

GUI Basic Tutorial Step 7 ... 938

Table of Contents

xii

GUI Basic Tutorial Step 8 ... 942

GUI Basic Tutorial Step 9 ... 944

GUI Basic Tutorial Step 10 ... 946

GUI Basic Tutorial Step 11 ... 949

command line .. 950

Command Line Basic Tutorial .. 950

CL Basic Tutorial Step 1 .. 951

CL Basic Tutorial Step 2 .. 952

CL Basic Tutorial Step 3 .. 953

CL Basic Tutorial Step 4 .. 954

CL Basic Tutorial Step 5 .. 956

CL Basic Tutorial Step 6 .. 957

CL Basic Tutorial Step 7 .. 959

CL Basic Tutorial Step 8 .. 961

CL Basic Tutorial Step 9 .. 962

CL Basic Tutorial Step 10 .. 967

CL Basic Tutorial Step 11 .. 967

Geometry Cleanup Process Flow .. 968

ITEM .. 971

Immersive Topology Environment for Meshing (ITEM) .. 971

Guiding the user through the workflow. .. 971

Providing the user with smart options. ... 972

Automating geometry and meshing tasks. ... 972

How to Use the ITEM Wizard .. 973

The ITEM Workflow .. 973

Using an ITEM Panel ... 974

Undo Button ... 979

Magic Mesh Button .. 980

Getting Help ... 980

Setting up the Finite Element Model .. 981

Defining the Geometric Model ... 982

Generating a Mesh in ITEM ... 983

ITEM Meshing Suggestions ... 984

Validating the Mesh in ITEM .. 988

Cubit_15.5_User_Documentation

xiii

clean up ... 988

Recognizing Nearly Sweepable Regions ... 988

Blend Surfaces ... 990

Clean Up the Geometry ... 990

Resolving Problems with Conformal Assemblies ... 992

Contact Surfaces .. 996

Geometry Decomposition ... 996

Forced Sweepability ... 998

Bad geometry representation ... 999

Determining an Appropriate Merge Tolerance ... 1000

Building a Sweepable Topology ... 1002

Small details in the model .. 1002

Determining the Small Feature Size ... 1007

Appendix ... 1011

Appendix .. 1011

alpha .. 1011

Alpha Commands ... 1011

Creating ACIS Geometry From Mesh .. 1012

Automatic Detail Suppression .. 1012

Automatic Geometry Decomposition .. 1014

Cohesive Elements .. 1015

Deleting Mesh Elements .. 1018

FeatureSize .. 1019

Importing Abaqus Files .. 1020

Importing Meshed Based Geometry Files (MBG)... 1020

Exporting Meshed Based Geometry Files (MBG) .. 1021

Mesh Cutting .. 1021

Mesh Grafting... 1028

Optimize Jacobian .. 1032

Randomize ... 1032

Refine Mesh Boundary ... 1033

Remove Tiny Edge Length ... 1034

Super Sizing Function .. 1036

Test Sizing Function ... 1036

Table of Contents

xiv

Transition ... 1038

Triangle Mesh Coarsening ... 1040

Whisker Weave .. 1042

Higher Order Element Metrics .. 1044

aprepro .. 1046

APREPRO ... 1047

Using APREPRO in CUBIT .. 1047

APREPRO Functions ... 1050

APREPRO Journaling .. 1059

python .. 1061

Python Interface ... 1061

Importing Cubit into Python .. 1061

CubitInterface ... 1062

PyObserver .. 1186

PyObservable... 1187

Entity .. 1188

GeomEntity .. 1191

Body ... 1197

Curve ... 1199

Surface ... 1206

Vertex ... 1212

Volume ... 1214

CubitFailureException .. 1216

InvalidEntityException .. 1216

InvalidInputException ... 1217

MeshImport .. 1217

Navigation XML Files ... 1220

Periodic Space Filling Models (Tile) ... 1222

Initial setup ... 1222

Creating Nodesets ... 1223

Smoothing .. 1223

Example ... 1224

References .. 1225

Available Colors ... 1228

Cubit_15.5_User_Documentation

xv

Element Numbering ... 1231

Node Numbering .. 1232

Side Numbering ... 1232

Triangular Shell Element Numbering ... 1232

FASTQ ... 1234

FullHex vs. NodeHex Representation .. 1237

Generating a Finite Element Mesh from Level-set Data .. 1238

Hex Mesh Generation Using Sculpt ... 1238

Tet Mesh Generation by Remeshing Mesh Based Geometry (MBG) 1239

Tet Mesh Generation Using Level-set Triangulation .. 1241

Credits ... 1245

Credits ... 1245

Quick Reference ... 1247

Quick Reference .. 1247

Index ... 1253

1

SAND Number: SAND2019-3478 W

Introduction | Environment | Geometry | Meshing | FE Model | Boundary Layers | ITEM | Tutorials | Appendix

CUBIT 15.5 User Documentation
Introduction - A quick overview of some of the main features and goals of the CUBIT

Mesh Generation Toolkit, licensing and distribution, hardware requirements, and where
to go for help.

Environment Control - A description of the CUBIT user environment, including using
the graphical user interface, session control, command line syntax, journal files, graphics,
entity picking, saving and restoring etc..

Geometry - A description of CUBIT's geometry features including building geometry
from scratch, manipulating geometry in CUBIT, importing and exporting geometry
formats, etc...

Mesh Generation - A description of CUBIT's mesh generation capabilities, including
how to mesh geometry, meshing and smoothing schemes, setting sizes and intervals,
importing a mesh, etc...

Finite Element Model - How to set up the finite element model for analysis, including
defining boundary conditions, material properties, exporting the finite element model, etc.

Boundary Layer Meshing - How to set up boundary layers.

Immersive Topology Environment for Meshing (ITEM) - A description of Cubit's
interactive meshing wizard including how to use the wizard, and a guide to geometry
clean-up, setting up the finite element model, mesh generation in ITEM, etc.

Step-By-Step Tutorials

Appendix

Credits

Quick Reference

Official CUBIT Web Page

http://cubit.sandia.gov/

CUBIT 15.5 User Documentation

2

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology

& Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA0003525.

3

SAND Number: SAND2019-3478 W

CUBIT
Geometry and Mesh Generation Toolkit

15.5 User Documentation

Michael Skroch, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks, Brett

Clark, Trevor Hensley, Ray J. Meyers, Corey Ernst, Randy Morris, Corey McBride, Clinton

Stimpson, James Perry.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

5

Introduction

Introduction

• Key Features
• Hardware Requirements
• Licensing and Distribution
• Trademark Notice
• How to Use this Manual
• Cubit Mailing Lists
• Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit.
CUBIT is a full-featured software toolkit for robust generation of two- and three-
dimensional finite element meshes (grids) and geometry preparation. Its main goal is to
reduce the time to generate meshes, particularly large hex meshes of complicated,
interlocking assemblies. It is a solid-modeler based preprocessor that meshes volumes
and surfaces for finite element analysis. Mesh generation algorithms include quadrilateral
and triangular paving, 2D and 3D mapping, hex sweeping and multi-sweeping, tetrahedral
meshing, and various special purpose primitives. CUBIT contains many algorithms for
controlling and automating much of the meshing process, such as automatic scheme
selection, interval matching, sweep grouping, and also includes state-of-the-art
smoothing algorithms
The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element
model. Many CUBIT users want to experiment with capabilities as soon as possible.
Hence, CUBIT releases often contain algorithms which are not quite ready for production
use. These features are listed in the Appendix, and are accessible to the user by
specifying a developer flag.
The overall goal of the CUBIT project is to reduce the time it takes a person to generate
an analysis model. Generating meshes for complex, solid model-based geometries
requires a variety of tools. Many CUBIT tools are completely automatic, while others
require user input. Usually, the automatic choices can be over-ridden by the user if
necessary. Most meshing capabilities are integrated into the common CUBIT framework;
there are also stand-alone tools like Verde. The user is encouraged to become familiar
with all of the available tools, so that he can choose the right one for the job.

CUBIT Mailing Lists
The CUBIT team maintains a couple of mailing lists to help our users.
1) The cubit-announce mailing list is a very low-volume mailing list intended to provide
news of new releases and other items of major importance. To subscribe to this list, send
a message to: majordomo@sandia.gov
with the body of the message being:

subscribe cubit-announce

mailto:majordomo@sandia.gov

Introduction

6

2) The cubit users mailing list is a medium-volume mailing list intended for our users to
communicate with each other and ask help of the user community. It also contains the
same announcements as the cubit-announce mailing list. To send questions or comments
to this list, send email to:

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov
with a message body consisting of the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct
communication with the CUBIT developers. These messages won't reach other users.
This list should be used for topics that are not of general interest to others, including some
bugs.

Note: The recommended use of an electronic mailing list to
report bugs and request enhancements is not intended to
discourage face-to-face discussion with CUBIT developers,
but rather to minimize response time. Users are encouraged to
discuss bugs, enhancements or general meshing issues with
the CUBIT production meshing and development teams.

Hardware Requirements
Cubit is available on the following platforms:

• Red Hat 6 and 7, 64 bit (or similar system with at least glibc 2.5 and libstdc++
4.4)

• Windows 7/8/8.1/10, 64 bit
• Mac 10.11+, 64 bit only

The Graphical User Interface version is available on all platforms.
For best results, local displays supporting OpenGL 3.2 or newer is recommended.

How to Use This Manual
This manual provides specific information about the commands and features of CUBIT.
It is divided into chapters, which roughly follow the process in which a finite element model
is created, from geometry creation to mesh generation to boundary condition application.
Examples are provided in the tutorial chapter. Appendices contain advanced topics, alpha
commands, summary of APREPRO functions, FASTQ reference, a troubleshooting
guide, and references.

mailto:cubit@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit-help@sandia.gov

Cubit_15.5_User_Documentation

7

Integrated in CUBIT are algorithms and tools, which are in a
user-beware state. As they are further tested (often with the
assistance of users) and improved, the tool becomes more
stable and production-worthy. Since documentation of the
tool is necessary for actual use, we have included the
documentation of all available tools. However, a "hammer"
icon is placed next to some capabilities as a warning.

Certain portions of this manual contain information that is vital
for understanding and effectively using CUBIT. These
portions are highlighted with a "key" icon.

Key Features
Geometry Creation, Modification, and Healing
CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there
is also mesh-based geometry. Other solid model kernels are planned. Geometry is
imported or created within CUBIT. Geometry is created bottom-up or through primitives.
CUBIT can also read STEP, IGES, and FASTQ files and convert them to the ACIS kernel.
SolidWorks, AutoCAD, and some other commercial CAD systems can write SAT files
directly.
Once in CUBIT, an ACIS model is modified through Booleans, or tweaking curves and
surfaces. Without changing the geometric definition of the model, the topology of the
model may be changed using virtual geometry. For example, virtual geometry can be
used to composite two surfaces together, erasing the curve dividing them.
Sometimes, an ACIS model is poorly defined. This often happens with translated models.
The model can be healed inside CUBIT.

Non-Manifold Topology
Typical assembly meshes require contiguous mesh across multiple parts in an assembly.
CUBIT accomplishes this by taking the two touching surfaces of neighboring volumes,
and merging them into a single surface. There will be only one mesh of the surface, and
both volume meshes will share that surface mesh. (In contrast, some meshing packages
keep two surfaces, and take steps to ensure their mesh connectivity and positions match.)
These shared surfaces are called non-manifold topology. Geometric models are usually
imported into CUBIT as manifold (non-shared) models; then, surfaces which pass a
geometric and topological comparison are "merged". A similar technique is used to merge
model edges and vertices across parts. These comparisons are performed automatically,
and can optionally be restricted to subsets of the model (to allow representations of such
features as slide lines).

Geometry Decomposition
Solid models often require decomposition to make them amenable to hexahedral
meshing. CUBIT contains a wide variety of tools for interactive geometry decomposition,
and a capability for performing automatic geometry decomposition is also under
development.

Mesh Generation

Introduction

8

CUBIT contains a variety of tools for generating meshes in one, two and three
dimensions. While the primary focus of CUBIT is on generating unstructured quadrilateral
and hexahedral meshes, algorithms are also available for structured mesh generation
and triangle/tetrahedral mesh generation. Several algorithms for generating mixed hex-
tet meshes are also being developed.

Boundary Conditions
CUBIT uses different boundary conditions for EXODUS-II format and Non-Exodus
formats such as ABAQUS, for importing and exporting mesh data. EXODUS represents
boundary conditions on meshes using Element Blocks, Nodesets, and Sidesets. Element
Blocks are used to group elements by material type. Nodesets are used to group nodes.
Other analysis programs can apply nodal boundary conditions to these sets, such as
enforced displacement or nodal temperature values. Sidesets are used to group sides of
elements, such as faces of hexes or edges of quads. Other analysis programs can apply
face-based and edge-based boundary conditions to these sets, for example pressure or
heat flux.
Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be
specified in an analysis-independent manner. Typically this specification is combined with
an additional data file which designates the specific type of boundary condition
(temperature, displacement, pressure, etc.), along with boundary condition values.
Non-Exodus export formats such as Abaqus support more specific boundary condition
sets. These sets may include displacements, temperatures, forces, heatflux, pressure, or
contact pairs.

Element Types
CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of
various orders. Each block has a unique element type. The element type is specified after
the block is created, and after mesh generation (recommended). Higher order nodes are
generated when the element type is specified. Higher order nodes are projected to curved
geometry, depending on the user-settable node constraint flag.

Graphics Display Capabilities
CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display
geometric and mesh entities in several modes, including hidden line, shaded, transparent
or wireframe modes. CUBIT supports screen picking of geometric and mesh entities, as
well as mouse-controlled view transformations like rotate, pan, and zoom. VTK takes
advantage of hardware acceleration on most supported platforms. Image files of any
displayed image can also be generated. CUBIT can also be run without graphics, to allow
execution in batch mode or over slow network connections.

Graphical User Interface
A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing
new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from
one environment to the other.

Command Line Interface
In the command line interface, commands are specified by text rather than mouse clicks.
Commands can be entered interactively or in batch mode by playing back a journal file.

Cubit_15.5_User_Documentation

9

The command line interface is available in the GUI through a window. The non-GUI
version supports graphical picking and echoing to the command line, and also mouse-
driven view transformations, but no menus and dialog boxes. The command line and GUI
dialog boxes support the APREPRO preprocessor, which allows parameterization of
input. The non-GUI version is available on all platforms, including Windows.

Licensing, Distribution and Installation
Please refer to https://cubit.sandia.gov/public/licensing.html for information on licensing
and distribution.

Problem Reports and Enhancement Requests
CUBIT bugs, problem reports and enhancement requests should be reported via the Help
Desk Portal or sent to cubit-help@sandia.gov or cubit-dev@sandia.gov. The CUBIT
production meshing team or development team will review the email quickly. Users should
expect some type of response within two days. Bugs are usually entered by a developer
into CUBIT's bug tracking system.

Trademark Notice
ACIS™ is a proprietary format developed by Spatial Corporation.
Granite™ is a proprietary format developed by Parametric Technology Corporation
All other trademarks are the property of their respective owners.

https://cubit.sandia.gov/public/licensing.html
https://sems-atlassian-srn.sandia.gov/servicedesk/customer/portal/6
https://sems-atlassian-srn.sandia.gov/servicedesk/customer/portal/6
mailto:cubit@sandia.gov
mailto:cubit-dev@sandia.gov
http://www.spatial.com/

11

Environment Control

Environment Control

• Session Control
• Graphical User Interface
• Command Recording and Playback
• Graphics Window Control
• Entity Selection and Filtering
• Location, Direction, and Axis Specification
• Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design
to analysis process. The user interface options include a full graphical user interface, a
modern command line interface as well as no-graphics and batch mode operation. This
chapter covers the interface options as well as the use of journal files, control of the
graphics, a description of methods for obtaining model information, and an overview of
the help facility.

session control
Session Control

• Starting and Exiting a CUBIT Session
• Execution Command Syntax
• Initialization Files
• Environment Variables
• Command Syntax
• Command Line Help
• Environment Commands
• Saving and Restoring a CUBIT Session
• Interrupting Running Tasks

This section provides an overview to session control in CUBIT. This includes information
on starting and exiting a CUBIT session, running CUBIT in batch mode, initialization files,
how to enter commands, file manipulation, changing the working directory, memory
manipulation and more. Much of your ability to use CUBIT effectively depends on mastery
of concepts in this section. Even experienced users will find it useful to review this section
periodically.

Command Line Help
In addition to the documentation you are currently viewing, CUBIT can give help on
command syntax from the command line. For help on a particular command or keyword,
the user can simply type help <keyword>. If the user is uncertain of the keyword, an
asterisk * may be added to the end of the entered characters and help for all keywords

Environment Control

12

that start with the entered characters will be printed. In addition, if the user has typed part
of a command and is uncertain of the syntax of the remainder of the command, they can
type a question mark ? and help will be printed for the sequence of keywords currently
entered. It is important to note that if the user has typed the keywords out of order, then
no help will be found. If the user is not sure of the correct order of the keywords, the
ampersand & key will search on all occurrences of whatever keywords are entered,
regardless of the order. The results of this type of command are shown in the following
listing.
CUBIT>help degenerate*
Help for words: degenerate*.
set Block Mixed Element Output { OFFSET | Degenerate }
set Degenerates [on|off]
CUBIT> volume 3 label ?
Completing commands starting with: volume, label.
Help not found for the specified word order.
CUBIT> volume 3 label &
Help for words: volume & label
Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge |
firmness]
CUBIT> label volume 3 ?
Completing commands starting with: label, volume.
Label Volume [on|off|name [only|ids]|ids|interval|size|scheme|merge|firmness]

Command Syntax
The execution of CUBIT is controlled either by entering commands from the command
line or by reading them in from a journal file. Throughout this document, each function or
process will have a description of the corresponding CUBIT command; in this section,
general conventions for command syntax will be described. The user can obtain a quick
guide to proper command format by issuing the <keyword> help command; see
Command Line Help for details.
CUBIT commands are described in this manual and in the help output using the following
conventions. An example of a typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target

[Surface] <range>] [Rotate {on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax
conventions.

1. Case is not significant.
2. The "#" character in any command line begins a comment. The "#" and any

characters following it on the same line are ignored. Although note that the "#"
character can also be used to start an Aprepro statement. See the Aprepro
documentation for more information.

3. Commands may be abbreviated as long as enough characters are used to
distinguish it from other commands.

Cubit_15.5_User_Documentation

13

4. The meaning and type of command parameters depend on the keyword. Some
parameters used in CUBIT commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number
may be in any legal C or FORTRAN numeric format (for example, 1, 0.2, -1e-2).
An integer parameter may be in any legal decimal integer format (for example, 1,
100, 1000, but not 1.5, 1.0, 0x1F).
String: A string parameter is a literal character string contained within single or
double quotes. For example, 'This is a string'.
Filename: When a command requires a filename, the filename must be enclosed
in single or double quotes. If no path is specified, the file is understood to be in the
current working directory. After entering a portion of a filename, typing a '?' will
complete the filename, or as much of the filename as possible if there is more than
one possible match.
A filename parameter must specify a legal filename on the system on which CUBIT
is running. The filename may be specified using either a relative path
(../cubit/mesh.jou), a fully-qualified path (/home/jdoe/cubit/mesh.jou), or no
path; in the latter case, the file must be in the working directory (See Environment
Commands for details.) Environment variables and aliases may also be used in
the filename specification; for example, the C-Shell shorthand of referring to a file
relative to the user's login directory (~jdoe/cubit/mesh.jou) is valid.
Toggle: Some commands require a "toggle" keyword to enable or disable a setting
or option. Valid toggle keywords are "on", "yes", and "true" to enable the option;
and "off", "no", and "false" to disable the option.

5. Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For
example:

Mesh Volume 1

Here Mesh is the verb and Volume 1 is the parameter.
* or a selector keyword or "noun" followed by a name and value of an attribute of
the entity indicated. For example:

Volume 1 Scheme Sweep Source 1 Target 2

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are
parameters to the Scheme keyword.

The notation conventions used in the command descriptions in this document are:

• The command will be shown in a format that looks like this:
• A word enclosed in angle brackets (<parameter>) signifies a user-specified

parameter. The value can be an integer, a range of integers, a real number, a

Environment Control

14

string, or a string denoting a filename or toggle. The valid value types should be
evident from the command or the command description.

• A series of words delimited by a vertical bar (choice1 | choice2 | choice3)
signifies a choice between the parameters listed.

• A toggle parameter listed in ALL CAPS signifies the default setting.
• A word that is not enclosed in any brackets, or is enclosed in curly brackets (

{required}) signifies required input.
• A word enclosed in square brackets ([optional]) signifies optional input which

can be entered to modify the default behavior of the command.
• A curly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only

required if that optional modifier is used.

Environment Commands

• Working Directory
• File Manipulation
• CPU Time
• Comment
• History
• Error Logging
• Determining the CUBIT Version
• Echoing Commands
• Digits Displayed

Working Directory

The working directory is the current directory where journal files are saved. To list the
current directory type

pwd

The current path will be echoed to the screen. By default, the current directory is the
directory from which CUBIT was launched. The command to change the current
directory is

cd "<new_path>"

The new path may be an absolute reference, or relative to the current directory. The
<TAB> key will complete unique file references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for
this is

Cubit_15.5_User_Documentation

15

ls ['<file_name>']

or

dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is

Delete File ['<file_name>']

The file name may include the wildcard character *, but not the wildcard character ?, since
the ? is used for command completion. File deletion from the command line can also be
disabled. If deletions are set to off files cannot be deleted from the cubit command line.

Set Deletions [ON|Off]

The mkdir command is used to create a new directory. The syntax for this command is:

Mkdir "<directory_name>"

This creates a new directory with the specified name and path. The command accepts an
absolute path, a relative path, or no path. If a relative path is specified, it is relative to the
current working directory, which can be seen by typing 'pwd' at the cubit command
prompt. If no path is specified, the new directory is created in the current working
directory.
The command succeeds if the specified directory was successfully created, or if the
specified directory already exists. The command fails if the new directory's immediate
parent directory does not exist or is not a directory.

CPU Time

At times it is important to see how much cpu time is being used by a command. One
function available to do this is the timer command. The syntax for this command is:

Timer [Start|Stop]

The start option will start a CPU timer that will continue until the stop command is issued.
The elapsed time will be printed out on the command line. If no arguments are given, the
command will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]

Environment Control

16

The comment command can take multiple arguments. If an argument is an unquoted
word, it is treated as an aprepro variable and its value is printed out. Quoted strings are
printed verbatim, and numbers are printed as they would be in a journal string. For
example:

CUBIT> #{x=5}
CUBIT> #{s="my string"}
CUBIT> comment "x is" x "and s is" s

User Comment: x is 5 and s is my string

Journaled Command: comment "x is" x "and s is" s

History

This command allows you to display a listing of your previous commands.

History <number_of_lines>

For example, if you type history 10, the most recent 10 commands will be echoed to the
input window.

Error Logging

[set] Logging Errors {Off | On File '<filename>'[Resume]}

This setting will allow users to echo error messages to a separate log file. The resume
option will allow output to be appended to existing files instead of overwriting them. For
more information on CUBIT environment settings see List Cubit Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This
command reports the CUBIT version number, the date and time the executable was
compiled, and the version numbers of the ACIS solid modeler and the VTK library linked
into the executable. This information is useful when discussing available capabilities or
software problems with CUBIT developers.

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of
commands is controlled with the command:

[Set] Echo {On | Off}

Digits Displayed

Cubit_15.5_User_Documentation

17

CUBIT uses all available precision internally, but by default will only print out a certain
number of digits in order for columns to line up nicely. The user can override that with the
"set digits" command:

Set Digits [<num_to_list=-1>]

If the digits are set to -1, then the default number of digits for pretty formatting are used.
If the digits are set to a specific number, such as 15, more digits of accuracy can be
displayed. This may be useful when checking the exact position and size of geometric
features.
The number of digits used for listing positions, vectors and lengths can be listed using the
following command:

List Digits

Examples:
CUBIT> set digits 6
Coordinates and lengths will be listed with up to 6 digits.
CUBIT> set digits 20
For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15
digits.
CUBIT> set digits -1
To reset digits to default, use 'set digits -1'
The number of coordinate and length digits listed will vary depending on the context.

Environment Variables
CUBIT can interpret the following environment variables. These settings are only
applicable to the Command Line Version of CUBIT and do not apply to the Graphical User
Interface. See also the CUBIT_STEP_PATH and CUBIT_IGES_PATH environment
variables. See also the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the
specified X-Window display. This is useful for
running CUBIT across a network, or on a machine
with more than one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any
option that is valid from the command line may be
used in this environment variable. See Execution
Command Syntax.

CUBIT_Journal Specifies path and name to use for journal file. The
specified path may contain the following %-escape
sequences:
%a - abbreviated weekday name
%A - full weekday name
%b - abbreviated month name

Environment Control

18

%B - full month name
%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]
%I - hour (12-hour clock) [01,12]
%j - day of the year [1,366]
%m - month number [1,12]
%M - minute [00,59]
%n - replaced with the next available number
between 01 and 999.
%p - "a.m." or "p.m."
%S - seconds [00,61]
%u - weekday [1,7], 1 is Monday
%U - week of year [00,53]
%w - weekday [0,6], 0 is Sunday
%y - year without century [00,99]
%Y - year with century (e.g. 1999)
%% - a '%' character
The default value is "cubit%n.jou". This creates
journal files in the current directory named
"cubit00.jou", "cubit01.jou", "cubit02.jou", etc. To
keep the same naming scheme but create the files
the /tmp directory, set CUBIT_JOURNAL to
"/tmp/cubit%n.jou"
To create journal files in directories according to the
day of the week, first create directories named
"Mon", "Tues", etc. CUBIT will not create them for
you. Next set CUBIT_JOURNAL to
"%a/%n.jou". This will create journal files named
"01.jou" through "999.jou" in the appropriate
directory for the current day of the week.

Cubit_15.5_User_Documentation

19

Execution Command Syntax
To run CUBIT from the command line:

 cubit [options and args] [journalFile(s)]

 claro [options and args] [journalFile(s)|python historyFile(s)]

Claro is the GUI version of CUBIT, which includes a python interpreter. To run a python
script in CUBIT from the command line, run claro instead of cubit.
Command options for the command line are:

cubit
 -help (Print this summary)
 -Include <$val> (Specify a journal file)
 -workingdir <$val> (Directory to use as working directory)
 -input $val (Playback commands in file $val)
 -solidmodel <$val> (Read .sat or .cub from file $val)
 -fastq <$val> (Read FASTQ file $val)
 -initfile <$val> (Read $val as initialization file instead

Environment Control

20

 of $HOME/.cubit)
 -batch (Batch Mode - No Interactive Command Input)
 -nographics (Do not display graphics windows)
 -nogui (Do not display graphical user interface)
 -noinitfile (Do not read .cubit file)
 -noecho (Do not echo commands to console)
 -nojournal (Do not write journal file)
 -nodeletions (Do not allow file deletions)
 -journalfile <$val> (Name of journal file, will be overwritten)
 -restore [$val] (Name of restore file (default = cubit_geom.save.sat))
 -maxjournal [$val] (Maximum number of journal files to write)
 -warning [$val] (Warning Messages On/Off)
 -information [$val] (Informational Messages On/Off)
 -debug <$val> (Set specified flags on, e.g. 1,3,7-9
 enables 1,3,7,8,9))
 -display <$val> (Specify display to be used for
 graphics window)
 -driver <$val> (Specify the type of driver to be used for
 graphics display)
 -nooverwritecheck (Do not perform file export overwrite check)
 -nobanner (Suppress printing of startup information)
 -version (Prints version information)
 -log <$val> (Copy all output to specified file)
 APREPRO variable pair (Quoted name value pair)

Each of these is optional. If specified, the quantities in square brackets, [$val], are
optional and the quantities in angle brackets, <$val>, are required.
Options are summarized in more detail below:

-help Print a short usage summary of the
command syntax to the terminal and exit.

-workingdir Set the working directory to be used at
startup. Journal files will be written to this
directory.

-initfile <$val> Use the file specified by <$val> as the
initialization file instead of the default set
of initialization files. See Initialization
Files

-noinitfile Do not read any initialization file. This
overrides the default behavior described
in Initialization Files

-solidmodel <$val> Read the ACIS solid model geometry or
.cub file information from the file

Cubit_15.5_User_Documentation

21

specified by <$val> prior to prompting for
interactive input.

-batch Specify that there will be no interactive
input in this execution of CUBIT. CUBIT
will terminate after reading the
initialization file, the geometry file, and
the input_file_list.

-nographics Run CUBIT without graphics. This is
generally used with the -batch option or
when running CUBIT over a line terminal.

-nogui Run CUBIT without the graphical user
interface.

-display Sets the location where the CUBIT
graphics system will be displayed,
analogous to the -display environment
variable for the X Windows system. Unix
only.

-driver <type> Sets the <type> of graphics display
driver to be used. Available drivers
depend on platform, hardware, and
system installation. Typical drivers
include X11 and OpenGL.

-nojournal Do not create a journal file for this
execution of CUBIT. This option
performs the same function as the
Journal Off command. The default
behavior is to create a new journal file for
every execution of CUBIT.

-journalfile <file> Write the journal entries to <file>. The
file will be overwritten if it already exists.

-maxjournal <$val> Only create a maximum of <$val>
default journal files. Default journal files
are of the form cubit#.jou where # is a
number in the range 01 to 999.

-nodeletions Turn off the ability to delete files with the
delete file '<filename>' command.

-nooverwritecheck Turn off the file overwrite check flag.
Files that are written may then overwrite
(erase) old files with the same name with
no warning. This is typically useful when
re-running journal files, in order to
overwrite existing output files. See the

Environment Control

22

set File Overwrite Check [ON|off]
command.

-restore Restore the specified filename (or
"cubit_geom") mesh and ACIS files, e.g.
cubit_geom.save.g and
cubit_geom.save.sat.

-noecho Do not echo commands to the console.
This option performs the same function
as the Echo Off command. The default
behavior is to echo commands to the
console.

-debug <$val> Set to "on" the debug message flags
indicated by <$val>, where <$val> is a
comma-separated list of integers or
ranges of integers, e.g. 1,3,8-10.

-information {on|off} Turn {on|off} the printing of information
messages from CUBIT to the console.

-warning {on|off} Turn {on|off} the printing of warning
messages from CUBIT to the console.

-Include <path> Allows the user to specify a journal file
from the command line.

-fastq <file> Read the mesh and geometry definition
data in the FASTQ file <file> and
interpret the data as FASTQ commands.
See T. D. Blacker, FASTQ Users Manual
Version 1.2, SAND88-1326, Sandia
National Laboratories, (1988). for a
description of the FASTQ file format.

<input_file_list> Input files to be read and executed by
CUBIT. Files are processed in the order
listed, and afterwards interactive
command input can be entered (unless
the -batch option is used.)

-log <file> Copies all output to the specified file.

<variable=value> APREPRO variable-value pairs to be
used in the CUBIT session. Values can
be either doubles or character type
(character values must be surrounded by
double quotes.). Command options can
also be specified using the CUBIT_OPT
environment variable. (See Environment
Variables .)

Cubit_15.5_User_Documentation

23

Passing Variables into a CUBIT Session

To pass an aprepro variable into a CUBIT Session, start cubit with the variable defined in
quotes i.e. cubit "some_var=2.3"

Initialization Files
CUBIT can execute commands on startup, before interactive command input, through
initialization files. This is useful if the user frequently uses the same settings.
The following files are played back in order, if they exist, at startup:

$(cubit install directory)/.cubit.install
$HOME/.cubit
$(current working directory)/.cubit

The $(cubit install directory) is determined by the location the program is installed. On
Linux and Windows, it'll be the bin directory of the installation and on macOS it'll be the
Cubit.app/Contents/MacOS directory.
$HOME is an environment variable pointing to the location of the user's home directory.
On Windows, the HOMEDRIVE and HOMEPATH environment variables will be used
instead of the HOME environment variable.
The $(current working directory) is determined by where the user starts the program
itself.
If the -initfile <filename> option is used on the command that starts cubit, then the other
init files are skipped and only the specified filename is played back.
These files are typically used to perform initialization commands that do not change from
one execution to the next, such as turning off journal file output, specifying default mouse
buttons, setting geometric and mesh entity colors, and setting the size of the graphics
window.

Interrupting Running Tasks
Many operations in the command line version of CUBIT can be interrupted using
<Control>-C. Pressing <Control>-C will attempt to interrupt the running process as soon
as feasible, returning the user back to the command line. Not all operations may be
interrupted, and many can only be interrupted at certain stages. Any current tasks are
canceled as soon as it is feasible to do so, including playback of journal files. The
playback of a journal file is always stopped, even if the current running task cannot be
interrupted. The journal file will stop at the next opportunity, when the current task is
completed. Interrupted journal files may be resumed at the next command. See the
section titled Controlling Playback of Journal Files for more information on controlling
playback of journal files.
The GUI has a cancel button that can be used to interrupt the current command. The
cancel button will turn red when a command can be interrupted. The cancel button has
an 'x' on it, and is located on the status bar, which is at the bottom of the application.

Saving and Restoring a Cubit Session

Environment Control

24

There are currently two ways to save/restore a model in CUBIT. A file can be saved with
either the Exodus or CUBIT File method. The method of choice is determined by a set
command. The CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]

CUBIT File Method

• New

• Open

• Save

• Import

• Export

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model
that is compact in size and efficient to access. It includes both the geometry and the
associated mesh, groups, blocks, sidesets, and nodesets. Mesh and geometry are
restored from the Cubit file in exactly the same state as when saved. For example,
element faces and edges are persistent, as well as mesh and geometry ids. The Graphical
User Interface version of CUBIT also provides a toolbar with direct access to file
operations using the CUBIT File method described here.

New

Creates a new blank model with default name, closing the current model.
The New command essentially acts like the reset command.

Open '<filename>'

Opens an existing *.cub file, closing the current model.

Save

A default file name is assigned when CUBIT is started (in very much the
same way the journal files are assigned on startup) in the form cubit01.cub,
for example. The current model filename is displayed on the title bar of the
CUBIT window. Typing save at any time during your session will save the
current model to the assigned *.cub file. The *.cub file includes the *.sat file
and the mesh. Groups, blocks, sidesets and nodesets are also saved within
the *.cub file. To change the name of the current model, or to save the
model's current geometry to a different file, use the save as command. Note
that 'save <file.cub>' is NOT a valid command.

Save

Save As 'filename.cub' [Overwrite]

Cubit_15.5_User_Documentation

25

The set file overwrite command can be toggled on and off to allow
overwriting when using the save as command. The command is defaulted
to not allow overwriting.

Set File Overwrite [On|OFF]

A backup file is created by default, allowing access to previous states of the
model. The backup files are named *.cub.1, *.cub.2... The user can set the
total number of backups created per model with the following command (the
default number of backups is 99,999):

Set Save Backups <number>

As soon as the number of model backups reaches the maximum, the lowest
numbered backup file will be removed upon subsequent backup creation.
To check on the status of a 'set' command, type in the command in question
without any options. For example, to check which save method is currently
toggled, type:

Set Save

Import

Appends a *.cub file to an existing model.

Import Cubit 'filename.cub' [merge_globally]

Export

In addition to saving an entire model, one can use the export command to
save only a portion of a model. The geometry and associated mesh, groups,
blocks, sidesets and nodesets are exported. Only bodies or free surfaces,
curves or vertices can be exported to a Cubit file.

Export Cubit 'filename.cub' entity-list

Starting and Exiting a CUBIT Session
The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing "cubit"
at the command prompt from within the CUBIT directory. If you have not yet installed
CUBIT, instructions for doing so can be found in Licensing, Distribution and Installation.
A CUBIT console window will appear which tells the user which CUBIT version is being

Environment Control

26

run and the most recent revision date. A graphics window will also appear unless you are
running with the -nographics option. For a complete list of startup options see the
Execution Command Syntax section of this document. CUBIT can also be run with
initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This
means that double-clicking on one of these files will open it automatically in CUBIT. This
option is available during the installation process

Exiting the Session

The CUBIT session can be discontinued with either of the following commands

Exit

Quit

Resetting the Session

A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model,
allowing the user to begin a new session without exiting CUBIT. This is accomplished
with the command

Reset [Genesis | Block | Nodeset | Sideset | QA_Records]

A subset of portions of the CUBIT database to be reset can be designated using the
qualifiers listed. Advanced options controlled with the Set command are not reset.
QA Records are stored in exodus, genesis, or cub files. If your file contains an excessive
amount of qa records and you don't need them, it is beneficial to reset them for faster file
I/O.
You can also reset the number of errors in the current Cubit session, using the command

Reset Errors <value>

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub"
in the current working directory just before it exits.

To disable saving of the crashbackup.cub file set an environment variable
CUBIT_NO_CRASHSAVE equal to true. Or, use the following command:

Cubit_15.5_User_Documentation

27

Set Crash Save [On|Off]

This command will turn on or off crashbackup.cub creation during a crash on a per-
instance basis. To minimize the effects of unexpected aborts, use Cubit's automatic
journaling feature, and remember to save your model often.

recording and playback
Command Recording and Playback
Sequences of CUBIT commands can be recorded and used as a means to control CUBIT
from ASCII text files. Command or "journal" files can be created within CUBIT, or can be
created and edited directly by the user outside CUBIT.

• Journal File Creation & Playback

• Controlling Playback of Journal Files
• Automatic Journal File Creation
• IDless Journal Files

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is
created in the current directory, and its name begins with the word "cubit " or "history",
depending on the version of CUBIT, followed by a number starting with cubit01.jou and
continuing up to a maximum of cubit999.jou. It is recommended that the user keep no
more than around 100 journal files in any directory, to avoid using up disk space and
causing confusion. To that end, when the journal name increments to more than
cubit99.jou, a warning will be given on startup telling the user that there are at least 99
journal files, and to please clean out unused files. If the user has up through cubit999.jou,
then the user is warned that there are too many journal files in the current directory, and
cubit999.jou will be re-used, destroying the previous contents.
When starting cubit, the choice of journal file name to be used depends on whether it is
creating a historyXX.jou file, or a cubitXX.jou file. For historyXX.jou files, it will look for the
highest used number in the current directory and increment it by one. For example, if
there are already journal files with names history01.jou, history02.jou, and history04.jou,
Cubit will use history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in
gaps, starting with the lowest number. For example, if there are already journal files with
names cubit01.jou, cubit02, jou, and cubit04.jou, then Cubit will use cubit03.jou as the
current journal file.
Journal file names end with a ".jou" extension, though this is not strictly required for user-
generated journal files. If no journaling is desired, the user may start CUBIT with the -
nojournal command line option or use the command :

[Set] Journal {Off | On}

Environment Control

28

Turning journaling back on resumes writing commands to the same journal file.
Most CUBIT commands entered during a session are journaled; the exceptions are
commands that require interactive input (such as Zoom Cursor), some graphics related
commands, and the Playback command.

Recording Graphics Commands

All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled
using the entity name, or by using the corresponding entity type and id. The method used
to journal commands using names is determined with the command:

Journal Names {On | Off}

The default is Journal Names On .
If an entity is referred to using its entity type and id, the command will be journaled with
the entity type and id, even if the entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

See APREPRO Journaling for more information.

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute
successfully. To turn this mode off and echo all commands to the journal file, regardless
of the success status, use the following command:

Journal Errors {On|OFF}

If a command did not execute successfully and the journal errors status is ON, then the
unsuccessful command will be written as a comment to the file. For example an
unsuccessful command might look like the following in the journal file

create brick x 10 x 10 z 10

Cubit_15.5_User_Documentation

29

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the
command is issued, but will still write the command to the journal file as a comment,
prefixing the command with "##".
This option may be useful when tracking or documenting program errors.

Controlling Playback of Journal Files
The following commands control the playback of Journal Files:

Stop
Pause
Sleep <duration_in_seconds>
Resume [<n>]
Where
Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the
journal file is playing will halt playback of the journal file. (This only works in the command
line version of CUBIT. See Interrupting Running Tasks for more information). Alternately,
if the stop or pause commands are encountered in the journal file and CUBIT is reading
commands from a terminal (as opposed to a redirected file), playback of the journal file
will halt after that command.
The sleep command pauses execution for the specified number of seconds. It can be
used to build a delay into journal files during presentations.
In the command line version of CUBIT you can resume playback of a journal file with the
resume command. If playback was interrupted because ctrl-c was pressed, it will resume
at the next command after the one that was interrupted. If playback stopped because of
a stop or pause command in the journal file, it will resume at the next line after the stop
or pause command. If the file was paused because of a sleep command in the file, it will
resume automatically after the specified duration.
If journal files that are playing back contain playback commands themselves, there may
be multiple current journal files. The where lists all current journal files and where the
journal files have paused. Each line contains the stack position (a number), the filename
and the current line in the file. Unless CUBIT is running in batch mode, the first line is
always <stdin>. This just means that CUBIT will return to the command prompt after the
top-most journal file has completed.
The remaining portion of any active journal file may be skipped by specifying the stack
position (first number on each line of the output from the where command) of the file
where you want to resume. Any remaining commands in active journal files with lower
stack positions will be skipped.
The next command steps through interrupted journal files line-by-line. The argument to
the next command is the number of lines to read before halting playback again. If no
number is specified, the command will advance one line.
Journal playback can also be set to stop automatically when it encounters an error during
playback. The command syntax is:

Set Stop Error {On|OFF}

Environment Control

30

Setting the stop error to "on" will cause the file to halt for each error. The setting is turned
off by default.

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a
text editor. CUBIT commands can be read directly from a file at any time during CUBIT
execution, or can be used to run CUBIT in batch mode. To begin and end writing
commands to a file from within CUBIT, use the command

Record '<filename>'

Record Stop

Once initiated, all commands are copied to this file after their successful execution in
CUBIT.

Replaying a Session

To replay a journal file, issue the command

Playback '<filename>'

Journal files are most commonly created by recording commands from an interactive
CUBIT session, but can also be created using automatic journaling or even by editing an
ASCII text file.
Commands being read from a file can represent either the entire set of commands for a
particular session, or can represent a subset of commands the user wishes to execute
repeatedly.
Two other commands are useful for controlling playback of CUBIT commands from
journal files. Playback from a journal file can be terminated by placing the Stop command
after the last command to be executed; this causes CUBIT to stop reading commands
from the current journal file. Playback can be paused using the Pause command; the user
is prompted to hit a key, after which playback is resumed.
Journal files are most useful for running CUBIT in batch mode, often in combination with
the parameterization available through the APREPRO capability in CUBIT. Journal files
are also useful when a new finite element model is being built, by saving a set of
initialization commands then iteratively testing different meshing strategies after playing
that initialization file.

Idless Journal Files
Journal files can also be created without reference to entity IDs. The purpose of this
command is to enable journal files created in earlier versions of CUBIT to be played back
in newer versions of CUBIT. Using the "IDless" method, commands entered with an entity

Cubit_15.5_User_Documentation

31

ID will be journaled with an alternative way of referring to the entity. Changes in CUBIT
or ACIS often lead to changes in entity IDs. For example, a webcut may result in volume
3 on the left and volume 4 on the right. In another version of CUBIT, those entity IDs may
be swapped (4 on the left and 3 on the right). Playing an IDless journal file makes the
actual ID of an entity irrelevant. The syntax for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity
IDs. For example, "mesh volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32
ordinal 2".
Selecting the off option will cause commands to be journaled in the traditional manner
(i.e., as they are entered).
The reverse option allows you to convert idless journal files back into an ID-based journal
file where the new journal file will reflect current numbering standards for IDs.
If you issue the command Journal IDless without any additional options, then the current
status of ID journaling is printed. At startup, this should be "off".
The most likely scenario for converting older journal is to use the record command during
playback. The following is an example.
journal idless on

record "my_idless.jou"

playback "my_journal.jou"

record stop

journal idless off

To record an idless journal file back into an id-based journal file you might use the
following sequence.
journal idless reverse

record "new_id_based.jou"

playback "my_idless.jou"

record stop

journal idless off

Note: IDless conversions of APREPRO expressions are partially supported.
When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as
an argument, are converted to use (x, y, z, ord) as arguments such as Vx(x, y, z, ord),
where (x, y, z) is the center point coordinates and ord is the ordinal value. The ordinal
values, 1..n, identifies each entity in a set of n entities that have a common center
point. An entity's ordinal value is based on its creation order with respect to the other
entities within the same set.
When IDless mode is set to REVERSE (using the above example) Vx(x, y, z, ord) will be
converted to Vx(id). Outside these APREPRO functions, APREPRO expressions are not
modified when converting a journal file to or from its IDless form. Hence, expressions
reduced to an entity ID, such as in the command "volume {x} size 10," are not
modified. Therefore, when moving a journal file from one version of CUBIT to another, it
may be necessary to manually update IDs in APREPRO expressions.

location direction specification
Location, Direction and Axis Specification

Environment Control

32

• Specifying a Location
• Specifying a Location on a Curve
• Specifying a Direction
• Specifying an Axis
• Specifying a Plane
• Drawing a Location, Direction, or Axis

Many commands require that a location or a direction be specified. Although entering the
three floating point numbers required to uniquely define a vector is perfectly acceptable,
it may be more convenient to specify the direction or location with respect to existing
entities in the model.

For example, the following commands might be used for creating straight curves using
location and direction specification described here:

Create Curve [From] Location {options} Location {options}

Create Curve [From] Location {options} Direction {options} Length
<val>

Drawing a Location, Direction, or Axis
Some commands require you to specify a location on a curve (i.e., webcutting with a
plane normal to a curve). This location can be previewed with the following options:

1. A fraction along the curve from the start of the curve, or optionally, from a specified

vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified

vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position

<xval><yval><zval> | Close_To Vertex <vertex_id>} [[From] Vertex

<vertex_id> (optional for 'Fraction' & 'Distance')]

Some commands require a specified axis (such as webcut with a cylinder) and it is
sometimes advantageous to view an axis before modifying geometry. To draw a preview
of an axis use the following command:

Draw Axis {options}

Some commands require a specified location or point (such as create curve spline) and
it is sometimes advantages to view a location before modifying or creating geometry. To
draw a preview of a location use the following command:

Draw Location {options} [color <color_name>][no_flush]

Cubit_15.5_User_Documentation

33

Similar commands for drawing lines and polygons may also be useful.

Specifying an Axis
Some commands require a specified axis (such as webcut with a cylinder) and it is
sometimes advantageous to view an axis before modifying geometry. An axis is simply a
vector with a specified origin. The following options determine an axis specification:

• Last
• Direction {options} [Origin [Location] {options}] [Length <val>] [Angle <val>]
• Surface <id>
• [Revolve [About] Axis {options} Angle <val>]]

Last

Last

The last option recalls the last axis used in an axis command. The last axis does not carry
over from CUBIT session to CUBIT session.

Specify a direction and a location

Direction {options} [Origin [Location] {options}] [Length <val>] [Angle

<val>]

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice
that the command requires the axis direction first because the origin defaults to 0 0 0
when not specified. An example of specifying an axis to draw a location using the swing
command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

Figure 1 - Swinging a point about the z-axis

Environment Control

34

The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z
direction and an origin at 0 0 0.

Specify a surface

Surface <id>

If a surface is specified, it must be a cone type surface. The axis of the cone surface is
used. If a non-cone type surface is specified, an error will result.

Option to revolve an axis about an axis

[Revolve [About] Axis {options} Angle <val>]

To revolve one axis around another use the revolve keyword. The following example
revolves the first axis (defined by the y-axis and origin) around the second axis (defined
by the z-axis and origin) by 45 degrees and draws the result.

draw axis direction y revolve axis direction z angle 45

Figure 2 - Revolving an axis about another axis

Previewing an Axis

Sometimes it is helpful to preview an axis before using it in a command. An axis may be
previewed using the Draw command. The options for previewing an axis are the same as
the ones described above.

Draw Axis {options}

Specifying a Direction
Some commands require a specified a direction or vector for the command. A direction
is basically a xyz vector in the model. The following options determine a direction
specification:

Cubit_15.5_User_Documentation

35

• [Vector] <xval yval zval>

• Last
• X|Y|Z|Nx|Ny|Nz
• [On] | [Tangent] [At] Curve <id> {location on curve options}
• [On] | [Normal] [At] Surface <id> [Location {options}]
• [From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} |

[Entity] {Node|Vertex|Curve|Surface} <id> }
• [Rotate {options}]
• [Cross [With] Direction {options}]
• [Reverse]

Vector (XYZ values)

[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of
the direction. The given vector need not be a unit vector. The following three commands
simply draw a direction in the x-direction (1, 0, 0) as the Vector keyword is optional and
unit vectors are not required:

draw direction vector 1 0 0

draw direction 1 0 0

draw direction 10 0 0

Last Direction Used

Last

The last option recalls the last direction used in a command. For example, if the following
command is entered after the above vector commands a direction location would be
drawn in the x-direction (1, 0, 0).

draw direction last

Last directions do not carry over from CUBIT session to CUBIT session. The last direction
defaults to (1, 0, 0) if no direction has been used during the session.

Positive or Negative X,Y,Z Direction Vectors

X|Y|Z|Nx|Ny|Nz

The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x
direction, negative y direction and negative z direction respectively.

On Curve Tangent

Environment Control

36

[On] | [Tangent] [At] Curve <id> {location on curve options}

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and
at keywords are optional, as well as the location on the curve. If no location is specified,
the tangent at the start vertex of the curve is found. See the section above, Specifying a
Location on a Curve, for details on how to specify where along the curve the tangent
vector is found.

draw direction curve 1

draw direction on curve 1

draw direction tangent at curve 1

draw direction tangent at curve 1 distance 3

draw direction tangent at curve 1 fraction .5

draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve

On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal"
and "at" keywords are optional, as well as the location on the surface. If no location is
specified, the normal vector at the center of the surface is found. If a location is specified,
the location is projected to the surface, then the normal vector is found.

draw direction on surface 1

draw direction on surface 1 location 1 2 0

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options}

| [Entity]

{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a
location to an entity. If the second specification is an entity, the first location is projected
to the entity to find the direction.

Cubit_15.5_User_Documentation

37

draw direction from vertex 1 vertex 2

draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity
keywords are generally optional. However, it is sometimes necessary to remove
ambiguity from the previous location specification. For example, the following will not
parse correctly:

draw direction location on curve 1 distance 2 surface 3

In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead,
the desired behavior is to find the location on curve 1 as a distance of 2.0 along the curve
from the start of the curve, and project it to surface 3 to find the direction. The following
commands (all equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3

draw direction location on curve 1 distance 2 entity surface 3

draw direction location on curve 1 distance 2 project entity surface 3

Rotate

[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string
together as many rotations as necessary. For example:

draw direction 1 0 0 rotate about z 135 rotate about curve 1 angle 50

Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction

{options} Angle <val> } [Rotate (options)] [Origin (location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of
another rotate keyword in the options indicated that multiple nested rotations are
permitted.

Cross

[Cross [With] Direction {options}]

The cross option allows you to find the vector cross product of the direction with another
direction.

Reverse

Environment Control

38

[Reverse]

This keyword simply reverses the direction specification.

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction
may be previewed using the Draw command. The direction options are described above.
See Specifying a Location for a list of location options.

Draw Direction {direction_options} [Location (location_options)]

Specifying a Location
Some commands require a specified location or point (such as create curve spline) for
the command. A location is basically an x-y-z position in the model. The following options
determine a location specification:

• [Position] <xval yval zval>

• Last
• [At] {Node|Vertex} <id_list>
• [On] Curve <id_list> [location on curve options]
• [On] Surface <id_list> [Close_To | At Location {options} | CENTER]
• [On] Plane <options> [Close_To | At Location {options}]
• Center Curve <id_list>
• Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options}

[Direction {options}] [Direction {options}]
• Fire Ray Location {options} Direction {options} At

{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray Radius
<val>]

• Between { Location <options> Location <options>} | { Location <options> Project
{Curve|Surface} <id> } [Stop] [Fraction <val>] }

• [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
Distance <val>}]

• [Swing [all] [About] Axis {options} Angle <ang>]
• Multiple Location Specification

Position (XYZ values)

[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In
this case the following two commands both draw a location at the coordinates (1, 2, 3),
as the Position keyword is optional:

Cubit_15.5_User_Documentation

39

draw location position 1 2 3

draw location 1 2 3

Last Location Used in a Command

Last

The last option recalls the last location used in a command. For example, if the following
command is entered after the above position commands a location would be drawn at the
position (1, 2, 3).

draw location last

Last locations do not carry over from CUBIT session to CUBIT session. The last location
defaults to (0, 0, 0) if no location has been used during the session.

Node or Vertex

[At] {Node|Vertex} <id_list>

Referring to a node or vertex simply returns the coordinates of that node or vertex. The
command can also handle multiple locations where multiple locations are needed to
complete the command string. The following draws a location at the coordinates of Vertex
5:

draw location vertex 5

On a Curve

Various options are available to specify a location on a curve. See the section Specifying
a Location On a Curve for details.

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

If a surface is used to specify a location without other options, the geometrical center of
the surface is found (the center keyword is optional - the default). Otherwise, you can
specify another general location and that location is projected to the surface. For example,
the following command will draw the location that is position (5,0,0) projected to surface
1:

draw location on surface 1 location 5 0 0

Any valid location options listed on this page can be used to specify the location that is
projected to the surface.

Environment Control

40

On a Plane

[On] Plane <options> [Close_To | At Location {options}]

A location can be defined at the closest point on a plane to a location. See Specifying a
Plane for plane options.

Center

Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.

Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options}

[Direction {options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or
group, in the specified direction. For example, the following places a vertex on a surface
at the point of maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object
by firing a ray at the object and determining the intersections. A ray can be fired at a list
of bodies, volumes, surfaces, curves, or vertices. The fire ray command is:

Fire Ray Location {options} Direction {options} At

{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray

Radius <val>]

The location options are described on this page. The direction options are described
under Specifying a Direction. The user can specify the maximum number of hits that he
wishes to receive back from the command. If this value is omitted, the command will
return all intersections found. When firing a ray at a curve, a ray radius must be used. The
ray radius is the distance from the curve the ray must be to be considered a "hit." If no
ray radius is used, the geometry engine default is used.

Between

Between {Location <options> Location <options> } | {Location <options>

Project {Curve|Surface} <range>} [Stop] [Fraction <val>]}

Cubit_15.5_User_Documentation

41

The between option finds a location that is between two locations or a location and an
entity. An optional fraction can be given to specify the fractional distance from the first
location to the second location or entity. For example, the following will draw a location at
(5, 0, 0):

draw location between location 0 0 0 location 10 0 0

The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10,
0, 0):

draw location between location 0 0 0 location 10 0 0 fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2

draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is
between (0, 0, 0) and the projected location is found.
Of course, any valid location can be used in the command. In the following example a
location at the top center of the brick is found:

brick x 10

draw location between location bet vert 3 vert 2

location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices
8 and 5.
Note: you can "swing" a location about an axis, "rotate" a direction about another
direction, "revolve" an axis about another axis and "spin" a plane about an axis. The only
reason Cubit needs to use different keywords for each entity type is because the Cubit
command language does not support expressions (as in using parentheses). The
keyword stop is also used in the location/direction/axis/plane parsing as a partial
workaround to this limitation. Using this stop keyword will aid in parsing out extended
location specifications. Insert a stop after the first location to let the parser know that
where the specifications begin and end.

Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}

Distance <val> }

Any location can be optionally moved either a xyz distance or a certain distance in a given
direction. As many moves as desired can be strung together. For example, the following
will return a location at (5, 0, 0):

Environment Control

42

draw location 0 0 0 move 5 0 0

These examples add another move that basically moves the location (5, 0, 0) in a direction
45 degrees up and to the right a distance of 10 (all three commands are equivalent - see
sections on directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} 0

draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10

draw location 0 0 0 move 5 0 0 move direction 1 0 0 rotate about 0 0 1 angle

45 dist 10

Swing

Swing [All] [About] Axis {options} Angle <ang>

Any location can be "swung" (rotated) about an axis by a certain angle. (See the section
on specifying an axis for the axis syntax). As with moves, multiple swings can be strung
together. The following example rotates the location (2.5, 5, 5) thirty degrees about an
axis defined by Curve 11. Note that the right-hand rule is used to determine the direction
of the swing about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Figure 1 - Swinging a Location

Multiple Location Specification

Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the
following command uses several locations to create a spline curve at points (0,0,0),
(1,2,3), (4,5,6), and (7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9

Cubit_15.5_User_Documentation

43

Previewing a Location

Sometimes it is advantageous to preview a location before using it in a command. A
location can be previewed with the Draw command. All of the options that can be used to
specify locations in a command can be used to preview locations as well. See above for
a description of these options. The command syntax is:

Draw Location {options}

Specifying a Location on a Curve
Some commands require you to specify a location on a curve (i.e., webcutting with a
plane normal to a curve). The following are the options for specifying a location (or
locations in the case of the segment option) on a curve:

• {MIDPOINT|Start|End}
• Center
• Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]
• Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]
• {{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex}

<id>}
• Extrema [Direction] {options} [Direction {options}] [Direction {options}]
• Segment <num_segs>
• Crossing {Curve|Surface} <id_list> [Bounded|Near]}
• Previewing a Location

Center

center

The center option helps in identifying the location at the center of a given arc. Example:
create vertex center curve 3

Start, Midpoint, or End

{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve.
By default, the midpoint is the understood location unless another location is specified.

Fraction

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve.
By default, the fraction references the start of the curve; however, you can optionally
specify which vertex to reference from.

Environment Control

44

Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |

The distance option not only can find a location that is a certain distance along the curve
from the start or end of the curve, but can also find a location (or locations if there is more
than one solution) on a curve that is a specified distance from another curve or a surface.
If the From Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

Figure 1 - Location on a Curve a Distance from Another Curve

{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval>

|{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.

Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option finds the maximum value location along a curve in a specified
direction. For example:

create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a
minimum.

Segment

Cubit_15.5_User_Documentation

45

Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the
curve into equal length "segments" (of course the curve is not modified). You must specify
a minimum of two segments (if two segments were specified a location would be found
at the center of the curve). The following example results in 4 locations:

draw location on curve 1 segment 5

create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve

Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near]}

The crossing option finds locations at the intersection of the curve and another curve or
surface. By default, the curve(s) and surface are extended to infinity and the intersections
are calculated; if the bounded option is specified only intersections that lie on the bounded
entities will be returned. The near option is valid only for two linear curves. If near is
specified the nearest location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that
can be used for specifying a location on a curve can be used to preview a location on a
curve. See above for a description of these options. The command syntax is:

Draw Location On Curve <curve id> {options}

Specifying a Plane
Some commands require a specified plane (such as sweep curve target) for the
command. The following options determine a plane specification:

• {Location|Vertex|Node} <origin> Direction <normal>

• {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on
plane>

Environment Control

46

• {Location|Vertex|Node} <2 locations> Direction <vector on the plane>
• {Location|Vertex|Node} <3 locations>
• Surface <id> [at location <loc>]
• [Normal To] Curve <id> [loc on curve options]
• Direction <Normal> Coefficient <val>
• Arc Curve <id>
• Linear Curve <id> <id>
• X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx
• Last

The following options apply to all of the plane specifications listed above:

• [Offset <val>]
• [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance

<val>]]
• [[To] Location {options}]
• [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector

{Location|Vertex|Node} <origin> Direction <normal>

The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction 0 1 1

draw plane vertex 1 direction tangent at curve 1

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options
can be found at Specifying a Direction.

Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on

plane>

Cubit_15.5_User_Documentation

47

It is also possible to select an origin point and 2 direction vectors on the plane.

.

Figure 2. Specifying a plane with a point and 2 in-plane vectors

Two Locations and Vector on the Plane

{Location|Vertex|Node} <2 locations> Direction <vector on the plane>

You can also specify 2 locations and 1 direction on the plane to define the plane.

draw plane vertex 1 2 direction 0 1 1

Figure 3. Specifying 2 locations and 1 direction on the plane

Three Points on the Plane

{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified
using Location Specification.

Environment Control

48

draw plane vertex 1 2 3
draw plane vertex 1 2 location 3 4 5

Figure 4. A plane specified by three points

Plane defined by a Surface

Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar
surface, the optional location specifier can be used to find the tangent plane of a specific
point on the surface.

draw plane surface 1 at location 4 0 0

Cubit_15.5_User_Documentation

49

Figure 5. Specifying a Tangent plane to a Surface

Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

The Normal to Curve option allows you to define a plane by using an existing curve. The
direction of the curve will define the surface normal of the new plane. The optional location
argument specifies which point to use on the curve if it is not a straight curve. If no location
is specified the plane will originate at the midpoint of the curve. See Specifying a Location
on a Curve for more information on location options.

brick x 10
cylinder radius 3 z 12
subtract body 2 from 1
webcut body 1 xplane
draw plane normal to curve 30

Figure 6. Draw Plane Normal to Curve

Plane Defined by a Non-linear curve

Arc Curve <id>

A plane can be defined by a single curve, provided that curve is not linear.

cylinder height 12 radius 3
draw plane arc curve 2

Plane Defined by a two linear curves

Linear Curve <id> <id>

Environment Control

50

A plane can be defined by a two linear curves, provided that the curves are not co-linear.

brick x 10
draw plane linear curve 2 3

Normal Vector and Coefficient

Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and
an offset from the origin. The Coefficient argument specifies how far to offset the plane
from the origin

draw plane direction 1 2 3 coefficient 3

Coordinate Plane

X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx

A plane can be defined from any coordinate plane or combination thereof. The coordinate
planes will pass through the origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used

Last

The last option will return the plane most recently used in a command. Last locations do
not carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0,
0) if no location has been used during the session.
The following options apply to all of the plane specification methods described above.

• [Offset <val>]

• [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}

[Distance <val>]]

• [[To] Location {options}]

• [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.
The move option will displace the plane in the specified directions by the specified
distance. The direction options are outlined on Specifying a Direction.
The location option will move the plane to a specified location without rotating it. See
Specifying a Location for location options.
The spin option will rotate the plane around an axis. See Specifying an Axis for axis
options.

Cubit_15.5_User_Documentation

51

Previewing a Plane

The ability to preview a plane prior to creating the plane or using it in a command is
possible with the following commands:

Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>]

[[Extended] {Percentage|Absolute} <val>]}] [Color 'color_name']

The options for specifying a plane are described above in the section on Plane
Specification. By default, the commands draw the plane just large enough to intersect the
bounding box of the entire model with minimum surface area. Optionally, you can give a
list of bodies to intersect for this calculation. You can also extend the size of the surface
by either a percentage distance or an absolute distance of the minimum area size. The
default color is blue, but you can specify a different one. See the Appendix of the CUBIT
Users Guide for available colors in CUBIT.

Preview a Cylindrical Plane

The ability to preview a cylindrical plane is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz

values>} [Center <x_val> <y_val> <z_val>] [[Intersecting] Body <id_range>]

[Extended Percentage|Absolute <val>] [Color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line
corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points,
or an arbitrary point and the origin. The center point through which the cylinder axis
passes can also be specified.
By default, the commands draw the cylinder just large enough to just intersect the
bounding box of the entire model. Optionally, you can give a list of bodies to intersect for
this calculation. You can also extend the length of the cylinder by either a percentage
distance or an absolute distance of the cylinder length. The default color is blue, but you
can specify a different one. See the Appendix of the CUBIT Users Guide for available
colors in CUBIT.

listing information
Listing Information
The List commands print information about the current model and session. There are five
general areas: Model Summary, Geometry, Mesh, Special Entities, and CUBIT
Environment. The descriptions of these areas includes example output based on the
model generated by a journal file listed below. The model consists of a 1x2x3 brick
meshed with element size 0.1.

• List Model Summary

• List Geometry
• List Mesh

Environment Control

52

• List Special Entities
• List CUBIT Environment

Journal File Used for List Examples
brick x 1 y 2 z 3
body 1 size 0.1
mesh volume 1
block 1 volume 1
nodeset 1 surface 1
sideset 1 surface 2
group "my_surfaces" add surface 1 to 3
surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"
surface 5 name "RightSurface"
surface 6 name "TopSurface"

List Cubit Environment
The user may list information about the current CUBIT environment such as message
output settings, memory usage, and graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

• Info (Information) messages tell the user about normal events, such as the id of a newly

created body, or the completion of a meshing algorithm.

• Warning messages signal unusual events that are potential problems.

• Error messages signal either user error, such as syntax errors, or the failure of some

operation, such as the failure to mesh a surface.

• Echo messages tell the user what was journaled.

• Debug messages tell developers about algorithm progress. There are many types of

Debug messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages
are not printed. Information, Warning, Debug, and Echo message printing can be turned
on or off (or toggled) with a set command; error messages are always printed. Debugging
output can also be redirected to a file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug}

Set Echo [On|Off]

Set {Info|Warning} [On|Off] [logging]

Cubit_15.5_User_Documentation

53

[Set] Debug <index> [On|Off]

[Set] Debug <index> File <'filename'>

[Set] Debug <index> Terminal

Message flags can also be set using command line options:

-warning {on|off}

-information {on|off}

Debug flags can be enabled from the command line with

-debug <setting>

where <setting> is a comma-separated list of integers or ranges of integers denoting
which flags to turn on. E.g., to set debug flags 1, 3, and 8 to 10 on, the syntax is -debug
1,3,8-10.

Logging Output to a File

Output from CUBIT can be redirected to a log file, and the current state of logging can be
listed.

[Set] Logging {Off|On File <'filename'> [Resume]}

List Logging

If logging is enabled, by default any output to the console or command window will also
go into the logging file. The resume option will append to the logfile, if it exists, instead of
emptying the file. If the logfile doesn't already exist, it will be created.
Output of information and warning messages to the logging file can be controlled
independent of console output settings by adding the logging option to the set
{info|warning} [on|off] logging command.

Default Block Creation

Set Default Block {ON|off|Volume|Surface|Curve]}

List Default Block

The set Default Block command will toggle whether or not default blocks are written
during the export operation if no other blocks have been specified. The List Default Block
command lists the geometric entity types for which blocks will automatically be generated
at export.

Environment Control

54

Journaling Settings

List Journal

The List Journal command lists which types of CUBIT commands will be journaled and
the file to which the journaled commands are being written.

Exodus Export Title

List Title

Title "<title_string>"

The List Title command will list the title to be written to an Exodus file on export. To
assign a title to an Exodus file, use the Title command.

Listing Current Settings

List Settings

The List Settings command lists the value of all the message flags, journal file and echo
settings, as well as additional information. The first section lists a short description of each
debug flag and its current setting. Other message settings are listed next, followed by
some flags affecting algorithm behavior.
Sample output

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

 1 OFF terminal Debug Graphics toggle for some debug options.

 2 OFF terminal Whisker weaving information

 3 OFF terminal Timing information for 3D Meshing routines.

 4 OFF terminal Graphics Debugging (DrawingTool)

 5 OFF terminal FastQ debugging

 6 OFF terminal Submapping graphics debugging

 7 OFF terminal Knife progress whisker weaving information

 8 OFF terminal Mapping Face debug / Linear Programming debug

 9 OFF terminal Paver Debugging

.

.

.

echo = On

info = On

journal = On

journal graphics = Off

journal names = On

journal aprepro = On

journal file = 'cubit11.jou'

warning = On

logging = Off

recording = Off

keep invalid mesh = Off

Cubit_15.5_User_Documentation

55

default names = Off

default block = Volumes

catch interrupt = On

name replacement character = '_', suffix character = '@'

Matching Intervals is fast, TRUE;

multiple curves will be fixed per iteration.

Note in rare cases 'slow', FALSE, may produce better meshes.

Match Intervals rounding is FALSE;

intervals will be rounded towards the user-specified intervals.

Graphical Display Information

List View

List view prints the current graphics view and mode parameters; See Graphics Window
.

Memory Usage Information

Users are encouraged to use Unix commands such as `top' to check total CUBIT memory
use. Developers may check internal memory usage with the following command:

List Memory [`<object type>']

Without an object type, the command prints memory use for all types of objects.

List Geometry
The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]
List {Group|Body|Volume|Surface|Curve|Vertex} <range> [Ids]
List {geom_list} [Geometry|Mesh [Detail]]
List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to
each name. Specifying all lists names for all types; other options list names for a specific
entity type. The names for an individual entity can be obtained by listing just that entity.
Sample output from the list names surface command is shown below. This output shows
that, for example, Surface 2 has the name ` BackSurface '.
______Name______ __Type__ Id _Propagated_
 BackSurface Surface 2 No
 BottomSurface Surface 3 No
 FrontSurface Surface 1 No
 LeftSurface Surface 4 No
 RightSurface Surface 5 No
 TopSurface Surface 6 No

List Names Example
The second command provides information on the number of entities in the model and
their identification numbers. If a range is given then detailed information is given on each

Environment Control

56

entity in that range, unless the ids option is also given. If the ids option is used, just a list
of ids is printed. This list can be very useful for large models in which several geometry
decomposition operations have performed. Sample output from the list surface command
is shown below.
CUBIT> list surface ids
The 6 surface ids are 1 to 6.
CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a
<range> gives a brief synopsis of the local connectivity of the model, e.g. one can list the
ids of the surfaces containing vertex 2; as shown in the listing below.. An intermediately
detailed synopsis can be obtained by placing the range of entities in a group, then listing
the group.
CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.
CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
_____Name____ Type______Id +is meshed Count Size
FrontSurface Surface 1 map+ 1 H 0.1
 TopSurface Surface 6 map+ 1 H 0.1
RightSurface Surface 5 map+ 1 H 0.1

Using 'List' for Querying Connectivity.

The third command provides detailed information for each of the specific entities. This
information includes the entity's name and id, its meshing scheme and how that scheme
was selected, whether it is meshed and other meshing parameters such as smooth
scheme, interval size and count. The entity's connectivity is summarized by a table of the
entity's subentities and a list of the entity's superentities. Also, the nodesets, sidesets,
blocks, and groups containing the entity are listed.
Specifying geometry will additionally list the extent of the entity's geometric bounding
box, the geometric size of the entity, and depending on entity type, other information such
as surface normal. See also the list {entities} x command below. If multiple volumes,
surfaces, or curves are selected, it will list the total volume, area, or length of all entities,
and the total geometric bounding box. If multiple volumes are selected, the centroid listed
will be the composite centroid of the all of the volumes.
Specifying mesh will additionally list the number of mesh entities of each type interior to
the entity and on bounding subentities. Mesh detail will list the ids of the mesh entities
as well, following the format of the list ids command above.
The fourth command lists the entities sorted by either the x, y, or z coordinate of their
geometric center. For example, in a large, basically cylindrical model centered around z-

Cubit_15.5_User_Documentation

57

axis, it is useful to list the surfaces of a volume sorted by z to identify the source and
target sweeping surfaces.

List Mesh
The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>

List {Hex|Face|Edge|Node} <id_range> IDs

For both of these commands, the range can be very general, following the general entity
parsing syntax. The first command provides detailed information. For an entity, the
information includes its id, owning geometry, subentities and superentities. For a hex, the
Exodus Id is also listed. For a node, its coordinates are listed. The second command just
lists the entity ids, and is usually used in conjunction with complex ranges.

List Model Summary
The following commands print identical summaries of the model: the number of entities
of each geometric, mesh, and special type

List Model

List Totals

The following output is generated from the list model command.
CUBIT> list model
Model Entity Totals:
 Geometric Entities:
 0 assemblies
 0 parts
 2 groups
 1 bodies
 1 volumes
 6 surfaces
 12 curves
 8 vertices
 Mesh Entities:
 6000 hexes
 0 pyramids
 0 tets
 7876 faces
 0 tris
 9854 edges
 7161 nodes
 Special Entities:
 1 element blocks

Environment Control

58

 1 sidesets
 1 nodesets
Journaled Command: list model

List Special Entities

List {special_type} <range>

Special entities include (element) blocks, sidesets and nodesets (representing boundary
conditions). Like the list geometry and list mesh commands, if no range is specified
then the number of entities of the given type is summarized. Otherwise, listing a special
entity prints the mesh and geometry it contains.
(Some special entities are of interest mainly to developers and are not described here,
e.g. whisker sheets, and whisker hexes.)

gui
Graphical User Interface

• CUBIT Application Window
• Control Panel
• Graphics Window
• Model Tree
• Power Tools
• Property Editor
• Command Line Workspace
• Journal File Editor
• Toolbars
• Drop-Down Menus

The graphical user interface (GUI) can improve user productivity. It provides an easy way
to control CUBIT without learning command syntax. Many geometry commands are faster
and easier with the GUI. The underlying GUI components are constructed using a cross-
platform development environment. As such, the GUI will behave similarly across all
platforms supported by Cubit, yet each GUI will make use of platform specific widgets.
The GUI is built on top of the CUBIT command line. This means that GUI actions are
translated to a CUBIT command-line string and journaled. Users familiar with command-
line syntax can enter the same text in the GUI command-line window. Journal files can
be created and played back in both environments with the same results. Although many
things are faster and easier in the GUI, experienced users often use a combination of
command line text and GUI button operations.
The discussion of the Graphical User Interface and its features is based on the basic
windows contained within the CUBIT GUI Application Window. These are outlined in the
subtopics listed above.
A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve

Cubit_15.5_User_Documentation

59

productivity, making new users aware of the wide range of CUBIT capabilities, and freeing
new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from
one environment to the other.

tree view

Assembly Tool

In Cubit versions prior to 15.4 assembly data was managed on the model tree. Beginning
with Cubit version 15.4 a power tool for assemblies is available.
A detailed, command-based discussion of assemblies and metadata can be found here.

Environment Control

60

Cubit_15.5_User_Documentation

61

Figure 1 - Assembly Power Tool

Like all other power tools in Cubit, the user is encouraged to experiment with the various
options found in context menus. The context menus are specific to the entity type
selected.

Figure 2 - Assembly Context Menu

Metadata Attributes

Users have access to the following attributes:

• Type - The metadata type: Assembly, Sub-Assembly or Part
• Name - The name for the assembly or part. This can be edited from the property

window
• Instance - The numeric value associated with the part or assembly
• Path - The absolute path of the part or assembly
• Description - The description of the part or assembly
• Material Description - The name or description of the material of which this part

is composed
• Material Specification - The formal specification number of the material of which

this part is composed
• File Format - The name of the file system containing the original version of this

entity
• Units - The unit system of this part or assembly

Another View

At the top of the tool is a pull down menu. This allows the user to change from the full
assembly view to a parts view.

Environment Control

62

Figure 3 - Pull down Menu

Geometry/Mesh Comparison Tool

The Geometry/Mesh Comparison Tool tries to find geometry and mesh that do not
correspond. The typical use is to import a geometry file and then import a mesh file that
is associated with the geometry. The comparison tool will locate mesh that does not
correspond to the geometry. The tool will also show geometry that does map to any mesh.

Cubit_15.5_User_Documentation

63

The user selects the volumes for the comparison, then selects the mesh entities for the
comparison. A default comparison tolerance value of 1e-6 will be used unless otherwise
specified. No additional setup is required. Select the "Compare" button to generate
results.
Unassociated entities will be displayed in one of two categories:
1) Mesh elements not associated with any volume
2) Partially meshed volumes
Clicking on the labels in the tree will cause the entities to be drawn in the graphics window.
If "Draw Without Refreshing" is selected, the draws will be additive. If "Draw Without
Refreshing" is not selected, the previous draw will be removed when the current drawn
entities are shown.
The underlying Cubit command for the tool is the following:

Compare volume <id range> {block <id range> | hex <id range> | tet <id range>
[tolerance <value>]

Environment Control

64

The command will create three types of groups that contain non-corresponding mesh
and/or geometry. The group named "mesh_with_no_volume" contains hexes or tets that
cannot be associated with any volume. The groups named "No_meshed_Volume_*"
contain the curves of a volume (for display purposes) that is completely void of any hexes
or tets. Lastly, the groups named "Partially_meshed_Volume_*" contain hexes or tets,
faces or tris, and curves of volumes that could only be partially associated with mesh. The
group is created with these entities so that the user can see the partially meshed regions
of the volume.

Model Tree

The model tree provides a complete graphical hierarchical representation of the parent
child relationship of all geometric entities. The tree is populated as the model is
constructed by Cubit. In addition to showing a hierarchy of geometric entities, the tree
also shows active Groups, Boundary Layers, and active Boundary Condition entities.
The tree works directly with the graphics window and picking. Selecting an entity in the
tree will select the same entity in the graphics window. Selecting an entity in the graphics
window will highlight the tree entry if that entry is currently visible. If an entity's visibility is
turned off, the icon next to that entity in the geometry tree will disappear.
If the tree entry is not visible the user may press the Find button located at the bottom of
the tree. The first occurrence of the selected entity will be shown on the tree.
Virtual entities have a small (v) after the name to indicate that they are virtual entities.

Cubit_15.5_User_Documentation

65

Figure 1. Geometry Tree Window

Environment Control

66

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing
boundary condition sets. To create boundary conditions, see the Materials and Properties
menu on the main control panel, or right-click on one of the boundary condition labels and
select the "Create New" option from the context menu. Geometric entities or groups can
be added to blocks, nodesets, or sidesets by dragging and dropping inside the tree view
window.

Picked Group

The current selections in the graphics window can be added to a "picked group" by
selecting the "Add to Picked Group" from the Right click menu. Selections can also be
added to the picked group by dragging and dropping onto the group from the geometry
tree window. The picked group can be substituted into any commands that use groups.
To remove an item from the picked group, use the "Remove from Group" option in the
right click menu in the geometry tree or from the graphics window.

Figure 2. Picked Group

Right-Click Menu Functions

The geometry tree's context menu is sensitive to the type of item and the number of
items selected. Functions that apply to the item type and number of selected items
are available from the context menu. These include the following:

Cubit_15.5_User_Documentation

67

• Zoom To - Available for all geometric entities

• Rotate About - Change the center of rotation to the centroid of the entity without

zooming

• Fly-In - Animated zoom feature

• Locate - Labels the selected entity in the graphics window

• Draw - Draw this entity by itself.

• Isolate - Similar to Draw command, but the display will not be refreshed with a graphics

reset. To redisplay the model, select All Visible from the graphics window right-click

menu.

• Transparency On/Off - Toggles transparency mode

• Visibility On/Off - Toggles visibility

• Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity

in the tree will do the same thing. This will also work for boundary condition entities

(blocks, nodesets and sidesets)

• Mesh - Mesh selected entity at current settings.

• Delete Mesh - Available for meshed entities

• Reset Entity - Deletes mesh, and returns all settings to default values.

• Delete - Available when Volumes and Groups are selected.

• Measure - Available when two entities are selected or 1 curve is selected

• Refresh Full Tree - Used to return to main tree

• Collapse Tree - Available when entities are selected.

• View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh

Full Tree option to return to main tree view.

• View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the

main tree view.

• Create New Volume - Available when the user right-clicks over the Volumes (parent)

label. Opens the geometry-volume-create panel

• Import Geometry - Available when the user right-clicks over the Volumes (parent)

label. Opens import dialog.

• Create New Group - Available when the user right-clicks over the Groups (parent) label.

• Clean Out Group - Available when groups are selected. Removes all entities from

group.

• Remove from Group - Available when groups are selected. Removes selected entity

from the group.

• Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window

to the chosen block, nodeset, or sideset in the geometry tree.

• Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics

window from the chosen block, nodeset, or sideset in the geometry tree.

• Create New Block/Sideset/Nodeset - Available when the user right-clicks over the

respective Boundary Conditions (parent) label.

• Create New <boundary condition> - Available when highlighting desired boundary

condition in the tree including CFD and FEA boundary conditions.

• Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of

existing entities

• Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other

entities

Environment Control

68

• Delete Selected Boundary Condition - Deletes any selected boundary conditions

• Draw Selected Boundary Condition - Draws selected boundary condition by itself

• Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions

• List Selected Boundary Condition - Lists information about selected boundary

conditions in the command line window

• Remove from Block/Sideset/Nodeset - Removes selected entity from the specified

block, sideset or nodeset

• Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks

composed of tet elements

• Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks

composed of tet elements

• List Info - List information about selected entity in the output window.

Meshing Tools

The meshing power tool provides a tool for determining whether a geometry can be
meshed using autoscheme, or if it requires its scheme to be set explicitly. This tool is
designed to help guide users through geometry decomposition process by providing a
convenient way to see which geometries need further modification or decomposition prior
to meshing.

Figure 1. Meshing Power Tools

Entity Specification- The meshing power tool works for volumes or surfaces.
Options Button - Opens the Tools>Options dialog to change the visualization colors of
surface schemes for the meshing tool
Analyze Button - The Analyze button issues the autoscheme command for all selected
volumes and surfaces.
Output Tree - The output from the meshing tool is displayed in tree format. Geometry is
divided into "Scheme Set" and "Scheme Not Set" divisions. The geometry is listed under
these nodes. If autoscheme was successful, its assigned scheme is also displayed.
Toggle Visibility Button - The meshing tool displays entities as red or green in the
graphics window. Green means that they are currently meshable using the autoscheme.
Red means that they require their scheme to be set explicitly. Turning this capability off
will return the volumes and surfaces to their original colors.
Meshing Tools Buttons - Several meshing tools are available to the user from this
window. Depending on the entity selected, these are also available from the right-click
context menu, and they are described below.

Right Click Context Menu

• Zoom To - Zoom in on this element in the graphics window
• Draw - Draw this entity by itself in the graphics window
• Locate - Locates and labels entity in the graphics window
• Rotate About - Issues Rotate about command for selected entity

Cubit_15.5_User_Documentation

69

• Visibility On/Off - Toggle visibility
• Reset Graphics- Reset graphics display
• Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you

can set interval sizes for the selected geometry
• Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where

you can set a scheme for the selected entities
• Set Vertex Type - Available when surfaces are selected. Opens the

Mesh/Surface/Mesh panel to set vertex types.
• Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If

you have entities selected in the tree window it will input them to the
imprint/merge command.

• Webcut - Opens the Geometry/Volume/Webcut panel on the control panel. If a
volume is selected in the meshing tool window it will input it in the webcut panel.

• Color Surfaces - Color surfaces based on their schemes. You can change the
default colors by selecting the Options button.

• Restore Colors - Restores colors on selected entity or entity type
• Mesh - Meshes the selected entities (bypassing control panel)
• Delete Mesh - Deletes the mesh on selected entities
• Unmerge - Unmerges selected entities
• View Descendants - Opens a list of child entities and their meshing schemes.

Press Analyze to return.
• View Ancestors- Opens a list of parent entities and their meshing schemes.

Press Analyze to return.
• View Neighbors- Opens a list of bordering entities and their meshing schemes.

Press Analyze to return.

Power Tools

The power tools contain useful tools to help users through the mesh generation process.
The Immersive Topology Environment for Meshing, also known as ITEM. This panel
contains a wizard-like environment which guides the user through the mesh generation
process through a series of panels and diagnostics. The geometry repair and analysis
tools contains diagnostics and tools for analyzing and repairing geometry, although many
of these can now be found in the ITEM environment as well. The mesh quality and
meshing power tools aid in mesh generation and verification. The geometry and mesh
comparison tool identifies correlation between existing geometry and mesh. The
defeaturing tool assists users with defeaturing geometry in a more automated fashion.
The assemblies tool help users manage assemblies, parts and related metadata.

Environment Control

70

Figure 1. Power Tools Window

• Immersive Topology Environment for Meshing (ITEM)
• Geometry Analysis and Repair Tools
• Meshing Tools
• Mesh Quality Tools
• Defeaturing Tool
• Geometry/Mesh Comparison Tool
• Assemblies Tool

To familiarize yourself with the power tools environment (excluding ITEM), we
recommend that you try the power tools tutorial.
To familiarize yourself with ITEM wizard, we recommend that you try the ITEM tutorial.

Mesh Quality Tools

Cubit_15.5_User_Documentation

71

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh
Quality Tool works on meshed entities to analyze mesh quality based on selected metrics.
Output from the mesh quality analysis can be visualized using color-coded scales. The
mesh quality tool also contains tools to improve mesh quality including smoothing,
refinement, node merging, mesh validation, deleting mesh elements, and repositioning
nodes.

Figure 1. Mesh Quality Tools

Entity Type - The mesh quality tools can only be applied to mesh entities including
volumes, surfaces, hexahedra, quadrilaterals, triangles, or tetrahedra.
Help Button - Opens context specific help for this topic.
Options Button - Clicking on this button will show the Tools>Option menu dialog that
allows users to manually enter metric range settings. The settings are persistent between

Environment Control

72

sessions. For a description of quality metrics and default ranges click on one of the
following links:

• Metrics for Hexahedral Elements

• Metrics for Quadrilateral Elements
• Metrics for Tetrahedral Elements
• Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel
specific to the entity selected. To visualize elements in the graphics window based on a
color-coded quality scale, you must select the entities to visualize and check the "Display
Graphical Summary" check box. Once that box is selected, you must also make sure the
"Draw Mesh Elements" option is selected. Then press the Apply button
Analyze Button - This button starts the quality processing based on the metrics/filters
selected.
Output Window/Tree - The failed elements are shown in the tree under the heading
"Poor Elements". For each metric/filter the output will be listed in a tree format with the
following nodes.

1. The top node on the tree is the name of the metric.
2. The next node under is the owning volume or surface when volumes or surfaces

are analyzed.
3. The next node will be categories or groups of elements. Possible categories are:

o All Above Threshold - represents all mesh elements above the quality
threshold upper range

o All Below Threshold - represents all mesh elements below the quality
threshold lower range

o Top "n" - This will expand into a list, up to 50 elements long, of the worst
offending elements above the upper threshold range.

o Bottom "n" - This will expand into a list, up to 50 elements long, of the
worst offending elements below the lower threshold range.

4. At the lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way
items are sorted, click on the headings. The right-click or context menu will show various
remedies depending on what is selected. Performing an operation on a parent node will
perform the same operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may
use to improve mesh quality and include.

• Smooth Button - Opens the Mesh>Entity>Smooth panel
• Refine Button - Opens the Mesh>Entity>Refine panel
• Move Node - Opens the Mesh>Node>Move Node panel
• Merge Node - Opens the Mesh>Node>Merge Node panel

Cubit_15.5_User_Documentation

73

• Delete Mesh Element - Deletes selected mesh entity
• Validate Mesh - Issues the validate mesh command
• Check Coincident Nodes - Issues the check coincident nodes command.
• Refresh Graphics

Right-Click Context Menu Items

• Draw - issues a draw command for any tree node below the metric name.
• Color Code - Issues a 'quality draw mesh' command for any tree node below

the metric name
• Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command

will draw and label selected entities in the graphics window.
• Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is

an animated zoom feature.
• Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri
• Rotate About - Issues Rotate About command for

volume/surface/hex/quad/tet/tri
• Vis on/off - Issues visibility on/off for volume/surface
• Smooth - Issues generic smooth command for volume/surface/hex/tet
• Smooth Surface Parent - issues a smooth surface command for the surface

parents of selected quads and tris.
• Delete Mesh - issues delete mesh propagate command for vol/surf
• Delete Elements - issues delete element command for mesh entities in all

categories except 'all'
• Validate mesh - validates selected volume or surface
• Check Coincident Nodes - checks for coincident nodes on volume or surface
• Smooth Panel - brings up the correct smooth panel depending on what's

selected
• Smooth Surface Panel - bring up the smooth surface panel with correct surface

ids for selected quads and tris
• Merge Node Panel - brings up the panel to merge nodes
• Move Node Panel - brings up the panel to move nodes
• Reset Graphics - resets the display

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry
tab. In many cases, a model will fail to mesh because of problems with the geometry.
Since the range of geometry problems is so wide, and because these problems can be
hard to diagnose, the Geometry Power Tool has several built-in tools designed to analyze
and repair these problems. The Geometry Repair Tool analyzes geometry for small
angles, overlap, small features, bad geometry definition, blend surfaces, close loops, or
mergeable entities that may affect meshing capability. It also contains a powerful toolkit
of geometry modification methods to fix these problems. All of the common geometry

Environment Control

74

clean-up tools are now in one place on the GUI menu. In addition, there is a window that
lists results from geometry analysis in a tree format, making it easier to find, diagnose,
and solve geometry problems. And Cubit will save your settings, so you can run the same
diagnostic tests each time you use the geometry power tools.

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to
diagnose potential problems for mesh generation. To display a list of tests, click on the
Show Options check box. By default all tests are selected and run on geometry. Some

Cubit_15.5_User_Documentation

75

tests may not apply to specific geometry, or may only need to be run once per geometry
(i.e. bad geometry definition test). Clicking on the box by each test will deselect it.
The geometry analysis inputs and tests are summarized below:
Shortest Edge Length -The shortest edge length is a value that is input by the user. It
determines the minimum allowable threshold for small features. It is used as an input to
test for small curves, small surfaces, small volumes and close loops. The default value
for this is 1. This value should be changed relative to the size of the model. In a very
broad sense, it represents a desired mesh edge length. Curves and surfaces which are
smaller than this size, and which may be troublesome to mesh with the desired
granularity, will be flagged and they can be removed or modified.
Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances
set by the user to determine the definition of small or large angles. The default values are
set at 350 degrees for the large angle and 10 degrees for the small angle. These values
are used to test for angles between curves, surfaces, and at tangential intersections.
Bad Angle Check - The bad angle check will test for small angles between curves,
surfaces, and at tangential intersections. The test will only look for curves or surfaces that
are adjacent.

Tangential Intersection - A tangential intersection is formed when two
parallel surfaces share an edge and have a 180 degree angle between
them. The tangential intersection test is looking for the condition where two
surfaces that meet tangentially share a common edge, and each of the
surfaces has another edge which resides on a third face and forms a small
angle as shown in the following example. Surface 1 and Surface 2 are
tangential to each other and share a common edge. Both Surface 1 and 2
have another edge which resides on Surface 3 and forms a small angle at
the vertex common to all three surfaces.

Environment Control

76

Figure 2. Tangential Intersection

Mergeable Entities Check - As it suggests, this test is looking for entities that overlap
and that can be merged. Pressing the "Merge all" button on the Power Tools will
automatically merge all entities flagged by the merge test.
Overlap Check - The overlap tests look for geometry that are either overlapping or
coincident (exactly on top of each other). Keep in mind that some of these problems may
disappear with imprinting and merging.
Small Features Check - Small features may be necessary and desirable in a model, but
many times they are the result of poor geometry translation or import, or they may just
not be important to the analysis. The small features tests look for small curves, small
surfaces, and small volumes. These tests rely on the user-defined short edge length
parameter. Small curves, including zero-length curves such as hardpoints, are compared
directly against the defined parameter, and flagged if they less than or equal to the given
parameter. Small surfaces and volumes, on the other hand, are compared against their
hydraulic radius. For surfaces the hydraulic radius is 4*surface_area/perimeter. For
volumes the hydraulic radius is 6*volume/surface_area.
Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from
Spatial, Inc. for much of its geometric modeling capabilities. The bad geometry definition
check calls internal validation routines in these libraries, when available, to check for
errors in geometry definition. If the third party library does not provide validation
capabilities, this check will not return anything. Note: ACIS is a trademark of Spatial.
Blend Surface Check - A blend surface is a transition surface between two orthogonal
planes, such as a fillet. The blend surface check identifies the surfaces which meet this
criterion. Many times these surfaces are candidates for the split surface command or the
remove surface command. The split surface command allows you to split these blend
surfaces into two surfaces, making it easier to mesh the volume. The remove surface
command removes the surface and extends the adjoining surfaces until they intersect.
Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a
single surface for which the shortest distance between loops is less than a user specified
tolerance. The tolerance for close loops is the square of the shortest edge length
parameter. Close loops are common around holes and fillets, and are usually found where
one loop is entirely within the other loop. These surfaces are often candidates for removal,
or tweaking.

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up
applicable command panels on the Control Panel. You must press the Apply button on
the Control Panel to execute the command.

Split Surface Button
The split surface tool is used to split a surface into two surfaces. This is useful for blend
surfaces, for example, where splitting a surface may facilitate sweeping. To select a
surface for splitting, click on the surface in the tree view. To select multiple surfaces in
the window, hold the CTRL key* while selecting surfaces (surfaces must be attached to
each other). Then press the split surface button to bring up the Control Panel window with

Cubit_15.5_User_Documentation

77

the ids of selected surfaces in the text input window. The split surface menu is located on
the Control Panel under Geometry-Surface-Modify. You must press the Apply button for
the command to be executed. You can also bring up the Split Surface menu by selecting
surfaces in the tree view and selecting Split from the right click menu.
*Note: For Mac computers, use the command key (or apple key) to select multiple entities

Heal Button
The healing function in Cubit is used to improve ACIS geometry that has been corrupted
during file import due to differences in tolerances, or inherent limitations in the parent
system. These errors may include: geometric errors in entities, gaps between entities,
and the absence of connectivity information (topology). To heal a volume, select the
volume in the geometry repair tree view. Then press the heal button. You may also press
the heal button without a geometry selected in the window, and enter it later. The Control
Panel window will come up under the Geometry-Volume-Modify option with the selected
volume id highlighted. If no entity is selected, or if another entity type is selected, the input
window will be blank. You can also open the healing control panel by selecting Heal from
the right click menu in the geometry power tools window.

Tweak Button
The tweak command is used to eliminate gaps between entities or simplify geometry. The
tweaking commands modify geometry by offsetting, replacing, or removing surfaces, and
extending attached surfaces to fill in the gaps. Tweaking can be applied to surfaces, and
it can be applied to curves with a valence no more than 2 at each vertex. It can also be
applied to some vertices. To tweak a surface, select the surface in the tree view. The
Geometry-Surface-Modify control panel will appear with the selected surface id in the
input window.
Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge
between two orthogonal surfaces. The curve option is located on the Geometry-Curve-
Modify panel under the Blend/Chamfer pull-down option.
Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or
filleted corner between three orthogonal surfaces. The vertex option is located on the
Geometry-Vertex-Modify panel under the Tweak pull-down menu.
Note: Only curves with valence 2 or less at each vertex are candidates for tweaking.
Any other curve will cause the Geometry-Surface-Modify menu to appear.

Merge Button
The merge command is used to merge coincident surfaces, curves, and vertices into a
single entity to ensure that mesh topology is identical at intersections. Unlike other buttons
on the geometry repair panel, the merge button acts as an "Apply" button itself. All
geometry that is listed under "mergeable entities" will be merged.

Remove Button
The remove button is used to simplify geometry by removing unnecessary features. To
use the remove feature, click on the surface(s) in the Tree View. Right click and select
the Remove Option, or click the Remove icon on the toolbar. The Control Geometry-
Surface-Modify control panel will appear, with the surface ids in the input window. The

Environment Control

78

Remove control panel can also be accessed from the right-click menu in the Geometry
Power Tools window. Select options and press apply.

Regularize Entity Button
The regularize button is used to remove unnecessary topology. Regularizing an entity will
essentially undo an imprint command.

Remove Slivers
The remove slivers button is used to remove surfaces with less than a specified surface
area. When ACIS removes a surface it extends the adjoining surfaces to fill the gap. If it
is not possible to extend the surfaces or if the geometry is bad the command will fail.

Auto Clean Geometry
The auto clean button is used to perform automatic cleanup operations on selected
geometry. These automatic cleanup operations include forcing sweepable configurations,
automatically removing small curves, automatically removing small surfaces, and
automatically splitting surfaces.

Composite Button
The composite button is used to combine adjacent surfaces or curves together using
virtual geometry . Virtual geometry is a geometry module built on top of the ACIS
representation. Surfaces may be composited to simplify geometry in order to facilitate
sweeping and mapping algorithms by removing constraints on node placement. It is
important to note that solid model operations such as webcut, imprint, or booleans, cannot
be applied to models that have virtual geometry. Both curves and surfaces may be
composited.

Collapse Angle Button
The collapse angle button uses virtual geometry to collapse small angles. This is
accomplished by partitioning and compositing surfaces in a way so that the small angle
gets merged into a larger angle. Pressing the collapse button on the geometry power
tools will open the collapse menu under Geometry-Vertex-Modify control panel. This
panel can also be opened by selecting Collapse from the right click menu in the Geometry
Tools window.

Collapse Surface Button
Pressing this button will open the collapse surface panel on the main control panel. The
collapse surface function uses virtual geometry to eliminate small surfaces on the model
to improve mesh quality. It is most useful for blend surfaces.

Collapse Curve Button
Pressing this button will open the collapse curve panel on the main control panel. The
collapse curve command is used to eliminate small curves using virtual geometry.

Reset Graphics Button
The reset graphics button will refresh the graphics window display.

Right Click Menu

Cubit_15.5_User_Documentation

79

The following right click menu is available from the geometry power tools. Specific options
depend on the type of entity selected.

• Zoom To- Zoom to selected entity in the graphics window

• Reset Zoom - Reset graphics window zoom
• Fly-in - Animated zoom
• Locate - Labels the selected entities in the graphics window. Refresh screen to

hide.
• Draw - Displays only selected entities by themselves.
• Highlight - Highlights selected entities.
• Draw with Neighbors - Displays only selected entities with all attached

neighbors
• Clear Highlights - Clears all highlighted entities and reset graphics
• Reset Graphics - Reset graphics window
• Tweak - Opens the tweak menu in the main control panel
• Remove - Opens the remove menu in the main control panel
• Remove Slivers - Opens the remove sliver menu in the main control panel
• Remove all - Available when the clicking on an item in the "small surfaces" list.

Opens the remove menu in the main control panel with all surfaces in the
category as inputs. The individual option will be selected on the panel by default.

• Split - Opens the split surface or split curve menu in the main control panel,
depending on the type of entity selected.

• Auto Clean - Opens the auto clean menu in the main control panel.
• Regularize - Issues the regularize command on selected entity.
• Merge Selected - Merge selected entity from mergeable entities list
• Merge All - Merge all entities listed in the mergeable entities list
• (Virtual) Composite - Opens the composite menu in the main control panel
• (Virtual) Collapse - Opens the collapse angle menu the main control panel
• Collapse Surface (Virtual) - Opens the collapse surface menu on the main

control panel

The following right click options are available when category headings are selected.

• Analyze Geometry - Similar to pushing the Analyze button.
• Highlight All - Highlight all members of this category.
• Draw All - Display only members of this category.
• Locate All - Label all members of this category.

Defeature Tool

The Defeature Tool is capable of removing small irrelevant curves and surfaces. These
small curves and surfaces are one of the main sources of low quality elements and
meshing failures. Sliver surfaces and curves generally exist at fillets, chamfers, and sliver
surfaces at misalignments in imprinted assembly models.

Environment Control

80

Figure 1 - Defeature Power Tool

Defeaturing small curves and surfaces involves three main steps:

1. Analyze the model to automatically detect small curves and surfaces.
2. Manually deselect, if needed, detected small curves and surfaces.
3. Execute the defeature tool to remove small curves and surfaces.

Step 1 requires specifying volume ids (e.g. all) and a tolerance (e.g. 0.6) as shown in
Figure 1. Clicking “Analyze” button will automatically find small curves and surfaces in
the volumes specified. Figure 2 shows the highlighted small curves and surfaces with the
label information. Figure 3 shows a zoom view of a small surface.

Cubit_15.5_User_Documentation

81

In Step 2 the user is allowed to deselect entities by unchecking entities from the list
“Entities to be Defeatured”. Users can also use “Highlight”, “Draw”, and “Locate” buttons
to examine the automatically detected entities (see Figure 2).
In Step 3 actual defeaturing is performed by clicking the “Execute” button (see Figure
5). Figure 4 shows the zoom view of a defeatured volume. Defeatured volumes are
created in a new user specified group (by default in “defeature_group”) as shown in Figure
6. Only the volumes that have small curves and surfaces will be defeatured. Also, by
default old original volumes are deleted and new defeatured volumes (child entities) will
use the corresponding old ids. Please use the option “Keep Originals” if you want to have
both old original and new defeatured volumes.
NOTE:

1. The new defeatured volumes are in MBG format. That is defeatured volumes are
facet based instead of NURBS based ACIS volumes. Therefore, it is highly
recommended to perform NURBS based operations such as webcut and imprint
before calling defeature.

Command Syntax:

Set tolerant mesh mbg only

This command forces the mesh to associate with new defeatured volume. Currently, this
command must be called before calling the defeature command below.

Defeature curve_length <value> [Curve <ids>] [Curve <ids>] surface_prox2d

<value> [Surface <ids>] [group <id>] [keep]

curve_length <value>: Curves with length less than or equal to <value> are
automatically detected as candidate for defeaturing if auto_identify is
specified. Otherwise, [Curve <ids>] must be specified.
surface_prox2d <value>: Surfaces with narrow region between opposing bounding
curves are automatically detected as candidate for defeaturing if auto_identify is
specified. The 2d proximity <value> specified in detecting surfaces containing narrow
regions. If auto_identify is not specified, then [Surface <ids>] must be specified.
group <id>: Defeatured volumes are added to the group id specified.
keep: If keep argument is specified original entities are kept along with new defeatured
volumes. If keep argument is not specified, then original entities are deleted and new
defeatured volumes and its subentities (surfaces, curves, and vertices) will use the ids of
original volumes.

Preserving Critical Geometric Entities

Before defeaturing the geometry, the user may wish to specify geometry that will be
preserved during defeaturing. The below given "Fix" keyword is used to preserve any
entity. The user may specify a volume, surface, curve, or vertex to fix.

Mesh Tolerant Fix [Volume|Surface|Curve|Vertex] <range>

Environment Control

82

To reverse the effects of fixing a geometric entity, the user may "free" an entity using the
following syntax

Mesh Tolerant Free [Volume|Surface|Curve|Vertex] <range>

Example for fixing geometric entities:
reset
brick x 10
brick x .1
move vol 2 x 5
unite all
mesh tolerant fix surf all
mesh tolerant fix curve all
Defeature curve_length .2 curve 31 29 27 26 24 32 13 30 17 28 22 25
surface_prox2d .2 surface 13 14 15 16 12

Sample Journal File:

Even though the defeature tool is mainly intended to driven by the GUI, it can be used via
command line. Without the GUI, it will be harder to provide the list of small curves and
surfaces to the defeature command. Here is a sample journal file:
import simple assembly
import acis 'assembly11a.sat'
perform any ACIS based operations such as webcutting and imprinting first
imprint all
merge all
enable the developer only command
set developer on
force the mesh to associate with defeatured MBG volumes
set tolerant mesh mbg only
create a new group to store defeatured volumes
group 'defeatured_vols' add volume all
perform actual defeaturing by specifying the volume ids, tolerance, and small curve/surf
ids.
defeatured volumes will be placed in the user specified group id and original entities
can be
 # kept along with new defetured volume using “keep” option.
defeature volume all curve_length 0.3 curve 107 103 102 100 88 85 82 80 9 6 4 2 214
212 211 210 203 200 199 197 188 187 185 183 170 167 164 162 234 232 227 225 254
253 252 251 249 248 243 242 272 271 270 269 265 264 259 258 288 287 286 285 281
280 275 274 304 303 302 301 297 296 291 290 312 311 307 306 surface_prox2d 0.3
surface 47 48 50 51 41 43 40 42 2 4 1 3 111 112 118 120 121 122 124 126 128 129 130
132 134 135 136 138 140 141 142 144 81 82 83 84 88 89 90 91 94 95 96 97 100 101
102 103 group 2 keep
del any old original volumes if you don’t want it anymore
delete vol 1 to 11
enable visibility of only defeatured vols

Cubit_15.5_User_Documentation

83

vol all vis off
vol all in group 2 vis on
set scheme to tetmesh
vol all in group 2 scheme tetmesh
set mesh size
vol all in group 2 size 1
mesh defeatured vols
mesh vol all in group 2
disable developer only command
set dev off

Figures

Environment Control

84

Figure 1: Specify Volume ID and Tolerance before clicking “Analyze”

Cubit_15.5_User_Documentation

85

Figure 2: Use “Highlight”, “Draw”, and “Locate” to visualize small curves and surfaces

Environment Control

86

Figure 3: Zoom view of a small curve and surface

Cubit_15.5_User_Documentation

87

Figure 4: Zoom view of defeatured volume

Environment Control

88

Figure 5: Click Execute button to Defeature automatically/manually selected entities

Cubit_15.5_User_Documentation

89

Figure 6: New defeature_group contains defeatured volumes in MBG format

graphics window

Graphics Window

Environment Control

90

Figure 1. Graphics Window

The graphics window is used to view and select entities. Select one of the options below:

• View Navigation

• Selecting Entities
• Key Press Commands
• Right Click Commands for the GUI Graphics Window
• Viewing Curve Valence

Viewing Curve Valence

To view your model based on a color-coded curve valence scale, click on the curve
valence button on the Display Toolbar. Curve valence refers to the number of surfaces
attached to each curve. Curves with exactly two surfaces attached are shown in blue.
Curves with exactly one surface are shown in red. Curves with more than two attached
surfaces are shown in white.

Cubit_15.5_User_Documentation

91

This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will
usually have a valence > 2, while unmerged curves typically have a valence of 2. Curves
with a valence of 1 may indicate a floating surface.

Key Press Commands for the GUI

Several commands have a key press shortcut. These commands will be executed with
respect to the currently selected entities; see the following table:

Shortcut
Key

Command

l
List information about the current entity to the output
window.

i
Toggle the visibility of the selected entity (make invisible
or visible).

e Echo entity id to command line.

Select the next entity.

Select the previous entity.

0 Toggle picking of vertices.

1 Toggle picking of curves.

2 Toggle picking of surfaces.

3 Toggle picking of volumes.

4 Toggle picking of groups.

 0 Toggle picking of mesh nodes

 1 Toggle picking of mesh edges.

 2 Toggle picking of mesh faces.

3 Toggle picking of mesh hexes.

F5 Refresh graphics window

S Activate/inactivate graphics clipping plane

Right Click Commands for the GUI Graphics Window

Clicking the Right mouse button in the graphics window will bring up a menu. One of two
menus will appear, depending on whether an entity is currently selected.

Environment Control

92

With Entity Selected

• Select Other- Brings up a dialog with alternate entity selections
• Select Extended - Brings up the Extended Selection dialog
• Zoom To - Zoom to the selected entity
• Rotate About - Changes the center of rotation to the centroid of this entity
• Draw - Draw the selected entity
• Isolate - Turn all but the selected entities invisible
• Add to BC/Group/Part - Opens a dialog box where you can add the selected

entity to an existing boundary condition, group, or part.
• Remove from BC/Group/Part - Opens a dialog box where you can remove the

selected entity from an existing boundary condition, group, or part.
• Add to Picked Group - Add this entity to the picked group.
• Remove from Picked Group - Remove this entity from the picked group
• Visibility Off - Turn selected entities invisible
• Mesh - Mesh the selected entities
• Measure - Measures between two entities, or two vertices on a curve.
• Delete Mesh - Delete the mesh on selected entities (but not interval or scheme

information)
• Reset Entity - Reset selected entities by deleting mesh and interval information
• List Info - Show the menu of additional list commands
• Delete - Delete selected entities

Without Entity Selected

• Reset Zoom - Reset zoom to original configuration
• Refresh- Refresh the graphics display
• All Visible - Make all entities visible
• Display Options - Opens Options Menu to display options

Selecting Entities in the GUI

Geometry, mesh entities, and boundary conditions can be selected with the left mouse
button directly in the graphics window. Before selecting any entity, however, the correct
selection mode must be chosen. This dictates which entity types will be available for
selection in the graphics window. The Select Toolbars, which are located above the
graphics window by default, are used to change the entity selection modes.

Figure 1. The Selection Toolbars for Geometry and Mesh Entities

Cubit_15.5_User_Documentation

93

Figure 2. The Selection Toolbar for Boundary Conditions

Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes
will only permit selection of that particular entity type within the graphics window. These
selections will not override a Pick Widget in the command panel.
If both volume and surface entities are picked on the select toolbar, a single click will
select the surface while a double click will select the volume. More detailed information
on selecting and specifying entities can be found in Entity Selection and Filtering .

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick
toolbar, that entity will become highlighted. This is called pre-selection and is used as a
graphical guide to show which entity will be picked when the mouse button is clicked.
Graphics pre-selection may slow down your graphics speed for large models. You can
disable pre-selection from the Tools->Options dialog box.

Polygon, Circle and Box Select

The polygon/circle/box selection feature allows you to select entities by drawing a box,
circle or polygon on the screen. To create a box or circle selection, press and hold the
<CTRL> button* while clicking and dragging the left mouse button. Release the left mouse
to complete the box or circle select. To create a polygon selection, press and hold the
<CTRL>* button while clicking and dragging the left mouse button. Click the left mouse
button to create another side for the polygon. Press either of the other buttons to close
the polygon and complete the selection. Only entities that are in active selection mode
will be selected. To change between the polygon, circle or box method, press the Toggle
Between Polygon/Box/Circle Select button on the Select Toolbar. Clicking the Toggle
Selected Enclosed/Extended button will toggle between Enclosed Selection and
Extended Selection. Enclosed selection will only select entities that are fully enclosed
within the bounding box, circle or polygon. Extended selection will select entities that are
either fully OR partially enclosed within the bounding box. Toggling the the Select X-Ray

Environment Control

94

will select entities that are hidden behind other entities. X-ray selection will only apply to
smoothshade and hiddenline graphics modes.
*Note: For Mac computers use the command (or apple) button for polygon or box select.

View Navigation in the GUI

There are two different default paradigms for view navigation: Cubit command line and
Cubit GUI. The user is allowed to customize the mouse settings as desired. Mouse
settings in the GUI are modified by accessing the Tools pull-down menu, then select
Options. The Mouse Settings dialog is shown below (See Mouse-Based Navigation for
the command line version).

Figure 1. Mouse Settings Dialog

Rotations

Cubit_15.5_User_Documentation

95

Where the cursor is in the graphics window will dictate how the view will be rotated. If the
cursor is outside of an imaginary circle, shown in Figure 2, the view will be rotated in 2d,
around an axis normal to the screen. If it is inside the circle, as in Figure 3, the rotations
will be in 3d, about the current view spin center. The spin center can be changed to any
x-y-z location. The most common way is by zooming to an entity, which changes the spin
center to the centroid of that entity. The "view at" command will change the spin center
without zooming:

View at vertex 3

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal

to the screen

Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin

center

Zooming

Environment Control

96

To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown
in Figure 4. The wheel on a wheel mouse will also zoom.

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or
vertically, as shown in Figure 5.

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

drop down menus

Drop Down Menus

Cubit_15.5_User_Documentation

97

The Cubit Drop-Down Menus, located at the top of the Cubit Application Window provide
access to capabilities such as file management, checkpoints, display manipulation,
journaling, system setup, component management, window management, and help.

Cubit (Mac Only)

This menu contains the Preferences dialog box, also called the Options dialog box on
other platforms. It also contains the About Cubit menu and the Quit Cubit option. It is only
available on Mac computers.

File

This menu provides common file operations, including importing and exporting of
geometry and meshimport and export. A list of recently saved or imported files is also
provided, allowing a quick way to import current or recent work. Non-Mac users can also
exit and reset the program from this menu (These options are found under the Cubit tab
for Mac Users).

Edit

This menu only provides a way to enable the Undo feature of the system. If Undo is
enabled, one level of Undo is available to the user.

View

The View Menu lists all available toolbars and windows in the current CUBIT session.
Selecting a toolbar or window will make it visible. Deselecting a toolbar or window will
hide it. You can also hide an undocked window or toolbar by clicking on the small "x" in
the upper right corner. For more information on docking and undocking toolbars, see
CUBIT Application Window.

Display

The Display Menu controls display options for the graphics window. These options are
explained below:

• View Point - Controls the camera view point. Choices are front, back, top,
bottom, right, left and isometric views.

• Render Mode - Controls visibility modes, including: wireframe, true hidden,
hidden line, transparent, and shaded.

• Geometry - Controls geometry visibility
• Mesh - Controls mesh visibility
• Graphics Composite - Controls the visibility of composited entities in the

graphics window.
• Refresh - Updates the graphics display
• Background - Changes the background color
• Zoom In - Enlarges the model in graphics window

Environment Control

98

• Zoom Out -Shrinks the model in graphics window
• Zoom To Fit - Enlarges or shrinks model in the graphics window so it fills the

whole screen
• Toggle Perspective - When this option is selected, the entities in the graphics

display window are drawn in perspective mode.
• Toggle Scale - Turns on or off a graphical scale that can be drawn in the

graphics window to obtain a bearing on model or part sizes.
• Toggle Clipping Plane - Turns on or off the graphics clipping plane
• Toggle Clipping Plane Manipulation - Turns on or off manipulation of the

graphics clipping plane
• Show Curve Valence - Turns on or off the curve valence highlighting

Tools

The Tools Menu contains access to GUI-specific tools and options. These options are
explained below.

• Journal Editor - Opens journal file editor. The Journal Editor is used to write,
edit, play, and save journal files. It can also be used to create and edit Python
scripts. A built-in translator will convert between the two files types.

• Play Journal File - Plays a specified journal file. You can browse through files
and folders on your computer to select the journal file to play.

• Options - Opens the Option dialog box. This dialog box controls all of the
preferences for the GUI including display colors and widths, mouse settings,
journal file options, mesh and geometry defaults, and general layout preferences.
MAC users can find this menu under the Cubit tab.

• Components - Opens the Components dialog box. This window is used to load
and unload external and internal components.

Help

• Tip of the Day - Open the tip of the day box.
• Cubit Tutorials - Opens a menu of step-by-step tutorials for Cubit.
• Cubit Manual - Menu to bring up on-line searchable documentation (this

document).
• About - Menu to show the current version number and trademark information.

Mac users can find the version number under the About Cubit menu in the Cubit
drop-down.

Options Menu

To change program preferences in the Graphical User Interface select: Tools > Options
. The options menu includes:

• Command Panels

Cubit_15.5_User_Documentation

99

• Display
• General
• Geometry Defaults
• History and Cubit Journalling
• Label Defaults
• Layout
• Mesh Defaults
• Mouse Settings
• Post Processor
• Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Command Panels

This menu controls how command panels are displayed and managed, including which
style of button hierarchy is displayed.

Display Preferences

This menu controls entity display features for the graphics window which include the
following:

• Display Triad in Graphics Window

• Enable Pre-Selection

• Background Color

• Perspective Angle

• Line Width

• Highlight Line Width

• Text Size

• Ambient Intensity

• Ambient Color

• Light Intensity

• Light Color

General Preferences

This menu controls general program options including the following:

• Prompt for Unsaved Application Data - When this is checked and the user opens a new

.cub file or exits the application with unsaved changes, a dialog box will pop up asking if

they want to save changes first. The user can uncheck this option to prevent that dialog

box from appearing. This is checked by default.

• Prompt for Unsaved Journal Data - When this button is checked and the user closes

the journal file editor with unsaved changes the program will prompt to save the changes.

The user can uncheck this button to prevent the dialog box from appearing. It is checked

by default.

Environment Control

100

• Change to Script Directory for Playback - When this option is checked, Claro will

change the working directory to the directory the script is in when the script/journal file is

run. When the script is finished, Claro will change the directory back to the previous one.

This is useful when using relative paths in a journal file. When the option is unchecked,

Claro won't change the directory when a journal file is run in which case the user may

have to manually change the working directory when their journal file has relative paths.

• Prompt When Translating from Python - When checked, if the user translates a python

script to a cubit journal file, the journal editor will warn them that commands may be lost.

When unchecked, the journal editor will not issue the warning. There is a checkbox on

the warning dialog that sets this option as well.

• Default Syntax - Sets the default syntax to use when creating a new journal file in the

editor. The Cubit option is only available when the cubit component is loaded.

• Show Startup Splash Screen - Option to hide the startup splash screen on opening

Claro.

Geometry Defaults

This menu controls the geometry defaults.

• Vertex Size

• Use Silhouette on Geometry
• Silhouette pattern

The user can also change the default geometry engine to one of the following:

• ACIS

• Facets

The faceting tolerance can also be controlled from this menu to change the way facets
are drawn in the graphics window.

History Preferences

This menu controls the input window history and journal file options. These include:

• Maximum Number of Commands - The max number of commands kept in the current

command history.

• Comment Line Filtering - Whether to count comments in command history.

• Maximum Number of Lines - Maximum number of lines in input window.

• Journal Command History - Whether to use a journal file to save command history.

Default is to use a journal file.

• Journal File Directory - Where the journal file will be saved. Default is the starting

directory.

• Journal File Name - The name of the journal file. A name will be given by default if

one is not specified. The default name for the GUI version of cubit is historyxx.jou with

xx as the highest used number between 01 and 999 incremented by 1.

Cubit_15.5_User_Documentation

101

Cubit History Preferences

• Use Cubit Journaling - When this option is checked, Cubit journaling will be
used. By default it is checked.

• Output Log - When this option is checked, you can save error log to a separate
output file.

Label Defaults

This menu controls the geometry and mesh entity labels in the graphics window.

• Text Size

• Label Geometry and Mesh Entities Toggles- Choose label visibility for each type
of geometry or mesh entity

Layout Preferences

This menu option controls input window formatting and control panel docking options.

• Font for command line workspace

• Font size for command line workspace
• Reset Window Layout Button - Used to reset GUI windows to their default

positions

Also included in the layout preferences is a list of available windows with a checkbox to
show/hide each window.

Cubit Layout Settings

This menu controls the layout of Cubit specific buttons and tabs on the GUI.

• Show script tab - Shows the script tab on the command line window

• Use Labels on Buttons- Option to apply a label to each button on the control
panel

• Preferred Location (currently under construction)

Mesh Defaults

• Node Size
• Element Shrink
• Mesh Line Color - The same as "Color Lines" command.
• Default Element Type - Tet/Tri or Hex/Quad
• Surface Scheme Coloring (used in Meshing Power Tool) - This option allows

you to select different colors for surface schemes when visualized using the
meshing power tools.

Mouse Settings

Environment Control

102

This menu controls mouse button controls. Pressing the Emulate Command Line
Settings button will cause all of the settings to simulate mouse controls in the command
line version of CUBIT. For a detailed description of mouse settings see the View
Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable
directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the
different quality metrics see the respective pages:

• Hexahedral metrics

• Quadrilateral metrics
• Tetrahedral metrics
• Triangular metrics

Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo"
button on the Toolbar.

 Enable Undo Button

Alternatively to turn undo on and off, the following command may be used in the command
line:

 undo {on|off}
The Undo capability is implemented for geometry commands including webcutting,
geometry creation, transformations, and booleans. Multiple undos are also allowed. The
commands will be undone in reverse order of their execution.

Limitations

• The undo button is not currently enabled for most meshing commands

control panel

Command Panels

Cubit_15.5_User_Documentation

103

The Command Panels provide a graphical means of accessing almost all of the CUBIT
functionality. The main CUBIT Command Panel is divided into seven modes. Each of
these modes pertains to a major component of the CUBIT application. To view information
about each of the tools in the Control Panel select the help icon on each panel to access
context specific help.

Figure 1. The CUBIT Control Panel

A brief description of the functionality of the Control Panel window follows.

Control Panel Functionality

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are
arranged by task.

Environment Control

104

The modes are:

• Geometry

• Mesh
• Analysis Groups and Materials
• FEA Boundary Conditions
• CFD Boundary Conditions
• Analysis Setup (Export)
• Post-meshing Tool Launch

All of the geometry related tasks, for instance, can be found under the Geometry mode.
When a mode is selected, a second row of buttons becomes available. The second row
of buttons shown depends on the selected mode. For example, if Geometry is selected,
the second row of buttons will contain operations that can be performed on geometry,
such as creation, modification, decomposition, boolean, merging, deleting, and so forth.

Selecting an operation will cause a row of geometry entity buttons to be displayed.
Specific, entity-based operations will be shown after selecting the entity type, as shown
below.

Cubit_15.5_User_Documentation

105

 Note: This hierarchy is different than previous versions of Cubit. In previous
versions the second row of buttons was geometry entity types, such as volume, surface,
curve, vertex, and group. If a user wishes to use the 'classic' hierarchy for geometry, an
option can be selected in Tools/Options/Command Panels.

Environment Control

106

The 'classic' hierarchy's button hierarchy for creating a solid brick is the following:

For all other modes, such as mesh, analysis groups, and so forth, the 'classic' button
hierarchy remains.

Cubit_15.5_User_Documentation

107

All command panels are constructed similarly. Each abstracts a set of Cubit commands.
Options are selected using check boxes, radio buttons, combo boxes, edit fields, and
other standard GUI widgets. Each command panel includes an Apply button. Pressing
the Apply button will generate a command to Cubit. Nothing happens until and unless the
Apply button is pressed.

Environment Control

108

Note: The edit fields are free form, which means the user may enter
any valid string into the fields. Any string that is valid for the command
line is valid for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor
placed over a blank portion of the command panel, the user may right-click to select Reset
Data which will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric IDs, required for the current
command, can be entered. IDs can be entered in several ways:
Simple Keyboard entry
ID numbers can be entered directly in the field. Each ID must be separated with a space.
Select the field first before typing.
Graphical selection
IDs can be entered automatically by selecting entities directly in the Graphics Window.
The current entity available for selection is based on the current entity selection mode. In
some cases, not all entities of the current entity selection mode will be available for
picking. The program may automatically filter the applicable entities based on the context
of the current command
Geometry Tree selection
IDs may be entered by selecting the corresponding geometric entity from the geometry
tree. To select multiple entities use the <ctrl> key.
Ranges
A range of IDs may be typed into the field. For example:

1 to 5

will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and
except can also be used. Any range that can be entered directly on a CUBIT command
line can also be used in the ID input field. See Command Line Entity Specification for a
description of the syntax.
As Part of Other Entities
Syntax can be entered in the ID Input field that will specify an entity based upon its
topological relationship to other entities For example, if a Vertex Selection Type Button
was highlighted, entering

in surf 1

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set
of syntax rules for specifying entities based upon topology relationships. See Command
Line Entity Specification for a description.
In Groups
Entities that are part of groups may be specified in the ID Input Field. For example, if the
Vertex Selection Type Button is highlighted, entering:

in picked

will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped

Cubit_15.5_User_Documentation

109

Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an ID Input Field, the following menu
options will appear:

• Done Selecting - Enters current selection and removes cursor from selection
window

• Select Other - Displays selection dialog
• Select All - Selects all available entities and puts "select all" in input window
• Highlight - Highlight the current selection
• Zoom To - Zooms to current entity in the selection field within the graphics

window
• Rotate About - Change center of rotation to the center of selected entity
• Draw - Draws the entities listed in the input field within the graphics window
• Isolate - Turns visibility off for all entities other than the selected entities. Similar

to draw command, but entities remain hidden with a graphics refresh. Select All
Visible in the graphics window to turn visibility back on.

• Visibility Off - Removes the current entity from the input window and hides it on
the graphics screen

• Mesh - Mesh the listed entities using either an assigned scheme or a default
scheme where none is assigned

• Delete Mesh - Deletes mesh on all entities listed in the input window
• Reset Entity - rehighlights the entities listed in the input field within the graphics

window
• List Info - Displays a sub menu of choices including basic, geometry, and mesh.

Selecting the basic option will list schemes, visibility, and interval assignments.
The geometry option will add information about the geometry and geometry
engine. The mesh option will list information about mesh entities.

• Delete - Deletes the current geometric object in the input window.

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed
in parenthesis { } will be evaluated when the command is executed. For example:

{10*0.02}

is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including
mathematical functions and boolean operations. See the section, APREPRO for a
description of syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel.
A convenience feature implemented for such panels is an advancing pickwidget feature.

Environment Control

110

Pressing the middle mouse button after selecting an entity will advance to the next id
input field.

CUBIT Application Window
The default CUBIT Application Window is shown in the following image.

Figure 1. The CUBIT Application Window

Graphics Window- The current model will be displayed here. Graphical picking and view
transformations are done here.
Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing
tool, meshing quality tool, and ITEM Wizard.
Property Editor - The Property Editor lists attributes of the current entity selection. Some
of these properties can be edited from the window.
Command Panel - Most Cubit commands are available through the command panels.
The panels are arranged topologically, by mode.
Command Line Workspace - The command line workspace contains both the cubit
command and error windows. The command window is used to enter cubit commands
and view the output. The error window is used to view cubit errors.
Drop Down Menus - Standard file operations, Cubit setup and defaults, display
modes, and other functionality is available in the pull-down menus.

Cubit_15.5_User_Documentation

111

Toolbars - The most commonly used features are available by clicking toolbar icons.

Context Sensitive Help in the GUI

The Graphical User Interface has a context-sensitive help system. To obtain help using
a specific window or control panel, press F1 when the focus is in the desired window. It
may be necessary to click inside a text box to switch focus to a particular window. If no
context specific help is available, it will open the cubit help documentation where you can
search for a particular topic.

Customizing the Application Window

All windows in the CUBIT Application can be Floated or Docked. In the default
configuration, all windows are docked. When a window is docked the user can click on
the area indicated below.

Figure 2. A docked window. Click and drag to float.

By dragging with the left mouse button held down, the window will be un-docked from the
Application Window. Dragging the window to another location on the Application Window
and releasing the mouse button will cause it to dock again in a new location. The bounding
box of the window will automatically change to fit the dimensions of the window as it is
dragged. Releasing the mouse button while the window is not near an edge will cause
the window to Float. To stop the window from automatically docking, hold the CONTROL
key down while dragging.

Environment Control

112

Figure 3. A Floating Window

Cubit_15.5_User_Documentation

113

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the
title bar of the window and dragging it to its new docked location.
Note: Double clicking on the title bar of an floating window will cause the window to redock
in its last docked position.

Command Line Workspace

The Command Line Workspace is the interface for command interaction between the
user and the CUBIT application. The user can enter commands into this window as if they
were using the command line version of CUBIT. Journaled commands will be echoed to
this screen, even if they were not typed in manually. Thus, if the user wants to know what
the command sequence for a particular action on the GUI is, they can watch for the
"Journaled Command:" line to appear. In addition, this screen will contain important
informational and error messages. The command window has the following four tabs:

1. Command

2. Error
3. History
4. Script

The Script window is hidden by default. To turn it on open the Tools-Options dialog and
check the "Show Script Tab under Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of
Cubit. Commands can be entered directly by typing at the CUBIT> prompt. This window
also prints out error messages, informational messages, and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be
active. Activate the command window by clicking anywhere inside the window.
Commands are typed in at the CUBIT> prompt. If you do not remember the specific
command sequence you can type help and the name of the command phrase. The input
window will show all of the commands that contain that word or phrase. Alternatively, if
you know how a command starts, but do not remember all of the options, you can type ?
at the end of the command to show all possible command completions. See Command
Syntax for an explanation of command syntax rules.

Repeating Commands

Environment Control

114

Use the Up and Down arrow keys on the keyboard to recall previously executed
commands.
Commands can be repeated in other ways as well.

• Hitting the enter key while the cursor is on a previous command line will copy that
command to the current prompt.

• The command window supports copy and paste for repeating commands.

Focus Follows Cursor

Beginning with version 13.0, Cubit includes a 'focus follows cursor' option for the
command window. The option can be enabled and disabled from the
Tools/Options/General options panel. The setting is persistent between sessions and is
disabled by default.
Please note, the focus follows cursor behavior is available only in the command
window. All other windows or widgets require the user to click the mouse in order to grab
focus.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there
are errors, a warning icon will appear on the tab. The icon will disappear when you open
the window to view errors. The error window only displays the error output, which can
make it easier to find and read the error output. The command that caused the error will
be printed along with the error information. If the command was from a journal file, the file
name and number will be printed next to the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be
configured in the options dialog on the History page. You can re-run the commands in the
history window using the context menu. You can also clear the history using the context
menu.

Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To
create a Python script using the Script tab, start typing at the "%>" prompt. At the end of
each line, hit Enter to move to the next line . To execute the script, press Enter at a blank
line. Scripts may also be written in the Journal File Editor.
The Claro Python interpreter works as though you were entering lines from the Python
command prompt. This means that a blank line is interpreted as the end of a block. If you
want to add whitespace for clarity you have to add a # mark for a comment on any white
line that is in a loop or a class.

Cubit_15.5_User_Documentation

115

One possible solution to this problem is to create two Python files. The first file can contain
the complex set of Python instructions(program.py) including blank lines. The second file
will read and execute the first file. An example syntax for the second file is given below.

f = file("program.py")
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.
The interface between cubit and python is the "cubit" object. This object has a method
called cmd which takes as an argument a command string. Thus, the following command
in the script window:

cubit.cmd("create brick x 10")

will create a cube with sides 10 units long. The following script is a simple example that
illustrates using loops, strings, and integers in Python.

%>for i in range(4):

. . x=i*3

. . for j in range(4):

. . y=j*3

. . for k in range(4):

. . z=k*3

. . mystr="create vertex x "+str(x)+" y "+str(y)+" z "+str(z)

. . cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced,
even creating customized windows and toolbars. For a complete list of python/cubit
interface commands see the Appendix.

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is
floating it can be redocked by double-clicking the solid blue bar. By default, it will always
be redocked in the bottom of the application window. To change the size of the floating
window, click and drag the edge of the window. To change the height of the docked
window, click and drag the top edge or right edge.

Journal File Editor
The Journal File Editor is a built-in, multi-document text editor that can read, edit, play,
and translate CUBIT journal files and Python Scripts. To open the journal file editor, select

the icon on the File Tools toolbar, or from the Tools Menu.

Environment Control

116

Figure 1. The Journal File Editor

The Journal File Editor can be used to create a new Python or Cubit command script. By
default, a new journal file will be in Cubit command syntax. You can change the default
in the options dialog. On the "General" options page, under the Journal Editor heading,
you can select the default syntax. You can change the new journal file's syntax using the
translation buttons as well. When you have the correct syntax selected, enter the
commands in the order you want them executed. You can play the commands all at once
using the play button on the toolbar. You can also play a few commands at a time. Select
the commands you want to play. Then, right click and select the "Play Selected" menu
item.
The Journal File Editor can also be used to edit an existing journal file. Use the File >
Open menu item to open the file you want to edit. You still have all the command play
options with an existing journal file.
You can import commands entered in the Command Line Workspace. The File > Import
menu item contains a list of available imports. Select the tab you want to import from.
Only the current commands will be imported from the command line. Some of the
commands you previously entered might not show up if you have the recommended text
trimming turned on. Text trimming improves the application's performance for speed and
memory. It will trim off the oldest text in the window when a size limit is reached. To get
all the command from your current session, make sure that command journaling is turned
on.
The Journal File Editor can be used to edit Python or Cubit command scripts. It can also
translate between the two forms. Translating from Python to Cubit commands can cause
commands to be lost. The Journal File Editor will warn you when doing so.

Cubit_15.5_User_Documentation

117

The Journal File editor can be used to edit multiple files at the same time. Each document
is displayed in its own tab. The tab shows the journal file's syntax and name. If you close
the Journal File Editor with unsaved data, it will prompt you to save changes for each of
the modified journal files you have open.

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.

• New - Creates a new journal file. The new journal file is placed in a new tab.
• Open - Used to select a journal file to open.
• Save - Saves the current journal file.
• Undo - Undo the last text change.
• Redo - Redo the last text change, after Undo.
• Cut - Standard text cut operation
• Copy - Standard text copy operation
• Paste - Standard text paste operation
• Play Journal File - Plays the entire journal file
• Translate to Python - Translates the current Cubit commands in the journal file

to Python scripts.
• Translate to Cubit - Translates the current Python script in the journal file to

Cubit commands.

Other Functionality Available in the Journal Editor

The context ('right-click') menu in the journal editor includes several additional functions,
including:

• Comment Selected Lines - Highlight any text, select 'comment selected lines',
and the highlighted lines will be commented.

• Uncomment Selected Lines - Highlight any text, select 'uncomment selected
lines', and the highlighted lines will be uncommented.

• Clear - select this menu item to clear the contents of the journal file.
• Find - Selecting 'find' from the context menu, or from the edit menu, will bring up

a dialog enabling the user to find text in the journal file. Options are available to
do case-sensitive searches, change search direction, and so forth.

Property Editor
The Property Editor is a window that lists properties about the current entity selection.
Some of the properties, like CUBIT ID, entity type, or geometry engine, are listed for
reference only. Other attributes, like name, or mesh intervals, color, mesh scheme, or
smooth scheme can be edited from the window. The Property Editor is located on the left
panel in the GUI. The highlighted entity/entities in the graphics window are listed in the
property editor window. The Property Editor also lists information about selected mesh

Environment Control

118

entities, boundary conditions, and assemblies. Selecting an object from the Tree View will
also open the object in the property editor.

Figure 1. Property Editor Window

The row of buttons on the top of the editor are shortcuts to common commands. These
include:
>

Meshes the selected entity/entities at their current interval
and scheme settings

Smooth selected entity using the current smoothing scheme

Preview mesh intervals on selected entity

Delete mesh on specified entity (do not propagate to lower
order entities)

Reset entity to default settings and delete mesh

Cubit_15.5_User_Documentation

119

Calculates volumes and surface areas

Delete current entity

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some
of the fields cannot be changed, some can be edited from an input field, and others are
edited by selecting from a list, or by opening the corresponding window from the Control
Panel.
If multiple entities are selected, the attributes that are similar to both entities will be shown.
Changing an attribute from the property editor will change that attribute on both entities.
If multiple entities are selected the total volume, surface area, and length of all entities
will be shown.
Below is a summary of properties listed for each attribute type.

General Attributes

• Entity ID - CUBIT ID for geometry or boundary condition element
• Entity Type - Geometric type such as Volume, Surface, Curve, Vertex
• Name - Name by which the entity can be referred to from within CUBIT instead of

using its ID. The entity name can be edited from this window.
• Color - Opens a dialog box with available colors. A color name can also be input

directly into the text field. See Appendix for a list of available colors.

Geometry Attributes

• Is Merged - Returns "Yes" if this entity is merged
• Is Virtual - Returns "Yes" if this entity is a virtual entity
• Location - Returns the location of specified vertex.
• Geometry Engine - ACIS or Mesh-Based Geometry
• Volume - The volume of the specified body
• Surface Area - Surface area of selected surface
• Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
• Length - Length of selected curve

Meshing Attributes

• Is Meshed - Returns "Yes" if the entity is already meshed
• Number of Elements - Similar to "List Totals" command
• Requested Intervals - Number of requested mesh intervals on element. This

can be edited from this window. The number must be an integer
• Requested Size - Requestd interval size for element. Clicking on box will open

the interval specification panel on the control panel. The interval size can also be
entered manually in the text box.

• Meshed Volume - The meshed volume may be slightly different than the actual
element volume due to the mesh approximation on curved surfaces.

Environment Control

120

• Meshed Area - The meshed area may be slightly different than the actual
surface area due to mesh approximation on curved edges.

• Length of Meshed Edges - Combined total of mesh edge lengths on curve
• Mesh Scheme - The mesh scheme for this entity. This can be changed from the

property editor by selecting from the drop-down list.
• Smooth Scheme - The smooth scheme for this entity. This can be changed from

the property editor by selecting from the drop-down list.

Boundary Condition Attributes

• ID - Boundary condition ID. This is an arbitrary user-defined ID that is exported
with the finite element model. This value can be edited from the property editor

• Name - A user-defined name that is included in the metadata for that object. This
value can be edited from the property editor.

• Description - A user-defined description that is included in the metadata for that
object. This value can be edited from the property editor.

• Color - Opens a dialog box with available colors. A color name can also be input
directly into the text field. See Appendix for a list of available colors.

• Element Type - The finite element type for this block, nodeset, or sideset.
• Element Count - The total number of elements for this block or sideset
• Node Count - Total number of nodes (available for nodesets only)
• Attribute Count and Attributes- The attributes represent material specification

data that is associated with the element block. These values can be changed in
the property editor. You can specify up to 10 attributes per block.

Toolbars
The CUBIT toolbars provide an effective way for accessing frequently used commands.
Below is a brief description of each of the available toolbars. To view a description of the
function of each tool, hold the mouse over the tool in the CUBIT Application to display
tool tips.
Users may customize and share toolbars.

File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Figure 1. File Toolbar

From left to right, the tool buttons are as follows:

• New - Issues a Reset command to begin a new session

• Open - Displays file open dialog
• Save - Displays file save dialog
• Import - Displays import dialog

Cubit_15.5_User_Documentation

121

• Export - Displays export dialog
• Journal Editor - Opens the journal editor
• Play Journal File - Plays a journal file
• Play ID-Less Journal File - Plays a journal file in Id-less mode
• Pause - Pause the playback of a journal file
• Custom Toolbar Editor - Opens the custom toolbar editor

Display

Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve
valence display options in the Graphics Window.

Figure 2. Display Toolbar

From left to right, the tool buttons are as follows:

• Undo On/Off - Toggle undo functionality on/off
• Undo - Undo last operation
• Wireframe - View in wireframe mode
• True Hidden Line - View in true hidden line mode
• Hidden Line - View in hidden line mode
• Transparent - View in transparent mode
• Shaded - View in shaded mode
• View Geometry - Toggle geometry display on/off
• View Mesh - Toggle mesh display on/off
• View BC - Toggle boundary condition display on/off
• Graphics Composite - Toggle graphics composite line display on/off
• Refresh - Refresh the graphics display
• Zoom In
• Zoom Out
• Zoom to Fit
• Toggle Perspective
• Scale - Toggle display of the scale
• Clipping Plane - Toggle display of the clipping tool
• Clipping Manipulation - When clipping plane is active, toggle clipping tools
• Curve Valence - Display curve valence in the graphics window
• Overlapping Surface - Locate (point to) overlapping surfaces in the model
• Enclosed/Extended - Toggle between enclosed and extended selection mode
• X-Ray - Toggle x-ray selection mode on/off
• Selection Shape - Toggle between box, sphere, polygon selection box

Select

Controls the Entity Selection Mode for picking or selecting entities.

Environment Control

122

Figure 3. Select Toolbars

From top to bottom:

• Geometry Selection Filters

• Groups
• Bodies
• Volumes
• Surfaces
• Curves
• Vertices

• Mesh Selection Filters
• Node
• Edge
• 2d (Triangle, Quadrilateral)
• 3d (Hexahedral, Tetrahedral, Pyramid, Wedge)

• Boundary Condition and Material Containers
• Nodeset
• Sideset
• Block

• FEA Boundary Conditions
• Force
• Pressure
• Heatflux
• Displacement
• Temperature
• Convection
• Acceleration
• Velocity
• Contact Regions
• Contact Pairs

• CFD Boundary Conditions
• Axis

Cubit_15.5_User_Documentation

123

• Exhaust Fan
• Fan
• Inlet Vent
• Intake Fan
• Interface
• Interiors
• Inlet Mass Flow
• Outflows
• Outlet Vents
• Periodics
• Periodic Shadows
• Porous Jump
• Farfield Pressure
• Inlet Pressure
• Outlet Pressure
• Radiator
• Symmetries
• Inlet Velocities
• Walls

Toolbar Customization
For many years Cubit has provided users with the ability to create custom tool buttons.
These custom buttons launch pre-defined journal or Python scripts. With the release of
Cubit 15.4 this capability has been expanded.

Menu

• Importing an Existing Toolbar
• Exporting a Toolbar
• Creating a new Toolbar
• Creating a Command Panel Button
• Creating a Journal File Button
• Creating a Python Script Button
• Creating a Basic Tool Button
• Modifying an Existing Toolbar

Importing an Existing Toolbar

• Locate and press the Custom Toolbar Editor button located on the File Tools
button bar. This will launch the Custom Toolbar Editor.

Environment Control

124

• Select Import from the context menu

Cubit_15.5_User_Documentation

125

From this dialog a user may import an entire package containing multiple toolbars or a
single toolbar. In this example we will import an entire package containing multiple
toolbars.

• After selecting import, an import summary is shown.

Environment Control

126

• Select Finish

Cubit_15.5_User_Documentation

127

• Select OK to finish the import

The new toolbar and buttons will be displayed as the last toolbar on the GUI. It is a docking
window so it can be moved and placed anywhere on the GUI.

Creating a New Toolbar

• Locate and press the Custom Toolbar Editor button on the File Tools button bar.
This will launch the Custom Toolbar Editor.

• Press the Add button

Environment Control

128

• Name the new toolbar and press OK

• Press the Add button in the Buttons area

Cubit_15.5_User_Documentation

129

A user may define 4 different types of toolbar buttons

• Command Panel
• Journal File
• Python Script
• Tool Button

Creating a Command Panel Button

A Command Panel Button enables users to launch a command panel with the push of
a button. A command panel button can be defined one of three ways:

Use the definition dialog

• Select Command Panel from the New Button type pulldown menu
• Press OK
• Complete the dialog indicating

• the name of the button
• the icon to use
• the panel ID of the command panel to show -- see instructions for find

the panel ID (below)

Environment Control

130

• an optional description of the command panel
• Press OK to save the definition and exit the dialog
• Or, press Apply to save the definition

To find the Command Panel ID:

• Press the browse button next to the Panel ID edit field to launch the Command
Panel Browser

• Navigate the browser to locate the desired command panel
• Select the desired command panel
• Press OK to make the selection
• The Panel ID will be shown in the Panel ID edit field

Cubit_15.5_User_Documentation

131

Use the context menu on a command panel

• Show the context menu on a command panel
• Select Add to Toolbar
• Select the toolbar to which this command panel will be added
• an icon representing the command panel will be added to the selected toolbar

Environment Control

132

Drag a command panel onto the toolbar

• Using the mouse, "drag" the command panel onto the desired toolbar
• an icon representing the command panel will be added to the selected toolbar
• In the image below, the Surface Collapse command panel is being dragged onto

a toolbar

Cubit_15.5_User_Documentation

133

• The resulting toolbar looks like the following

All command panels include a context menu which can be accessed by clicking on an
empty place in the command panel and using the mouse to show the menu.

Creating a Journal File Button

A Journal File Button will launch a journal file when pressed. The journal file may reside
anywhere on the file system. A journal file button is defined by:

• Select Journal File from the New Button type pulldown menu

• Press OK
• Complete the dialog indicating

• the name of the button
• the icon to use
• the name of the journal file to play
• an optional working directory

Environment Control

134

• an optional description of the journal file
• Press OK to save the definition and exit the dialog
• Or, press Apply to save the definition

Creating a Python Script Button

• Select Python Script from the New Button type pulldown menu
• Press OK
• Complete the dialog indicating

• the name of the button
• the icon to use
• the name of the Python script to execute
• an optional working directory
• an optional description of the Python script

• Press OK to save the definition and exit the dialog
• Or, press Apply to save the definition

Cubit_15.5_User_Documentation

135

Creating a Basic Tool Button

The "Basic" too button has been available to users for many years. It contains a set of
commands that execute when the user presses the button.

• Select Tool Button from the New Button type pulldown menu

• Press OK
• Complete the dialog indicating

• the name of the button
• the icon to use
• an optional working directory
• the commands to execute (these are the same commands used in any

journal file)
• an optional description of the commands

• Press OK to save the definition and exit the dialog
• Or, press Apply to save the definition

Environment Control

136

Modifying an Existing Toolbar

• In the Custom Toolbar Editor select the toolbar to modify
• Press the Add (green plus-sign) button to add a new button
• Press the Delete (red minus-sign) to remove a button
• Select the check box to hide or show the button
• Change the button order by selecting a button in the Buttons dialog and

dragging to a new position
• Any other parameter may be modified using the Edit Tool Button dialog
• Press OK to save the definition and exit the dialog
• Or, press Apply to save the definition

Cubit_15.5_User_Documentation

137

Exporting a Toolbar

A user may want to share a toolbar, or a set of toolbars, with another user. This is easily
accomplished.

• Launch the Custom Toolbar Editor dialog by selecting the icon.
• Or, select the Edit item from the toolbar's context menu
• Select Export from the context menu

• Provide a file name to the Export Toolbars dialog. The file extension will be
appended automatically

• The file type will be .tar.gz
• Click Next on the dialog

Environment Control

138

• In the next dialog select the toolbars to be included in the export
• Click Next on the dialog

• Optionally add files or folders that contain journal files or Python scripts
referenced by tool buttons

• Click Finish in the dialog
• Look for the .tar.gz file in the designated folder

Cubit_15.5_User_Documentation

139

graphics window control
Graphics Window Control
The graphics display windows present a graphical representation of the geometry and/or
the mesh. The quality and speed of rendering the graphics, the visibility, location and
orientation of objects in the window, and the labeling of entities, among other things, can
all be controlled by the user.
Unless the -nographics option was entered on the command line, a graphics window
with a black background and an axis triad will appear when CUBIT is first launched. The
geometry and mesh will appear in this window, and can be viewed from various camera
positions and drawn in various modes (wire frame, hidden line, smooth shade, etc.). This
section will discuss methods for manipulating the graphics with the mouse and for
controlling the appearance of entities drawn in the graphics window.
All geometry, mesh, and simulation objects created in CUBIT are put into the view
automatically. Visibility, color and various other attributes of entities in the view can be
controlled individually. In addition, CUBIT can also optionally show entities in a temporary
view mode independent of their visibility. Drawing of items in temporary mode can be
added to the regular view mode to customize the appearance. The overall view is
controlled by various attributes like graphics mode, camera position, and lighting, to
further enhance the graphics functionality.
The graphics view relies on OpenGL to render the scene which leverages the graphics
hardware of the system. CUBIT requires the graphics hardware to support OpenGL
version 3.2 or newer. If OpenGL 3.2 is not available, CUBIT will attempt to fall back to a
software based implementation bundled with CUBIT. This software based approach may
not perform as well as a hardware-based approach.

Environment Control

140

The following items discuss the various graphics capabilities available in CUBIT:

• Command Line View Navigation: Rotate Zoom and Pan
• Mouse Based View Navigation: Rotate Zoom and Pan
• Updating the Display
• Graphics Modes
• Drawing and Highlighting Entities
• Drawing Locations, Lines and Polygons
• Mesh Visualization
• Graphics Clipping Plane
• Entity Labels
• Colors
• Geometry and Mesh Entity Visibility
• Graphics Camera
• Graphics Lighting Model
• Graphics Window Size and Position
• Saving Graphics Views
• Hardcopy Output
• Miscellaneous Graphics Options

Graphics Clipping Plane
The graphics clipping plane feature allows the user to temporarily cut parts of the model
away to help visualize the interior of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Plane <plane> | [Location <location>] [Direction

<direction>]]

Graphics Clip Manipulation {On|Off}

The GUI tool bar buttons to enable and manipulate the Graphics Clipping Plane are
shown below:

The first command activates the graphics clip manipulation tools in the graphics window.
The keyboard shortcut "Shift-S" while the graphics window is active will also activate the
clipping plane. The manipulation of the clipping plane is controlled as follows:

• Red Line - Clicking and dragging the left mouse on plane bounded by a red tube
moves the plane along the arrow

• Center Ball - Clicking and dragging the left mouse on the center ball moves the
origin of the rotation plane

• Arrow - Clicking and dragging the left mouse button on the arrow head or tail
changes the direction on which the plane moves

Cubit_15.5_User_Documentation

141

• Right Mouse Button - Clicking and dragging the right mouse button on any part
of the window resizes it

• Middle Mouse Button - Clicking and dragging the middle mouse button on the
red plane moves both the center of rotation and the cutting plane

• White Bounding Border - Clicking and dragging the left mouse on the white
bounding border moves the whole widget

Figure 1. Graphics Clipping Plane

The second command turns on/off the visibility of manipulation widget in the graphics
window. The clipping plane is still active, but the controls are hidden. The normal mouse-
based view navigation controls apply.

Examples

brick x 10
sphere rad 1
graphics clip on location -2 0 0
rotate -45 about y
#shows the sphere inside the brick
brick x 10
cylinder rad 2 z 12
subtract 2 from 1
mesh vol 1
quality vol 1 draw mesh

Environment Control

142

graphics clip on
#shows the mesh quality on interior elements

Figure 2. Viewing mesh quality of interior elements

Colors

Specifying Colors in Commands

There are five ways to refer to a color in a command. They are

1. <Color_Name>

2. User "name"
3. ID <id>
4. Default
5. Highlight

The first option uses the name of a pre-defined color as listed in the Available Colors
Appendix. This option may not be used for user-defined colors. An example of a pre-
defined color assignment is given below:

color volume 1 lightblue

The second option is used with user-defined colors only. Include the name of the user-
defined color in quotes. Pre-defined colors will not work with this command.

color volume 1 user "mycolor"

The third option allows you to identify a pre-defined color by its ID. The color IDs are also
listed in the Available Colors appendix. This option is rarely used.

Cubit_15.5_User_Documentation

143

color volume 1 id 5

The default option is used to set an entity's color to its default value. The default color
may also be specified in drawing commands, but the command's behavior will be the
same as if the color option had not been included at all.

color volume 1 default

The fifth option refers to the current highlight color.

draw curve 1 tangent color highlight

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available
Colors. Users may also define their own colors in addition to those defined by CUBIT.
Each color is defined by a name and by its RGB components, which range from 0 to 1.
To define an additional color, use either of the commands

Color Define "<name>" RGB <r g b>

Color Define "<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary
to clear a color definition. This is done with the command

Color Release "<color_name>"

Color names can be listed with the command

Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To
view a chart of color names and IDs, including those for user-defined colors, use the
command

Draw Colortable

Assigning Colors

Colors may be assigned to all geometric entities, and to some other objects as well. To
assign a color to an entity or other object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}

Color Background {<color_name>| id <color_id>} [<color_name2>|id

<color_id2>]

Color Block <block_id_range>{<color_name> | id <color_id>}

Environment Control

144

Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id

<color_id> | Default}

Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id

<color_id> | Default}

Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id

<color_id> | Default}

Color Highlight {<color_name>| id <color_id>}

Color Lines <color_name>

Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }

Color Surface <surface_id_range> [Geometry|Mesh]

{<color_name>|Default}

Color Title {<color_name>|id <color_id>}

Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id

<color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified
entity, without changing the color of the entity geometry itself. Conversely, including the
Geometry keyword will change the geometry color without changing the mesh color.
Including both keywords is identical to including neither keyword.
Colors are inherited by child entities. If you explicitly set the color for a volume, for
example, all of its surfaces will also be drawn in that color. Once you assign a color to an
entity, however, it will remain that color and will no longer follow color changes to parent
entities. To make an entity follow the color of its parent after having explicitly set another
color, use Default as the color name in the color command.
Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do
not take effect, however, unless the nodeset, sideset, or element block is drawn with a
Draw command.
The background color and the color used to draw highlighted entities can be changed to
any color.
By default, the axes are labeled with a white X, Y, and Z, indicating the three primary
coordinate directions. If the background is changed to white, these labels are impossible
to read; the color used to draw axis labels can be changed to any color. Changing the
axis label color will change the text color for both the model axis and the triad (corner
axis).

Cubit_15.5_User_Documentation

145

When several entity types are labeled, it can become difficult to determine which labels
apply to which entities. To help distinguish which entities are being referred to by the
labels, you may want to change the color of labels for specific entity types.
When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not
drawn in the same color as the surface. This is to prevent confusion between mesh edges
and geometric curves, and to make the mesh edges more visible. The color used to draw
mesh edges in this situation is known as the line color, and is gray by default; this color
can be changed to any color.

Assigning Global Colors

Colors may be assigned globally also. To assign a global color, use one of the following
commands. Global color assignment is useful if one desires all entities to appear the
same.

Color Global {<color_name>| id <color_id> | default}

Color Global Surface {<color_name>| id <color_id> | default} Curve

{<color_name>| id <color_id> | default} Vertex {<color_name>| id <color_id>

| default}

The first command assigns the desired color to all geometry entities. The color may be
enter by color name or color id. The default option resets colors to the default value.
The second command assigns the desired colors to surfaces, curves and vertices. All
three value must be entered. For example, users my select global colors for surface and
vertex and specify that curves have default colors.

Drawing, Locating, and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itself,
or several entities as a group. This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]

where Entity specification is an entity list as described in Command Line Entity
Specification. This command clears the display before drawing the specified entity or
entities. Specification of a color will draw those entities in that color. This will not
permanently change the color of the entity. The zoom option will zoom in on the selected
entities after drawing them in the graphics window. If the add option is specified, the
display is not cleared, and the given entity is added to what is already drawn on the
screen. The entities specified in this command are drawn regardless of their visibility
setting (see Geometry and Mesh Entity Visibility for more details about visibility).
Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while
the mouse is in the graphics window. This will clear the screen and then draw only those
entities that are currently selected.
Entities can be highlighted using the command

Environment Control

146

Highlight {Entity specification}

This command highlights the specified entities in the current display with the current
highlight color. Highlighting can be removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, type Display.
The Locate command will label and point to the specified entity or location in the graphics
window. The command syntax is:

Locate <entity_list>
Locate <location options>

For example, suppose you have an idless reference to a curve of:

Curve (at 5 5 0 ordinal 1)

You can find the curve with the following command:

locate location 5 5 0

Additionally, the visibility of individual entities, or sets of entities, can be controlled with
the following visibility commands.

{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh]

Visibility {on|off}

Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be
drawn with variations of the Draw command. As with the other Draw commands, typing
Display after drawing these objects will restore the scene to its normal display.

Displaying Entity Orientation

The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with
the command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face
| Tri] Color <color> [Add]

Surface normal command colors the surfaces using two different colors. The surface
exposed to the positive half space (i.e, along the direction of normal), will always be
colored black. The surace exposed to the negative half space will be colored using the
specified <color>.
If the Face or Tri qualifier is included in the Draw Normal command, the normals for all
faces or tris that belong to the specified surface are drawn.

Cubit_15.5_User_Documentation

147

Arrow representing the normal will be displayed if "Length" is specified

The forward, or tangent, direction of a curve can be drawn with the command:

Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]

If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with
the sweep algorithm, the source and target may be visually identified with the command

Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If the Source keyword is included, the normal of the source surface or surfaces will be
drawn in green into the specified volume. If the Target keyword is included, the normal of
the target surface or surfaces will be drawn in red into the specified volume.

Model Axis

Environment Control

148

The model axis may be drawn with the command

Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the
three coordinate directions. The length of those lines is determined by the length
parameter, which defaults to 1.

Surface Isoparameter Lines

Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u

<number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be
equal. You may specify instead a number of lines for each of the u and v parameters. The
u-parameter lines will be drawn in red and the v-parameter lines will be drawn in blue.

Surface Overlap

The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]

This command will draw the curves of each of the surfaces in green, and the portion of
the surfaces that overlap in red. The Add keyword will draw the overlapping surfaces on
top of the current graphics display. Without the Add keyword, the display will only show
the specified surfaces and their overlapping regions.

Volume Overlap

The overlapping region between two volumes may be drawn with the command

Draw Volume <id> <id> Overlap [Add]

This command will draw the input volumes in transparent mode and draw the volume(s)
of intersection as red, shaded solids. The Add keyword will draw the results on top of the
current graphics display. Without the Add keyword, the display will only show the
specified volumes along with the intersection volume(s).

Geometry Preview

Several options are available for previewing geometry without actually generating it. This
is typically used in conjunction with webcutting and surface creation. The following Draw
commands can be used for previewing geometry:

Draw Location On Curve

Cubit_15.5_User_Documentation

149

Draw Location
Draw Direction
Draw Line
Draw Polygon
Draw Axis
Draw Plane
Draw Cylinder

Drawing Locations, Lines and Polygons
In some cases it may be useful to simply draw a location, line or polygon to the screen to
help visualize some aspect of the model. Locations, Lines and polygons are not geometry
or mesh entities and are only visible until a refresh or display command is issued.

Drawing Locations

Draw Location {options}... [color <color_name>][no_flush]

A single point or series of points may be drawn to the graphics window using this
command. Any number of locations may be specified that will be drawn to the graphics
window as single points. Options for specifying a location are described in the section
Specifying a Location. The optional color argument allows for a custom color to be used.
The available color definitions are located in the appendix. Other options for drawing
locations and directions are also available dscribed in the section Drawing a Location,
Direction, or Axis.

Drawing Lines

Draw Line Location {options} Location {options} ... [color
<color_name>][no_flush]

A straight line or series of segments may be drawn to the graphics window using this
command. Any number of locations may be specified that will be connected with a line.
Options for specifying a location are described in the section Specifying a Location. The
optional color argument allows for a custom color to be used. The available color
definitions are located in the appendix.

Drawing Polygons

Draw Polygon Location {options} Location {options} Location
{options} ... [color <color_name>][no_flush]

A filled polygon may be drawn to the graphics window using this command. Any number
of locations may be specified as vertices. At least three locations must be specified.
Locations for vertices can be described using any of the standard location options
described in Specifying a Location. The optional color argument allows for a custom color
to be used for the fill. The available color definitions are located in the appendix.

Buffered Drawing

Environment Control

150

The optional no_flush argument for both the draw location, draw line and draw
polygon commands may also be used when many simultaneous draw commands are
being issued. This prevents the graphics from being drawn after each command is issued,
which can be very inefficient. Instead the draw commands are buffered and sent all at
once to be drawn. The following command:

graphics flush

can be used to force a draw following a series of commands that use the no_flush option.

Example

The following is a simple example that will draw the figure below using cubit commands

draw polygon location pos -1 -1 0 location pos 1 -1 0 location pos 1 1
0 location pos -1 1 0 color yellow no_flush
draw line location pos -1 0 0 location pos 1 0 0 color blue no_flush
draw line location pos 0 -1 0 location pos 0 1 0 color blue no_flush
draw location pos 0 0 0 color red no_flush
graphics flush

Cubit_15.5_User_Documentation

151

Entity Labels
Most entities may be labeled with text that is drawn at the centroid of the entity.
Mesh entities can be labeled with their ID number or their Element ID. Element ID labels
are only valid after putting the mesh entities into a block.
Geometric entities can be labeled with their ID number or with other information.
Labels for groups of entity types can be turned on or off.
The following commands will accomplish this.

Label [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label All [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label Body [On|Off| Name [Only|ID] |ID|Interval|Size| Merge |Firmness]

Label Curve [On|Off|Name [Only|ID] |ID| Interval| Size| Merge| Firmness]

Label {Hex|Tet|Face|Tri|Edge} [On|Off|ElementId]

Label Element [On|Off]

Label Geometry [On|Off|Name [Only|ID] |ID| Interval| Size| Merge|

Firmness]

Label Mesh [On|Off]

Label Node [On|Off|ElementId|SphereId]

Label Surface [On|Off|Name [Only|ID] |ID| Interval| Scheme| Size| Merge|

Firmness]

Label Vertex [On|Off|Name [Only|ID] |ID|Interval| Size| Merge| Firmness]

Label Volume [On|Off|Name [Only|ID] |ID |Interval| Size |Scheme |Merge

|Firmness]

The meaning of each of each label type is listed below. Note that some label types don't
make sense for every entity type.

On - The same as IDs.
Name - Name of the entity, if the entity has been named. Default name
otherwise.
Name Only - If the entity has been named, use the name as the label.
Otherwise, don't use a label.
Name IDs - If the entity has been named, use the name as the label.
Otherwise, use the ID as the label.
Interval - The number of intervals set on the entity.

Environment Control

152

Firmness - Same as interval, but followed by a letter indicating the firmness
of the interval setting (see the Mesh Generation chapter for description of
firmness settings.)
Merge - Whether or not the entity is mergeable. Note that this is sometimes
not clear, because, for example, a curve may show that it isn't mergeable
because one of its owning surfaces may be unmergeable, while another
owning surface may be mergeable.
Size - The mesh size set on this entity.
ElementId - The Global Element Id of each element. Will only be labeled
for hexes, tets, tris, etc. which are in a block.
SphereId - The id of the sphere element associated with this node, if there
is one. A sphere element is only associated with a node if the node (or it's
geometry owner) is put into a block.

Note: Three dimensional entity types such as body will have their labels displayed in the
center of the entity. Thus, in the smooth shade and hidden line graphics modes the
labels will be hidden
The GUI includes command panels to manipulate the labels settings for any given entity
type. The command panel for the Volumes labels settings is shown below as an example:

Graphics Camera
One way to change what is visible in the graphics window is to manipulate the camera
used to generate the scene. A scene camera has attributes described below, and

Cubit_15.5_User_Documentation

153

depicted graphically in Figure 1. The values of these camera attributes determine how
the scene appears in the graphics window.
These view settings may be accessed in the GUI via the Display/View Point menu.
Position (From) - The location of the camera in model coordinates.
View Direction (At) - The focal point of the camera in model coordinates.
Up Direction (Up) - The point indicating the direction to which the top of the camera is
pointing. The Up point determines how the camera is rotated about its line of sight.
Projection - Determines how the three-dimensional model is mapped to the two-
dimensional graphics window.
Perspective Angle - Twice the angle between the line of sight and the edge of the visible
portion of the scene.

Figure 1: Schematic of From, At, Up, and Perspective Angle

The camera can be moved to one of several predefined orientations using the command

View {Front | Back | Top | Bottom | Right | Left | Iso}

At any time, the camera can be moved back to its original position and view using the
command

View Reset

To see the current settings of these attributes, use the command

List View

The current value of the view attributes will be printed to the terminal window, along with
other useful view information such as the current graphics mode and the width of the
current scene in model coordinates.
Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or
directly as follows.

Changing Camera Attributes Directly

Environment Control

154

Camera attributes are most easily modified using interactive mouse manipulation (see
Mouse-Based View Navigation) or using the rotate, pan and zoom commands. However,
the camera attributes can also be modified directly with the following commands:

From <x y z>

At <x y z>

At

{Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>

Up <x y z>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective
is off, an orthographic projection is used. With a perspective projection, the scene is drawn
as it would look to a real camera. This gives a three-dimensional sense of depth, but
causes most parallel lines to be drawn non-parallel to each other. If an orthographic
projection is used, no sense of depth is given, but parallel lines are always drawn parallel
to each other.
In a perspective view, changing the perspective angle changes the field of view by
changing the angle from the line of sight to the edge of the visible scene. The effect is
similar to a telephoto zoom with a camera. A smaller perspective angle results in a larger
zoom. This command has no effect when graphics perspective is off.
The GUI tool bar button for changing the graphics perspective mode is as follows:

Graphics Modes
By default, the scene is viewed as a smoothshaded model. That is, only curves and edges
are drawn, and surfaces are transparent. Surfaces can be drawn differently by changing
the graphics mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent }

[Geometry | Mesh]

The GUI tool bar buttons for manipulating the graphics modes are as follows:

Examples and a brief description of each mode are shown below

Cubit_15.5_User_Documentation

155

WireFrame - Surfaces are invisible. (This mode
can also be accessed by typing 'wireframe' at
the command prompt.)

HiddenLine - Surfaces are not drawn, but they
obscure what is behind them, giving a more
realistic representation of the view. (This mode
can also be accessed by typing 'hiddenline' at
the command prompt.)

SmoothShade - Surfaces are filled and
shaded. Shaded colors are interpolated across
the entire surface using the graphics lighting
model. This produces the most realistic results.
(This mode can also be accessed by typing
'shaded' at the command prompt.)

Transparent - Renders surfaces as semi-
transparent shaded images, allowing objects to
shine-through from behind. Is not supported on
all platforms, and generally requires advanced
graphics hardware. (This mode can also be
accessed by typing 'transparent' at the
command prompt.)

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed,
etc.; click here for a list of valid line patterns).

Displaying Using the Element Facets

There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are
meshed. If Graphics Use Facets is on, the mesh facets (element faces) are used to render

Environment Control

156

the model. This is particularly helpful for curved surfaces which may cut through some of
the mesh faces. A comparison of graphics facets on and off is shown below.

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on

(right); note how geometry facets on the curved surface obscure mesh edges when
facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry.
By default, the underlying surfaces are marked with dashed lines. To toggle this setting
so that underlying surfaces are not shown, use the following command:

Graphics Composite {On|Off}

Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not

displayed

The GUI tool bar button for toggling the display of graphics composites is as follows:

Cubit_15.5_User_Documentation

157

Graphics Window Size and Position
By default in the command line version, CUBIT will create a single graphics window when
it starts up (to run CUBIT without a graphics window, include -nographics on the command
line when launching CUBIT.) The graphics window position and size is most easily
adjusted using the mouse, like any other window on an X-windows screen. However, the
size of the graphics window can also be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>

Graphics WindowSize Maximum

Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum
commands, the previous window size can be restored by using the command

Graphics WindowSize Restore

The position of the graphics window can also be controlled using the Graphics
WindowLocation command.

Graphics WindowLocation <x> <y>

The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner
of the monitor.
In addition, on Unix workstations, the graphics window size and position can be controlled
by placing the following line in the user's .Xdefaults file:

cubit.graphics.geometry XxY+xpos+ypos

where the X and Y are window width and height in pixels, respectively, and xpos and
ypos are the offsets from the upper left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and
view. Each window has an ID, from 1 to 10, shown in the title bar of the window.
Commands that control camera attributes apply to only one window at a time, the active
window. Currently, the display lists of all windows are identical.
The following commands are used to create, delete, and make active additional graphics
windows. These commands are also valid in the GUI (by typing at the command line
prompt.)

Graphics Window Create [ID]

Graphics Window Delete <ID>

Environment Control

158

Graphics Window Active <ID>

Hardcopy Output
CUBIT's Graphical User Interface provides the capability to print the contents of the
graphics window directly to a printer. Use File/Export/Screen Shot to access this
functionality.
In addition, a command line option is provided for dumping the contents of the graphics
window to postscript or image files.
The command for generating hardcopy output files is:

Hardcopy '<filename>' {jpg | gif | bmp | pnm | tiff | eps} [Window

<window_id>]

Each of these options saves the view in the specified window (or the current window), to
the specified file, in the format indicated. The file can then be sent to a printer or inserted
into another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing
screen images. In many cases, these applications may be more convenient for
interactively capturing and saving a portion of the screen than the Hardcopy command
discussed above. On UNIX platforms, the XV utility written by John Bradley is a good
choice. In some cases this utility or its equivalent may be included with your system
software. For Windows users, the Print Screen button will send a copy of the screen to
the clipboard which can then be pasted into a paint program.

Graphics Lighting Model
For shaded graphics display modes, the lighting model controls the intensity of the
highlights and shadows for objects displayed in the graphics window. CUBIT offers two
commands for controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}

Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular
direction to the light source. In contrast, the light intensity is the effect of a simulated light
source placed at the viewer's line of sight. The light intensity affects the intensity of the
highlights and shadows, while the ambient intensity affects the brightness of the objects
in the overall scene.
An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents
maximum. Alternatively r g b color components can be used. This changes the color of
the directional or ambient light source, affecting the resulting color of the objects in the
model.

http://www.trilon.com/

Cubit_15.5_User_Documentation

159

The GUI Options panel for manipulating these settings is found under Tools/Options and
is shown below:

Mesh Visualization
A volume mesh can be viewed one layer at a time using a visualization tool known as
mesh slicing. This tool divides the elements of one or more volumes into axis-aligned
layers, and then allows the mesh to be displayed one layer at a time. Mesh slicing is
especially useful to view the quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh
edge length is used to determine the thickness of each layer, a layer may be more than

Environment Control

160

one element deep. Unstructured meshes, meshes with large variations in edge length,
and non-axis-aligned meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which
slices the mesh of the entire model, or by entering the command

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.
Key presses in the graphics window which control mesh slicing are summarized in the
following table.

Key Action

X,Y or Z Initiate mesh slicing using the X, Y or Z plane

K Move the slicing plane in the positive coordinate direction

J Move the slicing plane in the negative coordinate direction

S Toggles drawing single or multiple slice layers in the view

Q Exit from mesh slicing mode

See Graphics Clipping Plane for instructions on clipping the graphics using the GUI
clipping plane.

Miscellaneous Graphics Options
In addition to the commands discussed above, there are several other graphics system
options in Cubit that can be controlled by the user.
They include:

• Silhouette Lines

• Line Width
• Highlight Line Width
• Text Size
• Point Size
• Graphics Status
• Graphics Scale
• Model Axis
• Corner Axis
• Resetting the Graphics
• Shrink

• Facet Tolerance

Silhouette Lines

Cubit_15.5_User_Documentation

161

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't
represent true geometric curves, but help visualize the shape of a surface. Silhouette
lines can be turned on or off with the command

Graphics Silhouette [On|Off]

The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot |

Dash_3dot | Long_dash | Phantom]

Line Width

This option controls the width of the lines used in the wireframe, shaded, transparent,
hiddenline and truehiddenline displays. The default is 1 pixel wide. The command to
set the line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to
a width greater than the global line width often makes it easier to locate highlighted
entities. If this setting has not been changed, the line width set in the command above is
used. After using this command, it is necessary to refresh the graphics by either typing
"display" or clicking the Refresh Graphics button. The command to set the highlighting
line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this
command is the desired size relative to the default size. After using this command, it is
necessary to refresh the graphics by either typing "display" or clicking the Refresh
Graphics button. The command to set the text size is

Graphics Text Size <size>

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or
heads of vectors; alternatively, the size of points representing nodes or vertices can be
set independently of the global point size. The commands to set the point sizes are

Graphics Point Size <size>

Environment Control

162

Graphics [Node|Vertex] Point Size <size>

Graphics Status

All graphics commands can be disabled or re-enabled with the command

Graphics {On|Off}

While graphics are off, changes in the model will not appear in the graphics window, and
all graphics commands will be ignored. When graphics are again turned on, the scene
will be updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain
a bearing on model or part sizes. The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]

Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled with
the command

Graphics Axis [Type <AXIS | Origin>] [On|Off]

The command is used to specify whether the model axis is visible, and to determine how
the axis is drawn. If you include Type Axis , the axis will be drawn as three orthogonal
lines; if you include Type Origin, the axis will be drawn as a circle at the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also
called the triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics

Many of the graphic options can be reset back to default values with the command:

Graphics Reset

The graphic options set to defaults are:

• ambient and spot light intensity

Cubit_15.5_User_Documentation

163

• background color
• text size
• graphics mode
• silhouetting
• point size
• view type (Perspective)

In addition, this command also:

• centers the view on all visible entities (Zoom Reset)
• turns all labeling off
• turns vertex visibility off
• turns mesh and geometry visibility on
• moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their
centroid. This is useful for viewing 3D meshes, permitting viewing of interior elements. It
may also be useful for visually inspecting the mesh for missing elements. To use the
shrink option use:

graphics shrink <value>
draw hex <range>
draw tet <range>
etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point,
while zero (0) will not shrink the elements. The following figures illustrate the effect of
element shrink on a hex mesh.

Environment Control

164

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance

The graphics tolerance commands change the way that facets are drawn in the graphics
window. It does not affect the underlying geometry, just the graphics display. It can be
useful to change the facet tolerance on large models if the refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]

Specifying an angle will change the maximum allowable angle between neighboring
facets. The distance option will set a maximum distance between adjacent facets.
Increasing either of these numbers will result in coarser facets. The default option will
return values to their default settings.
The GUI Options panel for manipulating these settings is found under Tools/Options and
is shown below:

Cubit_15.5_User_Documentation

165

Mouse Based View Navigation: Zoom, Pan and Rotate
The mouse can be used to navigate through the scene using various view
transformations. These transformations are accomplished by clicking a mouse button in
the graphics window and dragging, sometimes while holding a modifier key such as Shift
or Control. When run with graphics on, CUBIT is always in mouse mode; that is, mouse-
based transformations are always available, without needing to enter a CUBIT command.
Mouse-based view transformations are accomplished by placing the pointer in the
graphics window and then either holding down a mouse button and dragging, or by
clicking on a location in the graphics window. Some functions also require one or more

modifier keys to be held down; the modifier keys used in CUBIT are Shift and

Control . Each of the available view transformations has a default binding to a mouse
button-modifier key combination. This binding can be changed by the user if desired.
Transformations and button mappings are summarized in the following table.

Environment Control

166

Note: These settings are applicable only to the UNIX command line version of CUBIT.
For a description of the Graphical User Interface Mouse Operations see GUI View
Navigation.
The bindings are based on the following mouse button definitions:

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate

Function Description Binding

Rotate Rotates the scene about the camera axis.
Dragging the mouse near the center of the
graphics window will rotate the camera's X-
or Y-axis; dragging near the edge of the
window will rotate about the Z-axis (i.e. about
the camera's line of sight). Type a u in the
graphics window to see the dividing line
between the two types of rotation.

B1

Zoom Zooms the scene in or out by clicking the
mouse in the graphics window and dragging
up or down. If the mouse has a wheel, the
wheel will also zoom.

B2

Pan "Drags" the scene around with the mouse B3

Navigational
Zoom

Zooms the scene by moving both the camera
and its focal point forward. B2

Telephoto
Zoom

Zooms the scene by decreasing the field of
view. B2

Pan Cursor Click on new center of view B3

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse
Function Mappings table above, can be modified. There are two ways to assign a
function to a button/modifier combination.
First, you can use the command

Cubit_15.5_User_Documentation

167

Mouse Function <function_id> Button <1|2|3> [Shift][Control]

Type Help Mouse Function to see a list of function IDs that may be used in this
command.
Second, you can assign functions interactively. To do so, first put the pointer into a
graphics window and then hit the F key. On-screen instructions will lead you through the
rest of the process.
The GUI Options panel for managing the mouse bindings can be found at
Tools/Options/Mouse, and is as follows:

Saving and Restoring Views

Environment Control

168

After performing view transformations, it may be useful to return to a previous view. A
view is restored by setting the graphics camera attributes to a given set of values. The
following keys, pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last time Display was entered.
F1 to F12 - These function keys represent 12 saved views. To save a view,
hold down the Control key while pressing the function key. To restore that
view later, press the same function key without the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an
alternate form of dynamic viewing, therefore the ability to save views is not currently
supported in the GUI.
You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is
specified, the view can be restored by pressing V in the graphics window. If a position is
specified, the view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always
have F1 refer to a front view of the model, the following commands could be entered into
a .cubit file:

From 0 1
At 0
Up 0 1 0
Graphics Autocenter On
View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures
that the model will be centered each time the view is restored. The final command saves
the view parameters in position 1. The view can be restored by pressing F1 while the
cursor is in a graphics window.
Additionally, you can change the 'gain' on the mouse movements by changing the mouse
gain setting, via the command:

Mouse Gain <value>

where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5
would be half as sensitive.

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be
'flipped', by toggling the reversezoom setting.

Cubit_15.5_User_Documentation

169

Saving Graphics Views
The current graphics view can be saved and restored using the following commands:

View Save Position <n>

View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command
is issued. When you restore the view, the camera is returned to the saved position,
orientation, and field of view.
If autocenter is on at the time you save the view, then restoring the view will automatically
adjust the camera settings to center on the entire model and fit the entire model on the
screen, a lot like "zoom reset." You turn autocenter on by typing "graphics autocenter on."
Example of how to save a top view:

at 0

from 0 1 0

up 1 0

graphics autocenter on

view save position 3

Use this command to restore that view:

view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to
the right. The model will be centered in the view and zoomed so that everything just fits
into the graphics window. This is true even if the model is not centered on the origin.
If autocenter is off when the "view save" command is issued, the camera is not adjusted
to fit the scene into the graphics window. Instead, it is placed exactly where it was at the
time the "save" command was issued.
Note that many graphics commands, such as "at", "from", and "up", do not change what
appears in the graphics window until a "display" command is issued. They do, however,
take immediate effect internally, and they do affect what is saved by the "view save"
command.
In the command line version of CUBIT, you can save a view by holding down the shift key
and pressing one of the function keys (F1-F12). Each function key corresponds to a
different saved view. A total of 12 views can be saved. A view can be restored at a later
time by pressing the appropriate function key WITHOUT holding down the shift key.
It may be useful to save views in your cubit file so that they are available every time you
run CUBIT. Use CUBIT to save front, top, and side views in positions 1, 2, and 3. If views
are saved in your cubit file, it is convenient to add a "view reset" command after the views

Environment Control

170

have been saved. Then the graphics will initially appear as they would if the view
commands had not been included in your cubit file.

Updating the Display
Among the most common graphics-related commands is:

Display

This command clears all highlighting and temporary drawing, and then redraws the model
according to the current graphics settings. The GUI tool bar button for executing this
command is:

Two related commands are:

Graphics Flush

Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary drawing.
Graphics Flush is useful when a previously executed command modified the graphics
and didn't update the screen and the user wishes to update the display. The Graphics
Clear command clears the graphics window without redrawing the scene, leaving the
window blank.
NOTE: Although most changes to the model are immediately reflected in the graphics
display, some are not (for graphics efficiency). Typing Display will update the display
after such commands. Ctrl-R will also update the display as long as the mouse is in the
graphics window.

Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an
action has been performed. To prevent the graphics from automatically updating, use the
following command:

Graphics Pause

This command prevents the graphics window from being updated until the next time the
Display command is issued.
NOTE: The Plot command is synonymous to the Display command, and either can be
used with identical results.

Geometry, Mesh, and BC Entity Visibility
The visibility of geometry, mesh, BC and Genesis entities can be turned on or off, either
individually or globally. After visibility is turned off, the associated entities will remain
invisible until visibility is turned on again.

The command to control global visibility is:

Cubit_15.5_User_Documentation

171

{Mesh|Geometry|BC} { [Visibility] [on|off] }

This command sets the global visibility on or off for all mesh, geometry, or BC entities,
respectively. Turning off BC visibility also affects Genesis entities such as blocks,
sidesets, and nodesets. Global visibility settings take precedence over the visibility set on
individual entities. By default, Mesh and Geometry visibility is on, and BC visibility is off.
Global visibility of geometry, mesh, and BC entities can also be controlled from these tool
bar buttons in the GUI (from left to right):

The command to control the individual visibility of geometry entities is:

{ {Body|Curve|Surface|Volume|Vertex} <range> } [Mesh][Geometry]

Visibility [On|Off]

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified
geometric entity is affected. Similarly, if the Geometry keyword is included, only the
visibility of the geometry is affected. If neither keyword is included, the command is
identical to including both keywords.
Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible,
its surfaces are also invisible unless they also belong to some other visible volume. As
another case, if the volume is visible, but a surface is set to invisible, the surface will not
follow its parent's visibility setting, but will remain invisible.
If vertex visibility is turned on, the vertices of the geometry become visible. The default
for vertex visibility is off. The default for all other geometry entities is on.

The commands to control visibility of edges and nodes are:

Edge [Visibility] [On|Off]

Node [Visibility] [On|Off]

These commands set the global visibility on or off for all edges or nodes, respectively. If
edge visibility is off, mesh edges will not be drawn when mesh faces are drawn. Edge
visibility is on by default; node visibility is off by default. Face visibility is always on when
mesh visibility is on.

The command to control the individual visibility of genesis entities is:

{Block|Nodeset|Sideset} <range> visibility [{on|off}]

Genesis entities and boundary conditions are best viewed with geometry and mesh
visibility off and BC visibility on.

Environment Control

172

Entity visibility for individual geometry and Genesis entities can also be controlled via
context (right-click) menus in the Tree and in the graphics window.
Entities that are not visible can still be drawn temporarily using the "draw" command to
display one or more specific entities.

Command Line View Navigation: Zoom, Pan and Rotate
Commands used to affect camera position or other functions are listed below. All rotation,
panning, and zooming operations can include the Animation Steps qualifier, makes the
image pass smoothly through the total transformation. Animation also allows the user to
see how a transformation command arrives at its destination by showing the intermediate
positions.

Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation

Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2> [Animation

Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates,
about the camera's "At" point, or about the camera itself. Additionally rotations can be
specified about any general axis by specifying start and end points to define the general
vector. The right hand rule is used in all rotations.
Plain degree rotations are in the Screen coordinate system by default, which is centered
on the camera's At point. The Camera keyword causes the camera to rotate about itself
(the camera's From point). The World keyword causes the rotation to occur about the
model's coordinate system. Rotations can also be performed about the line joining the
two end vertices of a curve in the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World]

[Animation Steps <number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera
attributes, the From point and At point are translated equal distances and directions,
while the perspective angle and up vector remain unchanged. The scene can also be
panned by a factor of the graphics window size.
Screen and World indicate which coordinate system <factor> is in. If Screen is indicated
(the default), <factor> is in screen coordinates, in which the width of the screen is one
unit. If World is indicated, <factor> is expressed in the model units.

Zooming

Cubit_15.5_User_Documentation

173

Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <x_min> <y_min> <x_max> <y_max> [Animation Steps

<number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face |

Tri | Edge | Node} <id_range> [Animation Steps <number_steps>] [Direction

{options}]

Zoom cursor [click|drag][animation steps <number>]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is
that objects on the focal plane will appear <factor> times larger.
Zooming on a specific portion of the screen is accomplished by specifying the zoom area
in screen coordinates; for example, Zoom 0 .25 .25 will zoom in on the bottom left quarter
of the screen.
Zooming on a particular entity in the model is accomplished by specifying the entity type
and ID after entering Zoom. The image will be adjusted to fit bounding box of the specified
entity into the graphics window, and the specified entity will be highlighted. You can
specify a final direction to look at when zooming by using the direction option.
To center the view on all visible entities, use the Zoom Reset command.
The GUI tool bar buttons for controlling zoom in, zoom out, and zoom reset are as follows:

entity selection and filtering
Entity Selection

• Command Line Entity Specification
• Extended Command Line Entity Specification
• Selecting Entities With the Mouse
• Extended Selection Dialog

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities
can be selected from the command line using entity specification parameters, or directly
in the graphics window using the mouse. This chapter describes these methods of entity
selection.

Extended Selection Dialog
Selecting entities in the graphics window can sometimes be complicated. The Extended
Selection Dialog leverages the combination of Python and the CubitInterface class to give
users a very powerful mechanism for creating and managing custom selection filters.

Accessing the Dialog

http://www.python.org/

Environment Control

174

The dialog is accessible any time a geometry entity is selected in the graphics window.
Consider this workflow:

Launch the Dialog

• Select a geometric entity
• Get the context menu and select "Pick Extended...". The Extended Selection

dialog will be shown with the selected entity (or entities) listed in the Source
Selection window.

When the dialog is first shown, no filters are available.

Load Existing Filters

Load existing filters by:

• Press the "Load Filters" button

• The Locate and Load Filters dialog will be shown

Cubit_15.5_User_Documentation

175

The very first time this dialog is shown, the path to the filters folder will be blank and no
filters will be shown in the filter list. Press the "Browse" button and select the folder that
contains the custom filters. This folder can be anywhere on the file system. Cubit will
remember the location and use it during subsequent sessions. The folder may be
changed at any time.
A list of custom filters, written in Python, will be shown. Select any given filter to examine
its contents. Check all filters to be included in the menu for Extended Filters. Then press
"OK".

Environment Control

176

At this point, all of the filters selected in the Locate and Load Filters dialog will be available
for use in the Extended Selection dialog.

Use a Filter

Use the pull down menu to select a filter. Click on an entity in the Source Selection list.
Geometric entities that fit the filter criterion will be shown in the Target Entities list.

Cubit_15.5_User_Documentation

177

• Make selections in the Target Entities list
• If a pickwidget is active, selected IDs will be copied into the pickwidget
• Access the context menu in the Target Entities list for other options, including

copying entity names or IDs to the clipboard.

Dragging from Target Entities to Source Selection

Depending on the nature of the selection filter it may be useful to 're-seed' the Source
Selection with an item from Target Entities. Simply drag an item or items from Target
Entities into the Source Selection list.

Creating Parameterized Filters

Parameterized filters will require a user interface which will be added into the extended
selection filter dialog. The user interface can be made using Qt's Designer, which is a free

Environment Control

178

tool that ships with the Qt toolkit. The Qt Designer tool produces an XML file that will be
read by Cubit and automatically included in the Extended Selection Filter dialog.
For example, if we wanted to create a selection filter that would select all entities of a
certain type within a certain radius of a source entity, we would require a user interface
that captures the desired radius and the desired entity type to be selected. An image of
that user interface is shown below. The image was copied directly from Qt Designer.

Notice two input fields: 1) a Line Edit to capture the desired selection radius and 2) a
Combo Box that contains "Volumes", "Surfaces", "Curves", "Vertices" to specify the target
entity selection type. The extended selection filter that contains this custom interface is
shown below. The example shows a selection of all curves within 1 unit of the source
selection.

Writing Custom Python Filters

The class CubitInterface is used by the GUI to drive Cubit and access its database. You
can read about the Python Interface used by Cubit for more details. Suffice to say, all of
the functions and data included in CubitInterface are available to Python programmers.

Cubit_15.5_User_Documentation

179

Extended Selection custom filters are written in Python. Follow the instructions below,
save the filters on the file system, then load the filters as explained above.
A Simple Example Filter
This first example shows a filter that will return a list of first generation children of the
selected entities. No user input is required and no additional user interface is necessary.

• The filter's File Name and Class Name must match. In this example, the file
name is 'ChildFilter.py' and the class name is "ChildFilter".

Environment Control

180

• LINE 2: import cubitgui -- this is the Python module that owns the base class
(SelectionFilter) from which this filter class is derived.

• LINE 3: import cubit -- this is the Python module that grants access to all of the
CubitInterface functions.

• LINE 6: When defining the class do the following:
• Ensure the class name matches the file name
• Derive the class from cubitgui.SelectionFilter

• LINE 9: Implement the 'virtual' function "display_name". Return a string that
represents the name of the filter. It is this name that will be shown in the
Extended Selection dialog's filter menu.

• LINE 13: Implement the 'virtual' function "run_filter. This is the actual filter.
• LINE 15: The function get_source_types() returns a list of the types selected in

the "Source Selection" list of the Extended Selection dialog.
• LINE 16: The function get_source_ids() returns a list of the ids selected in the

"Source Selection" list of the Extended Selection dialog.
• LINE 17: The function clear_target_selections() clears the Target Entities list of

the Extended Selection dialog.
• LINE 18: The example filter begins manipulating data to suit its needs
• LINE 35: The function get_relatives(...) is a member of CubitInterface. It returns a

list of ids of a specified type
• LINE 37: The function add_target_selection(<type> <id>) adds one instance of

an entity-type/id to the Target Entities list.

The Selection Filter Class

As mentioned above, the custom Python filters must implement a class and that class
must be derived from the SelectionFilter class. The SelectionFilter class is available in
the Cubit SDK. The SDK is available to any user.

A Sample Filter that includes Additional User Interface

In order to include user input into an extended selection dialog, two additional things must
happen:

1. The developer must create the user interface definition file (.ui file) using Qt
Designer.

2. An additional function must be implemented in the class definition of the Python
filter. The additional function is called get_ui_file().

Qt UI objects supported by the extended selection filter include:

• QLineEdit - std::string get_line_edit_value (object-name)
• QComboBox - std::string get_combo_box_value (object-name)
• QRadioButton - bool get_radio_button_value (object-name)
• QCheckBox - bool get_check_box_value (object-name)
• QSpinBox - int get_spin_box_value (object-name)
• QSlider - int get_slider_value (object-name)

Cubit_15.5_User_Documentation

181

As the example Python code shows, the Qt objects are referenced by name. These code
snippets below are not complete. Complete examples and a video tutorial are available
from www.csimsoft.com.

http://www.csimsoft.com/

Environment Control

182

Command Line Entity Specification
CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and
sometimes names. IDs and names are used in most commands to specify which objects
on which the command is to operate.
These objects can be specified in CUBIT commands in a variety of ways, which are best
introduced with the following examples (the portion of each command which specifies a
list of entities is shown in blue):
General ranges: Surface 1 2 4 to 6 by 2 3 4 5 Scheme Pave
Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6
Geometric topology traversal: Vertex in Volume 2 Size 0.3
Mesh topology traversal: Draw Edge in Hex 32
All keyword: ListBlock all
Expand keyword: my_curve_group expand Scheme Bias Factor 1.5
Except keyword: List Curve 1 to 50 except 2 4 6
In addition to the examples above, there is an extended parsing capability that allows
entities to be specified by a general set of criteria. See Extended Entity Specification for
details. The following is a simple example of an extended entity specification:
By Criteria: Draw Curve With Length > 3

Cubit_15.5_User_Documentation

183

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges
(volume 3 to 7), and in stepped ranges (volume 3 to 7 step 2). The word all may
also be used to specify all entities of a given type.
An ID range has the form <start_id> to <end_id>. It represents each ID between
start_id and end_id, inclusive.
A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It
represents the set of IDs between start_id and end_id, inclusive, which can be
obtained by adding some integer multiple of step to start_id. For example, 3 to 8
step 2 is equivalent to 3 5 7.
The various methods of specifying IDs can be used together. For example:
draw surface 1 2 4 to 6 vertex all

2. Topological traversal

Topological traversal is indicated using the "in" and "common_to" identifiers, can
span multiple levels in a hierarchy, and can go either up or down the topology tree.
For example, the following entity lists are all valid:
vertex in volume 3
volume in vertex 2 4 6
surface common_to volume 2 3
curve common_to surface 2 3
curve 1 to 3 in body 4 to 8 by 2
If ranges of entities are given on both sides of the "in" identifier, the intersection of
the two sets results. For example, in the last command above, the curves that have
ids of 1, 2 or 3 and are also in bodies 4, 6 and 8 are used in the command.
Topology traversal is also valid between entity types. Therefore, the following
commands would also be valid:
draw node in surface 3
draw surface in edge 362
draw hex in face in surface 2
draw node in hex in face in surface 2
draw edge in node in surface 2
draw face common_to volume 1 2

3. Exclusion

Entity lists can be entered then filtered using the "except" identifier. This identifier
and the ids following it apply only to the immediately preceding entity list, and are
taken to be the same entity type. For example, the following entity lists are valid:
curve all except 2 4 6

Environment Control

184

curve 1 2 5 to 50 except 2 3 4
curve all except 2 3 4 in surface 2 to 10
curve in surface 3 except 2 (produces empty entity list!)
Entity names can also be used to specify the exclusion list. For example:
curve all except pivot_1
When using mulitple names to specify the exclusion list it is necessary to use the
"in" keyword with parentheses. For example:
curve all except curve in (pivot_1 top_left)
In the above example, all curves are in the entity list except the curve named
"pivot_1" and the curve named "top_left".

4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities
can be of different type (vertex, curve, etc.). Operations on groups can be classified
as operations on the group itself or operations on all entities in the group. If a group
identifier in a command is followed immediately by the `expand' qualifier, the
contents of the group(s) are substituted in place of the group identifier(s); otherwise
the command is interpreted as an operation on the group as a whole. If a group
preceding the `expand' qualifier includes other groups, all groups are expanded in
a recursive fashion.
For example, consider group 1, which consists of surfaces 1, 2 and curve 1.
Surfaces 1 and 2 are bounded by curves 2, 3, 4 and 5. The commands in Table 1,
illustrate the behavior of the `expand' qualifier.

Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve
1; Surfaces 1 and 2 are bounded by Curves 2-5.

Command Entity list produced

Curve in Group 1 Curve 1

Curve in group 1 expand Curves 1, 2, 3, 4, 5

The `expand' qualifier can be used anywhere a group command is used in an entity list;
of course, commands which apply only to groups will be meaningless if the group id is
followed by the `expand' qualifier.

Precedence of "Except" and "In"

Several keywords take precedence over others, much the same as some operators have
greater precedence in coding languages. In the current implementation, the keyword
"Except" takes precedence over other keywords, and serves to separate the identifier list
into two sections. Any identifiers following the "Except" keyword apply to the list of entities
excluded from the entities preceding the "Except". Table 2 shows the entity lists resulting
from selected commands.
Table 2. Precedence of "Except" and "In" keywords; Group 1 consists of Surfaces
1-2 and Curve 1.

Command Entity list produced

Cubit_15.5_User_Documentation

185

Curve all except 1 in Group 1 (All curves except curve 1)

Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)

In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in
Group 1", that is the intersection of the lists "Curve 1" and "Curve in Group 1"; since the
only curve in Group 1 is Curve 1, the excluded list consists of only Curve 1. The remaining
list, after removing the excluded list, is all curves except Curve 1.
In the second command, the excluded list consists of the intersection of the lists "Curve
2 3 4" and "Curve in Surf 2 to 10"; this intersection turns out to be just Curves 2, 3 and 4.
The remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be
used. However, there can be exceptions to this general rule, because of ambiguities this
syntax would produce. Currently, the only exception to this rule is the command used to
define a sideset for a surface with respect to an owning volume.

Extended Command Line Entity Specification
In addition to basic entity specification, entities may be specified using an extended
expression. An extended expression identifies one or more entities using a set of entity
criteria. These criteria describe properties of the entities one wishes to operate upon.

Extended Parsing Syntax

The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}

Entity_Type is the name of any type of entity that can be used in a command, such as
Curve, Hex, or SideSet. Criteria is a combination of entity properties (such as Length),
operators (such as >=), keywords (such as Not), and values (such as 5.3) that can be
evaluated to true or false for a given entity. Here are some examples:

curve with length <1
surface with is_meshed = false
node with x_coord > 10 And y_coord > 0

Keywords

These are the keyword defined by extended parsing

Keyword Description

All, To, Step, By,
Except, In,
Common_To,
Expand

These keywords are used the same way as in basic
entity specification. For example:
draw surface all

Environment Control

186

draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to
8 by 2
draw hex in face in surface 2
draw face common_to volume 1 2
draw node in hex in face in surface 2 curve 1 2 5 to
50 except 2 3 4

Not
Not flips the logical sense of an expression - it changes
true to false and false to true. For example:
draw surface with not is_meshed

Of

The "of" operator is used to get an attribute value for a
single entity, such as "length of curve 5". Only
attributes that return a single numeric value may be
used in an "of" expression. There must be only one
entity specified after the "of" operator, but it can be
identified using any valid entity expression. An
example of a complete command which includes the
"of" operator is:
list curve with length < length of curve 5 ids

And, Or

These logic operators determine how multiple criteria
are combined.
draw surface with length > 3 or with is_meshed =
false

< > <= >= = <>

These relational operators compare two expressions.
You may use = or == for "equals". <> means "not
equal". For example:
draw surface with x_max <= 3
draw volume with z_max <>12.3

+ - * /
These arithmetic operators work in the traditional
manner.
draw surface with length * 3 + 1.2 > 10

()

Parentheses are used to group expressions and to
override precedence. When in doubt about
precedence, use parentheses.
draw surface with length > 3 and (with is_meshed
= false or x_min > 1)

Functions

The following functions are defined. Not all functions apply to all entities. If a function does
not apply to a given entity, the function returns 0 or false.

Keyword Description

ID the ID of an entity

Length The length of a curve or edge

Cubit_15.5_User_Documentation

187

Area The area of a surface.

Volume The volume of a volume.

Exterior_Angle

Works for curves with an exterior angle greater than
(>), less than (<), or equal to (=) a given angle in
degrees. This is used if you want to do some operation,
such as refinement, on all the reentrant curves or
curves with surfaces that form a certain angle.

Is_Meshed Whether a geometric entity has been meshed or not

Is_Spline
Whether a geometric entity is defined using a NURBS
representation. Otherwise the entity has an analytic
representation.

Is_Plane Whether a geometric surface is planar.

Is_Periodic
Whether a geometric surface is periodic, such as a
sphere or torus.

Is_Sheetbody
A geometric entity is a sheetbody if it is a collection of
surfaces that do not form a solid.

Element_Count

The number of elements owned by this geometric
entity. Only elements of the same dimension as the
entity are counted (number of hexes in a volume,
number of faces on a surface, etc.)

Dimension
The topological dimension of an entity (3 for volumes,
2 for surfaces, etc.).

X_Coord,
Y_Coord, Z_Coord

The x, y, or z coordinate of the point at the center of the
entity's bounding box.

X_Min, Y_Min,
Z_Min

The x, y, or z coordinate of the minimum extent of the
entity's bounding box

X_Max, Y_Max,
Z_Max

The x, y, or z coordinate of the maximum extent of the
entity's bounding box

Is_Merged
Whether a geometry entity has a merge flag on. All
geometric entities have one set by default.

Is_Virtual
A flag that specifies whether an entity is virtual
geometry. An entity is virtual if it has at least one virtual
(partition/composite) topology bridge.

Has_Virtual
An entity "has_virtual" if it is virtual itself, or has at least
one child virtual entity

Is_Real
An entity "is_real" if it has at least one real (non-virtual)
topology bridge.

Num_Parents
Used to specify geometry entities with a specified
number of parent entities. May be used to find "free

Environment Control

188

curves" where num_parents=0 or non-manifold curves
where num_parents>2.

Block_Assigned
Used to specify elements which have been assigned to
a block. This is also useful to find elements NOT
assigned to a block by using "not block_assigned".

Has_Scheme

Used to specify geometry entities which have been
assigned a specified scheme. The scheme name is
specified with the keyword string used when setting the
scheme. Wildcards can also be used when specifying
the scheme name. For example, draw surface with
has_scheme '*map' will draw surfaces with scheme
map or submap.

Precedence

For complicated expressions, which entities are referred to is influenced by the order in
which portions of the expression are evaluated. This order is determined by precedence.
Operators with high precedence are evaluated before operators with low precedence.
You may always include parentheses to determine which sub-expressions are evaluated
first. Here all operators and keywords listed from high to low precedence. Items listed
together have the same precedence and are evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >=, <>, = And, Or Except In Of With

Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group

expand(curve with (((length + (2*2)) > 10)and(length <= 20))) in (

my_group expand)

Selecting Entities with the Mouse
The following discussion is applicable only to the command line version of CUBIT. See
GUI Entity Selection for a description of interactive entity selection with the Graphical
User Interface. Also refer to Extended Selection Dialog to learn how to use Python scripts
to create extensive selection capabilities.
Many of the commands in CUBIT require the specification of an entity on which the
command operates. These entities are usually specified using an object type and ID (see
Entity Specification) or a name. The ID of a particular entity can be found by turning labels
on in the graphics and redisplaying; however, this can be cumbersome for complicated
models. CUBIT provides the capability to select with the mouse individual geometry or
mesh entities. After being selected, the ID of the entity is reported and the entity is
highlighted in the scene. After selecting the entities, other actions can be performed on

Cubit_15.5_User_Documentation

189

the selection. The various options for selecting entities in CUBIT are described below,
and are summarized in Table 1:

Table 1. Picking and key press operations on the picked entities

Key Action

ctrl +
B1

Pick entity of the current picking type.

shift +
ctrl +

B1

Add picked entity of the current picking type to current picked
entity list.

tab
Query-pick; pick entity of current picking type that is below
the last-picked entity.

n Lists what entities are currently selected.

l
Lists basic information about each selected entity. This is
similar to entering a List command for each selected entity.

g

Lists geometric information about the selection. As if the List
Geometry command were issued for each entity. If there are
multiple entities selected, a geometric summary of all
selected entities is printed at the end, including information
such as the total bounding box of the selection.

i
Makes the current selection invisible. This only affects entities
that can be made invisible from the command line (i.e.
geometric and genesis entities.)

s
Draws a graphical scale showing model size in the three
coordinate axes. This is a toggle action, so pressing the 's'
key again in the graphics window will turn the scale off.

ctrl +
z

Zoom in on the current selection.

e Echo the ID of the selection to the command line.

a

Add the current selection to the picked group. Only geometry
will be added to the group (not mesh entities). If a selected
entity is already in the picked group, it will not be added a
second time.

r
Remove the current selection from the picked group. If a
selected entity was not found in the picked group, this
command will have no effect.

ctrl +
r

Redisplays the model.

c
Clear the picked group. The picked group will be empty after
this command.

Environment Control

190

m Lists what entities are currently in the picked group.

d Display and select the entities in the picked group.

ctrl +
d

Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

• Entity Selection

• Query Selection
• Multiple Selected Entities
• Information about the Selection
• Picked Group
• Substituting the Selection into Commands
• Select Commands

Entity Selection

Selecting entities typically involves two steps:
1. Specifying the type of entity to select
Clicking on the scene can be interpreted in more than one way. For example, clicking on
a curve could be intended to select the curve or a mesh edge owned by that curve. The
type of entity the user intends to select is called the picking type. In order for CUBIT to
correctly interpret mouse clicks, the picking type must be indicated. This can be done in
one of two ways. The easiest way to change the picking type is to place the pointer in the
graphics window and enter the dimension of the desired picking type and an optional
modifier key. The dimension usually corresponds to the dimension of the objects being
picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick

0 vertices nodes

1 curves edges

2 surfaces all 2D elements

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the
mesh entity of corresponding dimension, otherwise the geometry entity of that dimension
is set as the picking type. For example, typing 2 while the pointer is in the graphics window
sets the picking type so that geometric surfaces are picked; typing Shift-1 sets the picking
type so that mesh edges are picked. To differentiate between picking "tris" or "quads" use
"pick face" or "pick tri"
The picking type can also be set using the command

Cubit_15.5_User_Documentation

191

Pick <entity_type>

where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex
, Tet , Face , Tri , Edge , Node , or DicerSheet .
2. Selecting the entities
To select an object, click on the entity (this command can be mapped to a different button
and modifiers, as described in the section on Mouse-Based View Navigation). Clicking on
an entity in this manner will first de-select any previously selected entities, and will then
select the entity of the correct type closest to the point clicked. The new selection will be
highlighted and its name will be printed in the command window.

Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to
move to the next closest entity. You can continue to press tab to loop through all possible
selections that are reasonably close to the point where you clicked. Shift-Tab will loop
backwards through the same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the
control key while clicking on an object. You can select as many objects as you would like.
By changing the picking type between selections, more than one type of entity may be
selected at a time. When picking multiple entities, each pick action acts as a toggle; if the
entity is already picked, it is "unpicked", or taken out of the picked entities list.
To select entities using rubberband, hold the control key, click and drag to enclose the
entities to select. Different rubberband shapes are available to use: box, circle and
polygon. A toolbar button is provided to toggle between the different shapes.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command
window. There are several other actions which can then be performed on the picked entity
list. These actions are initiated by pressing a key while the pointer is in the graphics
window. Table 1 summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is
named picked , and is automatically created by CUBIT. Other than its relationship to
interactive picking, it is identical to other groups and can be operated on from the
command line. Like other groups, both geometric and mesh entities can be held in the
picked group. Table 1 lists the graphics window key presses used with the picked group.

Environment Control

192

Note: It is important to distinguish between the current selection and the picked group

contents. Clicking on a new entity will select that entity, but will not add it to the picked

group. De-selecting an entity will not remove an entity from the picked group.

Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.
1. The Selection Keyword
You may refer to all currently selected entities by using the word selection in a command;
the picked type and ID numbers of all selected entities will be substituted directly for
selection . For example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue

is identical to typing

Color Volume 1 Curve 5 Blue

Note that the selection keyword is case sensitive, and must be entered as all lowercase
letters.
2. Echoing the ID of the Selection
Typing an e into a graphics window will cause the ID of each selected entity to be added
to the command line at the current insertion point. This is a convenient way to use entities
of which you don't already know the name or ID.
As an added convenience, the picking type can be set based on the last word on the
command line using the ` key. Note that this is not the apostrophe key, but rather the left
tick mark, usually found at the upper-left corner of the keyboard on the same key as the
tilde (~). For example, a convenient way to set the meshing scheme of a cylinder to sweep
would be as follows:

Volume (hit `, select cylinder, hit e) Scheme Sweep Source Surface (hit `,

select endcap, hit e) Target (select other endcap, hit e)

The result will be something similar to

Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ` will not select the correct
picking type.
3. Using the Picked Group in Commands
Like other groups, the picked group may be used in commands by referring to it by name.
The name of the picked group is picked. For example, if the contents of the picked group
are Volume 1 and Volume 2, the command

Draw picked

Cubit_15.5_User_Documentation

193

is identical to

Draw Volume 1 Volume 2

Note that picked is case sensitive, and must be entered as all lowercase letters.

Select Commands

Creating and Modifying Selections
The following commands may be used to create a new selection or modify the current
seelction.

Select <entity_list> [add|remove]

This command selects the specified entities. If the add option is specified, the entities are
added to the current selection. If the remove option is specified, the entities are removed
from the current selection. If neither is specified, the current selection is replaced with the
specified entities.

Select None

This command clears the selection.

Select Seed {face <ids>|tri <ids>} feature_angle <angle>

This command creates a new selection based on a seed face and feature angle. It finds
all the neighboring faces with a feature angle that is less than the specified angle and
adds them to the selection.
Rubberband Selection Control
The following commands control the behavior of rubberband selection.

Select Occluded {on|off}

When turned on, the selection will include entities that are occluded, or hidden behind
other entities, in the current graphics view.

Select Partial {on|off}

When turned on, the selection will include all entities that touch the rubberband. When
turned off, the selection will include only entities that lie completely within the rubberband
region.

Select Rubberband Shape {box|polygon|circle}

Environment Control

194

Choose the rubberband shape to be box, polygon, or circle. If polygon is selected, the
shape of the polygon is defined by the left mouse button clicks in the graphics windows.
To end defining the polygon shape and make the selection, click the right mouse button.

195

Geometry

Geometry

• CUBIT Geometry Formats
• Geometry Creation
• Geometry Transforms
• Geometry Booleans
• Geometry Decomposition
• Geometry Cleanup and Defeaturing
• Geometry Imprinting and Merging
• Virtual Geometry
• Geometry Orientation
• Geometry Groups
• Geometry Attributes
• Entity Measurement
• Parts, Assemblies, and Metadata
• Geometry Deletion

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there
is also mesh-based geometry. Other solid model kernels are planned. Geometry is
imported or created within CUBIT. Geometry is created bottom-up or through primitives.
CUBIT imports ACIS SAT files. CUBIT can also read STEP, IGES, and FASTQ files and
convert them to the ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD
systems can write SAT files directly.
Once in CUBIT, an ACIS model is modified through booleans. Without changing the
geometric definition of the model, the topology of the model may be changed using virtual
geometry. For example, virtual geometry can be used to composite two surfaces together,
erasing the curve dividing them.
Sometimes, an ACIS model is poorly defined. This often happens with translated models.
The model can be healed inside CUBIT.

model definitions
CUBIT Geometry Formats

• ACIS
• Mesh-Based Geometry

Setting the Geometry Kernel

The geometry kernel can be switched between ACIS and Mesh-Based Geometry from
the command line using the following command:

Set Geometry Engine {Acis|Facet}

Geometry

196

The geometry engine will automatically be set when importing a model.

Terms

Before describing the functionality in CUBIT for viewing and modifying solid geometry, it
is useful to give a precise definition of terms used to describe geometry in CUBIT. In this
manual, the terms topology and geometry are both used to describe parts of the geometric
model. The definitions of these terms are:
Topology: the manner in which geometric entities are connected within a solid model;
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.
Geometry: the definition of where a topological entity lies in space. For example, a curve
may be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element
of topology (vertex, curve, etc.) can have one of several different geometric
representations.

Topology

Within CUBIT, the topological entities consist of vertices, curves, surfaces, volumes, and
bodies. Each topological entity has a corresponding dimension, representing the number
of free parameters required to define that piece of topology. Each topological entity is
bounded by one or more topological entities of lower dimension. For example, a surface
is bounded by one or more curves, each of which is bounded by one or two vertices.

Bodies and Volumes

A CUBIT Body is defined as a collection of other pieces of topology, including curves,
surfaces and volumes. The use of Body is not required, and is in fact deprecated in favor
of using Volume. Bodies may still be used for grouping volumes, but it is suggested to
use Groups instead.
Although a Body may contain groups of Surfaces or Volumes, for most practical purposes
within the CUBIT environment, a single Volume or Surface will belong to a single Body.
For typical three-dimensional models, this means that there should be one Body for every
Volume in the model, where the default Body ID is the same as the Volume ID. For this
reason, in many instances the term Volume and Body are used interchangeably, although
it is more consistent to always refer to Volumes and Volume IDs, and only use Bodies
when absolutely necessary.

Non-Manifold Topology

In many applications, the geometry consists of an assembly of individual parts, which
together represent a functioning component. These parts often have mating surfaces,
and for typical analyses these surfaces should be joined into a single surface. This results
in a mesh on that surface which is shared by the volume meshes on either side of the
shared surface. This configuration of geometry is loosely referred to as non-manifold
topology.

Bounding Box Calculations

Cubit_15.5_User_Documentation

197

Bounding box calculations are used for many routines and subroutines in Cubit. These
calculations are done using a faceted representation by default. To use the default
modeling engine for more accurate (and longer) calculations change the Facet Bbox
setting.

Set Facet BBox [ON|Off]

There are also various settings to control the accuracy of bounding box calculations
based on point lists.

Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]

If surfaces are used, surface facet points will be included in the point list used to calculate
the tight bounding box. This will include vertices and points on the curves. This is the
default implementation.
If curves are used, curve tesselation points will be included in the point list used to
calculate the tight bounding box. This includes the vertices on the ends of the curves.
One use for this is to find a more accurate tight bounding box, since curve tessellations
are typically more fine than surface tessellations. However, in practice, it is recommended
to just use surface tessellations. One special case is if the user sends in a list of curves
as the criteria for the tight bounding box, the curve tessellations are always used, even if
this parameter is false.
If vertices are used, vertex points will be included in the point list used to calculate the
tight bounding box. In extremely large models, it could be advantageous to just use
vertices. So the user would turn off both the surface and curve flags. One special case is
if the user sends in a list of curves as the criteria for the tight bounding box, the curve
tessellations are always used, even if the curve parameter is false and this parameter is
true.

ACIS Geometry Kernel
ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the
ACIS third party libraries directly within the program. The ACIS third party libraries are
used extensively within CUBIT to import, export and maintain the underlying geometric
representations of the solid model for geometry decomposition and meshing. There are
many ways to get geometry into the ACIS format. ACIS files can be exported directly from
several commercial CAD packages, including SolidWorks, AutoCAD, and HP
PE/SolidDesigner. Third party ACIS translators are also available for converting from
native formats such as Pro Engineer. CUBIT also uses the ACIS libraries for importing
IGES and STEP format files.
Importing and creating geometry using the ACIS geometric modeling kernel currently
provides the widest set of capabilities within CUBIT. All geometry creation and
modification tools have been designed to work directly on the ACIS representation of the
model.

Mesh-Based Geometry

http://www.spatial.com/

Geometry

198

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library
and has been developed specifically for use with CUBIT. Most of CUBIT's mesh
generation tools require an underlying geometric representation. In many cases, only the
finite element model is available. If this is the case, CUBIT provides the capability to
import the finite element mesh and build a complete boundary representation solid model
from the mesh. The solid model can then be used to make further enhancement to the
mesh. While the underlying ACIS geometry representation is typically non-uniform
rational b-splines (NURBS), Mesh-Based Geometry uses a facetted representation.
Mesh-Based Geometry can be generated by importing either an Exodus II format file or
a facet file.

• Creating Mesh-Based Geometry Models

• Improving Mesh-Based Geometry Models for Meshing
• Meshing Mesh-Based Models
• Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also
be done with mesh-based geometry. While all mesh generation operations are available,
only some of the geometry operations can be used. For example, the following can be
done with geometric entities that are mesh-based:

• Geometry Transformations

• Merging
• Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

• Booleans

• Geometry Decomposition
• Geometry Clean-Up

Creating Mesh-Based Geometry Models

Mesh based geometry models can be created in one of two ways

• Importing Exodus II files

• Importing facet files

While both of these methods create geometry suitable for meshing, there are some
significant differences:
Exodus II files
Exodus II contains a mesh representation that may include 3D elements, 2D elements,
1D elements and even 0D elements. It may also contain deformation information as well
as boundary condition information. The import mesh geometry command is designed to
decipher this information and create a complete solid model, using the mesh faces as the
basis for the surface representations. Exodus II is most often used when a solid model

Cubit_15.5_User_Documentation

199

that has previously been meshed requires modification or remeshing. Importing an
Exodus II file will generate both geometry and mesh entities, assigning appropriate
ownership of the mesh entities to their geometry owners. Deleting the mesh and
remeshing, refining or smoothing are common operations performed with an Exodus II
model.
Facet files
The facet file formats supported by CUBIT are most often generated from processes such
as medical imaging, geotechnical data, graphics facets, or any process that might
generate discrete data. Importing a facet file will generate a surface representation only
defined by triangles. If the triangles in the facet file form a complete closed volume, then
a volume suitable for meshing may be generated. In cases where the volume may not
completely close or may not be of sufficient quality, a limited set of tools has been
provided. In addition to the standard meshing tools provided in CUBIT, it is also possible
to use the triangle facets themselves as the basis for an FEA mesh.

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging
processes are not of sufficient quality to use as geometry representations for mesh
generation. As a result, CUBIT provides a limited number of tools to assist in cleaning up
or repairing triangulated representations.
1. Using tolerance on STL files
Stereolithography (STL) files, in particular, can be problematic. The import mechanism
for STL provides a tolerance option to merge near-coincident vertices.
2. Using the stitch option on AVS and facet files
The stitch option on the import facets|avs command provides a way to join triangles that
otherwise share near-coincident vertices and edges. This is useful for combining facet-
based surfaces to generate a water-tight model.
3. Using the improve option on facet files.
The improve option on the import facets command will collapse short edges on the
boundary of the triangulation. This option improves the quality of the boundary triangles.
4. Smoothing faceted surfaces.
Individual triangles in a faceted surface representation may be poorly shaped. Just like
mesh elements may be smoothed, facets may also be smoothed in CUBIT using the
following command

Smooth <surface_list> Facets [Iterations <value>] [Free] [Swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a
simple Laplacian smoothing algorithm which has additional logic to make sure it does not
turn any of the triangles in-side out. It also determines a local surface tangent plane and
projects the triangle vertices to this plane to ensure the volume will not "shrink". The
iterations option can be used to specify the number of Laplacian smoothing operations
to perform on each facet vertex (The default is 1).

Geometry

200

The free option can be used to ignore the tangent plane projection. Used too much, the
free option can collapse the model to a point. One of two iterations of this option may be
enough to clean up the triangles enough to be used for a finite element mesh.
The swap option can be used to perform local edge swap operations on the triangulation.
The quality of each triangle is assessed and edges are swapped if the minimum quality
of the triangles will improve.
5. Creating a thin offset volume
Offset surfaces may be generated from an existing facet-based surface. This would be
used in cases where a thin membrane-like volume might be required where only a single
surface of triangles is provided. This command may be accomplished by using the
standard create body offset command
The result of this command is a single body with an inside and outside surface separated
by a small distance which is generally suitable for tet meshing. This command is currently
only useful for small offsets where self-intersections of the resulting surface would be
minimal. It is most useful for bodies that may be initially composed of a single water-tight
surface.
6. Creating volumes from surfaces
A mesh-based geometry volume can be created from a set of closed surfaces. This can
be accomplished in the same manner as the standard create body surface command

Create Body Surface <surface_id_range>

This command is limited to surfaces that match triangles edges and vertices at their
boundary. The command will internally merge the triangles to create a water-tight model
that would generally be suitable for tet meshing.

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting
a scheme, defining a size and using the mesh command. This standard method of mesh
generation can be somewhat time consuming and error prone for complex facet models
with thousands of triangles. CUBIT also provides the option of using the facets
themselves as a surface triangle mesh, or as the input to a tetrahedral mesher. This may
be accomplished with one of two options:

Mesh <entity_list> From Facets

This command will generate triangular finite elements for each facet on the surface. If the
entity_list is composed of one or more volumes, then the tetrahedral mesh will
automatically fill the interior. This method is useful when further cleanup and smoothing
operations are needed on the triangles after import.

Import Facets <filename> Make_elements

Cubit_15.5_User_Documentation

201

The make_elements on the import facets command will generate the triangular finite
elements on the surface at the time the facets are read and created. This option is useful
if no further modifications to the facets are necessary.
Creating triangular finite elements in this manner can greatly speed up the mesh
generation process, however it is limited to non-manifold topology. If the triangular
elements are to be used for tetrahedral meshing (i.e. all edges of the triangulation should
be connected to no more than two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following
methods:

• Exporting to an Exodus II File

• Exporting to a facet file

Exodus II
Exporting to an Exodus II file saves the finite element mesh along with any boundary
conditions placed on the model. It will not save the individual facets that comprise the
mesh-based geometry surface representation. Importing an Exodus II file saved in this
manner will regenerate the surfaces only to the resolution of the saved mesh.
Facet files
CUBIT also provides the option to save just the surface representation to a facet or STL
file. The following commands can be used for saving facet or STL files:

Export Facets 'filename' <entity_list> [Overwrite]

Export STL [ASCII|Binary] 'filename' <entity_list> [Overwrite]

These commands provide the option of saving specific surfaces or volumes to the facet
file. If no entities are provided in the command, then all surfaces in the model will be
exported to the file. The overwrite option forces a file to overwrite any file of the same
name in the current working directory.

geom creation
Geometry Creation
There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT
provides many geometry primitives for creating common shapes (spheres, bricks, etc.)
which can then be modified and combined to build complex models. Secondly, geometry
can be imported into CUBIT. Finally, geometry can be defined by building it from the
"bottom up", creating vertices, then curves from those vertices, etc. Two of these three
methods for creating geometry in CUBIT will be described in detail in this section.
All of these geometry creation commands have been expressed in the GUI's command
panels. To navigate to the volume creation command panels, for example, select "Mode-
Geometry", then "Entity-Volume", then "Action-Create", as shown below. Other geometry
creation command panels are available for each geometry type.

Geometry

202

• Bottom-Up Geometry Creation

• Geometric Primitives

primitive geometry

Creating Bricks

The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z}

<height>] [Bounding Box {entity_type} <id_range>] [Tight] [[Extended]

{Percentage| Absolute} <val>]]

Cubit_15.5_User_Documentation

203

Notes

• A cubical brick is created by specifying only the width or x dimension.

• A brick can be specified to occupy the bounding box of one or more entities, specified on

the command line.

• If the Tight option is specified with Bounding Box, the result is the smallest brick that

can contain the entities specified, which is the default behavior of the Bounding Box

option.

• If the Extended option is specified with Bounding Box, the result is a brick that is

extended from a "tight" brick by the input percentage or absolute value.

• If a bounding box specification is used in conjunction with any of the other parameters

(X, Y or Z), the parameters specified override the bounding box results for that or those

dimensions.

Creating Frustums

A frustum is a general elliptical right frustum, which can also be thought of as a portion of
a right elliptical cone.
Command

[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top

<top_radius>]

[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor

Radius <radius> [Top <top_radius>]

Notes

• If used, Major Radius defines the x-radius and Minor Radius the y-radius.

• If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is

calculated based on the ratio of the major and minor radii.

Creating Pyramids

A pyramid is a general n-sided prism.
Command

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius>

[Top <top-x-radius>]

204

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-

radius> Minor [Radius] <y-radius>] [Top <top-x-radius>]

Creating Toruses

The torus command generates a simple torus
Command

[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-

radius>

Notes

• Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius

of the spine of the torus.

• The minor radius must be less than the major radius.

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.
Command

[Create] Cylinder [Height|Z] <val> Radius <val>

[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

• A cylinder may also be created using the frustum command with all radii set to the same

value.

• Specifying major and minor radii can produce a cylinder with an oval cross section.

Geometric Primitives

Cubit_15.5_User_Documentation

205

The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by
providing values to the parameters associated with the chosen primitive. Primitives
available in CUBIT include the brick, cylinder, torus, prism, frustum, pyramid, and sphere.
Each primitive, along with the command used to generate it and the parameters
associated with it, are described next. For some primitives, several options can be used
to generate them, and are described as well.
The following Primitives can be generated with CUBIT:
 Brick

Cylinder

Prism

Frustum

Pyramid

Sphere

206

Torus

General Notes

• Primitives are created and given an ID equal to one plus the current highest body
ID in the model.

• Primitive solids are created with their centroid at the origin or the world
coordinate system.

• For primitives with a Height or Z parameter, the axis going through these
primitives will be aligned with the Z axis.

• For primitives with a Major Radius and a Minor Radius, the Major Radius will be
along the X axis, the Minor Radius along the Y axis.

• For primitives with a Top Radius, this radius will be that along the X axis; the Y
axis radius will be computed using the Major, Minor and Top Radii given.

Creating Prisms

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the
tube.
Command

[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>

Notes

• The radius defines the circumradius of the n-sided polygon on the end caps.

• If a major and minor radius are used, the end caps are bounded by a circum-ellipse

instead of a circumcircle.

• The number of sides of a prism must be greater than or equal to three. A prism may also

be created using the pyramid command with all radii set to the same value.

• If the Extended option is specified with Bounding Box, the result is a brick that is

extended from a "tight" brick by the input percentage or absolute value.

• If a bounding box specification is used in conjunction with any of the other parameters

(X, Y or Z), the parameters specified override the bounding box results for that or those

dimensions.

Cubit_15.5_User_Documentation

207

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or
an annular sphere.
Command

[Create] Sphere Radius <radius> [Xpositive]|[Xnegative]

[Ypositive]|[Ynegative] [Zpositive]|[Znegative] [Delete] [Inner [Radius]

<radius>]

Notes

• If Xpositive/Xnegative, Ypositive/Ynegative, and/or Zpositive/Znegative are used, a

sphere which occupies that side of the coordinate plane only is generated, or, if the delete

keyword is used, the sphere will occupy the other side of the coordinate plane(s)

specified. These options are used to generate hemisphere, quarter sphere or a sphere

octant (eighth sphere).

• If the inner radius is specified, a hollow sphere will be created with a void whose radius

is the specified inner radius.

bottom up creation

Bottom-Up Geometry Creation

CUBIT supports the ability to create geometry from a collection of lower order entities.
This is accomplished by first creating vertices, connecting vertices with curves and
connecting curves into surfaces. Currently only ACIS bodies or volumes may not be
constructed by stitching a set of surfaces together, and only in a certain number of cases;
however surfaces may also be swept or rotated to create bodies or volumes. Existing
geometry may be combined with new geometry to create higher order entities. For
example, a new surface can be created using a combination of new curves and curves
already extant in the model. Commands and details for creating each type of geometry
entity are given below.
The following describes each of the basic entities that can be generated with CUBIT using
the bottom-up approach

• Creating Vertices

• Creating Curves
• Creating Surfaces
• Creating Bodies

Creating Volumes

208

Currently, CUBIT can create volumes:

1. from surfaces by sweeping a single surface into a 3D solid,
2. by offsetting an existing volume,
3. by extending one or more surfaces or sheet bodies
4. by sweeping a curve around an axis,
5. by stitching together surfaces that can form a closed volume,
6. by lofting from one surface to another surface, or
7. by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is
allowed, and some non-planar faces can be swept successfully, although not all are
supported at this time. The following methods for generating volumes are described:

• Sweep Surface Along Vector
• Sweep Surface About Axis
• Sweep Surface Along Curve
• Sweep Surface Perpendicular
• Sweep Surface to a Volume
• Offset
• Sheet extended from surface
• Sweep Curve About Axis
• Stitch Surfaces Together
• Loft Surfaces Together
• Thicken Surfaces
• Sweep Surface
• Sweep Surface along Direction
• Sweep Surface along Helix

There are five forms of the sweep command; the syntax and details for each are given
below. Common options for first four forms are:

draft_angle: This parameter specifies the angle at which the lateral faces
of the swept solid will be inclined to the sweep direction. It can also be
described as the angle at which the profile expands or contracts as it is
swept. The default value is 0.0.
draft_type: This parameter is an ACIS-related parameter and specifies
what should be done to the corners of the swept solid when a non-zero draft
angle is specified. A value of 0 is the default value and implies an extended
treatment of the corners. A value of 1 is also valid and implies a rounded
(blended) treatment of the corners.
anchor_entity: The default behavior for the sweep command is to move
the source surface along a path to create a new 3D solid. The anchor_entity
option instructs the sweep to leave the source surface in its original location.
include_mesh: This option will sweep the source surface and existing
mesh into a meshed 3D solid. The mesh size is automatically computed
using the Default auto interval specification.

Cubit_15.5_User_Documentation

209

The sweep operations have been designed to produce valid solids of positive volume,
even though the underlying solid modeling kernel library that actually executes the
operation, ACIS, allows the generation of solids of negative volume (i.e., voids) using a
sweep.
1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a
specified vector. Specifying the distance of the sweep is optional; if this parameter is not
provided, the face is swept a distance equal to the length of the specified vector. The
include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Vector <x_vector y_vector z_vector>
[Distance <distance_value>] [switchside] [Draft_angle <degrees>]
[Draft_type <0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface mesh swept along a vector

2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis
through a specified angle. The axis of revolution is specified using either a starting point
and a vector, or by a coordinate axis. This axis must lie in the plane of the surfaces being
swept. The steps parameter defaults to a value of 0 which creates a circular sweep path.
If a positive, non-zero value (say, n) is specified, then the sweep path consists of a series
of n linear segments, each subtending an angle of [(sweep_angle) / (steps-1)] at the
axis of revolution. The include_mesh option will create a volumetric mesh if the surface
is already meshed as shown below. The keep option will keep the original surface while
creating the volume.

Sweep Surface {<surface_id_range>} Axis {<xpoint ypoint zpoint xvector

yvector zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [switchside] [Steps

<number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type

<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

210

Surface swept around an axis of 50 degree angle

Specifying multiple surfaces that belong to the same body will not work as
expected, as ACIS performs the sweep operation in place. Hence, if a range of surfaces
is provided, they ought to each belong to different bodies.
3. Sweep Surface Along Curve: This command allows the user to sweep a planar
surface along a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle

<degrees>] [Draft_type <0 | 1 | 2>][rigid][anchor_entity][include_mesh]

[keep] [individual] [merge]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be
tangential to the surface. The relationship between the surface orientation and the guide
curve is maintained through out the sweep. If the "rigid" option is specified the orientation
of the surface is kept static throughout the sweep. Sweep along curve also supports an
additional draft type "2" which implies a "natural" extension of the corners from their
curves.
The include_mesh option will create a volumetric mesh if the surface is already meshed
as shown below. The keep option will keep the original surface while creating the
volume.

Cubit_15.5_User_Documentation

211

Volume generated by sweeping a surface along a reference curve

4. Sweep Surface Perpendicular: This command allows the user to sweep a planar
surface perpendicular to the surface:

Sweep Surface <surface_id_range> Perpendicular Distance <distance>

[Switchside] [Draft_angle <degrees>] [Draft_type

<integer>][anchor_entity][include_mesh] [keep] [merge]

The sweeping plane must be planar in order to determine the sweep direction. The
switchside option will reverse the direction of the sweep.

The original surface is retained with the 'keep' option. A new volume is created by

sweeping the surface along the surface normal.

The include_mesh option will create a volumetric mesh if the surface is already meshed
as shown below. The keep option will keep the original surface while creating the
volume.
5. Sweep Surface to a Volume: This command allows users to sweep a surface to a
volume.

Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction

{options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will
determine the sweep direction (usually normal to the sweeping surface). The plane option
can be used to define a stopping plane.
6. Offset: The following command creates a body offset from another body or set of
surfaces at the specified distance. The new surfaces are extended or trimmed
appropriately. A positive distance results in a larger body; a negative distance in a smaller
body.

Create Body Offset [From] Body <id_range> Distance <value>

212

Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list>

Offset <val>] [Surface <id_list> Offset <val> ...] [Preview]

Using the second form of the command, the sheet body can be created from a list of
surfaces, and the surfaces may offset by different distances. This command currently
requires the original surfaces to be on solid bodies.
This option is also available for limited cases for facet-based surfaces.
7. Sheet Extended from Surface: The following command creates a body offset from
another body or set of surfaces at the specified distance. The new surfaces are extended
or trimmed appropriately. A positive distance results in a larger body; a negative distance
in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity_list>]

[Extended {Percentage|Absolute} <val>] [Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you
can give a list of bodies to intersect for this calculation. You can also extend the size of
the surface by either a percentage distance or an absolute distance of the minimum area
size. The plane can be previewed with the preview option. Figure 1 shows a set of
surfaces being created using the extended absolute option.

Figure 1. Sheet created from extending multiple surfaces

Cubit_15.5_User_Documentation

213

8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through
a specified angle. The axis is specified the same as in the Sweep Surface About Axis
command. The steps, draft_angle, and draft_type options are the same as are described
above. To create the solid, the make_solid option must be specified, otherwise a surface
will be created, rather than a solid. If the rigid option is specified, then the curve or set of
curves will remain oriented as originally oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector

zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [Steps

<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]

[Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a
closed volume with command below. The geometry must be ACIS-type geometry (i.e.
imported from IGES, STEP or fastq files) This option is also available for limited cases for
facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep]

[Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables
this behavior. The keep option preserves the original surfaces.
All of the surfaces must form a closed water-tight volume for this command to succeed
unless the sheet option is specified.
The sheet option allows for the creation of an open body. If the set of surfaces form a
closed volume a sheet body is created instead of a volume.
In situations where the boundaries are not exactly within tolerance, the following
command may be more effective:

Stitch {Body|Volume} <id_range>

 [tolerance <value>] [no_tighten_gaps]

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a new
body. Surfaces from solid bodies and sheet bodies may be used to create a loft body. In
order to create the loft body, two surfaces coincident to the input surfaces are
created. The loft body is extruded along the shortest path between the corresponding
vertices that define the shapes of the two surfaces. If guide curves are used the loft body
is extruded along the guide curves. This new body is solid. The surfaces used to create
the loft body are unchanged.

Create {Body|Volume} Loft Surface <ids> [guide curve <id_list>

[global_guides]] [Takeoff_factors <one value per surface in order>=.001]

214

[Takeoff_vector Surface <id> {direction options}] [match vertex <ids>]

[closed] [preview] [show_matching_curves]

Note:Source surface ids must be specified in lofting order.
Go to Location, Direction, and Axis Specification to see the direction command
description.
The following options are available for lofting:

• Guide curve: Multiple curves may be specified to guide the loft. The curves must
touch the curves of each source surface. If the global_guides option is specified
the guides curves are applied in a global nature.

• Takeoff_factors: Takeoff factors control how strongly the loft follows the takeoff
vectors. When specifying takeoff factors one value must be specified for each
source surface.

• Takeoff_vector: The takeoff vector controls the tangency or direction of the loft
for each surface. The default takeoff vector for each surface is the normal at the
surface centroid. If manually specified, one takeoff vector must be specified for
each surface.

• Match vertex: This option guides the loft in how to match the vertices of the
source surfaces. Multiple match vertex sets may be specified. When specifying
match vertices, one vertex id from each source surface must be specified. The
match vertices must be specified in loft order.

• Closed: This option atempts to create a toroidal solid. The last source surface is
lofted to the first source surface.

• Preview: This option will preview the linking curves of the final solid.
• Show_matching_curves: This option will preview how the vertices of the source

surfaces will be matched.

Lofting can be used to split a body in order to create a more structured mesh. Figure 2
below shows a single volume swept from a large paved surface. Figure 3 shows this same
volume after surfaces defined on the source and target surfaces have been used to create
a loft body. This original body was chopped with the loft body. The resulting two bodies
were merged. The yellow volume was swept as the volume in Figure 2 was but the purple
volume was submapped, producing a much more structured mesh overall.

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Cubit_15.5_User_Documentation

215

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.

11. Thicken Surfaces: A surface body can be thickened to create a volume body. The
surface can be thickened in both directions using the "both" keyword, thickened in the
direction of surface normal using a positive depth, or thickened in the opposite direction
using a negative depth. To thicken multiple surfaces, all surface normals must be
consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards
the plane until the swept surface reaches the plane. See plane options for ways to
describe a plane.

Sweep surface <id> target plane <options>
13. Sweep Surface along a Direction: Sweep a surface along a direction to create a
volume. See direction options for ways to specify a direction.

Sweep Surface <surface_id_range> Direction (options) [switchside] [draft_angle

<degrees>] [draft_type <integer>] [rigid] [anchor_entity] [include_mesh] [keep]

[merge]

Surface extruded along -X direction without 'include_mesh' option

216

14. Sweep Surface along Helix: Sweep a surface along a helix, where the helix is
defined by an axis, thread_distance (distance between turns in axis direction), axis, and
handedness (right_handed or left_handed.

Sweep {Surface|Curve} <id_range> Helix {axis <xpoint ypoint zpoint xvector

yvector zvector> | xaxis | yaxis | zaxis} thread_distance <val> angle

<val> [RIGHT_HANDED|left_handed] [anchor_entity] [include_mesh] [keep]

[merge]

*** Specifying multiple Surfaces that belong to the same Body can cause the
creation of invalid Bodies and is discouraged. ***
axis = axis about which to create the sweep
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Helical Sweep

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and
the geometry (shape) of the curve (along with any parameters necessary for that
geometry). There are several forms of this command:

• Straight

• Parabolic, Circular, Ellipse

• Spline

• Copy

• Arc Three

• Arc End Vertices and Radius

• Arc Center Vertex

• Arc Center Angle

Cubit_15.5_User_Documentation

217

• From Vertex Onto Curve

• Offset

• From Mesh Edges

• Close_To

• Surface Intersection

• Projecting onto Surface

• Helix

1. Straight: The first form of the command creates a straight line or a line lying on the
specified surface. If a surface is used, the curve will lie on that surface but will not be
associated with the surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [On Surface

<surface_id>]

Straight curves can be created using an axis. The syntax is as follows:

Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification
to see the axis command description.
Additionally, several connected straight curves can be created with a single command.
The syntax for the polyline command is as follows:

Create Curve Polyline Location {options} Location {options} ...

Notice that two or more locations are used to define a polyline. See Location, Direction,
and Axis Specification for the location command description.
2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes
through the three vertices. The circular and ellipse options create circular and elliptical
curves respectively that go through the first and last vertices.

Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id>

[Parabolic|Circular|ELLIPSE [start angle <val=0>] [stop angle <val=90>]]]

If 'ellipse' is specified, Cubit will create an ellipse assuming the vectors between vertices
(1 and 3) and (2 and 3) are orthogonal. v1-v3 and v2-v3 define the major and minor axes
of the ellipse and v3 defines the center point. These vectors should be at 90 degrees. If
not, Cubit will issue a warning indicating the vertices are not sufficient to create an ellipse
and will then default to creating a spiral.
The angle options will specify what portion of the ellipse to create. If none are
specified, start angle will default to 0 and stop angle to 90 and the ellipse will go from
vertex 1 to vertex 2; if the vertices are free vertices they will be consumed in the ellipse
creation. Start angle tells Cubit where to start the ellipse -- the angle from the first axis
(v1 - v3) specified. Stop angle tells Cubit where to end the ellipse -- the angle from the

218

first axis. The angle follows the right-hand rule about the normal defined by (v1 - v3) X
(v2 - v3).

3. Spline: The spline form of the command creates a spline curve that goes through all
the input vertices or locations. To create a curve from a list of vertices use the syntax
shown below. The delete option will remove all of the intermediate vertices used to create
the spline leaving only the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline
will pass through all of the specified locations. The syntax is shown below:

Create Curve Spline {List of locations}

See Location, Direction, and Axis Specification to view the location specification syntax.
4. Copy: This command actually copies the geometric definition in the specified curve to
the newly created curve. The new curve is free floating.

Create Curve From Curve <curve_id>

5. Combine Existing Curves: This command creates a new curve from a connected
chain of existing ACIS curves.

Create Curve combine curve <id_list> [delete]

6. Arc Three: The following command creates an arc either through 3 vertices or tangent
to 3 curves. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

7. Arc End Vertices and Radius: The following command creates an arc using two
vertices, the radius and a normal direction. The Full qualifier will cause a complete circle
to be created.

Create Curve Arc Vertex <id_list>

Radius <value> Normal {<x> <y> <z> | {direction options} [Full]

Go to Location, Direction, and Axis Specification to see the direction command
description.
8. Arc Center Vertex: The next form of the command creates an arc using the center of
the arc and 2 points on the arc. The arc will always have a radius at a distance from the

Cubit_15.5_User_Documentation

219

center to the first point, unless the Radius value is given. Again, the Full qualifier will
cause a complete circle to be created.

Create Curve Arc Center Vertex <center_id> <end1_id> <end2_id>

[Radius <value>] [Full]

[Normal {<x> <y> <z> | {direction options}]

Go to Location, Direction, and Axis Specification to see the direction command
description.
Note: Requires 3 Vertices - first is the center, the other two are the end points of the arc.
A normal direction is required when the three points are colinear. Otherwise a normal
direction is optional.
9. Arc Center Angle: This form of the command creates an arc using the center position
of the arc, the radius, the normal direction and the sweep angle.

Create Curve Arc Center {<x=0> <y=0> <z=0> | {location options}

Radius <value>

Normal {<x> <y> <z> | {direction options}

Start Angle <value=0> Stop Angle <value=360>

Go to Location, Direction, and Axis Specification to see the location and direction
command descriptions.
10. From Vertex Onto Curve: The following command will create a curve from a vertex
onto a specified position along a curve. If none of the optional parameters are given, the
location on the curve is calculated as using the shortest distance from the start vertex to
the curve (i.e., the new curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction

<f> | Distance <d> | Position <xval><yval><zval> | Close_To Vertex

<vertex_id> [[From] Vertex <vertex_id> (optional for 'Fraction' &

'Distance')]] [On Surface <surface_id>]

Note: Default = Normal to the Curve

11. Offset: The next command creates curves offset at a specified distance from a planar
chain of curves. The direction vector is only needed if a single straight curve is given. The
offset curves are trimmed or extended so that no overlaps or gaps exist between them. If
the curves need to be extended the extension type can be Rounded like arcs, Extended
tangentially (the default -straight lines are extended as straight lines and arcs are
extended as arcs), or extended naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]

[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only

220

In all cases, the specified vertices are not used directly but rather their positions are used
to create new vertices.
12. From Mesh Edges: This commands creates a curve from an existing mesh given a
starting node and an adjacent edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]

The adjacent edge indicates which direction to propagate the curve.
The curve will be composed of mesh edges up to the specified length.
If no length is specified the curve will propagate as far as the boundary of the mesh.
Figure 1 shows a example of a curve generated from the mesh.

Figure 1. Example of curve created from mesh

The underlying geometry kernel used for this command is Mesh-Based geometry. The
new curve will also be meshed with the edges it was propagated through. A related
command for assigning mesh edges directly to a mesh block is the Rebar command. See
Element Block Specification for more details.
Note: Full hexes or full tets must be used to propagate the curves through the interior of
volume.
13. Close_To This option takes two geometric entities and creates the shortest possible
curve between the two entities at the location where the two entities are the closest. The
two entities may NOT intersect. If two vertices are given, the command will create a
straight line between the two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>

{Vertex|Curve|Surface|Volume|Body} <id_2>

14. Surface Intersection The following command creates curves at surface
intersections. Multiple curves can be created from a single command.

Create Curve Intersecting Surface <id_list>

15. Projecting onto a Surface The project command allows you to make an imprint of a
surface or set of curves onto another surface. The command syntax is as follows:

Cubit_15.5_User_Documentation

221

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]

[Keepbody]] [Trim]

Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]

[Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves
is given, the result will be the creation of a set of free curves on top of the projection
surface. If a list of surfaces is given, the result will be the same as selecting the curves
that bound the surface (i.e. a group of free curves on the projecting surface).
The imprint option will imprint the resulting projected curves onto the projection surface.
If this option is NOT given, the new curves will lie coincident to the surface, but will not be
part of the surface. Imprinting changes the topology of the projection surface. Keepcurve
option retains the new curves as both free curves, and curves in the projection surface.
The keepbody option retains the original body under the new imprinted body. When
projecting curves, the trim option will cause the curve to be trimmed to the target surface.
16. Creating a Helix: This command will create a helical curve. The command syntax is
as follows:

Create Curve Helix { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |

yaxis | zaxis } location (options) thread_distance <value> angle <value>

[RIGHT_HANDED | left_handed]

axis = axis about which to create the helix
location (options) = starting point of the helix
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in
CUBIT by fitting an analytic or spline surface over a set of bounding curves. In this case,
the curves must form a closed loop, and only one loop of curves may be supplied. The
second method, is by sweeping a curve about an axis, along a vector, or along another
curve. The result of these surface creation commands is a "sheet body" or a body that
has zero measurable volume (it does however have a volume entity). This body may be
decomposed with booleans and special webcutting commands or it may be used as a
tool to decompose other bodies. Booleans can be used to cut holes out of these surfaces.
The following options may be used for creating a surface in CUBIT.

• Bounding Curves
• Bounding Vertices or Nodes
• Copy
• Extended Surface

222

• Planar Surface
• Net Surface
• Offset
• Skinning
• Sweeping of Curves
• Midsurface
• Weld Profile
• Meshed Entities
• Circular Surface
• Parallelogram
• Ellipse
• Rectangle

1. Bounding Curves: The first form of this command produces an analytic or spline
surface fit to cover the bounding curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...

Another version of this command creates a surface from a set of bounding curves that all
lie on one surface. If the curves are selected they must lie on the surface, and they must
create a closed loop. The On Surface option forces the surface to match the geometry
of the underlying surface exactly.

Create Surface Curve <id_list> On Surface <surface_id>

2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit
an analytic spline surface. The On Surface option creates the surface from a set of nodes
and vertices that all lie on one surface and restrains the surface to match the geometry
of the underlying surface. The project option will project the nodes or vertices to the
specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the
specified surface. The new surface will be a stand-alone sheet body that is geometrically
identical to the user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended
from a given surface or list of surfaces. The specified surface's geometry is examined and
extended out "infinitely" relative to the current model in CUBIT (i.e. extended to just
beyond the bounding box of the entire model). The given surfaces are extended as shown
in the table.

Cubit_15.5_User_Documentation

223

Create Surface Extended From Surface <surface_id>

Table 1. Surface Extension Results

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone,
cylinder...

Shell of outside conic axially aligned with
given conic of infinite height relative to model

Spline Surface is extended to extents of the spline
definition. This may not be any further than the
surface itself, so caution should be used here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create
Sheet Extended from Surface command.
5. Planar Surface: The following commands create planar surfaces. The first passes a
plane through 3 vertices, the second uses an existing plane, the third creates a plane
normal to one of the global axes, and the fourth creates a plane normal to the tangent of
a curve at a location along the curve. By default, the commands create the surface just
large enough to intersect the bounding box of the entire model with minimum surface
area. Optionally, you can give a list of bodies to intersect for this calculation. You can also
extend the size of the surface by either a percentage distance or an absolute distance of
the minimum area size. The plane can be previewed with the command Draw Plane
[with]... (where the rest of the command is the same as that to create the surface).

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id>

[Vertex] <v3_id> [Intersecting] Body <id_range>] [Extended

Percentage|Absolute <val>]

Create Planar Surface [With] Plane Surface <surface_id> [Intersecting]

Body <id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane {Xplane|Yplane|Zplane} [Offset <val>]

[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction

<f>| Distance <d> | Position <xval><yval><zval> | Close_to vertex

<vertex_id>} [[From] Vertex <vertex_id> (optional for 'fraction' &

'distance')] [Intersecting] Body <id_range>] [Extended Percentage|Absolute

<val>]

224

6. Net Surface: Net surfaces can be created with two different commands. A net surface
passes through a set of curves in the u-direction and a set of curves in the v-direction
(these u and v curves would looked like a mapped mesh). The first form of the command
uses curves to create the net surface. The curves must pass within tolerance of each
other to work. The second form uses a mapped mesh to create the surface. The mapped
mesh can be of a single surface or a collection of mapped or submapped surfaces that
form a logical rectangle. By default net surfaces are healed to take advantage of any
possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>]

[HEAL|Noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]

[HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh
a set of complicated surfaces then create a net surface from this mesh. Then the original
surfaces can be removed with the noextend option and the new net surface combined
back onto the body.
7. Offset: The following command creates surfaces offset from existing surfaces at the
specified distances.

Create Surface Offset [From] Surface <id_list> Distance <val>

The surface offset command will only translate the existing surfaces, without extending
or trimming them. An alternate form of the command for sheet bodies will maintain
connections between surface by extending or trimming as they are offset, shown in Figure
1. On the left, the surfaces are offset using the surface offset command. On the left, the
surface is created by using the "sheet" version of the command.

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An
example of a skin surface is to create a surface through a set of parallel lines.

Cubit_15.5_User_Documentation

225

Create Surface Skin Curve <id_list>

9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create
new surfaces. The path may be specified as an axis and angle, a vector and distance, by
indicating another curve or set of contiguous curves, or by specifying a target plane. The
following commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector

zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Steps

<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]

[Make_solid] [Include_mesh] [Keep][Rigid]

Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance

<distance>] [Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh]

[Keep] [Rigid]

Sweep Curve <curve_id_range> Along Curve <refcurve_id_range>

[Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh] [Keep]

[Rigid]

Sweep Curve <curve_id_range> Target Plane <options>

Sweep Curve <curve_id_range> Target {Volume|Body} <id> Direction

{options} [Plane <options>] [Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead
of a smooth round sweep, there are facets to the surface. The make_solid option closes
the newly-created surface to the axis, so that a solid is created instead of a surface.
In the above commands, the include_mesh option will create a surface mesh if the curve
is already meshed (see figure below). The keep option will keep the original curve while
creating the surface.

The sweep curve target plane command sweeps a curve until it hits a target plane. The
options for the target plane are described under Specifying a Plane.
The last command sweeps a curve to a target volume or body and can only be used on
sheet bodies. Use the direction keyword to specify the sweep direction and the plane

226

keyword to specify a stopping plane. The unite keyword will unite the sheet bodies after
sweeping
The other options are as follows:
draft_angle: determines how much drafting in of the surface is desired
draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they
intersect)

1 => rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***
rigid: normally the curve will rotate to maintain its original orientation to the sweep path.
The rigid option disallows this rotation.
10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using
the following command:

Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1>

<idN2>

where N denotes the number of pairs of surfaces. An even number of surfaces must be
specified, and the command will group them by pairs in the order in which they are
provided. The resulting surface will be trimmed by the specified body or volume <id>. This
replaces the Create Midplane command in previous versions of CUBIT.

Cubit_15.5_User_Documentation

227

Figure 2. Multisurface created with the Create Midsurface command

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces

Midsufaces can also be extracted without surface pair specification if the resulting surface
is a single sheet of surfaces (no T intersections). The following is the command syntax
for automatic midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent]

[Thickness] [Limit <lower_bound> <upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:

create midsurface volume 1 auto delete

228

Figure 4. Midsurface created from a volume

The command option descriptions are listed below.
Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to
specify a single surface pair to create a mid-surface.
Transparent shows the successfully midsurfaced volumes as transparent in the graphics
display
Thickness applies a 2D property to the created mid-surface geometry.
Limit search range gives the algorithm a range to find surface pairs within.
11. Weld Profile: Surfaces may be created by specifying a weld profile using the following
command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list>

Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface
along the root curve and uniting the new body to the model. An example of the command
is illustrated below. For a detailed description of the location specifier see Location
Direction, and Axis Specification.

create surface weld root location vertex 25 weld surface 13 14 length 2

Cubit_15.5_User_Documentation

229

Figure 5. Weld Profile surface with length and root specifications

12. Creating A Surface From Mesh Entities: Surfaces may be created from the
boundaries of meshed volumes, surfaces, and/or from individual quadrilateral mesh
elements. The individual option makes it so you can enter multiple surfaces at once, and
not have them merged together into a larger surface, but instead retain their own original
boundaries. The optional tolerance value allows the user to specify a tolerance to which
the resulting surface should be fit. The default value is 0.001. If surface creation fails,
increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face <

id_range> [Individual]} [Tolerance <value>]

Figure 6. Acis Surface created from a Set of Quadrilaterals

230

13. Creating a Circular Surface: This command creates a 2D circular surface. The
surface will be centered at the origin and on the z-plane if a plane option is not specified.

create surface circle radius <value> {xplane|yplane|ZPLANE}

This command creates a 2D circular surface by specifying three vertices; the first vertex
will be the center of the surface, the second vertex will be used to define the radius of the
surface, and the third vertex will assist in defining the plane that the surface will lie in.

create surface circle center vertex <v1_id> <v2_id> <v3_id>

This command creates a 2D circular surface by forming a circular curve through three
points.

create surface circle vertex <v1_id> <v2_id> <v3_id>

14. Creating a Parallelogram: This command creates a 2D parallelogram surface,
centered at the origin, by specifying three corner vertices. These vertices will form three
consecutive corners of the parallelogram surface.

create surface parallelogram vertex <v1_id> v2_<id> <v3_id>

15. Creating an Ellipse: This command creates a 2D elliptical surface, centered at the
origin, by specifying at least a major radius. On an x-y plane this radius will be the radius
along the x-direction. The minor radius will be the radius along the y-direction. By
default, the surface will lie in the z-plane.

Create Surface Ellipse major radius <value> [minor radius <value>]

[xplane|yplane|ZPLANE]

This command creates a 2D elliptical surface using three vertices. The first two vertices
define the major and minor radii of the ellipse surface. The third point defines the center
of the ellipse. It is important to note that a line from v1_id to v3_id must be orthogonal to
a line from v2_id to v3_id, otherwise the command will fail.

Create Surface Ellipse vertex <v1_id> <v2_id> <v3_id>

16. Creating a Rectangle: This command creates a rectangular surface centered at the
origin. If only a width value is specified, the surface will be a square. On an x-y plane,
the width value is the x-direction and the height is the y-direction. By default, the surface
will lie in the z-plane.

Create Surface rectangle width <value> [height <value>] [xplane|yplane|ZPLANE]

Creating Vertices

Cubit_15.5_User_Documentation

231

The basic commands available for creating new vertices directly in CUBIT are:

• XYZ location

• On Curve - Fraction

• On Curve - General

• From Vertex

• At Arc

• At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the
vertex. It can also be created lying on a curve or surface in the geometric model by
specifying the curve or surface id; the position of the vertex will be the point on the
specified entity which is closest to the position specified on the command. With all of
these commands, the user is able to specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length
along a curve using the second form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]

Vertex 3 in the following example was created with this command:

create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve

3. On Curve - General: A more general purpose form of the command is also available
for creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val

0.0 to 1.0> [From Vertex <id> | Start|End] | Distance <val> [From

{Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At} Location {options}

| Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction]

232

{options} [Direction {options}] [Direction {options}] | Segment <num_segs> |

Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual
distance from one of the curves ends, at the closest location to an xyz position or another
vertex, or at a specified distance from a vertex, curve or surface. You can also preview
the location first with the command Draw Location On Curve (where the rest of the
command is identical to the Create Vertex form).
4. From Vertex: Create a vertex from an existing vertex.

Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color

<color_name>]

If 'on curve|surface' option is used, the vertex is positioned on that curve or surface. When
the 'on curve|surface' is not used, the new vertex is positioned on the existing vertex.
5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the
bounded qualifier is used, the vertices are limited to lie on the curves, otherwise the
extensions of the curves are also used to calculate the intersections. The near option is
only valid for straight lines, where the closest point on each curve is created if they do not
actually intersect (resulting in two new vertices).

Create Vertex AtIntersection Curve <id1> <id2> [Bounded] [Near] [Color

<color_name>]

transforms
Geometry Transforms

• Align
• Copy
• Move
• Scale
• Rotate
• Reflect

Bodies can be modified in CUBIT using transform operations, which include align, copy,
move, reflect, restore, rotate, and scale. With the exception of the copy operation,
transform operations in CUBIT do not create new topology, rather they modify the
geometry of the specified bodies. ACIS, Mesh Based Geometry and Virtual Geometry
representations may be transformed. If the geometric entity has been meshed, the nodes
of the mesh will be transformed along with the geometry. To transform the nodes of a

Cubit_15.5_User_Documentation

233

mesh as they are written to the Exodus II mesh file without modifying their location within
CUBIT, see Transforming Mesh Coordinates.

Align Command
The align command is a combination of the rotate and move commands. This
transformation is useful for aligning surfaces in preparation for geometry decomposition
and aligning models for axis-symmetric analysis. If the [include_merged] option is used,
all entities that are merged with the specified volume will be included in the align
transformation also.
The first align command will transform the specified volumes by computing a
transformation that aligns the source axis or surface with the target axis or surface such
that the source axis centroid or surface centroid is coincident with the target axis origin or
surface centroid and the surface normal(s) and/or axis(s) are pointing either in the same
or opposite direction (depending on their initial alignment). The source surface need not
be in the specified volumes. If the [reverse] option is specified, the resulting alignment is
flipped 180 degrees.
An optional second axis or surface source-target pair can be specified. This will result in
an additional rotational alignment: The specified volumes will be rotated about the first
target axis or surface normal such that the second target axis or surface is at the same
angle about the first target axis or surface normal.

Align Volume <id_range>

 Source {Axis {options}|Surface <surface_id>}

 Target {Axis {options}|Surface <surface_id>}

 [Source {Axis {options}|Surface <surface_id>}

 Target {Axis {options}|Surface <surface_id>}]

 [reverse] [include_merged] [preview]

The image below shows the two alignments that occur when the additional source-target
pair is specified.

234

Figure 1 - Aligning with optional rotation

The second form of the align command either aligns a face of a volume or two vertices
(forming a direction) with the xy, yz, and xz planes or the x, y, and z axes. If the [reverse]
option is specified, the resulting alignment is flipped 180 degrees.

Align Volume <id_range> {Surface <surface_id>| Vertex <vertex_id>}

{{X|Y|Z Axis}|{XY|XZ|YZ plane}} [reverse] [include_merged] [preview]

The third form of the command is a rotational alignment, where the specified entities are
rotated about the specified axis, where the angle of rotation is the angle between the first
and second locations with respect to the axis.

Align Volume <id_range> Location {options} with Location {options} about

Axis {options} [include_merged] [preview]

The fourth form of the command uses vertex pairs to define the transformation. The first
pair of vertices define a translation so that the source and target vertices are coincident
(i.e.,the source is moved to the target). The optional second pair of vertices define a

Cubit_15.5_User_Documentation

235

rotation such that the source and target vertices are all collinear after the transformation.
The optional third pair of vertices define a rotation such that all the source and target
vertices will be coplanar.

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Align Using Vertex

<src_id> <tgt_id>

[Collinear Vertex <src_id> <tgt_id> [Coplanar Vertex <src_id> <tgt_id>]]

[include_merged]

Copy Command
The copy command copies an existing entity to a new entity without modifying the existing
entity. A copy can be made of several entities at once, and the resulting new entities can
be translated or rotated at the same time. The commands for copying entities are:

Vertex <range> Copy [Move [X <dx>] [Y <dy>] [Z <dz>]] [Preview]

Vertex <range> Copy [Move <direction_options> [Distance <val>]] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move [X <dx>]

[Y <dy>] [Z <dz>] [Nomesh] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move

<direction_options> [Distance <val>] [Nomesh] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect {X|Y|Z}

[Nomesh] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect [Vertex

<v1_id> [Vertex] <v2_id] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Reflect <x> <y> <z> [Nomesh]

[Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About {X|Y|Z}

[Repeat <value>] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About <x> <y>

<z> [Nomesh] [Repeat <value>] [Repeat <value>] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Scale <scale> | X <val> Y <val>

Z <val> [About Vertex <id>] [Nomesh] [Repeat <value>] [Preview]

If the copy command is used to generate new entities, a copy of the original mesh
generated in the original entity will also be copied directly onto the new entity unless the
nomesh option is used.

236

Several of the commands include the Repeat token. If that token is used the command
will repeat itself value times.
This is currently limited to copies that do not interact with adjacent geometry through non-
manifold topology. For details on mesh copies, see the Mesh Duplication documentation.

Move Command
The move command moves a body, volume, free surface, free curve or free vertex by a
specified offset. The command syntax is:

Vertex <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy] [Preview]

Vertex <id_range> Move <direction_options< [Distance <val>] [Copy]

[Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> [Move [X <dx>] [Y

<dy>] [Z <dz>]] [Copy [Nomesh]] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Move

<direction_options> [Distance <val>] [Copy [Nomesh]] [Preview]

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis
directions. If the copy option is specified, a copy is made and the copy is moved by the
specified offset. The nomesh option will copy and move only the geometry.
These forms of the Move command will only work on free surfaces and free curves. To
move a curve or surface that is part of a higher-order entity, the Move {entity} ...
command is used.

Moving Other Geometric Entities

It is also possible to move bodies by specifying one of its child entities. For example, a
body can by moved by specifying one of its curves. However, if a lower-order entity is
moved, the parent body and all related entities will also be moved. The commands for
moving bodies using a child entity are given below. Alternatively, the tweak command can
be used to move curves and surfaces without moving the parent body.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]

Location <x> [<y> [<z>]] [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Location

[Midpoint] [X <val>] [Y <val>] [Z <val>] [Except [X] [Y] [Z]]

[Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Normal to

Surface <id> Distance <val> [Include_Merged] [Preview]

Cubit_15.5_User_Documentation

237

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]

General Location <location_options> [Except [X] [Y] [Z]] [Include_Merged]

[Preview]

The first form of the command will move the entity to an absolute location. If moving a
group, the centroid of the group is moved to that location. The second form will move the
entity by a relative distance in any of the xyz axis directions. "Except" is used to preserve
the x, y, or z plane in which the center of the entity lies. The third form of the command
will move the body along an axis defined by the outward-facing surface normal of another
surface. The fourth form of the command uses general location parsing to move the entity.

Moving Bodies Relative to Other Geometric Entities

It is also possible to move bodies relative to other geometric entities in the model. The
following command takes as arguments two geometric entities. The first entity is the one
to move. The second entity is where it will be moved. In both cases, the midpoints of the
specified entity are used to determine the distance and direction of the move. In the case
of groups, centroids are used. "Except" is used to preserve the x, y, or z plane in which
the center of the entity lies.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]

Location {Vertex|Curve|Surface|Volume|Body|Group} <id> [Midpoint]

[Except [X] [Y] [Z]] [Include_Merged] [Preview]

Moving Merged Entities

The easiest way to move merged entities is by adding the include_merged keyword to
the command. All entities that are merged with the specified entities will move together.
The only other way that merged entities can be moved is by including each of the merged
entities in the entity list.

Move Undo

The Undo option allows a user to reverse the most recent move. This command will only
work for the Move {entity} commands, and not the {Entity} Move commands. The syntax
is:

Move Undo

Reflect Command
The reflect command mirrors the body about a plane normal to the vector supplied. The
reflect command will destroy the existing body and replace it with the new reflected body,
unless the copy option is used.

238

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect <x-

comp> <y-comp> <z-comp>

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect

{X|Y|Z}

Rotate Command
The rotate command rotates a body about a given axis without adding any new geometry.
If the Angle or any Components are not specified they are defaulted to be zero. The
commands to rotate a body or bodies are:

Body <range> [Copy] Rotate <angle> About {X|Y|Z} [Preview]

Body <range> [Copy] Rotate <angle> About <x-comp> <y-comp> <z-comp>

[Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> about

{X|Y|Z|<xval> <yval> <zval>} Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About

Vertex <id> Vertex <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About

Normal of Surface <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About

Origin <xval> <yval> <zval> Direction <xval> <yval> <zval> Angle <val>

[Include_Merged] [Preview]

If the copy option is specified, a copy is made and rotated the specified amount.

Rotating Merged Entities

The easiest way to rotate merged entities is by adding the include_merged keyword to
the command. All entities that are merged with the specified entities will rotate together.
The only other way that merged entities can be rotated is by including each of the merged
entities in the entity list.

Scale Command
The scale command resizes an entity (body, volume, surface, or curve) by a scaling
factor. The scaling factor may be a constant, or may differ in the x, y, and z directions.
The entity chosen will be scaled about the point or vertex indicated. If no point or vertex
is entered, it will be scaled about the origin. Any mesh on the object will be scaled too,
unless the nomesh keyword is used.

Cubit_15.5_User_Documentation

239

The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> Scale {<scale> | x <val> y <val> z

<val>} [About {<x> <y> <z> | Vertex <id>}] [Nomesh] [Copy [Repeat

<value>] [Group_Results]] [Preview]

If the copy option is specified, a copy of the entity is made and scaled the specified
amount. Use the repeat option to create multiple copies.

booleans
Geometry Booleans

• Intersect
• Subtract
• Unite

CUBIT supports boolean operations of intersect, subtract, and unite for bodies.
An automatic function associated with webcutting operations is regularizing geometry
which can be turned off or back on with the following command:

Set Boolean Regularize [ON | off]

Intersect
The intersect command generates one or more new volumes composed of the space that
is shared by the volumes being intersected. There are two forms of the command. The
first form is:

Intersect {Volume|[Body]} <range> [Keep] [Preview]

In this form, all volumes in the range will be intersected, and the resulting intersection
volume(s) will contain all intersections of all input volumes. The original volumes will be
deleted. The second form is:

Intersect {Volume|[Body]} <id> [With {Volume|[Body]} <range>] [Keep]

[Preview]

In this form, the first volume is intersected with all volumes in the range specified using
the with keyword. Intersections between volumes in the range are not included in the
output. The original volume will be deleted and the other volumes updated with the
intersection results.
The keep option results in the original volumes used in the intersect being kept.
If the Preview option is included in the command, the input volumes will not be modified.
The computed intersection volume will be drawn as a red, shaded solid. For best results
change the graphics mode to transparent or hidden line so the intersection is visible.
Otherwise the intersection volume will be hidden by the volumes being intersected.

240

Subtract
The subtract operation subtracts one body or set of bodies from another body or set of
bodies. The order of subtraction is significant - the body or bodies specified before the
From keyword is/are subtracted from bodies specified after From. The new body retains
the original body's id. If any additional bodies are created, they will be given the next
highest available ids. The keep option simply retains all of the original bodies. The
command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range>

[Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

Unite
The unite operation combines two or more bodies into a single body. The original bodies
are deleted and the new body is given the next highest body ID available, unless the keep
option is used. The commands are:

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [Keep]

Unite Body {<range> | All} [Keep]

Unite Body {<range> | All} [Include_mesh]

The second form of the command unites multiple bodies in a single operation. If the all
option is used, all bodies in the model are united into a single body. If the bodies that are
united do not overlap or touch, the two bodies are combined into a single body with
multiple volumes.
The unite command allows sheet bodies to be united with solid bodies. To disable this
capability you can turn the following setting off:

Set Unite Mixed {ON|Off}

decomposition
Geometry Decomposition
Geometry decomposition is often required to generate an all-hexahedral mesh for three-
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is not
yet possible in CUBIT. While geometry booleans can be used for decomposition (and are
the basis of the underlying implementation of advanced decomposition tools described
here), CUBIT has a webcut capability specially tuned for decomposition. It is also useful
to split periodic surfaces to facilitate quad and hex meshing.

• Web Cutting

• Splitting Geometry

Cubit_15.5_User_Documentation

241

• Section Command
• Separating Multi-Volume Bodies
• Separating Surfaces From Bodies

web cutting

Web Cutting with an Arbitrary Surface

An arbitrary "sheet" surface can also be used to web cut a body. This sheet need not be
planar, and can be bounded or infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut_options]

Webcut {blank} with sheet extended [from] surface <id> [webcut_options]

In its first form, the command uses a sheet body, either one that is pre-existing or one
formed from a specified surface. Note that in this latter case the (bounded) surface should
completely cut the body into two pieces. Sheet bodies can be formed from a single
surface, but can also be the combination of many surfaces; this form of web cut can be
used with quite complicated cutting surfaces.
Extended sheet surfaces can also be used; in this case, the specified surface will be
extended in all directions possible. Note that some spline surfaces are limited in extent,
and so these surfaces may or may not completely cut the blank.

Chop Command

The chop command works similarly to a web cut command, but is faster. Given two
bodies, the command will find the intersection of the two bodies, and divide the main body
into a body that lies outside the intersection, and a body that lies inside the intersection.
The tool body will be deleted, unless the keep option is specified. The syntax of the
command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]

The nonreg option results in the bodies being non-regularized.

Web Cutting with a Planar or Cylindrical Surface

The commands used to web cut with a planar or cylindrical surface in CUBIT are:

• Coordinate Plane

• Planar Surface

242

• Plane from 3 Points
• Plane Normal to Curve
• General Plane Specification
• Cylindrical Surface
• Cone Surface

Coordinate Plane

In the command's simplest form, a coordinate plane can be used to cut the model, and
can optionally be offset a positive or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane

{xplane|yplane|zplane} [Offset <val>] [rotate <theta> about x|y|z <xval>

<yval> <zval> [center <xval> <yval> <zval>]] webcut_options

The cutting plane can be rotated about a user-specified axis using the rotate option. The
center of rotation can be moved by using the center option.

Planar Surface

An existing planar surface can also be used to cut the model; in this case, the surface is
identified by its ID as the cutting tool.

Webcut {Volume|Body|Group} <id_range> [With] Plane Surface

<surface_id> webcut_options

Plane from 3 Points

Any arbitrary planar surface can be used by specifying three vertices that define the plane,
and can optionally be offset a positive or negative distance from this plane.

Webcut {Volume|Body|Group} <id_range> [With] Plane Vertex <vertex_1>

[Vertex] <vertex_2> [Vertex] <vertex_3> [Offset <value>] webcut_options

The plane to be used for the web cut can be previewed with the preview option in the
general webcut options.

Plane Normal to Curve

The next command allows a user to specify an infinite cutting plane by specifying a
location on a curve. The cutting plane is created such that it is normal to the curve tangent
at the specified location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve

<curve_id>

{Position <xval><yval><zval> | Close_To Vertex <vertex_id>}

webcut_options

Cubit_15.5_User_Documentation

243

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve

<curve_id>

{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut_options

The position on the curve can be specified as:

1. A fraction along the curve from the start of the curve, or optionally, from a specified

vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified

vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed with the Draw Location On Curve command and
the plane to be used for the web cut can be previewed with the preview option in the
general webcut options.

General Plane Specification

A webcut plane can be defined using the general plane specification options in the
Specifying a Plane section of the documentation.

Webcut {Volume|Body|Group} <id_range> [With] General Plane {options}

webcut_options

Cylindrical Surface

Finally, a semi-infinite cylindrical surface can be used by specifying the cylinder radius,
and the cylinder axis. The axis is specified as a line corresponding to a coordinate axis,
the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin.
The "center" point through which the cylinder axis passes can also be specified.

Webcut {Volume|Body|Group} <range> [With] Cylinder Radius <val> Axis

{x|y|z|normal of surface <id>| vertex <id_1> vertex <id_2>| <x_val> <y_val>

<z_val>>} [center <x_val> <y_val> <z_val>] webcut_options

Cone Surface

A semi-infinite cone surface can be used by specifying the cone outer radius, and the
cone inner radius. The axis is specified as a location first of where the outer radius is
applied and the second location of where the inner radius is applied.

Webcut {Volume|Body|Group} <ids> [With] cone radius <val> <val> location

{options} location {options} [Imprint] [Merge] [group_results] [preview]

244

Web Cutting by Sweeping Curves or Surfaces

Webcutting with sweeping creates a swept tool body in the same step as the web cut
operation. There are 4 general ways to web cut with sweeping:

• Web Cutting by Sweeping a Surface Along a Trajectory

• Web Cutting by Sweeping a Surface About an Axis

• Web Cutting by Sweeping a Curve(s) Along a Trajectory

• Web Cutting by Sweeping a Curve(s) About an Axis

Web Cutting by Sweeping a Surface Along a Trajectory

This command allows one or more surfaces to be swept, creating a volume that is used
for the web cut. If more than one surface is specified, the surfaces must contain coincident
curves. The surfaces are swept along a direction and some distance or perpendicular and
some distance or along a curve. For best results the curve to sweep the surface along
should intersect one of the surfaces. The through_all option will sweep the surfaces
along the trajectory far enough so as to intersect all input bodies. The stop surface <id>
option is used to identify a surface at which the sweep will stop. If using this option when
sweeping along a curve, the sweep will stop at the first place possible. The up_to_next
option indicates that the user wants to web cut with only the first water tight volume that
forms as a result of the intersection between sweep and union of all blank bodies. The
[Outward|Inward] options specify a sweeping direction that is either INTO the volume or
OUT from the volume.

Webcut {Volume|Body|Group} <range> Sweep Surface <id_range> {Vector

<x> <y> <z> [Distance <distance>] | Along Curve <id>} [Through_all | Stop

Surface <id> | Up_to_next] [webcut_options]

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range>

Perpendicular {Distance <distance> | Through_all | Stop Surface <id>}

[OUTWARD|Inward] [webcut_options]

sweeping a surface in a

direction

resultant web cut

Cubit_15.5_User_Documentation

245

along a curve to a stop surface

resultant web cut

Figure 1. Examples of web cutting with swept surfaces

Web Cutting by Sweeping a Surface About an Axis

This command allows a one or more surfaces to be swept, creating a volume that is used
for the web cut. If more than one surface is specified, the surfaces must contain coincident
curves. The surface is swept about a user-defined axis or about one of the x y z coordinate
axes and a specified angle. The stop surface <id> option is used to identify a surface at
which the sweep will stop. The up_to_next option indicates that the user wants to web
cut with only the first water tight volume that forms as a result of the intersection between
sweep and union of all blank bodies. For these 2 options to work correctly the user must
specify an angle large enough for the rotation to traverse the stop surface or the
up_to_next surface.

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range> {Axis

<xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle

<degrees> [Stop Surface <id> | Up_to_next] [webcut_options]

Web Cutting by Sweeping a Curve(s) Along a Trajectory

This command allows a curve(s) to be swept, creating a surface that is used for the web
cut. If multiple curves are specified, they must share vertices and form a continuous path.
The curve(s) is swept along a direction and some distance or along another curve. If
sweeping a curve(s) along another curve, for best results the curve(s)-to-swept and the
curve to sweep along should intersect at some point. The stop surface <id> option is
used to identify a surface at which the sweep will stop. If using this option when sweeping
along a curve, the sweep will stop at the first place possible. The through_all option will
sweep the curve(s) along the trajectory far enough so as to intersect all input bodies. For
the web cut to be successful, the swept curve(s) must completely traverse a portion of a
blank body(s), cutting off a complete piece of the blank body(s). Option through_all
should not be used when defining the web cut with a vector and a distance or along a
curve.

246

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Vector <x>

<y> <z> [Distance <distance>| Along curve <id>] } [Through_all | Stop

Surface <id>] [webcut_options]

Web Cutting by Sweeping a Curve(s) About an Axis

This command allows a curve to be swept, creating a surface that is used for the web cut.
If multiple curves are specified, they must share vertices and form a continuous path. The
curve(s) is swept about a user-defined axis or about one of the x y z coordinate axes and
a specified angle. For the web cut to be successful, the swept curve(s) must completely
traverse a portion of a blank body(s), cutting off a complete piece of the blank body(s).
The stop surface <id> option is used to identify a surface at which the sweep will stop.
For this option to work correctly the user must specify an angle large enough for the
rotation to traverse the stop surface.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Axis <xpoint

ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle

<degrees> [Stop Surface <id>] [webcut_options]

Web Cutting using a Tool or Sheet Body

Any existing body in the geometric model can be used to cut other bodies; the command
to do this is:

Webcut {blank} tool [body] <id> [webcut_options]

This simply uses the specified tool body in a set of boolean operations to split the blank
into two or more pieces.
Another form of the command cuts the body list with a temporary sheet body formed from
the curve loop. This is the same sheet as would be created from the command Create
Surface Curve <id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>

NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]

Webcut {Volume|Body|Group} <id_range> [With] Bounding Box

{Body|Volume|Surface|Curve|Vertex <id_range>} [Tight] [[Extended]

{Percentage|Absolute} <val>] [{X|Width} <val>] [{Y|Height} <val>]

[{Z|Depth} <val>]] NOIMPRINT|Imprint] [NOMERGE|Merge]

[group_results]

The final form of this command cuts a body with the bounding box of another entity. This
bounding box may be tight or extended.

Cubit_15.5_User_Documentation

247

Figure 1. Cylinder cut with bounding box of prism.

Web Cutting

The term "web cutting" refers to the act of cutting an existing body or bodies, referred to
as the "blank", into two or more pieces through the use of some form of cutting tool, or
"tool". The two primary types of cutting tools available in CUBIT are surfaces (either pre-
existing surfaces in the model or infinite or semi-infinite surfaces defined for web cutting),
or pre-existing bodies.
The various forms of the web cut command can be classified by the type of tool used for
cutting. These forms are described below, starting with the simplest type of tool and
progressing to more complex types.

• Web Cutting Using the Chop Command

• Web Cutting Using Planar or Cylindrical Surface
• Web Cutting with Arbitrary Surface
• Web Cutting Using Tool or Sheet Body
• Web Cutting by Sweeping Curves or Surfaces
• Web Cutting Options

General Notes

The primary purpose of web cutting is to make an existing model meshable with the hex
meshing algorithms available in CUBIT. While web cutting can also be used to build the
initial geometric model, the implementation and command interface to web cutting have
been designed to serve its primary purpose. Several important things to remember about
web cutting are as follows:

• The geometric model should be checked for integrity (using imprinting and
merging) before starting the decomposition process. This makes the checking

248

process easier, since there are fewer bodies and surfaces to check. Once the
model passes that initial integrity check, it is rare that decompositions using web
cut will result in a model that does not also pass the same checks.

• The use of the Imprint option can in cases save execution time, since it limits the
scope of the imprint operations and thereby works faster. The alternative is
performing and Imprint All on the pieces of the model after all decompositions
have been completed; this operation has been made much faster in more current
releases of CUBIT, but will still take a noticeable amount of time for complicated
models.

• While the web cut commands make it very simple to cut your model into very
many pieces, we recommend that the user restrict the decomposition they
perform to only that necessary for meshability or for obtaining an acceptable
mesh. Having more volumes in the model may simplify individual volumes, but
may not always result in a higher quality mesh; it will always increase the run
time and complexity of the meshing task.

• When the web cut command is executed the associated geometry will be
regularized. This behavior can be changed, see geometry booleans.

• Web cutting volumes will automatically separate parent bodies as well. This
behavior can also be changed, see Separating Multi-Volume Bodies.

• If a geometric entity got split after the webcut operation, then the
notesets/sidesets/blocks applied on that initial geometric entity will be carried
over to the split entities.

The Decomposition Tutorials and the Power Tools Tutorial contain some examples that
demonstrate the use of web cutting operations.

Web Cutting Options

The following options can be used with all web cut commands:
[NOIMPRINT|Imprint [include_neighbors]]: In its default implementation, web cutting
results in the pieces not being imprinted on one another; this option forces the code to
imprint the pieces after web cutting. The include_neighbors option will also imprint
adjacent bodies.
[NOMERGE|Merge]: By default, the pieces resulting from an imprint are manifold;
specifying this option results in a merge check for all surfaces in the pieces resulting from
the web cut.
[Group_results]: The various pieces resulting from the previous command are placed
into a group named `webcut_group'.
[Preview]: This option will preview the web cutting plane without executing the command.

splitting geometry

Split Curve

Cubit_15.5_User_Documentation

249

The Split Curve command will split a curve without the need for geometry creation (unlike
imprinting). The syntax is shown below.

Split Curve <id> [location on curve options] [Merge] [Preview]

To split a curve, simply specify a location or a location on curve (see location
specification). Using the Preview keyword will draw the splitting location on the curve.
The Merge keyword will merge any topology that contains the newly created vertex.

Split Periodic Surfaces

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting
periodic surfaces can in some cases simplify meshing, and will result in curves and
surfaces being added to the volume. The command used to split periodic surfaces is:

Split Periodic Body <id_range|all>

This command splits all periodic surfaces in a body or bodies.

Split Surface

The Split Surface command divides one or more surfaces into multiple surfaces. The
command results are similar to imprint with curve. However, curve creation is not
necessary for splitting surfaces. Three primary forms of the command are available.

• Split Across
• Split Extend
• Split (Automatically)
• Split Skew

The first form splits a single surface using locations while the second splits by extending
a surface hard-line until it hits a surface boundary. The split automatic splits either a single
surface or a chain of surfaces in an automatic fashion.

Split Across

Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview

[Create]]

Split Surface <id> Across Location <multiple locs> Onto Curve <id>

[Preview] Create]]

250

This command splits a surface with a spline projection through multiple locations on the
surface. See Location, Direction, and Axis Specification for a detailed description of the
location specifier. Figure 1 shows a simple example of splitting a single surface into two
surfaces. A temporary spline was created through the three specified locations (Vertex 5
6 7), and this curve was used to split the surface.

split surface 1 across location vertex 5 6 7

Figure 1 - Splitting Across with Multiple Locations

The Pair keyword will pair locations to create multiple surface splitting curves (each
defined with two locations). An even number of input locations is required. Figure 2 shows
an example:

split surface 1 across pair vertex 5 7 6 8

Figure 2 - Splitting Across with Pair Option

The Preview keyword will show a graphics preview of the splitting curve. If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal
curves that are used to imprint the surfaces.
The Onto Curve format of the command takes one or more locations on one side of the
surface and projects them onto a single curve on the other side of the surface. Figure 3
shows an example:

Cubit_15.5_User_Documentation

251

split surface 1 across vertex 5 6 onto curve 4

Figure 3 - Splitting Across with Onto Curve

Split Extend

The Split Extend function can be called with the following command:

Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]

With the following settings:

Set Split Surface Extend Normal {on|OFF}

Set Split Surface Extend Gap Threshold <val>

Set Split Surface Extend Tolerance<val>

This command splits a surface by extending a surface hard-line until it hits a surface
boundary. Figure 4 shows a simple example of extending a curve. The hard-line curve
was extended from the specified vertex until it hit the surface boundary.

split surface 1 extend vertex 2

Figure 4 - Splitting by Extending Hard-line

252

The auto keyword will search for all hard-lines and extend them according to the Split
Surface Extend settings. Figure 5 shows an example:

split surface 1 extend auto

Figure 5 - Splitting by Extending with Auto Option

The preview keyword will show a graphics preview of the splitting curve. If the create
keyword is also specified, a free curve (or curves) will be created - these are the internal
curves that are used to imprint the surfaces.
The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the
hard-line so that it is normal to the curve it will intersect. An example of this is in Figure 6:

set split surface normal on
split surface 1 extend vertex 2

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON

Cubit uses the gap threshold to decide whether or not to extend a hard-line when the
user specifies auto. If the distance between a vertex on a hard-line and the curve it will
hit is greater than the gap threshold, then Cubit will not extend that hard-line. The default
value is INFINITY, and can be set to any value. To reset the value back to INFINITY, set
the gap threshold to -1.0. Note: This setting only applies when using the keyword
auto. An example of using the gap threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

Cubit_15.5_User_Documentation

253

Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.

(Notice Vertex 1 was not extended because it exceeded the gap threshold)

The tolerance setting can be used to avoid creating short curves on the surface
boundary. If Cubit tries to extend a hard-line that comes within tolerance of a vertex, it will
instead snap the extension to the existing vertex. An example of this is shown in Figure
8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

Figure 8 - Extending Hard-lines with Tolerance

(Notice the extension snapped to Vertex 3)

Split (Automatically)

This form of the command splits a single surface or a chain of surfaces in an automatic
fashion. It is most convenient for splitting a fillet or set of fillets down the middle -
oftentimes necessary to prepare for mesh sweeping. These surfaces cannot have
multiple curve loops.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>]

[Segment|Fraction|Distance <val> [From Curve <id>]] [Through Vertex

<id_list>] [Parametric <on|OFF>] [Tolerance <val>] [Preview [Create]]

254

• Logical Rectangle
• Split Orientation
• Corner Vertex <id_list>
• Direction Curve <id>
• Segment|Fraction|Distance <val> [From Curve <id>]
• Through Vertex <id_list>
• Parametric <on|OFF>
• Tolerance <val>
• Preview [Create]
• Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets
and specifying sweep sources as shown (with the sweep target underneath the volume).
The surface splits are shown in blue.

Figure 9 - Splitting Fillets to Facilitate Sweeping

Each surface is always split with a single curve along the length of the surface (or multiple
single curves if the Segment option is used). The splitting curve will either be a spline, arc
or straight line.
Logical Rectangle
The Split Surface command analyzes the selected surface or surface chain to find a
logical rectangle, containing four logical sides and four logical corners; each side can be
composed of zero, one or multiple curves. If a single surface is selected (with no options),
the logical corners will be those closest to 90 and oriented such that the surface will be
split parallel to the longest aspect ratio of the surface. If a chain of surfaces is selected,
the logical corners will include the two corners closest to 90 on the starting surface of the
chain and the two corners closest to 90 on the ending surface of the chain (the split will
always occur along the chain).
In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between
these corner vertices the logical sides are defined; these sides are described in Table 1.

Cubit_15.5_User_Documentation

255

The default split occurs from the center of Side 1 to the center of Side 3 (parallel to the
longest aspect ratio of the surface), and is shown in blue.

Figure 10 - Split Surface Logical Properties

Table 1. Listing of Logical Sides for Figure 10

Logical Side Corner Vertices Curve Groups

1 1-2 1

2 2-5 2,3,4

3 5-6 5

4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the
resultant splits.

256

Figure 11 - Different Possible Logical Rectangles for Same Surface

Table 2 shows various surfaces and the resultant split based on the automatically
detected or selected logical rectangle. Note that surfaces are always traversed in a
counterclockwise direction.
Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in
Blue)

Ordered Corners (to form the
Logical Rectangle)

1-2-3-4

(using aspect ratio)

4-1-2-3

(user selected)

Cubit_15.5_User_Documentation

257

1-2-5-6

2-5-6-1

1-2-3-4
(split is always along the chain)

1-2-3-4
(notice triangular surfaces along the
chain)

1-1-2-3
(note side 1 of the logical rectangle
is collapsed; side 3 is from vertex 2
to 3)

1-2-2-3
(note side 2 of the logical rectangle
is collapsed)

258

1-2-3-4

1-2-4-4

1-1-2-2

1-1-2-2
(selected automatically)

Split Orientation
If a chain of surfaces are split, the surfaces will always be split along the chain. The
command will not allow disconnected surfaces.
For a single surface, the split direction logic is a bit more complicated. If no options are
specified, the surface aspect ratio determines the split direction - the surface will be split
parallel to the longest aspect ratio side through the midpoint of each curve. This behavior
can be overridden by the order the Corner vertices are selected (the split always starts
on the side between the first two corners selected), the Direction option, the From Curve
option, or the Through Vertex list.
Table 3 shows examples of the various split orientation methods. These options are
explained in more detail in the sections below.
Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

Multiple surfaces are always split
along the chain

Cubit_15.5_User_Documentation

259

Parallel to longest surface aspect ratio
(default)

Corner Vertex 4 1 2 3
(split always starts on side 1 of the
logical rectangle)

Direction Curve 1

From Curve 1 Fraction .75
or
From Curve 1 Distance 7.5

Through Vertex 5 6

Corner Specification
The Corner option allows you to specify corners that form logical rectangle the algorithm
uses to orient the split on the surface. When analyzing a surface to be split, the software
automatically selects the corners that are closest to 90. The Preview option displays the
automatically selected corners in red. Sometimes incorrect corners are chosen, so you
must specify the desired corners yourself. The split always starts on the side between the
first two corners selected and finishes on the side between the last two corners selected.
Figure 12 shows a situation where the user had to select corners to get the desired split.

260

Figure 12 - Selecting the Desired Corners

The split can be directed to the tip of a triangular shaped surface by selecting that corner
vertex twice (at the start or end of the corner list) when specifying corners, creating a
zero-length side on the logical rectangle. A shortcut exists whereas if you specify only 3
corner vertices, the zero-length side will be directed to the first corner selected. If you
specify only 2 corner vertices, a zero-length side will be directed to both the first and
second corner you select. Table 4 shows these examples. Note the software will
automatically detect triangle corners based on angle criteria - the corner selection
methods for zero-length sides explained in this section need only be applied if the angles
are outside of the thresholds specified in the Set Split Surface Auto Detect Triangle
settings.
Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification

1-2-4-4- or 4-4-1-2
or

4-1-2 (shortcut method)

1-1-2-2 or 2-2-1-1
or

1-2 or 2-1 (shortcut method)

Direction
The Direction option allows you to conveniently override the default split direction on a
single surface. Simply specify a curve from the logical rectangle that is parallel to the
desired split direction. If Corners are also specified, the Direction option will override the
split orientation that would result from the specified corner order. The Direction option is
not valid on a chain of surfaces. Figure 13 shows an example.

Cubit_15.5_User_Documentation

261

Figure 13 - Direction Specification Overrides Corner Order

Segment|Fraction|Distance
The Segment option allows you to split a surface into 2 or more segments that are equally
spaced across the surface. The Fraction option allows you to override the default 0.5
fractional split location. The Distance option allows you to specify the split location as an
absolute distance rather than a fraction. By specifying a From Curve, you can indicate
which side of the logical rectangle to base the segment, fraction or distance from (versus
a random result). Table 5 gives examples of these options.
Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

Segment 6 From Curve 1

Fraction .3 From Curve 1

Distance 3 From Curve 1

Through Vertex

262

The Through Vertex option forces the split through vertices on surface boundaries
perpendicular to the split direction. Use this option if the desired fraction is not constant
from one end of the surface to another or if a split would otherwise pass very close to an
existing curve end resulting in a short curve. Through vertices can be used in conjunction
with the Fraction option - the split will linearly adjust to pass exactly through the specified
vertices. It is not valid with the Segment option. The maximum number of Through
Vertices that can be specified is equal to the number of surfaces being split plus one. The
selected vertices can be free, but must lie on the perpendicular curves. Table 6 gives
several examples.
Table 6 - Through Vertex Examples

Surface(s) Command Options

Fraction .3 From Curve 1 Through
Vertex 9

Through Vertex 5 6 7 8

Parametric
By default, split locations are calculated in 3D space and projected to the surface. As an
alternative, split locations can be calculated directly in the surface parametric space. In
rare instances, this can result in a smoother or more desirable split. The command option
Parametric {on|Off} can be used to split the given surfaces in parametric space.
Alternatively, the default can be overridden with the Set Split Surface Parametric
{on|OFF} command.
Tolerance
A single absolute tolerance value is used to determine the accuracy of the split curves. A
smaller tolerance will force more points to be interpolated. The tolerance is also used
when detecting an analytical curve (e.g., an arc or straight line) versus a spline. A looser
tolerance will result in more analytical curves. The default tolerance is 1.0. The command
option Tolerance <val> can be used to split the given surfaces using the given tolerance.
Alternatively, the default tolerance can be overridden with the Set Split Surface Tolerance
<val> command.
It is recommended to use the largest tolerance possible to increase the number of
analytical curves and reduce the number of points on splines, resulting in better
performance and smaller file sizes. The Preview option displays the interpolated curve
points. Table 7 shows the effect of the tolerance for a simple example.
Table 7 - Effect of Tolerance on Split Curve

Cubit_15.5_User_Documentation

263

Surface Tolerance

2.0

1.0

0.5

0.01

Preview
The Preview keyword will show a graphics preview (in blue) of the splitting curve (or
curves) and the corner vertices (in red) selected for the logical rectangle. The curve
preview includes the interpolated point locations that define spline curves. Note that if no
points are shown on the interior of the curve, it means that the curve is an analytical curve
(line or arc). If the Create keyword is also specified, a free curve (or curves) will be created
- these are the internal curves that are used to imprint the surfaces. Table 8 shows some
examples.
Table 8 - Graphics Preview

Surface Curve Type

Spline

264

Arc (no preview points shown on
interior of curve)

Settings
This section describes the settings that are available for the automatic split surface
command. To see the current values, you can enter the command Set Split Surface,
optionally followed by the setting of interest (without specifying a value).

Set Split Surface Tolerance <val>

This sets the default tolerance for the accuracy of the split curves. See the Tolerance
section for more information.

Set Split Surface Parametric {on|OFF}

This sets the default for whether surfaces are split in 3D (default) or in parametric
space. See the Parametric section for more information.

Set Split Surface Auto Detect Triangle {ON|off}

Set Split Surface Point Angle Threshold <val>

Set Split Surface Side Angle Threshold <val>

The split surface command automatically detects triangular shaped surfaces as explained
in the section on Corners. This behavior can be turned off with the setting above. Two
thresholds are used when detecting triangles - the Point Angle threshold and the Side
Angle threshold, specified in degrees. Corners with an angle below the Point Angle
threshold are considered for the tip of a triangle (or the collapsed side of the logical
rectangle). Corners within the Side Angle threshold of 180 are considered for removal
from the logical rectangle. In order for a triangle to actually be detected, corners for both
the point and side criteria must be met. The default Point Angle threshold is 45, and the
default Side Angle threshold is 27. Figure 14 provides an illustration.

Cubit_15.5_User_Documentation

265

Figure 14 - Triangle Detection Settings

Split Skew

The Split Skew function can be called with the following command:

Split Surface <id_list> Skew [Preview] [Create]

This command will split a surface or list of surfaces in a logical way to reduce the amount
of skew in a quadrilateral mesh. This function uses the control skew algorithm to
determine where to make these logical splits. Users should note that Split Skew can only
be utilized effectively on surfaces that lend themselves to a structured meshing scheme.
These surfaces cannot have multiple curve loops. Figure 15 shows a simple example of
a surface being split.

split surface 1 skew

266

Figure 15. Split Skew applied to an L-shaped surface

The Preview keyword will show a graphics preview of the splitting curves. If the Create
keyword is also specified, free curves will be created.

Splitting Geometry

The Split command divides curves or surfaces into multiple entities. The command results
are similar to imprinting. However, vertex and/or curve creation is not necessary for the
split command.

• Split Curve
• Split Surface
• Split Periodic Surfaces

Section Command
This command will cut a body or group of bodies with a plane, keeping geometry on one
side of the plane and discarding the rest. The syntax for this command is:

Section {Body|Group} <id_range> [With] {Xplane|Yplane|Zplane} [Offset

<value>] [NORMAL|Reverse] [Keep]

Section {Body|Group} <id_range> With Surface <id> [NORMAL|Reverse]

[Keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The
offset option is used to specify an offset from the coordinate plane. In the second form,
an existing (planar) surface is used to section the model. In either case, the reverse

Cubit_15.5_User_Documentation

267

keyword results in discarding the positive side of the specified plane or surface instead of
the other side. The keep option results in keeping both sides; the section command used
with this option is equivalent to webcutting with a plane.

Separating Surfaces from Bodies
The separate surface command is used to separate a surface from a sheet body or a
solid body. The command is:

Separate Surface <range>

Separating a surface from a solid body will create a "hole" in the solid body. Thus the
solid body will become a sheet body. The newly separated surface will be also sheet
body, but it will have a different id. Multiple surfaces can be separated from a body at the
same time, but each separated surface will result in a distinct sheet body, as if the
command had been performed on each surface individually.

Separating Multi-Volume Bodies
The separate and split commands are used to separate a body with multiple volumes into
a multiple bodies with single volumes. The commands are:

Separate {Body|Volume} <id_range|all>

and

Split {Body|Volume} <id_range|all>

Only very rarely will either of these commands be needed. They are provided for the
occasional instance that a multi-volume body is found. These commands are
interchangeable.
Another related command allows the user to control the separation of bodies after
webcutting. In most instances the user will want to separate bodies after webcutting. One
reason to possibly have this option turned off is to be able to keep track of all the volumes
during a webcut. Setting this option to "off" keeps all volumes in the same body. But the
more common approach is to name the original body and allow naming to keep track of
volumes. This setting is on by default. The syntax is:

Set Separate After Webcut [ON|Off]

cleanup and defeaturing
Geometry Cleanup and Defeaturing
Frequently, models imported from various CAD platforms either provide too much detail
for mesh generation and analysis, or the geometric representation is deficient. These
deficiencies can often be overcome with small changes to the model. Several tools are
provided in CUBIT for this purpose.

268

The following describes the features available in CUBIT for clean up and defeaturing

• Healing

• Tweaking Geometry
• Removing Geometric Features
• Automatic Geometry Clean-up
• Regularizing Geometry
• Finding Surface Overlap
• Validating Geometry
• Debugging Geometry
• Geometry Accuracy
• Trimming and Extending Curves
• Stitching Sheet Bodies
• Blunting Tangencies (Removing small angles)
• Defeaturing Tool

healing

Analyzing Geometry

The following command analyzes the ACIS geometry and will indicate problems detected:

Healer Analyze Body <id_range> [Logfile ['filename'] [Display]]

The logfile option writes the analysis results to the filename specified, or to
'healanalysis.log' by default. In the GUI version of CUBIT, the display option will write
the results in a dialog window.
The outputs include an estimate of the percentage of good geometry in each body. The
optional logfile will include detailed information about the geometry analysis. By default
CUBIT will also highlight the bad geometry in the graphics and give a printed summary
indicating which entities are "bad". Sample output from this command is shown below:
Percentage good geometry in Body 9: 98%
HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9
Found 2 bad Vertices: 51, 52
Found 3 bad Curves: 76, 77, 80
Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problems: 9
Journaled Command: healer analyze body 9

Note that it is not necessary to analyze the geometry before healing; however, it can be
useful to analyze first rather than healing unnecessarily. Also note that healer analysis
can take a bit of time, depending on the complexity of the geometry and how bad the
geometry is.
The validate geometry commands work independently of the healer and give more
detailed information.

Cubit_15.5_User_Documentation

269

Healer Settings

You can control the outputs from the healer with the following commands:

Healer Set OnShow {Highlight|Draw|None}

Healer Set OnShow {Badvertices|Badcurves|Badcoedges|Badbodies|All}

{On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You
can control which entity types to display, as well as whether or not to show the printed
summary at the end of analysis.
After you have analyzed the geometry (which can take some time), you can show the bad
geometry again with the "show" command. This command simply uses cached data
(healing attributes - see the next section) from the previous analysis.

Healer Show Body <id_list>

Auto Healing

Healing is an extremely complex process. The general steps to healing are:

• Preprocess - trim overhanging surfaces and clean topology (remove small curves and

surfaces).

• Simplify - converts splines to analytic representations, if possible.

• Stitch - geometry cleanup and stitching loose surfaces together to form bodies.

• Geometry Build - repairing and building geometry to correct gaps in the model.

• Post-Process - calculating pcurves and further repairing bad geometry.

• Make Tolerant Curves & Vertices - a last optional step that allows special handling of

unhealed entities for booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:

Healer Autoheal Body <id_range> [Rebuild] [Keep] [Maketolerant] [Logfile

['logfilename'] [Display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the
surfaces back together and heals again. In some cases this can more effectively fix up
the body, although it is much more computationally intensive and is not recommended
unless normal healing is unsuccessful.
The keep option will retain the original body, putting the resulting healed body in a new
body.

270

The maketolerant option will make the edges tolerant if ACIS is unable to heal them.
This can result in successful booleans even if the body cannot be fully healed - ACIS can
then sometimes "tolerate" the bad geometry. Note that the healer analyze command will
still show these curves as "bad", even though they are tolerant. The validate geometry
commands however take this into consideration.
The output from the autoheal command can be written to a file using the logfile option;
the default file name is autoheal.log. The display option works as before, displaying the
results in a window in the GUI version of CUBIT.

Healing

Healing is an optional module that detects and fixes ACIS models.
It is possible to create ACIS models that are not accurate enough for ACIS to process.
This most often happens when geometry is created in some other modeling system and
translated into an ACIS model. Such models may be imprecise due to the inherent
numerical limitations of their parent systems, or due to limitations of data transfer through
neutral file formats. This imprecision can also result when an ACIS model is created at a
different tolerance from the current tolerance settings. This imprecision leads to problems
such as geometric errors in entities, gaps between entities, and the absence of
connectivity information (topology). Since ACIS is a high precision modeler, it expects all
entities to satisfy stringent data integrity checks for the proper functioning of its algorithms.
Therefore, if such imprecise models must be processed by an ACIS based system,
"healing" of such models is necessary to establish the desired precision and accuracy.
The following sections describe how to use the Healing capability in ACIS and CUBIT to
analyze and heal defective ACIS geometry.

• Analyzing Geometry

• Healing Attributes
• Auto Healing
• Spline Removal
• What if Healing is Unsuccessful?

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model -
this allows you to use the "show" command to quickly display the bad geometry again.
The results attributes are automatically removed when the geometry is exported or any
boolean operations are performed. They can also be explicitly removed with the
command

Healer CleanAtt Body <id_range>

Cubit_15.5_User_Documentation

271

You can force the results to be removed immediately after each analyze operation with
the "CleanAtt" setting (this can save a little memory):

Healer Set CleanAtt {On|Off}

Spline Removal

If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance
can be modified and healing re-run:

healer default simplifytol .1

healer autoheal body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):

Healer Force {Plane|Cylinder|Cone|Sphere|Torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic
surfaces. Note: Spline curves can be found using entity filters:

Execute Filter Curve Geometry_type Spline

What if Healing is Unsuccessful?

The ACIS healing module is under continued development and is improving with every
release. However, there will often be situations where healing is unable to fully correct
the geometry. This might be okay, as meshing is rarely affected by the small inaccuracies
healing addresses. However, boolean operations on the geometry can fail if the bad
geometry must be processed by the operation (i.e., a webcut must cut through a bad
curve or vertex).
Here are some possible methods to fix this bad geometry:

• Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy.

Re-export the geometry.

• Heal again using the rebuild option.

• Heal again using the make tolerant option.

• Remove the offending surface from the body (using the remove surface command), then

construct new surfaces from existing curves and combine the body back together.

272

• Composite the surfaces over the bad area, mesh and create a net surface from the

composite, remove the bad surfaces and combine.

• Export the geometry as IGES, import the IGES file into a new model and look for double

surfaces or surfaces that show up at odd angles using the find overlap commands. Delete

and recreate surfaces as needed and combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing
bad geometry.

tweaking geometry

Tweaking Surfaces

The following options of the Tweak Surface command are available. Command syntax
and examples follow below.

• Tweaking a Surface Using an Offset
• Tweaking a Surface by Moving
• Tweaking Surfaces to Target Surfaces
• Removing a Surface
• Tweaking a Conical Surface
• Tweaking Doublers to Target Surface
• Removing Holes and Slots from Sheet Bodies
• Removing Fillets from Sheet Bodies

Tweaking a Surface Using an Offset

Tweak Surface <id_list> Offset <val> [Surface <id_list> Offset <val>]

[Surface <id_list> Offset <val> ...] [Keep] [Preview]

The Tweak Offset form of the command offsets an existing set of surfaces and extends
the attached surfaces to meet them. A positive offset value will offset the surface in the
positive surface normal direction while a negative value will go the other way. Different
offsets may be specified for each surface. Figure 1 shows a simple example of offsetting.
Note that you can also offset whole groups of surfaces at once. The keep option will retain
the original surfaces and curves.

Cubit_15.5_User_Documentation

273

Figure 1. Tweak Offset

Tweaking a Surface by Moving

The Tweak move form of the command simply moves the given surfaces along a vector
direction. The direction can be specified either absolutely or relative to other geometry
entities in the model (from entity centroid to location). Note that when moving a surface
for tweak, the surface is moved and the surface and the adjoining surfaces are extended
or trimmed to match up again. So, for example, moving a vertically oriented planar surface
in the vertical direction will have no effect. In this example, if you move the surface 10 in
the x and 5 in the y the effect will be to move it simply 10 in the x. You can also use this
form of the command to move a protrusion around - just be sure to specify all of the
surfaces on the protrusion for moving. The last form of the command can be used to move
a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>

Location {Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]]

[Keep] [Preview]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>

Location <x_val> <y_val> <z_val> [Except [X][Y][Z]] [Keep][Preview]

Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [Keep]

[Preview]

Tweak Surface <id_range> Move Direction <options> Distance <val> [Keep]

[Preview]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>

[Except [X][Y][Z]] [Keep][Preview]

Tweaking Surfaces to Target Surfaces

274

The Tweak target form of the command actually replaces the given surfaces with a copy
of the new surfaces, then extends and trims surfaces to match up. This can be useful for
closing gaps between components or performing more complicated modifications to
models. The command syntax is:

Tweak {Curve|Surface} <id_list> Target {Surface <id_list> [Limit Plane

(options)] [EXTEND|noextend] | Plane (options)} [keep] [preview]

Tweak Surface <id_list> Replace [With] Surface <id_list> [Keep] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target
surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a
plane that the tweak will stop at if the tweaked surface does not completely intersect the
target surface. The limit plane must be used with the extend option. See the help for
Specifying a Plane for the options available to define a plane.
Single target surfaces are automatically extended so that the tweaked body will fully
intersect the target. Unfortunately, extending multiple target surfaces can sometimes
result in an invalid target, so the option is given to tweak to unextended targets with the
noextend option. In this case, the tweaked body must fully intersect the existing targets
for success. If you experience a failure when tweaking to multiple targets or the results
are unexpected, it is recommended to try the noextend option (NOTE: Tweaking to
multiple targets is only implemented in the ACIS geometry engine). It is recommended to
always preview before using the tweak target commands.
Figure 2 shows a simple example.

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface

The Tweak remove command allows you to remove surfaces from a model by extending
the adjacent surfaces to fill in the resulting gaps. It is identical to the Remove Surface
command. See Removing Surfaces for a description of the command options.

Tweak Surface <id_list> Remove [EXTEND|Noextend] [Keepsurface]

[Keep][Preview]

Cubit_15.5_User_Documentation

275

Tweaking a Conical Surface

The Tweak cone form of the command is used to replace a conical projection with a flat
circular surface. This command is useful for simplifying bolt holes. The command syntax
is.

Tweak Surface <id_range> Cone [Preview]

The following is a simple example illustrating the use of the tweak surface cone command.

276

Figure 3. Conical bolt hole before and after tweaking

Tweaking Doublers to Target Surfaces

The Tweak Doubler form of the command takes a specified surface and creates drop-
down surfaces either normal to the doubler surface or by a user specified vector to a
target surface. This can be helpful in creating surfaces for weld elements between
midsurfaced geometry. The resulting surfaces do not create a bounding volume, and do
not imprint themselves onto the target surface. The command syntax is:

Tweak Surface <id_list> Doubler Surface <id_list> {[Limit Plane (options)]

[EXTEND|noextend]} [Internal] [Direction (options)] [Thickness] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target
surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a
plane that the tweak will stop at if the tweaked surface does not completely intersect the
target surface. The limit plane must be used with the extend option. See the help for
Specifying a Plane for the options available to define a plane.
Single target surfaces are automatically extended so that the tweaked body will fully
intersect the target. Unfortunately, extending multiple target surfaces can sometimes
result in an invalid target, so the option is given to tweak to unextended targets with the
noextend option. In this case, the tweaked body must fully intersect the existing targets
for success. If you experience a failure when tweaking to multiple targets or the results
are unexpected, trying the noextend option is recommended.
If the doubler surface has a thickness property value, you can propagate that thickness
value to the newly created drop-down surfaces by using the thickness flag.
It is recommended to always preview before using the tweak doubler commands.
NOTE: This function only works for ACIS geometry.

Geometry Output

Figure 3. Extending a doubler surface to target

Cubit_15.5_User_Documentation

277

The internal option will also include internal curves when the surface is extended (see
Figure 4c). The direction option will create a skewed surface along the given direction
(see Figure 4d).

Figure 4. Explanation of tweak doubler options (a) Original surfaces (b) No option flags

used (c) Internal option used - notice internal curves dropped down (d) Direction flag -

notice skew

Removing Holes and Slots from Sheet Bodies

The Tweak Hole/Slot Idealize command takes a specified sheet body(s) and searches
for either holes or slots (or both) which meet the user's input parameters. This can be
helpful in removing small holes or slots quickly and efficiently from midsurfaced bodies
where such level of detail isn't required. The command syntax is:

Tweak Surface <id_list> Idealize {[Hole Radius <val>] [Slot Radius <val>

Length <val>]} [Exclude Curve <id_list>] [Preview]

Below is a diagram showing the different parameters available for input by the user.

278

Figure 5. Input parameters for tweak surface idealize command

#Hole Removal Example
tweak surface 13 idealize hole radius 6

Figure 6. Example of hole removal using tweak surface idealize command

The exclude option allows the user to specify individual curves that should not be deleted,
even if they meet the search criteria for removal. Figure 7 shows another hole removal
example where several curves were excluded.

Cubit_15.5_User_Documentation

279

Figure 7. Example of hole removal using exclude option

Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will
highlight all curves slated to be removed if the command is executed.

Removing Fillets from Sheet Bodies

The Tweak Fillet Idealize command takes a specified sheet body(s) and searches for
either internal or external fillets (or both) which meet the users' radius parameter. This
can be helpful in removing fillets quickly and efficiently from midsurfaced bodies where
such level of detail isn't required. The command syntax is:

Tweak Surface <id_list> Idealize Fillet Radius <val> {[Internal] [External]}

[Exclude Curve <id_list>] [Preview]

#Fillet Removal Example
tweak surface 13 idealize fillet radius 6 internal

Figure 8. Example of fillet removal using tweak surface idealize command

Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will
show the result if the command is executed.

280

Figure 9. Preview of the tweak surface idealize command

Tweaking Vertices

The Tweak Vertex command can be used to do the following:

• Tweaking a Vertex With a Chamfer
• Tweaking a Vertex With a Non-Equal Chamfer
• Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer

Tweak Vertex <id_range> Chamfer Radius <value>[Keep] [Preview]

This form of the command creates a chamfered corner at the specified vertex. Can be
use on volumes or free surfaces. The 'keep' option creates another volume on which the
tweak is applied; the original volume remains unmodified.

Figure 1. Tweak Vertex Chamfer

Cubit_15.5_User_Documentation

281

Tweaking a Vertex With a Non-Equal Chamfer

Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius

<value> Curve <id> Radius <value> Curve <id>] [Keep] [Preview]

This next form of the command creates a non-equal chamfered corner at the specified
vertex. Can only be used on vertices of volumes. The 'keep' option creates another
volume on which the tweak is applied; the original volume remains unmodified.

Tweaking a Vertex With a Fillet Radius

Tweak Vertex <id_range> Fillet Radius <value> [Keep] [Preview]

This command replaces a vertex with a filleted radius. The command can only be used
on free surfaces. The 'keep' option creates another volume on which the tweak is applied;
the original free surface remains unmodified.

Figure 2. Tweak Vertex Fillet

Tweak Volume Bend

282

Entity bending bends a solid model around a given axis. In any bending operation, some
material is stretched while other material is compressed, but the topology of the model is
maintained. The command syntax is:

Tweak {Volume|Body} <id_list> Bend Root <location_options> Axis

<direction_vector> Direction <direction_vector> Radius <val> angle <val>

[Preview] [Keep] [Center_bend] [Location <options>]

Root and axis determine location for the bend. Direction determines direction of the
bend. Radius and angle determine how much to bend. Center_bend will bend both sides
of the volume around the bend location instead of one side. Location can be used to
select only specific parts of a volume to bend.

Figure 1. Bending a volume

#Ex: Bend parts of a body specified by the location option
create brick width 11 height 1
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
move body 2 general location position -3 5 0
move body 3 general location position 0 5 0
move body 4 general location position 3 5 0
subtract body 2 from body 1
subtract body 3 from body 1
subtract body 4 from body 1
tweak volume 1 bend root 0 0 0 axis 1 0 0 direction 0 0 -1 radius 1 angle 3.14 location
vertex 39 47

Cubit_15.5_User_Documentation

283

Tweaking Geometry

• Tweaking Vertices
• Tweaking Curves
• Tweaking Surfaces
• Tweak Remove Topology
• Tweak Volume Bend

The tweaking commands modify models by moving, offsetting or replacing surfaces,
curves, or volumes while extending the adjoining surfaces to fill the resulting gaps. This
is useful for eliminating gaps between components, simplifying geometry or changing the
dimensions of an object.

Tweaking Curves

The following options of the Tweak Curve command are available. Command syntax and
description follow below.

• Create a Chamfer or Fillet
• Tweaking a Curve Using an Offset Distance
• Removing a Curve
• Tweaking a Curve Using a Target Surface, Curve, or Plane
• Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet

The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The
radius value is the radius of the fillet arc or chamfer cut distance. The command syntax
is:

Tweak Curve <id_range> {Fillet|Chamfer} Radius <value> [Keep] [Preview]

In addition to creating chamfers of a single cut distance, the chamfer can be specified be
two values. The syntax is:

Tweak Curve <id_list> Chamfer Radius <val1> [<val2>] [Keep] [Preview]

Figure 1 shows a brick ('br x 10') chamfered with two different cut distances ('Tweak Curve
1 2 Chamfer Radius 2 4').

284

Figure 1 Chamfer with two different distances

Individual curves can also be filleted with different start and finish radius values. The
syntax is:

Tweak Curve <id> Fillet Radius <val1> [<val2>] [Keep] [Preview]

Figure 2 shows a brick ('br x 10') filleted with different start and end radius values (‘Tweak
Curve 1 2 Chamfer Radius 2 4’).

Figure 2. Fillet with two different radii

For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the
destruction of the original geometry after the operation and the preview option temporarily
displays the new geometry configuration without actually changing the geometry.

Tweaking a Curve Using an Offset Distance

Cubit_15.5_User_Documentation

285

Tweak Curve <id_list> Offset <val> [Curve <id_list> Offset <val>]
[Curve <id_list> Offset <val> ...] [Keep] [Preview]

Tweaking curves a specified distance offsets the existing curves and extends the
attached surfaces to meet them. A positive offset value will enlarge the surface while a
negative value will decrease the area of the attached surface. Different offset values can
be specified for each curve. The keep option prevents the destruction of the original
geometry after the operation. The preview option temporarily displays the new geometry
configuration without actually changing the geometry. Figure 3 shows an example of
offsetting a curve a specified distance.

Figure 3 Offsetting a set of curves a specified distance

Removing a Curve

Tweak Curve <id_list> Remove [Keep] [Preview]

Similar to the Tweak Curve Remove command, the tweak curve remove function removes
a specified curve from a sheet body. Figure 4 shows a simple example of removing a
curve from a sheet body.

286

Figure 4. Removing a curve from a sheet body

The keep option prevents the destruction of the original geometry after the operation. The
preview option temporarily displays the new geometry configuration without actually
changing the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure
5 shows an example of tweaking a curve to several surfaces.

Figure 5 Tweaking a curve to multiple target surfaces

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak
Curve syntax is:

Tweak Curve <id_list> Target {Surface >id_list> [Limit Plane (options)]

[EXTEND|Noextend] | Plane (options)} [Max_area_increase <val>] [Keep]

[Preview]

Tweak Curve <id_list> Target Curve <id_list > [EXTEND|Noextend]

[Max_area_increase <val>] [Keep] [Preview]

If a target surface is supplied, the user can also use a limit plane if he wishes. A limit
plane is a plane that the tweak will stop at if the tweaked curve does not completely
intersect the target surface. The limit plane must be used with the extend option. See the
help for Specifying a Plane for the options available to define a plane.
It should be noted that if the source and target surfaces are from the same body the
resulting geometry will be automatically stitched. Single target surfaces are automatically
extended so that the tweaked body will fully intersect the target. Unfortunately, extending
multiple target surfaces can sometimes result in an invalid target, so the option is given
to tweak to non-extended targets with the noextend option. In this case, the tweaked
body must fully intersect the existing targets for success. If you experience a failure when
tweaking to multiple targets or the results are unexpected, it is recommended to try the

Cubit_15.5_User_Documentation

287

noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS
geometry engine). If a value for the max_area_increasekeyword is given, Cubit will not
perform the tweak if the resulting surface area increases by more than the specified
amount. The keyword expects a percentage to be entered (i.e. '50' for 50%). It is
recommended to always preview before using the tweak target commands.
For all tweak target variations, the keep option prevents the destruction of the original
geometry after the operation and the preview option temporarily displays the new
geometry configuration without actually changing the geometry.
Although it may not be intuitive curves can also serve as the target geometry. Figure 6
shows an example of extending a curve to another curve.

Figure 6 Tweaking a curve to a target curve

Notice that the source curve actually extends to the target curve as if the target were a
surface.

Tweaking a Pair of Curves to a Corner

When creating mid-surface geometry it is often useful to extend surfaces to form a corner.
To handle this specific but common case use the tweak corner command.

Tweak Curve <id> <id> Corner [Preview]

Figure 7 shows a typical tweak corner example. Notice that surfaces are
extended/trimmed to intersect at a corner.

288

Figure 7. Tweaking two curves to a corner

The preview option temporarily displays the new geometry configuration without actually
changing the geometry.

Tweak Remove Topology

The Tweak Remove Topology command removes curves and surface from a model and
replaces them with new topology. The reconstruction of the new topology and the stitching
of it into the model is done using real solid modeling kernel operations. This command is
intended to be used on small curves and surfaces in the model. The command tries to
find small curves/surfaces neighboring the specified topology and includes these
neighbors in the removal process. Thus, the command can often be used to remove
networks of small features just by specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | Curve <id_range> | Surface

<id_range> Curve <id_range>} Small_curve_size <val> Backoff_distance

<val>

The small_curve_size is input by the user, and is used to calculate the small curves and
surfaces. The backoff_distance value specifies how far away from the original topology
cuts are made to cut out the old topology and stitch in the new topology. The removed
topology is replaced by simplified topology where possible often resulting in a dimension
reduction of the original topology. Extraneous curves that are introduced during the
cutting and stitching process are regularized out if possible using the solid modeling
kernel regularize functionality or are composited out using virtual geometry if the
regularization is not possible.
Note: This command is currently only implemented for ACIS and Catia models.

Cubit_15.5_User_Documentation

289

Example

reset
set attribute on
import acis "test10.sat"
separate body all
set attribute off
Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

290

Cubit_15.5_User_Documentation

291

Figure 1. Tweak Remove Topology command

removing geometric features

Removing Surfaces

• Remove Sliver Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to
extend the adjoining surfaces to fill the resultant gap. This is a useful way to remove fillets
and rounds and other features such as bosses not needed for analysis. See Figure 1 for
an example of this process. The syntax for this command is:

Remove Surface <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]

[Individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a
gap in the body. This is sometimes useful for repairing bad geometry - the surface can be
rebuilt with surface from curves or a net surface, etc.., then combined back onto the body.

292

The keep option will retain the original body and put the results of the remove surface in
a new body. The keepsurface option will retain the surface which was removed.
The individual option will remove surfaces one-by-one instead of as a group. If one
removal fails, the rest are still attempted. Without the individual option, no surface is
removed unless they are all able to be removed.
This command is identical to the Tweak Surface Remove command.

Figure 1. Remove Surface Example

Remove Sliver Surface

This command uses the ACIS remove surface capability on surfaces that have area less
than a specified area limit. When ACIS removes a surface it extends the adjoining
surfaces and intersects them to fill the gap. If it is not possible to extend the surfaces or
if the geometry is bad the command will fail. The syntax for this command is:

Remove Slivers Body <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]

[Arealimit [<double>]]

Default Arealimit = 0.1

The noextend, keepsurface and keep options operate as for the remove surface
command. The arealimit option allows the user to set the area below which surfaces will
be removed.

Removing Vertices

At times you may find that you have an extraneous vertex in your model. This would be
a vertex connected to two and only two edges. This stray vertex can cause unwanted
mesh artifacts, due to the fact that a mesh node MUST lie on this vertex, thereby
disallowing the possibility of movement for better quality. Fortunately there is a relatively
easy way of getting rid of this stray vertex using the tweak surface command.

Tweak Surface <id> Replace With Surface <same_id>

Cubit_15.5_User_Documentation

293

Note that you are replacing a surface with itself. In doing so, the geometry engine will do
an intersection check on that surface, and should realize that the vertex doesn't need to
be there.

Removing Geometric Features

• Vertex Removal
• Surface Removal

The Remove will remove surfaces or vertices from bodies. Adjacent surfaces or curves
will be extended, where possible, to fill in remaining gaps. The remove command is useful
for replacing filleted edges with sharp corners.

auto clean

Automatic Geometry Clean-up

The automated geometry clean-up commands are used to automatically clean up
geometry in preparation for meshing. These commands are built in to the ITEM interface,
but they can also be used on their own. They include:

• Automatic Forced Sweepability

• Automatic Small Curve Removal
• Automatic Small Surface Removal
• Automatic Surface Split

Automatic Forced Sweepability

In some cases, a volume can be "forced" into a sweepable configuration by compositing
surfaces on the linking surfaces. The automatic forced sweep command will attempt to
automatically composite linking surfaces together to create a sweepable topology. This
command can be useful in cases where there are many linking surfaces that prohibit
sweepability and are not needed to define the mesh. It is assumed that the user has
assigned the source and target surfaces for the sweep prior to calling this function. CUBIT
will try to composite linking surfaces together to get rid of problems such as 1) non-
submappable linking surfaces, 2) interior angles between curves of a surface that deviate
far from multiples of 90 degrees, and 3) surfaces with curves smaller than the small curve
size, if a small curve size is specified. This command is incorporated into the ITEM GUI,
but is also available from the command line using the following command syntax.

294

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size

<val>]

The small_curve_size qualifier is an optional argument. If a curve size is specified, the
command will try to remove surfaces with curves smaller than this size by compositing
the surface with adjacent surfaces.
Example
The following cylinder has been webcut and had surface splits so that it is not sweepable.
The split surface command has also introduced 3 small curves on the surfaces. After the
source and target surfaces are set, the force sweepability command is issued to
automatically composite neighboring surfaces to make the volume sweepable and
remove the small curves. The results are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

Figure 1. Linking surfaces are composited to force a sweepable volume topology

Automatic Surface Split

This auto clean command will attempt to automatically split narrow regions of surfaces.
In this context, any surface that contains a portion that narrows down to a small angle is
considered a narrow region. The command will use the split command from the underlying
solid modeling kernel. The user specifies a size that defines what it narrow. This
command also propagates the splits to neighboring narrow surfaces. This command is
usually used as a preprocessor to the "tweak remove_topology" command but can also
be used on its own.

Cubit_15.5_User_Documentation

295

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>

Example
The model has a surface that necks down to a narrow region. This surface also has some
neighboring narrow surfaces to which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

Automatic Small Curve Removal

The automatic small curve removal command uses composites and collapse curves
commands to automatically remove small curves from a volume. This is useful for
removing small or unnecessary details from a model to facilitate meshing algorithms. The
user enters a small curve size. Any curve smaller than this specified size will be removed.
This command is issued from the ITEM toolbar. More information can be found by reading
the section entitled Small Details in the Model in the ITEM documentation. This command
can also be called from the command line. The syntax of this command is:

Auto_clean Volume <id_range> Small_curves Small_curve_size <val>

Note: The automatic curve removal should be used with caution, as the user has little
control over how curves are removed.
Example:
The cylindrical model has 3 small curves just less than 0.7. The remove small curves
command will remove two of the small curves by compositing two neighboring surfaces
and the third using the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

296

Figure 1. Automatic small curve removal on a cylinder

Automatic Small Surface Removal

This auto clean command will attempt to remove small and narrow surfaces from the
model by compositing them with neighboring surfaces. The user specifies a small curve
size value. This value is used in two different ways. First, a small area is calculated as
the small curve size squared. This value is used to compare against when looking for
small surfaces. The small curve size is also used to identify surfaces that are narrower
than the small curve size.

Auto_clean Volume <id_range> Small_surfaces Small_curve_size <val>

Example
The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are
composited to remove these.

Cubit_15.5_User_Documentation

297

Figure 1. Automatic small and narrow surface removal on a cylinder

Debugging Geometry
The following command checks for inconsistencies in the CUBIT topological model, by
checking the specified entities and all child topology and/or comparing to solid model
topology:

Geomdebug Validate [compare] <entity_list>

This command checks for:

• Consistent CoFace senses
• Loops are closed/complete
• Consistent CoEdge senses
• Correct vertex order on curves w.r.t. parameterization
• Correct tangent direction of curves w.r.t. parameterization

Related Commands:

Geomdebug Vertex <vertex_id>

Geomdebug Curve <curve_id>

Geomdebug Surface <surface_id>

Geomdebug body <body_id>

Geomdebug Containment {Curve | Surface} <id> {Location (options) | Node

<id_list>}

The following command prints info about GeometryEntities owned by specified entity:

298

Geomdebug Geometry <entity_list> [interval <n>] [index <n>] [TEXT]

[GRAPHIC] [attributes]

The following command lists (TopologyBridge) topology for specified entity:

Geomdebug solidmodel <entity_list> [index <n>]

[depth<n>|up<n>|down<n>]

The following command lists GroupingEntities.

Geomdebug GPE <entity_list>

Finding Surface Overlap
The surface overlap capability finds surfaces that overlap each other, with the capability
to specify a distance and angle range between them. This is useful for debugging
geometry imprinting and merging problems, as well as for finding gaps in large assembly
models. Finding overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume} <id_list> [Filter_Sliver]

If a list of entities is not specified, all bodies in the model are checked. By default the
command does not check the surfaces within a given body against each other; rather, it
only checks surfaces between bodies. This can be overridden by inputting a surface list
(i.e. find overlap surface all), or with a setting (see below).
The filter_sliver option will remove false positives from the list by weeding out sliver
surfaces that have a merged curve between them. The following pictures is an example
of a sliver surface.

Cubit_15.5_User_Documentation

299

Figure 1. Example of a sliver surface

If curves 27 and 29 are merged before you run the find overlapping surface checkthe user
will get the two surfaces in the picture as an overlapping surface pair. However, if the
filter_sliver keyword is used, Cubit will not find the two surfaces to be overlapping.

Facetted Representation

This command works entirely off of the facetted surface representation of the model (the
facetted representation is what you see in a shaded view in the graphics). There are
inherent advantages and disadvantages with this method. The biggest advantage is
avoidance of closest-point calculations with NURBS based geometry, which tends to be
slow. This method also eliminates possible problems with unhealed ACIS geometry. The
disadvantage is working with a less accurate (i.e., facetted) representation of the
geometry. To circumvent problems with this facetted geometry, various settings can be
used to control the algorithm. For example, you might consider using a more accurate
facetted representation of the model - see below.

Find Overlap Settings

Various settings are used to control the precision and handling of overlaps during the find
overlap process. A listing of the settings that find overlap uses is printed using the
command:

Find [Surface] Overlap Settings

300

These settings, and the commands used to control them, are described below.
Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between
normals of adjacent surface facets. The default angular tolerance is 15 - consider using
a value of 5 . This will generate a more accurate facetted representation of the geometry
for overlap detection. This can be particularly useful if the overlap command is not finding
surface pairs as you would expect, particularly in "curvy" regions. Note however that the
algorithm will run slower with more facets. The distance tolerance means the maximum
actual distance between the generated facets and the surface. This value is by default
ignored by the facetter - consider specifying a reasonable value here for more accurate
results.

Set Overlap [Facet] {Angle|Absolute} <value>

Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a
distance from the minimum to maximum specified. The default range is 0 to 0.01. Testing
has shown this to be about right when searching for coincident surfaces. Gaps can be
found by using a range such as 3.95 to 5.05.

Set Overlap {Minimum|Maximum} Gap <value>

Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this
angle range of each other. The default range is 0.0 to 5.0 degrees. Testing has shown
that this range works well for most models. It is usually necessary to have a range up to
5.0 degrees even if you are looking for coincident surfaces because of the different types
of faceting that can occur on curvy type surfaces. For example, for the case of a shaft in
a hole, the facets of the shaft usually won't be coincident with the facets of the hole, but
may be offset by a certain distance circumferentially with each other. The 5 degree max
angle range will account for this. If you find that the algorithm is not finding coincident
surfaces when it should, you can increase the upper range of this value. Note that this
parameter is useful also for finding plates coming together at an angle.

Set Overlap {Minimum|Maximum} Angle <value>

Normal - this setting determines whether to search for surfaces whose normals point in
the same direction as each other (same), away from each other (opposite) or either
(any). The default is ANY, but it may be useful to limit this search to opposite, as this
would be the usual case for most finds.

Set Overlap Normal {ANY|opposite|same}

Tolerance - two individual facets must overlap by more than this area for a match to be
found. Consider the two cylindrical curves at the interface of the shaft and the block in
Figure 2. Note that some of the facets actually overlap, even though the curves will
analytically be coincident. You can filter out false matches by increasing the overlap
tolerance area. The default value for this setting is 0.001.

Set Overlap Tolerance <value>

Cubit_15.5_User_Documentation

301

Figure 2. Possible false find due to overlap (tolerance will prevent finding match)

Group - the surface pairs found can optionally be placed into a group. The name of the
group defaults to "overlap_surfaces".

Set Overlap Group {on|OFF}

List - by default the command lists out each overlapping pair - this can be turned off using
the command:

Set Overlap List {ON|off}

Display - by default the command clears the graphics and displays each overlapping pair
- this can be turned off using the command:

Set Overlap Display {ON|off}

Body - by default the command will not search for overlapping pairs within bodies - only
between different bodies. Turn this setting on to search for pairs within bodies. Note
however that this will slow the algorithm down.

Set Overlap [Within] {Body|Volume} {on|OFF}

Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will
often force imprints that just imprinting bodies together will miss. For each pair of
overlapping surfaces, the containing body of one surface is imprinted with the individual
curves of the other surface, until the resulting surfaces no longer overlap.

Set Imprint {on|OFF}

Geometry Accuracy
The accuracy setting of the ACIS solid model geometry can be controlled using the
following command:

[set] Geometry Accuracy <value = 1e-6>

Some operations like imprinting can be more successful with a lower accuracy setting
(i.e., 0.1 to 1e-5). However, it is not recommended to change this value. Be sure to set

302

it back to 1e-6 before exporting the model or doing other operations as a higher
setting can corrupt your geometry.

Regularizing Geometry
The regularize command removes unnecessary topology, which in effect reverses the
imprint operation. This can help clean up the model from extra features that are
unnecessary for the geometric definition of the model. The following command
regularizes the model:

Regularize Body|Group|Volume|Surface|Curve|Vertex <range>

If you are frequently using web-cutting or other boolean operations to decompose your
geometry, it may be convenient to always generate regularized geometry. To set creation
of regularized geometry during boolean operations use the following command:

Set Boolean Regularize [ON | off]

Stitching Sheet Bodies
The stitch command stitches together the specified sheet bodies into either a larger sheet
body or a solid volume(s). The tolerance value can be used when these sheet bodies
don't line up exactly along the edges. This is common for IGES and STEP models. Only
manifold stitching is performed, i.e., edges will be shared with no more than two surfaces.

Stitch {Body|Volume} <id_range> [Tolerance <value>] [No_tighten_gaps]

This command has three stages to it:

1. Stitch the surfaces together along overlapping edges Normally IGES and
some STEP files do not contain topological information that links surfaces
together to share bounding curves. Stitching is an operation that builds up this
topological information.

2. Simplify geometry The command replaces splines with analytics where
possible.

3. Tighten up gaps (inaccuracies) between the sheet bodies The command will
build the geometry necessary to tighten the gaps in the model.

When the stitch operation completes, a print statement lets the user know if the resulting
body is not a closed, solid body.
If the no_tighten_gaps option is included, the third step of the stitching process is
excluded. This may be necessary in very large or complex models, where the regular
approach fails.

Trimming and Extending Curves
Curves can be trimmed or extended with the following command:

Cubit_15.5_User_Documentation

303

Trim Curve <id> AtIntersection {Curve|Vertex <id>} Keepside Vertex <id>

[near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex
location. When trimming to another curve, the curves must physically intersect unless
they both are straight lines in which case the near option is available. With the near option
the closest intersection point is used to the other line - so it is possible to trim to a curve
that lies in a different plane. When trimming to a vertex, if the vertex does not lie on the
curve, it is projected to the closest location on the curve or an extension of the curve if
possible.
The Keepside vertex is needed to determine which side of the curve to keep and which
side to throw away. This vertex need not be one of the curve's vertices, nor does it need
to lie on the curve. However, if it is not on the curve it will be projected to the curve and
that location will determine which side of the curve to keep.
If the curve is part of a body or surface, it is simply copied first before trimming/extending.
If it is a free curve a new curve is created and the old curve is removed. The figures below
show several examples of trimming/extending curves.

Trimming a Curve

Figure 1. Trimming a Curve to an Intersecting Curve

304

Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Figure 3. Trimming a Curve to a Vertex

Extending a Curve

Figure 4. Extending a Curve to An Intersecting Curve

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

Validating Geometry
Detailed checks of geometry and topology can be performed using the validate command:

Cubit_15.5_User_Documentation

305

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>

Validate {Volume|Surface|Curve|Vertex} <range> Mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements
to determine the validity of the mesh.
More rigorous checking can be accomplished with the validate geometry commands by
specifying a higher check level. Use the following command to accomplish this:

set AcisOption Integer 'check_level' <integer>

where integer is one of the following:

10 = Fast error checks
20 = Level 10 checks plus slower error checks (default)
30 = Level 20 checks plus D-Cubed curve and surface checks
40 = Level 30 checks plus fast warning checks
50 = Level 40 checks plus slower warning checks
60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default is off):

set AcisOption Integer 'check_output' on

Note that some of the ids listed in the output of the validate command are currently
meaningless, e.g. those for coedges.
The validate command can also check for consistent surface normals and return a list of
offending surfaces. The syntax for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>]

[Reverse]

Using the "reference" keyword, a reference surface is compared to the normal
consistency of all other specified surfaces. Inconsistent surfaces can be reversed using
the "reverse" keyword.

Blunt Tangency
The blunt tangency command is used to eliminate small angles in the model caused by
fillets. The operation 'blunts' the tangency, or small angle, by cutting out the surfaces
adjacent to the specified vertex and replacing them with other surfaces that wash over
and eliminate the small angle.

Blunt tangency vertex <id> [remove_material] [angle <value>] [depth

<value>] [preview]

306

As shown in Figure 1, the depth parameter controls the depth of the surfaces that replace
the tangency, while the angle parameter controls the resultant angle of the new tangency.
Figure 2 demonstrates the behavior of the remove_material option which removes
material instead of adding it.

Figure 1. Blunt Tangency Operation

Figure 2. Remove Material Option

imprint merge
Geometry Imprinting and Merging

• Imprinting Geometry
• Merging Geometry
• Examining Merged Entities
• Merge Tolerance
• Unmerging
• Using Geometry Merging to Verify Geometry

Cubit_15.5_User_Documentation

307

Geometry is created and imported in a manifold state. The process of converting manifold
to non-manifold geometry is referred to as "geometry merging", since it involves merging
multiple geometric entities into single ones. When importing mesh-based geometry, the
merging step can be automatic. Imprinting is a necessary step in the merging process,
which ensures that entities to be merged have identical topology.

Examining Merged Entities
There are several mechanisms for examining which entities have been merged. The most
useful mechanism is assigning all merged or unmerged entities of a specified type to a
group, and examining that group graphically. This process can be used to examine the
outer shell of an assembly of volumes, for example to verify if all interior surfaces have
been merged. To put all the merged entities of a given type into a specified group, use
the command:

Group {<`name'>|<id>} add [Surface | Curve | Vertex] with Is_merged

To put all the unmerged entities of a given type into a specified group, use the command:

Group {<`name'>|<id>} add [Surface | Curve | Vertex] with Is_merged=0

Entities can also be labeled in the graphics according to the state of their merge flag. See
the Preventing geometry from merging section for information on controlling the merge
flag. To turn merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Imprinting Geometry
To produce a non-manifold geometry model from a manifold geometry, coincident
surfaces must be merged together (See Geometry Merging); this merge can only take
place if the surfaces to be merged have like topology and geometry. While various parts
of an assembly will typically have surfaces, which coincide geometrically, an imprint is
necessary to make the surfaces have like topology. There are three types of imprinting:

• Regular Imprinting

• Tolerant Imprinting
• Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular
imprint command misses, the Find Overlap command can be used.

Regular Imprinting

The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [Keep]

308

A body can also be imprinted with curves, vertices or positions, and surfaces can be
imprinted with curves. It is useful to imprint bodies or surfaces with curves to eliminate
mesh skew, generate more favorable surfaces for meshing, or create hard lines for
paving. Imprinting with a vertex or position can be useful to split curves for better control
of the mesh or to create hard points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [Keep]

Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [Keep]

Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]

Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [Keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to
filter out imprint calls for bodies which clearly don't intersect.

Imprint [Body] All

Tolerant Imprinting

Normal imprinting may be ineffective for some assembly models that have tolerance
problems, generating unwanted sliver entities or missing imprints altogether. Tolerant
imprinting is useful for dealing with these tolerance challenged assemblies. To determine
coincident and overlap entities, tolerant imprinting uses the merge tolerance. The
commands also include an optional tolerance value that will be used for the purposes of
the single command. Specifying an optional tolerance value will not change the default,
system tolerance value.
A limitation of tolerant imprinting is that it cannot imprint intersecting surfaces onto one
another, as normal imprinting can. Tolerant imprinting imprints only overlapping entities
onto one other.

Imprint Tolerant {Body|Volume} <range> [tolerance <value>]

Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the
tolerance between surface and curve(s) falls within the merge tolerance. The 'merge'
option will merge the owning volume of the specified surface with all other volumes that
share any curves with this surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge] [tolerance

<value>]

Imprint Tolerant Surface <id> <id> with Curve <id_range>

[merge] [tolerance <value>]

Imprint Tolerant Surface <id> <id> [tolerance <value>]

Cubit_15.5_User_Documentation

309

The second form of the command imprints the specified bounding curves of one surface
onto another surface and vice versa. Any specified curves that are not bounding either of
the two specified surfaces will not be imprinted. The 'merge' option will merge all the
volumes sharing any curve of these two surfaces, after the imprint.
It is recommended that normal imprinting be used when possible and tolerant imprinting
be used only when normal imprinting fails.

Mesh-Based Imprinting

Another form of the imprint command,

Imprint Mesh {Body | Volume} <id_list>

uses coincident mesh entities and virtual geometry to create imprints. See the Partitioned
Geometry section for more information on this command.

Imprint Settings

After imprint operations, an effort is made to remove sliver entities: sliver curves and
surfaces. Previously, all curves in participating bodies less than 0.001 were removed.
Newer versions of Cubit changed this because there might be times when the user wants
sliver curves/surfaces to be generated during an imprint operation. In order to give the
user more control over the cleanup of these sliver entities after imprint operations, a
command was implemented so that the user can set an 'imprint sliver cleanup tolerance'.
The default tolerance for curves is the merge tolerance 0.0005. The default tolerance for
surfaces is a suitable tolerance chosen internally based on the bounding box of the entity.
Sliver surfaces are removed whose maximum gap distance among the long edges is
smaller than the tolerance and who have at most three long edges. A long edge is an
edge whose length is greater than the specified tolerance.

Set {Curve|Surface} Imprint Cleanup Tolerance <value>

Merge Tolerance
Geometric correspondence between entities is judged according to a specified absolute
numerical tolerance. The particular kind of spatial check depends on the type of entity.
Vertices are compared by comparing their spatial position; curves are tested
geometrically by testing points 1/3 and 2/3 down the curve in terms of parameter value;
surfaces are tested at several pre-determined points on the surface. In all cases, spatial
checks are done comparing a given position on one entity with the closest point on the
other entity. This allows merging of entities which correspond spatially but which have
different parameterizations.
The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points
which are at least this close will pass the geometric correspondence test used for
merging. The user may change this value using the following command:

Merge Tolerance <val>

310

If the user does not enter a value, the current merge tolerance value will be printed to the
screen. There is no upper bound to the merge tolerance, although in experience there
are few cases where the merge tolerance has needed to be adjusted upward. The lower
bound on the tolerance, which is tied to the accuracy of the solid modeling engine in
CUBIT, is 1e-6.

Finding Nearly Coincident Entities

These commands find vertex-vertex, vertex-curve and vertex-surface pairs whose
separation is within the specified tolerance range. If a tolerance range isn't specified the
default will be from merge tolerance to 10*merge tolerance. It is useful for determining if
you need to expand merge tolerance to accomodate sloppy geometry.

Find Near Coincident Vertex Vertex {Body|Volume} <id_range> [low_tol

<value>] [high_tol <value>]

Find Near Coincident Vertex Curve {Body|Volume} <id_range> [low_tol

<value>] [high_tol <value>]

Find Near Coincident Vertex Surface {Body|Volume} <id_range> [low_tol

<value>] [high_tol <value>]

Merging Geometry
The steps of the geometry merging algorithm used in CUBIT are outlined below:

1. Check lower order geometry, merge if possible

2. Check topology of current entities
3. Check geometry of current entities
4. If both entities are meshed, check topology of meshes.
5. If geometric topology, geometry, and mesh topology are alike, merge.

Thus, in order for two entities to merge, the entities must correspond geometrically and
topologically, and if both are meshed must have topologically equivalent meshes. The
geometric correspondence usually comes from constructing the model that way. The
topological correspondence can come from that process as well, but also can be
accomplished in CUBIT using Imprinting.
If both entities are meshed, they can only be merged if the meshes are topologically
identical. This means that the entities must have the same number of each kind of mesh
entity, and those mesh entities must be connected in the same way. The mesh on each
entity need not have nodes in identical positions. If the node positions are not identical,
the position of the nodes on the entity with the lowest ID will be used in the resulting
merged mesh.
There are several options for merging geometry in CUBIT.

Merge geometry automatically

Cubit_15.5_User_Documentation

311

Merge All [Group|Body|Surface|Curve|Vertex] [group_results][tolerance

<value>]

All topological entities in the model or in the specified bodies are examined for geometric
and topological correspondence, and are merged if they pass the test.
If a specific entity type is specified with the Merge all, only complete entities of that type
are merged. For example, if Merge all surface is entered, only vertices which are part of
corresponding surfaces being merged; vertices which correspond but which are not part
of corresponding surfaces will not be merged. This command can be used to speed up
the merging process for large models, but should be used with caution as it can hide
problems with the geometry.

Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With

{Group|Body|Surface|Curve|Vertex} <id_range>] [group_results] [force]

[tolerance<value>]

All topological entities in the specified entity list, as well as lower order topology belonging
to those entities, are examined for merging. This command can be used to prevent
merging of entities which correspond and would otherwise be merged, e.g. slide surfaces.

Force merge specified geometry entities

Merge Vertex <id> with Vertex <id> Force

Merge Curve <id> with Curve <id> Force

Merge Surface <id> with Surface <id> Force

This command results in the specified entities being merged, whether they pass the
geometric correspondence test or not. This command should only be used with caution
and when merging otherwise fails; instances where this is required should be reported to
the CUBIT development team.

Preventing geometry from merging

Body <id_range> Merge [On | Off]

Volume <id_range> Merge [On | Off]

Surface <id_range> Merge [On | Off]

Curve <id_range> Merge [On | Off]

Vertex <id_range> Merge [On | Off]

312

These commands provide a method for preventing entities from merging. If merging is
set to off for an entity, merging commands (e.g. "merge all") will not merge that entity with
any other.

Other Merge Commands

Set Merge Test BBox {on|OFF}

This is an additional test for merging to see if a pair of surfaces should merge. First, it
creates a bounding box for each surface by summing individual bounding boxes of each
of the surface's curves. A comparison is then made to see if these two bounding boxes
are within tolerance. This can help to weed out any potential incorrect merges that can
result from non-tight bounding boxes.

Set Merge Test InternalSurf {on|OFF|spline}

This is an extra check when merging surfaces. A point on one surface, closest to its
centroid is found. Another point, closest to this point is found on the other surface. If these
two points are not within merge tolerance, the two surfaces will not be merged. If set to
on, all surface types will be included in this check. If set with the spline option, then
splines are only checked this way; analytic surfaces are excluded. This is another check
to prevent incorrect merges from occurring.

Using Geometry Merging to Verify Geometry
Geometry merging is often used to verify the correctness of an assembly of volumes. For
example, groups of unmerged surfaces can be used to verify the outer shell of the
assembly (see Examining Merged Entities.) There is other information that comes from
the Merge all command that is useful for verifying geometry.
In typical geometric models, vertices and curves which get merged will usually be part of
surfaces containing them which get merged. So, if a Merge all command is used and the
command reports that vertices and curves have been merged, this is usually an indication
of a problem with geometry. In particular, it is often a sign that there are overlapping
bodies in the model. The second most common problem indicated by merging curves and
vertices is that the merge tolerance is set too high for a given model. In any event, merged
vertices and curves should be examined closely.

Unmerging
The unmerge command is used to reverse the merging operation. This is often in cases
where further geometry decomposition must be done.

Unmerge {all|<entity_list> [only]}

Un-merging an entity means that the specified geometric entity and all lower-order (or
child) entities will no longer share non-manifold topology with any other entities. For
example, if a body is unmerged, that body will no longer share any surfaces, curves, or
vertices with any other body.

Cubit_15.5_User_Documentation

313

[Set] Unmerge Duplicate_mesh {On|OFF}

If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh
of higher-order entities valid. For example, if a surface shared by two volumes is to be
unmerged and only one of the volumes is meshed, the surface mesh will remain with
whichever surface is part of the meshed volume.
When unmerging meshed entities, the default behavior of the code is that the placement
if the mesh is determined by the following rules:

• If neither entity has meshed parent entities, the mesh is kept on one of the two
entities.

• If one entity has a meshed parent entity, the mesh is kept on
that entity.

• If both entities have meshed parents, the mesh is kept on one
and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and
whenever a meshed entity is unmerged the mesh is always copied such that both entities
remain meshed.
To get back to the default behavior, turn unmerge duplicate_mesh off.

virtual geometry
Virtual Geometry

• Composite Geometry
• Partitioned Geometry
• Collapsing Geometry
• Simplify Geometry
• Deleting Virtual Geometry

The Virtual Geometry module in CUBIT provides a way to modify the topology of the
model without affecting the underlying ACIS geometry representation and without making
changes to the actual solid model. Virtual Geometry includes the capability to composite
or partition geometry as well as creates new virtual geometric entities. Virtual Geometry
operations are most often used as a tool for adjusting the geometry to allow mapping,
sub-mapping or sweeping mesh generation schemes to be applied.
The advantage to using Virtual Geometry is that all operations are reversible. With
standard geometry modification commands, changes are made to the underlying
geometry representation and cannot be changed once effected. With virtual geometry,
the original solid model topology can be easily restored. This is useful when geometry
modifications are made in order to apply a particular meshing scheme. Virtual geometry
can be applied and later removed once the part has been meshed.

collapse geometry

314

Collapse Angle

The collapse command allows the user to collapse small angles using virtual geometry.
The command syntax is:

Collapse Angle at Vertex <id> Curve <id1> [Arc_length <length>] Curve

<id2> [Arc_length <length> | Same_size | Perpendicular | Tangent]

[Composite_vertex <angle>] [Preview]

The collapse angle command is used to eliminate small angles at vertices, where curves
meet at a tangential point. The command will split each curve at a specified distance (δ1
and δ2) as shown in Figure 1, and create two new vertices along those curves. The
remaining small angle will be composited into its neighboring surface using virtual
geometry. The options of the command allow you to specify where to split each curve.
You must input a distance for the first curve (δ1), but the second location can be
determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax

The arclength option will split each curve at a specified distance δ1 and δ2, (See Figure
1) measured from the vertex. You must input at least one arclength for each of the
options listed below.
The same_size option will split curve 2 so that the two resulting curves, δ1 and δ2, are
the same length as shown in Figure 2.

Figure 2. Collapse angle using the same_size option

Cubit_15.5_User_Documentation

315

The perpendicular option will split curve 2 so it is perpendicular to the split location on
curve 1, as shown in Figure 3.

Figure 3. Collapse angle using the perpendicular option

The tangent option will split curve 2 where a line tangent to curve 1 at the split location
intersects curve 2, as shown in Figure 4.

Figure 4. Collapse angle using the tangent option

The composite_vertex option automatically composites resulting surfaces if there are
only two curves left at the vertex, and the angle is less than a specified tolerance.
The preview option will preview composited surface before applying changes.

316

Figure 5. An example of a meshed surface that is generated after using the collapse angle

command.

Collapse Curve

The collapse curve command allows the user to collapse small curves using virtual
geometry. It is intended to be used in cases where removing a small curve to simplify
topology will facilitate meshing. The operation can be thought of as reconnecting curves
from one vertex on the small curve to the other vertex. If the user doesn’t specify which
vertex to keep during the operation CUBIT will choose one of the vertices. The operation
is performed using virtual partitions and composites on the curves and surfaces
surrounding the small curve. The command syntax is:

Collapse Curve <id> [Vertex <id>] [Ignore] [Real_split]

The vertex keyword allows the user to specify which vertex on the small curve to keep
during the operation or in other words which vertex to "collapse to". Depending on the
surrounding topological configuration some vertices cannot currently be chosen so if the
user specifies a vertex to collapse to that results in a complex topological configuration
that CUBIT can’t currently handle the user will be notified and encouraged to pick a
different vertex. If the user doesn’t specify a vertex CUBIT will attempt to choose the
“best” vertex to keep based on surrounding topology and geometry. Currently, the
collapse curve command only handles curves where the vertex that is NOT retained has
a valence of 3 or 4.
The ignore keyword allows the user to specify whether or not small portions of surfaces
that are partitioned off of one surface and composited with a neighboring surface during
the collapse curve operation are considered when evaluating the new composite surface.
By specifying the ignore option the user tells CUBIT that these small surfaces will be
ignored in future evaluations of the composite surface. This can be beneficial in cases
where the small surface makes a sharp angle with the neighboring surface it is being

Cubit_15.5_User_Documentation

317

composited with. These first derivative discontinuities of composite surfaces can make it
difficult for the meshing algorithms to proceed and ignoring the small surfaces during
evaluation can help remedy this problem. By default the small surfaces will not be ignored.
The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface
functionality to do the splitting rather than using virtual partitioning. The result is that you
only have virtual composites at the end and no virtual partitions. The main advantage of
using this option is that the solid modeling kernel's split operation is often more reliable
than the virtual partition.
Figure 1 shows a typical example where the collapse curve command should be used to
simplify the topology for meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

318

Figure 2. Above example after collapsing the small curve.

Collapse Geometry

The collapse geometry commands use virtual geometry to tweak small angles and curves
to improve meshability of geometry models. The following options for collapsing geometry
are available:

• Collapse Angle

• Collapse Curve
• Collapse Surface

Collapse Surface

The collapse surface command allows the user to remove surface boundaries from the
model. This is accomplished by splitting the surface at two given locations and combining
it into two adjacent surfaces using virtual geometry operations. The command syntax is:

Collapse Surface <id> Across Location1 Location 2 With Surface <id_list>

[Preview]

The locations option can use any of the general Cubit location commands. However, the
vertex and curve options are among the most useful location options. For example, the
command

collapse surface 15 across vertex 128 curve 40 with surface 26 117

would split surface 15 by the line that is formed between vertex 128 and the midpoint of
curve 40. It would then composite the two parts of surface 15 that are adjacent to surfaces
26 and 117. The result is that three surfaces have been reduced to two.
The collapse surface command is most useful in removing blended surfaces (i.e. fillets
and chamfers) from a model. For example, Figure 1 below shows a set of highlighted
surfaces on a bracket. By collapsing all these surfaces the model shown in Figure 2 is
created. Collapsing the surfaces for this model simplifies the model and allows for the
creation of a higher quality mesh.

Cubit_15.5_User_Documentation

319

Figure 1. Bracket with chamfered edges.

Figure 2. Bracket after highlighted edges have been collapsed

composite geometry

Composite Curves

The full command for the creation of composite curves is:

Composite Create Curve <id_range> [Keep Vertex <id_list>] [Angle

<degrees>]

The additional arguments provide two methods to prevent vertices from being removed
from the model or composited over. The first method, keep vertex explicitly specifies

320

vertices which are not to be removed. This option can also be used to control which vertex
is kept when compositing a set of curves results in a closed curve.
The angle option specifies vertices to keep by the angle between the tangents of the
curves at that vertex. A value less than zero will result in no composite curves being
created. A value of 180 or greater will result in all possible composites being created. The
default behavior is an empty list of vertices to keep, and an angle of 180 degrees.

Composite Geometry

• Composite Curves
• Composite Surfaces

The virtual geometry module has the capability to combine a set of connected curves into
a single composite curve, or a set of connected surfaces into a single surface. The general
purpose is to suppress or remove the child geometry common to those entities being
composited. For example, compositing a set of curves suppresses the vertices common
to those curves, thus removing the constraint that a node must be placed at that vertex
location.
The basic form of the command to create composites is:

Composite Create {Surface|Curve} <id_list>

This command will composite as many surfaces (or curves) as possible, in many cases
creating multiple composites.
The entities combined to create the composite must either all be unmeshed or all be
meshed. A meshed composite surface can not be removed unless the mesh is first
deleted.
Care should be taken when compositing over large C1 discontinuities as it may cause
problems for the meshing algorithms and may result in poor quality elements. C1
discontinuities are corners or abrupt changes in the surface normal.
The command to remove a composite is:

Composite Delete {Surface|Curve} <id>

Composite Surfaces

The general command for composite surface creation is:

Composite Create Surface <id_range> [Angle <degrees>] [Nocurves] [Keep

[Angle <degrees>] [Vertex <id_list>]]

Cubit_15.5_User_Documentation

321

Related Commands

Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited
over. Composites will not be generated where the angle between surface normals
adjacent to the curve is greater than the specified angle.
When a composite surface is created, the default behavior is to also to composite curves
on the boundary of the new composite surface.
Curves are automatically composited if the angle between tangents at the common vertex
is less than 15 degrees. The nocurves option can be used to prevent any composite
curves from being created.
The keep keyword can be used to change the default choice of which curves to
composite. The arguments following the keep keyword behave the same as for explicit
composite curve creation. The nocurves and keep arguments are mutually exclusive.

Controlling the Surface Evaluation Method for Composite Surfaces

It typically takes longer to mesh a single composite surface than to mesh the surfaces
used in the creation of the composite. To improve speed, composite surfaces use an
approximation method to evaluate the closest point to a trimmed surface. However, this
evaluation method may give poor results for composites of highly convoluted surfaces.
The virtual geometry module provides a way to change the way surfaces are evaluated
using the following command:

Composite Closest_pt Surface <id> {Gme|Emulate}

The default behavior is to use the emulate method, as it is typically considerably faster.
Specifying the gme option will force the specified composite surface to use the exact
calculation of the closest point to a trimmed surface, as provided by the solid modeler.
The gme option, however, can be considerably slower.

Composite Determination

The composite create surface command is non-deterministic in some circumstances.
When three or more adjacent surfaces are to be composited, all the surfaces may not be
able to be composited into a single surface as illustrated in Figure 1. In this case different
subsets of the surfaces may be composited and the command will choose arbitrary
subsets to composite. As an example, there are three surfaces A, B, and C, all adjacent
to each other. The common curve between A and B is AB, the common curve between B
and C is BC, and the common curve between A and C is CA. If the curve BC cannot be
removed, either due to the angle specified in the composite command, or because there
is a fourth surface, D, also using that curve, the command will arbitrarily choose to either
composite A and B or A and C.

322

Figure 1. In some cases, the program will make a determination of which surfaces to

composite.

partitioned geometry

Removing Partitions

There are two commands used to remove partitions:

Partition Merge {Curve|Surface|Volume} <id_list>

The command combines existing partitions where possible. This command is similar to
the composite create command. The difference is that this command is special-cased for
partitions, and will result in more efficient geometric evaluations. If all the partitions of a
real solid model entity are merged, such that there is only one partition remaining, the
virtual geometry will be removed, and the original solid model geometry will be restored
to the model.
The CUBIT delete command can also be used for removing partitions. See Deleting
Virtual Geometry for a description of its use.

Cubit_15.5_User_Documentation

323

Using Mesh Intersections to Partition
Surfaces

To assist in various mesh editing tasks such as joining, a mesh-based imprinting
capability is provided. The command

Imprint Mesh {Body | Volume} <id_list>

determines imprint locations using the mesh on the surfaces of the specified bodies or
volumes. Regions of coincidence between the surfaces is determined by searching for
coincident nodes in the mesh of the surfaces. Virtual geometry is then used to partition
the surfaces and curves at the boundary of these regions of coincident mesh.
The imprint mesh functionality differs from a normal geometric imprint in the following
ways:

• The location of the imprint is determined from coincidence of mesh nodes.
• The mesh remains intact through the imprint operation.
• Virtual geometry is used to create the imprint.
• The imprinting can be done on all types of geometry (including mesh-based

geometry, merged geometry, and virtual geometry.)

The following is a trivial example of this capability. The following commands create two
meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 1 2 size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

324

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the

imprint operation.

The mesh of the blocks can be joined by first doing a mesh-based imprint and then
merging:

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the
interface between the two meshed volumes. The nodes on the new surface are shared
by the neighboring hexahedra of both volumes.

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

Partitioned Curves

There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position

<xpos> <ypos> <zpos> | [with] <vertex_list> | <node_list> }

The first two forms of the command create additional vertices and use those vertices to
split a curve. The third form of the command uses existing vertices to split the curve. The
fourth form of the command uses existing nodes to split the curve.
Using the fraction option, vertices are created at the specified fractions along the curve
(in the range [0,1].) Subsequently, the curve is split at each vertex, resulting in n+1 new
curves, where n is the number of fraction values specified.

Cubit_15.5_User_Documentation

325

Using the position option, vertices are created at the closest location along the curve to
each of the specified position. Subsequently, the curve is split at each vertex, resulting in
n+1 new curves, where n is the number of positions specified.
If the node option is used, meshed curves may be partitioned. The specified nodes must
lie on the curve to be partitioned. The curve is split at each node specified, and any other
mesh entities are divided appropriately amongst the curve partitions.

Partitioned Surfaces

There are several forms of the command to partition a surface. A surface may be
partitioned using hard points, curves, polylines, mesh edges, mesh faces or mesh
triangles.

• Partitioning with Vertices or Nodes

• Partitioning with Curves
• Partitioning with Mesh Edges
• Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points

There are two methods of partitioning a surface using vertices and nodes. The first
method is to create a set of hard points using nodes, vertices, or coordinates that
constrain the mesh to particular points on the surface. The syntax is:

Partition Create Surface <id> Vertex <id_list> [Individual]

Partition Create Surface <id> Node <id_list> [Individual]

Partitioning with Polylines

The second method is to define a polyline using a set of vertices or coordinates. This
method splits the surface using a polyline defined by the a list of positions specified as
either coordinate triples, or existing vertices. The polyline is projected to the surface to
define the curve for splitting the surface. If only one position is specified a zero-length
curve with a single vertex will be created The syntax is identical to above WITHOUT the
individual option.

Partition Create Surface <id> Vertex <id_list>

Partition Create Surface <id> Position <x> <y> <z> [[Position] <x> <y> <z>

...]

326

In the following simple example, the surface is partitioned using both methods. On the left
half of the object, the surface is partitioned using the individual option (vertices 11 12 15
13). On the right half, a polyline is used (vertices 9 10 16 14). All of the free vertices can
then be deleted, leaving the virtual curves shown in the second picture. Vertices 19 20 21
and 22 are all zero-length curves. The small 'v' in parentheses is to indicate that it is virtual
geometry. The resulting mesh is shown in the third picture. Notice that the polyline
constrains the entire curve to the mesh, while the hardpoints constrain only that individual
point.

Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves

This form of the command splits the existing surface into several surfaces by creating
curves that approximate the projection of the specified existing curves onto the surface.
The syntax is:

Partition Create Surface <id> Curve <id_list>

Partitioning with Mesh Edges

Cubit_15.5_User_Documentation

327

Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must
be owned by the surface to be partitioned. The shape of the curve(s) used to split the
surface is specified by a set of mesh edges.
If the split location is specified by a series of mesh edges, and the specified mesh edges
form a closed loop, the node option may be used to control which node the vertex is
created at.

Partition Create Surface <id> Edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles

Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The
boundary of the list will automatically be detected and new curves and vertices created
at the appropriate locations. Curves are created from the mesh edges and used to split
the surface. The surface mesh is split and assigned to the appropriate surface partitions.

Partition Create Surface <id> Face|Tri <id_list>

Partitioned Volumes

To partition a volume by giving a center and radius:

Partition Create Volume <id> Center [Location] {options} Radius <val>

This command splits the existing volume into two volumes. All volume elements that lie
within the specified radius of the specified center location are identified, and the exterior
faces of these elements are used to create a surface and partition the volume. The center
can be specified with any of the location options.
Figure 1 shows an example of a partitioned volume. A cube that has been map meshed
is partitioned using a center at one of its vertices. The result is two distinct volumes with
a surface separating the two. The interface surface is composed of the faces of the interior
hex elements.

328

Figure 1. A partitioned volume

This command may be useful for separating small regions of a meshed volume so that
remeshing or mesh improvement may be performed locally.

Partitioned Geometry

Partitioning provides a method to introduce additional topology into the model, to better
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing
curves or surfaces.

• Partitioned Curves

• Partitioned Surfaces
• Partitioned Volumes
• Using Mesh Intersections to Partition Surfaces
• Removing Partitions

Deleting Virtual Geometry

Removing Virtual Geometry

Cubit_15.5_User_Documentation

329

The following command removes all lower-order virtual geometry from the specified
entities.

Virtual Remove <entity_list>

Examples:

virtual remove surface 5

Removes all composite and partition curves from surface 5.

virtual remove body all

Remove all virtual geometry from all bodies.
For removing individual virtual entities, see the sections of the documentation for each
type of virtual entity:

• Composite curves

• Composite surfaces
• Partition curves
• Partition surfaces

Using The Delete Command With Composites

If the general delete command is invoked for a composite surface, the composite surface
will be removed, and the original surfaces used to define the composite will be restored
to the model. The defining surfaces are NOT also deleted. As with any other non-virtual
surfaces, the delete command will fail if the composite has a parent volume.
To delete composite surfaces with a parent volume, the composite delete command can
be used. The behavior is analogous for composite curves.
If the delete command is used on a volume containing a composite surface or curve, or
on a surface containing a composite curve, the entire volume or surface will be deleted,
including the original entities used to define the composite, as those entities are also
children of the entity being deleted.

Using the Delete Command With Partitions

It is recommended that the delete command not be used with partitions, as it may break
subsequent usage of the merge and delete forms of the partition command for other
partitions of the same real geometry entity. However, if the delete command is used for
partitions, the behavior is to delete the specified partition, and when the last partition of
the real geometry is deleted, to restore the original geometry.
The delete command can also be used on parents of partitions. For example, a volume
containing partitioned surfaces, or a surface containing partitioned curves can be deleted.
In this case, the specified entity will be deleted along with all of its children, including the
partition entities, and the original entities that were partitioned.

330

Simplify Geometry
Simplifying topology by compositing individually selected surfaces is often a tedious and
time-consuming task. The simplify command addresses the tedium by automatically
compositing surfaces and curves based on selected criteria between neighboring entities.
Figure 1 shows a typical example of simplify command usage (‘simplify volume 1 angle
15’).

Figure 1. Typical Simplify command usage

The command syntax and discussion items are shown below.

Cubit_15.5_User_Documentation

331

Simplify {Volume|Surface|Curve} <range> [Angle< value >] [Respect

{Surface <id_range> | Curve <id_range> | Vertex <id_range>| Imprint |

Fillet}] [Local_Normals] [Preview]

Feature Angle

Feature angle is defined as the angle between the average facet normals of two
neighboring surfaces. If the angle is less than the specified angle then the two surfaces
are composited together (assuming any other specified criteria are met). Feature angle is
always used as criteria and if an angle is not specified the value is set to 15 degrees.

Automatically Compositing Curves

The simplify command can also be used to automatically composite curves using an
angle tolerance. Curves will be composited together only if they are explicitly specified in
this command, and not as the result of two surfaces being composited.

Respecting Vertices, Curves and Surfaces

Surfaces, curves, and vertices can be specified to prevent geometry features from
automatically being composited. Figure 2 show an example of respecting a surface
(‘simplify vol 1 angle 15 respect surf 289’).

Figure 2 Respecting a surface

For complex geometries, it is often useful to preview the simplify command and then add
any respected geometry to the command respect lists.

Respecting Imprints

Curves created by imprints can automatically be respected by the simplify command.
Figure 3 shows an example of geometry with split fillets.

332

Figure 3 Respecting imprint geometry

Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle
40 respect imprint’).

Using Local Normals

By default the command will compare the average normal of two adjacent surfaces to
determine whether they should be composited. By issuing the local_normal option, the
test will be modifed slightly. The modified test will compare the maximum difference
between normals along the shared curve(s) for the two surfaces.

Figure 4. Comparison of surface normals using the average surface normal method (on the

left) and local normal method (on the right).

Other Options

The preview option shows what curves are respected without compositing any surfaces.
It should also be pointed out that multiple respect specifications can be chained together.
For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect
fillet preview

Cubit_15.5_User_Documentation

333

groups
Groups
Groups are collections of geometry and mesh entities. Groups can contain other groups.
Groups provide a powerful capability for organizing and performing operations on multiple
entities with minimal input. Groups can collect entities according to various criteria, such
as position, size, or whether they are meshed. Performing an operation on a group is
usually the same as performing that operation on all the entities in that group. The
following describes the Group operations available in CUBIT:

• Basic Group Operations
• Groups in Graphics
• Propagated Hex Groups
• Quality Groups

There are several utilities in CUBIT which use groups as a means of visualizing output.
These utilities are described elsewhere, but listed here for reference:

• Webcut results

• Merged and unmerged entities
• Sweep groups
• Interval matching
• Disassociated Meshes
• Importing ACIS, IGES, STEP, Free Meshes

propagated groups

Naming Convention for Propagated Hex
Groups

A special naming convention can be used for the propagated groups, best described by
an example.
The following command will create a hierarchy of logically named groups, as follows.

group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1

The hierarchy looks like this:

W1

W1P1

W1P1T1
W1P1T2

334

W1P1T3
...
W1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within
W1P1.
The software simply looks for numerical numbers in the group name and parses out the
correct grandparent, parent and child names from the substrings. There must be exactly
3 substrings in the group name, each ending with an integer for the command to work
properly.
A subsequent command:

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1

will add a parent group to W1, called W1P2, and the subsequent child groups:

W1

W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

W1P2

W1P2T1
W1P2T2
W1P2T3
...
W1P2T10

Propagated Groups

Creating propagated groups is a mechanism for joining groups of elements that meet
specific criteria. For hex groups it might be grouping hexes from a hex mesh using sweep-
type criteria. For surface elements, it might be grouping faces or tris into sidesets based
on angle criteria.

• Propagated Hex Groups

• Propagated Surface Groups using the Seed Method

Propagated Hex Groups

Cubit_15.5_User_Documentation

335

• Starting on a Surface
• Starting on a Face

Propagated hex groups are a way of grouping hexes from a hex mesh using sweep-type
criteria. For example, creating a group containing all hexes between two specified mesh
faces.
Note: the first examples below are based on first executing these commands:

brick width 10

volume 1 size 1

mesh volume 1

Propagated Hex Group Starting on a Surface

Starting on a surface can end at a surface or can end after the number of times the user
specifies.

• Ending at a Surface

• Number of Times
• Ending at a Surface with Multiple
• Number of Times with Multiple
• Ending at a Surface with Direction
• Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>

Example

group 2 add hex propagate surface 1 target surface 2

Result: Group 2 will be created containing 1000 hexes

Number of Times

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>

Example

group 2 add hex propagate surface 1 times 4

Result: Group 2 will be created containing 400 hexes
Both methods, ending at surface or number of times, can be used with the "multiple"
option which will create several groups depending upon the multiple number specified.

Ending at a Surface with Multiple

336

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>

Multiple <number>

Example

group 2 add hex propagate surface 1 target surface 2 multiple 2

Result: Five groups will be created and stored with their respective ids of multiple 2, these
groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2.

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>

Multiple <number>

Example

group 2 add hex propagate surface 1 times 10 multiple 5

Result: Two groups will be created and stored with their respective ids of multiple 5, these
two groups will be stored in the parent group, Group 3, and Group 3 will be stored in the
grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the
node direction can be specified to direct the propagation. If the end surface is specified,
only a node direction can be specified to direct the propagation. When specifying the node
direction, the node has to be picked such that when the hexes are propagated, the picked
node lies in these propagated hexes. If that node is never reached while propagating, the
direction is not found and zero hexes will be included in the specified group.
Note: for the examples below, the result can be seen by executing these commands:

brick x 10
vol 1 size 1
brick width 10
body 2 move 10
volume all size 1
merge all
mesh volume all

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>

Direction Node <id>

Example

group 2 add hex propagate surface 6 target surface 12 direction node 1530

Cubit_15.5_User_Documentation

337

Result: Group 2 will be created containing 400 hexes
Note: The direction command and the multiple command can be combined (i.e. group 2
add propagate surface 6 times 4 multiple 2 direction node 1530)

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>

Direction [surface <id> | node <id>]

Example

group 2 add hex propagate surface 6 times 4 direction surface 4

group 2 add hex propagate surface 6 times 4 direction node 1530

Result: group 2 will be created containing 400 hexes

Propagated Hex Group Starting on a Face

When starting on a face, the propagation method can end at a surface, end at a face or
can end after the number of times the user specifies:

• Ending at a Surface

• Ending at a Face
• Number of Times
• Ending at a Surface with Multiple
• Ending at a Face with Multiple
• Number of Times with Multiple
• Ending at a Face with Direction
• Ending at a Surface with Direction
• Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target

Surface <id>

Example

group 2 add hex propagate face 1 11 21 target surface 2

Result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a Face

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Face

<id>

338

Example

group 2 add hex propagate face 1 target face 1721

Result: Group 2 will be created containing 5 propagated hexes (5 layers of 1 hex)
Note: Ending at a face requires starting at one face at one time, but ending at surface
allows multiple start faces

Number of Times

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Times

<number>

Example

group 2 add hex propagate face 2 times 4

Result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

All of these methods, ending at surface, end at a face or number of times, can be used
with the "multiple" option which will create a grandparent (top-level), parent (mid-level,
contained within the grandparent) and child (bottom level, contained within the parent)
groups. The child groups will contain each hex layer (specified number of layers per child
group), all organized into a single parent group, which is organized underneath the group
ID given to the command. Subsequent propagation commands could then be executed
adding to the grandparent group, but creating a new parent and child groups. This way
multiple propagation "sets" can be stored in one grandparent group, if desired.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target

Surface <id> Multiple <number>

Example

group 2 add hex propagate face 1 target surface 2 multiple 1

Result: Ten groups will be created and stored with their respective ids, one for each layer
of hexes. These groups will be stored in the parent group, Group 3, and Group 3 will be
stored in the grand parent group, Group 2. A subsequent propagation command could be
executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Ending at a Face with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target

Surface <id> Multiple <number>

Cubit_15.5_User_Documentation

339

Example

group 2 add hex propagate face 1 target face 1721 multiple 1

Result: 5 groups will be created and stored with their respective ids, one for each layer
of hexes. These groups will be stored in the parent group, Group 3, and Group 3 will be
stored in the grand parent group, Group 2. A subsequent propagation command could be
executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times

<number> Multiple <number>

Example

group 2 add hex propagate face 1 times 10 multiple

Result: Two groups will be created and stored with their respective ids, these two groups
will be stored in the parent group, Group 3, and Group 3 will be stored in the grand parent
group, Group 2.

If the end surface or end face is ambiguous, a node direction can be specified to direct
the propagation. When specify the node direction, the node has to be picked such that
when the hexes are propagated, the picked node lies in these propagated hexes. If that
node is never reached while propagating, the direction is not found and zero hexes will
be included in the specified group.

Ending at Face with Direction

Group ['name' | <id>] Add Hex Propagate [source] Face <id> Target Face

<id> Direction Node <id>

Example

group 2 add hex propagate face 1721 target face 1 direction node334

Result: group 2 will be created containing 6 hexes

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target

Surface <id> Direction Node <id>

Example

340

group 2 add hex propagate face 1 target surface 2 direction node 334

Result: group 2 will be created containing 10 hexes
Note: The direction command and the multiple command can be used together (i.e. group
2 add propagate face 1721 end face 1 multiple 2 direction node 334)

If number of times is specified and the direction is ambiguous, a surface direction or a
node direction can be specified to direct the propagation. The node direction has the
same condition as when ending at a surface or face and that is it must lie in the
propagated hexes.

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times

<number>Direction [surface <id> | node <id>]

Example

group 2 add hex propagate face 110 times 4 direction surface 2

group 2 add hex propagate face 1 times 4 direction node 269

Result: group 2 will be created contained 4 hexes
Note: The direction command and the multiple command can be used together. (i.e.
group 2 add propagate face 1721 times 4 multiple 2 direction surface 1)

Naming Convention for Propagated Hex
Groups

A special naming convention can be used for the propagated hex groups, best described
by an example.
The following command will create a hierarchy of logically named groups, as follows.

group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1

The hierarchy looks like this:

W1

W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

Cubit_15.5_User_Documentation

341

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within
W1P1.
The software simply looks for numerical numbers in the group name and parses out the
correct grandparent, parent and child names from the substrings. There must be exactly
3 substrings in the group name, each ending with an integer for the command to work
properly.
A subsequent command:

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1

will add a parent group to W1, called W1P2, and the subsequent child groups:

W1

W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

W1P2

W1P2T1
W1P2T2
W1P2T3
...
W1P2T10

Seeded Mesh Groups

It is also possible to automatically group surface mesh elements based on feature angles.
Given a seed element, the algorithm will loop over all adjacent elements and create
groups of elements whose surface normals are similar, or which fall within a certain
radius. The command syntax is:

Group {<'name'>|<id>} {Add|Equals|Remove|Xor} Seed <mesh_entities>

{Feature_angle <angle> [Divergence]|Depth <number>}

The seed element may be a quad, tri, or node element. There are two methods of angle
comparison for this command. The feature angle option will compare angles of the each
element to its adjacent elements by comparing surface normals. In the case of nodes, the
seed node surface normal will be the average of the adjacent faces or tris. Nodes will be
added if their attached faces meet the angle requirements. The divergence option will
compare angles to the original seed element's surface normal. The depth option will add
elements within a certain radius.

342

The following figures illustrate the use of the seed method to create mesh groups using
the feature angle and divergence methods.

CUBIT> group 'mygroup1' add seed face 269 feature_angle 45

CUBIT> group 'mygroup2' add seed face 269 feature_angle 45 divergence

The seed method of creating groups is particularly useful for creating groups on free
meshes for the purpose of assigning nodesets and sidesets.
The GUI command panel for this command is found by selecting
"Mode-Meshing", "Entity-Group", "Action-Manage Groups", then "Create with Seed." The
command panel is shown below:

Cubit_15.5_User_Documentation

343

Basic Group Operations

Geometry Groups

The common syntax to create or modify a group is to give it a name and a collection of
entities:

Group ["name"] Equals <list of entities>

344

The Equals operation assigns the group to contain the given list. If the group already
existed, its prior contents are overwritten. (Once a group is created, it can be refered to
by id as well.) Here, entities can be geometry entities, mesh entities, or both. For example,
the command,

group "Exterior" equals surface 1 to 2, curve 3 to 5

will create the group named (names are case sensitive). Any command taking entities
can also take a group: e.g., mesh Exterior, list Exterior, or draw Exterior.
Geometry entities may specified by name as well. E.g.,

group 'Interior' add surface with name 'bill' 'john' 'fred'

will place the surfaces named 'bill' 'john' and 'fred' in the group Interior.
Wildcards (*) can also be used with names. To add all surfaces with the substring 'bob' in
their name, use the command:

group 'interior' equals surface with name '*bill*'

There are a variety of operations for modifying the contents of a group, such as adding
or removing entities. These can also be used to create a group from scratch by using a
new name.

Group ["name" | <id>] Add <entity list>

Group ["name" | <id>] Remove <entity list>

Group ["name" | <id>] Xor <entity list>

Group Booleans

Groups may also be created from the contents of existing groups by set booleans: Group
A boolean B preposition C. These operations will also overwrite the contents of existing
groups. The intersect command will create a new group that contains elements common
to both groups: A = B ∩ C. The unite command collects entities that exist in either group:
A = B ∪ C. The subtract command collect the entities in one group but not the other: A
= C ∖ B.

Group {<'name'>|<id>} Intersect Group <id> with Group <id>

Group {<'name'>|<id>} Unite Group <id> with Group <id>

Group {<'name'>|<id>} Subtract Group <id> from Group <id>

Group Copy and Transform

The contents of a group can be copied and transformed (e.g. moved), or simply
transformed. (The group itself is not copied, only the contents.) This works only for groups
of geometry entities, or groups of free mesh elements without associated geometry.
Groups can collect free mesh entities in much the same way as a geometric entity. If the

Cubit_15.5_User_Documentation

345

optional copy keyword is provided, the entities in the group will be copied first, and the
copy will be transformed. Geometric and mesh groups behave differently. For geometry
groups, if the group contains geometric entities that are meshed, the mesh will also be
copied and transformed, unless the optional nomesh keyword is specified. You can copy
a single surface of a volume, but you cannot move just it, because geometric entities
cannot be transformed unless the parent entity is also. In addition, all merged partners
must be contained in the group. However, any geometric entity can be copied and
transformed. For mesh groups, transforming the nodes will implicitly transform the
elements containing those nodes. The copy keyword is ignored if the group contains
mesh entities. These types of mesh groups can only contain free mesh entities; for
copying and transforming mesh associated to geometry, use a geometry group. (In the
following, recall that an existing group name can always be used in place of 'Group <id>'.)

Group <id> [Copy [nomesh]] [Move <dx> <dy> <dz>]

Group <id> [Copy [nomesh]] [Move {x|y|z} <distance>...]

Group <id> [Copy [nomesh]] [Move <direction> [distance]]

Group <id> [Copy [nomesh]] [Reflect {x|y|z}]

Group <id> [Copy [nomesh]] [Reflect <x> <y> <z>]

Group <id> [Copy [nomesh]] [Rotate <angle> About {x|y|z}]

Group <id> [Copy [nomesh]] [Rotate <angle> About <x> <y> <z>]

Group <id> [Copy [nomesh]] [Rotate <angle> About Vertex <Vertex_id1>

<Vertex_id2>]

Group <id> [Copy [nomesh]] [Scale <scale> | x <val> y <val> z <val>]

Deleting Groups

Groups can be deleted with the following command:

Delete Group <id range> [Propagate]

The option propagate will also delete any contained groups, recursively. That is, if group
A contains group B and group B contains group C, then Delete Group A Propagate will
delete groups A, B, and C.

Cleaning Out Groups

You can remove all of the entities in a group via the cleanout command:

346

Group <group_id_range> Cleanout [Geometry|Mesh] [Propagate]

By default all entities will be removed - optionally you can cleanout just geometry or mesh
entities. As in delete, the propagate option will cleanout the group specified and all of its
contained groups recursively.

Groups in Graphics
In the GUI version of CUBIT, groups may be picked with the mouse.
When displaying a group containing hexes, only the outside skin of the hexes will be
displayed.

Quality Groups
Groups can also be formed from the hexes or faces obtained from the quality command.
Each group formed using quality can be drawn with its associated quality characteristics
{i.e. jacobian low .2 high .3} automatically.

Group {<'name'>|id} {Add|Equals|Remove|Xor} Quality { Hex | Tet | Face |

Tri | Volume | Surface | Group } <id_range> { quality metric name (default is

SHAPE) } [High <value>] [Low <value>] [Top <number>] [Bottom

<number>]

The following example illustrates the use of quality groups:

group 2 add quality volume 1 jacobian

In this case, if the meshed brick from the section Propagated Hex Groups is used, Group
2 will be created and it will contain 1000 hexes with quality characteristics.
The quality metric names can be found in the Quality Assessment section of the
documentation.

attributes
Geometry Attributes
Each geometric topological entity has specific information attached to it. These attributes
specify aspects of the entity such as the color that entity is drawn in and the meshing
scheme to be used when meshing that entity. This section describes those geometry
attributes that are not described elsewhere in this manual.

• Entity Names

• Entity IDs
• Persistent Attributes

persistent attributes

Attribute Behavior

Cubit_15.5_User_Documentation

347

In this context, attributes are defined as data associated directly with a particular
geometry entity. In CUBIT's implementation of attributes, these data can occupy one of
three "states" at any given time: they can be stored in data fields on CUBIT's geometry
entities; they can be stored in an intermediate representation, using CUBIT's attribute
objects; or they can exist only on the ACIS objects. When they are stored on ACIS
objects, those attributes are written to and read from disk files with the geometry. This
mechanism allows CUBIT-specific information to be stored and retrieved with the
geometry data. By default, attribute data is not stored with geometry. To enable the use
of attributes, use the commands described in the following sections.

Attribute Commands

Most non-CUBIT-developer uses of attributes will be to use all or none of the
attributes. Therefore, the most common command to enable and disable the use of
attributes is:

Set Attribute {On|Off}

When this option is on, all defined attributes will be saved with the geometry when the
user enters the Export Acis command.
When a geometry is imported into CUBIT, any attributes defined on that geometry and
recognized as CUBIT attributes are imported and put into an intermediate representation
(that is, this information is not assigned directly to the geometry entities). To find out
which attributes are defined on a given set of entities, use the following command:

List [<entity_list>] Attributes [Type <attribute type>] [All] [Print]

If no entities are entered, attribute information for all the geometric entities defined in
CUBIT is printed.
The Type option can be used to list information about a specific attribute type; values for
are the same as those in the previous table.
If the All option is entered, information about all attribute types will be printed, even if
there are none of those attributes defined for the specified entities.
If the Print option is entered, the information stored in each attribute will be printed; this
command is usually used only by CUBIT developers.

Control By Attribute Type or Geometric Entity

Attributes can be enabled or disabled by attribute type, to allow the use of only user-
specified attribute types. To turn on or off specific attributes, use the command:

Set Attribute <attribute type> {On|Off}

where <attribute type> is one of the types shown in the previous table.
Attributes can also be controlled to automatically write (update) and read (actuate) to/from
solid model files automatically, using the command:

348

Set Attribute <attribute_type> Auto {Actuate|Update} {On|Off}

Finally, attributes can be manually written to and read from the geometric entities, and
removed from cubit entities, using the command

{geom_list} Attribute {All|Attribute_type}

{Actuate|Remove|Update|Read|Write}

where geom_list is a list of geometry entities. This command is recommended only for
developers' use.

Attribute Types

The attribute types currently implemented in CUBIT are shown below.

Attribute
Types

Description

Color Entity Color

Composite vg Used to restore composite virtual topology

Genesis entity
Membership in boundary conditions (block, sideset,
nodeset)

Id Entity Id

Mesh
container

Handle to mesh defined for the owner

Mesh scheme Meshing scheme (e.g. paving, sweeping, etc.)

Name Entity name

Partition vg Used to restore partition virtual topology

Smooth
scheme

Smoothing scheme (e.g. Laplacian, Condition
Number)

Unique Id Unique entity id, used to cross-reference other entities

Vertex type
Used to define mesh topology at vertex for
mapping/submapping

Virtual vg
Used to store virtual geometry entity(ies) defined on
an entity

Persistent Attributes

Typical data assigned to topological entities during a meshing session might include
intervals, mesh schemes, group assignments, etc. By default, most of this data is lost

Cubit_15.5_User_Documentation

349

between CUBIT sessions, and must be restored using the original CUBIT commands.
Using CUBIT's persistent attributes capability, some of this data can be saved with the
solid model and restored automatically when the model is imported into CUBIT.

• Attribute Behavior
• Attribute Types
• Attribute Commands
• Using CUBIT Attributes

Using CUBIT Attributes

A typical scenario for using CUBIT attributes would be as follows.

Construct geometry, merge, assign intervals, groups, etc. (i.e. normal
CUBIT session)
Enable automatic use of attributes using the command:

Set Attribute On

Export acis file (see Export Acis command).
Subsequent runs:
Enable automatic reading and actuating of attributes:

set attribute on

Import ACIS file (see Import Acis command)

Used in this manner, geometry attributes allow the user to store some data directly with
the geometry, and have that data be assigned to the corresponding CUBIT objects
without entering any additional commands.

Entity IDs
Topological entities (including groups) are assigned integer identification numbers or ids
in CUBIT in ascending order, starting with 1 (one). Each new entity created within CUBIT
receives a unique id within the topological entity type. This id can be used for specifying
the entity in CUBIT commands, for example "draw volume 3".
There is a separate id space for each type of topological entity. For example, all mesh
nodes are given ids from 1 to n, where n is an integer greater than or equal to the number
of nodes in the model. Likewise, all hexahedra are given ids from 1 to m, where m is an
integer greater than or equal to the number of hexahedra in the model.

Element Ids

Each mesh entity (hex, tet, face, tri, edge, node, etc.) may also have a Global Element ID
from an id space which is used for all mesh entities. A mesh entity is only assigned a

350

Global Element ID if it is in a block, and is the global id that will be assigned to the element
during Exodus export. The Global Element ID provides a single id space across all the
different element types.

Gaps in ID space

After working with a model for some time, various operations will cause gaps to be left in
the numbering of the geometric & mesh entities. The compress ids commands can be
used to eliminate these gaps:

Compress [ids] [all] [Retainmax] [Sort]

Compress [Ids] [All]

{Group|Body|Volume|Surface|Curve|Vertex|Element|Hex|Tet|Face|Edge|Nod

e} [Retainmax]

Typing compress with no options or compress all will compress the ids of all entities;
otherwise, the entity type for which ids should be compressed can be specified. The
retainmax argument will retain the maximum id for each entity type, so that entities
created subsequent to this command will receive ids greater than that value. If the sort
qualifier is included, the new id of each entity will be determined by its size and location.
Small entities are given a lower id than large entities. Entities that are the same size are
sorted by their location, with lower x coordinate, then y, then z leading to a lower id. For
example, two vertices are always the same size, so they are sorted based on the lowest
x coordinate. If they are equal, then lowest y coordinate, etc. If two entities are found to
have the same size and location, they are sorted according to their previous ids. This
option can be used to restore ids in translated models in a manner which leads to more
persistence than purely random id assignment.

Renumbering IDs

The renumber command can be used to change the id numbers assigned to meshed
entities.

Renumber {Node|Edge|Tri|Face|Hex|Tet|Wedge|Element} <id_range>

Start_id <id> [Uniqueids]

Any valid range specification can be used to specify the source ids. There is no
requirement that the ids being renumbered are consecutively numbered. The new id
numbers will be consecutive beginning at the specified start id. For the command to be
successful there can be no existing ids within the effective range of the start id. If the
resultant destination range is not free of id numbers, the command will fail with an
appropriate error.
Using the uniqueids keyword will result in the elements to be renumbered such that no
element shares the same ID.

Cubit_15.5_User_Documentation

351

For convenience, all elements and nodes in a block can be renumbered with a single
command:

Renumber block <id_range> [node_start_id <id>] [elem_start_id <id>]

[localids]

By default, the Global Element ID is renumbered with the renumber block command. If
localids is specified, the hex, tet, face, tri, or edge id is renumbered instead.

Volume ID

The volume id command is used to renumber a single volume.

Volume <old_id> Id <new_id>

This command replaces the volume's old_id with the new_id if no other is using the
new_id number. Entity renaming only works for volumes; it does not work for nodes,
curves or surfaces.

Entity Names
By default, geometric entities in CUBIT are referenced using an entity type (e.g. Surface,
Volume) and an id, for example "draw surface 1". However, geometric entities can also
be assigned names, to simplify working with specific entities. Once a name is assigned
to an entity, that name can be used in any CUBIT command in place of the entity type
and number. For example, if surface 1 were named 'mysurf1', the command above would
be equivalent to "draw mysurf1". Also, since entity names are saved with the geometry,
this also provides a means for persistent identifiers for geometric entities. Names can
be added or removed using the following commands.

{Group|Body|Volume|Surface|Curve|Vertex} {Name | Rename}

{`<entity_name>'| Default}

{Group|Body|Volume|Surface|Curve|Vertex} Remove Name

{`<entity_name>'| All | Default}

The name of each topological entity appears in the output of the List command. In
addition, topological entities can be labeled with their names (see label command). A list
of all names currently assigned and their corresponding entity type and id (optionally
filtered by entity type) can be obtained with the command

List Names [{Group|Body|Volume|Surface|Curve|Vertex|All}]

Notes:

• In a merge operation, the surviving entity is given the name(s) of the deleted entity.

352

• A geometric entity may have multiple names, but a particular name may only refer to a

single entity.

Valid and Invalid Names

Although any string may be used as an entity name, only valid names may be used
directly in commands. A name is valid if it begins with a letter or underscore ("_"), followed
by any combination of zero or more letters, digits, or the characters ".", "_", or "@". If an
attempt is made to assign an invalid name to an entity, CUBIT will generate a valid version
of the invalid name by replacing invalid characters with an underscore. Then both the
valid and invalid versions of the name are assigned to the entity. For example, assigning
the name "123#" to a volume will result in the volume having two names, "123#" and
"_23_". The valid name can be used directly in commands (mesh _23_), while the invalid
name can only be referenced using a longer, less direct syntax (mesh volume with name
"123#").

Reconciling Duplicate Names

When an attempt is made to assign the same name to two different entities, a suffix is
added to the name of the second entity to make it unique. The suffix consists of the "@"
character followed by one or more letters or numbers. For example, the following
commands will result in volumes 1 to 3 having the names "hinge", "hinge@A", and
"hinge@B", respectively:

volume 1 name "hinge"
volume 2 name "hinge"
volume 3 name "hinge"

To prevent this automatic "fixing" of names, the Fix Duplicate Names flag may be
switched to off. If the user attempts to assign a duplicate name while the flag is set to off,
the name will remain unchanged.

Set Fix Duplicate Names [ON|Off]

Automatic Name Creation

CUBIT provides an option for automatically assigning names to entities upon entity
creation. This option is controlled with the command:

Set Default Names {On|OFF}

When this option is on, entities are assigned default names consisting of a geometry type
concatenated with the entity id, for example 'cur1', 'surf26', or 'vol62'.

Automatic Name Propagation

Cubit_15.5_User_Documentation

353

CUBIT automatically propagates names through webcuts. If an entity that has been
assigned the name "Gear" is split through webcuts, the resulting bodies are named "Gear"
and "Gear@A". Try the following example.

br x 10
volume 1 name "Cube"
webcut volume 1 xplane
webcut volume 1 2 yplane
webcut volume 1 2 3 4 zplane
label volume name

Figure 1. Name Propagation through Webcuts

You can operate on these propagated names using wildcards such as:

mesh volume with name 'Cube*'
block 1 volume with name 'Cube*'

Naming Merged Entities

When entities that have the same base name, such as "platform" and "platform@A", are
merged, the resulting entities is assigned both names. The set merge base names on
command tells Cubit that in this situation, it should merge the names too. The command
syntax is:

Set Merge Base Names [On|OFF]

354

For example:

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'

Surface 10 actually is named platform@A, since we don't want duplicate names

merge all
list surf 6

You see that surface 6 has both 'platform' and 'platform@A' as names. Now, for the
contrasting example

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'
set merge base names on
merge all
list surf 6

You see that surface 6 has only 'platform' as its name.

metadata
Parts, Assemblies, and Metadata

Overview of Parts, Assemblies and Metadata

A geometric model may be organized into a hierarchy of assemblies, sub-assemblies,
and parts. These parts and assemblies can be assigned certain attribute values. The
parts, assemblies, and associated attributes are referred to as DART Metadata, or simply
metadata. Metadata can be imported from files, or can be created within CUBIT. Metadata
can be exported to both mesh and geometry files.
Although useful in its own right, the primary purpose of CUBIT’s metadata capabilities is
to enable interoperability with the set of applications participating in the DART project
(see the Sandia Analysis Workbench Wiki page at
https://dart.sandia.gov/wiki/display/SAW/DartMetadataPlugin). DART interoperability
enables CUBIT to preserve assembly relationships and material data through the analysis
process.
This section describes the procedures for importing, manipulating and exporting metadata
within CUBIT.

• Working with Parts and Assemblies

• Metadata Attributes
• Importing and Exporting Metadata

https://dart.sandia.gov/wiki/display/SAW/DartMetadataPlugin

Cubit_15.5_User_Documentation

355

Importing and Exporting Metadata
Metadata can be imported from and exported to a file. In most cases metadata will be
imported and exported with a data file such as a SAT file or a genesis file. CUBIT is also
compatible with DART artifacts, including artifact dependency tracking.

• Importing Metadata

• Exporting Metadata
• Importing and Exporting DART Artifacts

Importing Metadata

Parts and assemblies can be created and associated with geometry by importing a DART
Metadata file along with a geometry file, using the XML option of the import command. At
this time the only two geometry formats which support metadata import are STEP and
ACIS:

Import {Step|Acis} "<filename>". . . [XML "<xml_filename>"]

To successfully associate the contents of the geometry file with the parts described in the
metadata, the XML file must follow the DART Metadata 3.0 XML schema found at
https://dart.sandia.gov/wiki/display/SAW/DartMetadataPlugin, and the geometry file must
contain extra DART data. A suitable STEP file and a corresponding metadata file can be
exported from Pro/E using the Pro/E (Creo) extension, see the Metadata plugin page for
details. A SAT file and corresponding metadata file can be obtained by exporting them
from CUBIT using the XML option of the export command.

Exporting Metadata

Some export commands include an XML option. Including this option in the export
command instructs CUBIT to write out a DART metadata file, in addition to the traditional
data file. The metadata file includes the data required to enable interoperability with other
DART-compliant applications.
The only geometry export command which supports the XML option is ACIS export:

Export Acis “<acis_filename>” [XML “<xml_filename>”]

When an ACIS file exported with metadata, the specified XML file includes a description
of the assembly hierarchy as it appears in CUBIT.
Metadata can also be written to an XML file when exporting mesh. The only mesh export
command which supports the XML option is genesis export:

Export {Genesis|Mesh} “<mesh_filename>” [XML '<xml_filename>']

The XML file generated during mesh export includes the same information in a geometry
metadata file, but also includes mesh-related data such as mappings between parts and

https://dart.sandia.gov/wiki/display/SAW/DartMetadataPlugin
https://dart.sandia.gov/wiki/display/SAW/DartMetadataPlugin

356

element blocks, and includes any block, nodeset, or sideset names or descriptions which
have been defined.

Importing and Exporting DART Artifacts

The DART project has defined a specific way to package data files with corresponding
metadata files. A correctly packaged set of data files with a corresponding metadata file
is called an artifact. An artifact’s metadata file is always located in the same directory as
the primary data file, and is always named artifact.dta.
Within the DART environment, dependencies between artifacts may be tracked by placing
tracking information into metadata files. CUBIT supports automated artifact dependency
tracking. Tracking information in an input metadata file is automatically reflected in any
output metadata file written by CUBIT.
If input is correctly packaged as an artifact, CUBIT can automatically locate and read the
metadata file corresponding to a particular input data file. To have CUBIT do this, select
the “Import as Artifact” checkbox in the Open File dialog.
CUBIT can also package output as an artifact. To do so, select the “Export as Artifact”
checkbox in the export dialog box.
When importing or exporting artifacts using the command line, include the XML option in
the import or export command, specifying the xml file called artifact.dta in the same
directory as the main data file.
For dependency tracking purposes, it may be necessary to import an artifact’s metadata
file by itself. For example, it may be necessary to import an artifact consisting of an IGES
file. Since the Import IGES command does not support the XML option, the metadata file
must be imported separately. To do so, use the command:

Import XML “<xml_filename>”

When working with correctly packaged artifacts, the XML filename will always be
artifact.dta.

Metadata Attributes
Each part and assembly has several attributes, including its name and description. In
addition, there are several attributes which do not describe any particular part or
assembly. The “global” attributes describe the assembly tree as a whole, or the metadata
as a whole.
These sections describe how to view and edit metadata attributes.

• Part and Assembly Metadata Attributes

• Viewing Part and Assembly Metadata Attributes
• Modifying Part and Assembly Metadata Attributes
• Viewing and Modifying Global Metadata Attributes

Part and Assembly Metadata Attributes

Cubit_15.5_User_Documentation

357

Each part and assembly has several attributes. Some attributes apply to both parts and
assemblies, while other attributes apply to only parts. The attributes are listed in the
following table:

Attribute Name Attribute Description Applies To:

Part Assembly

Name Name of Part or Assembly x x

Description Description of Part or
Assembly

x x

Instance Instance Number x x

File The name of the file
containing the original
version of this entity. Often
a reference to a PDM
system.

x x

Units The unit system of this part
or assembly.

x x

Material_Description The name or description of
the material of which this
part is composed.

x

Material_Specification The formal specification
number of the material of
which this part is
composed.

x

Density The density of the material
of which this part is
composed. Setting it to a
non-positive value will clear
the attribute, as if there
were no value assigned.

x

Material_Volume The volume of the region
enclosed by this part. The
material_volume is not
calculated from the
volumes associated with
the part. It will often differ
from the actual volume
enclosed by this part's
associated geometric
volumes, and can also be
manually set to any non-
negative value. Setting it to
a non-positive value will
clear the attribute, as if
there were no value
assigned.

x

358

Elemental_Composition A string value describing
the composition of the
material, typically
expressed as percentages
of given elements.

x

Viewing Part and Assembly Metadata Attribute Values

The easiest way to view a part or assembly’s metadata attribute values is to select the
item in the entity tree. The item’s metadata attributes are listed in the property page.
A part or assembly’s metadata attribute values can also be viewed using the Metadata
List command:

Metadata List [<attribute_name>] {Part|Assembly} “<path>”

The attribute_name should be one of the attribute names in the table above. If no attribute
name is included in the command, all metadata attributes are listed.
Metadata attributes can also be listed based on a volume.

Metadata List [<attribute_name>] Volume <id>

This volume-based command works just like the part-based command, but lists the
metadata for the part with which the volume is associated.

Modifying Metadata Attributes

A part or assembly’s metadata attributes can be modified in the property page. Simply
select the part or assembly in the entity tree, then click in the appropriate text field in the
property page.
A part or assembly’s metadata attributes can also be modified using the Metadata Modify
command:

Metadata Modify <attribute> “new value” {Part|Assembly} “<path>”

where attribute is one of the attributes listed in the table above. The specified attribute
value will be changed to new_value.
There is also a volume-based version of the Metadata Modify command:

Metadata Modify <attribute> “new_value” Volume <id>

The volume-based command works just like the part-based command, operating on the
part with which the volume is associated. Note that if the specified volume is not
associated with a part, a new part will be created and associated with the volume.

Viewing and Modifying Global Metadata

Cubit_15.5_User_Documentation

359

There are several attributes which do not describe any particular part or assembly. These
“global” attributes describe the metadata as a whole:

Attribute Name Description

Classification_Level The level of sensitivity of the metadata.
Usually one of the following:

• Secret
• Confidential
• Unclassified

Classification_Category The classification category. Usually one of the
following:

• Not Restricted
• Restricted Data (RD)
• Formerly Restricted Data (FRD)
• National Security Information (NSI)

Weapon_Category Sigma 1 through Sigma 15

Global metadata values can be viewed using the Metadata List command:

Metadata List <attribute_name>

Global metadata values can be modified using the Metadata Modify command:

Metadata Modify <attribute_name> “new_value”

For both commands, attribute_name should be one of the attribute names in the table
above.

Working With Parts and Assemblies
Volumes can be organized into a hierarchical tree of parts, assemblies, and sub-
assemblies. Assemblies may contain parts and other assemblies. Parts, on the other
hand, may not contain sub-entities.
Each part and assembly has a name and an optional description. Other attributes may
also be assigned, such as a material specification or a link to an entry in a PDM system.
See Metadata Attributes.
The relationship between the geometric model and the assembly is determined by
associating parts with volumes. A single part can be associated with any number of
volumes, including zero volumes. A volume, however, can be associated with only one
part.
As volumes are modified, CUBIT automatically maintains the appropriate relationships
with parts. If a volume is associated with a part, and that one volume is split into multiple
volumes through a webcut or some other operation, each of the resulting volumes is

360

automatically associated with the original volume’s part. Copying a volume will also result
in the new volume being associated with the same part as the original volume.

• Identifying Parts and Assemblies

• Creating Parts and Assemblies
• Deleting Parts and Assemblies
• Associating Parts with Volumes
• Viewing All Assembly Information at Once
• Assemblies Tool in Power Tools

Identifying Parts and Assemblies

A part or assembly is identified by its assembly path. An assembly path is much like a
directory path in a file system. It consists of the name of each ancestor in the assembly
tree, separated by a forward slash. For example, a part named “p1” contained within the
top-level assembly “a1” would be identified by the path “/a1/p1”. If the part “p2” is part of
the assembly “a2”, and “a2” is a sub-assembly of “a1”, then “p2” has the path “/a1/a2/p2”.
More than one part or assembly may have the same name. To differentiate between parts
or assemblies with the same name and path, each part also has an instance number. If
two entities have the same name, they will not have the same instance number. For
example, two parts named “p1” may be “p1 instance 1” and “p1 instance 2”.
Instance numbers may be incorporated into assembly paths by placing the instance
number in angled braces after a part or assembly name. For example, “p1 instance 3” is
identified in a path as “p1<3>”. Other examples of instance numbers in assembly paths
include “/a1<1>/a2<1>/p1<3>” and “/a1/a2<1>/p1”. Assembly paths are always allowed
to incorporate instance numbers, but are only required to include as many instance
numbers as it takes to avoid ambiguity. Note that some commands do accept ambiguous
paths, selecting a random entity which matches the path.
Most commands which accept assembly paths also allow the path to be followed by an
“instance” command option (for example, metadata list part “/a1/p1” instance 3). The
instance option always refers to the instance number of the last item in the path (p1 in the
example).

Creating Parts and Assemblies

Parts and assemblies can be created using the following commands:

Metadata Create {Assembly|Part} “<absolute_path>” [Instance <instance>]

If the instance option is not included, CUBIT will assign an appropriate instance number
to the new entity. If the instance option IS included, an entity with the specified name and
instance number must not already exist or the command will fail.
Note that the path must be absolute, identifying each ancestor of the new entity. Any
ancestors of the new entity which do not already exist are automatically created.

Deleting Parts and Assemblies

Cubit_15.5_User_Documentation

361

To delete a part or an assembly, use the Metadata Remove command:

Metadata Remove {Part “<path>” | Assembly “<path>" [propagate]}

This will remove the specified part or assembly. If the propagate option is specified when
removing an assembly, all contained parts and subassemblies will be removed
automatically before the assembly itself is removed. Otherwise, assemblies will only be
removed if they have no contents.
It is also possible to remove all parts and assemblies that have no association with
geometric volumes in the model:

Metadata Clean

This can be extremely useful when importing geometry which has been simplified with
metadata which has not been simplified. For example, eMatrix currently writes out the full
assembly hierarchy even when exporting a simplified representation of the geometry.

Associating Parts with Volumes

The relationship between the geometric model and the assembly is determined by
associations between parts and volumes. As stated previously, a part may be associated
with any number of volumes, while a volume may be associated with only one part. The
easiest way to associate a volume with a part is to use the entity tree in the user interface.
Drag a volume in the tree onto a part in the tree, and the volume and part are now
associated. Since a volume can only be associated with one part at a time, any previous
association between that volume and a part is removed.
Part-to-volume associations can be created on the command line using the Metadata
Modify Path command:

Metadata Modify Path “<part_path>” Volume <ids>

The specified volume or volumes will be associated with the part specified by part_path.
Any volumes already associated with the specified part will retain their association with
the part.
Associations can be removed using the Metadata Remove command:

Metadata Remove Volume <ids>

After the Metadata Remove command has been issued, the specified volumes are no
longer associated with any part.
The set of volumes associated with a given part can be modified using the Metadata
Replace command:

Metadata Replace Part “<part_path>” Volume <ids>

362

When the Metadata Replace command is issued, all associations the part may have had
with any volumes are removed. New associations are then created with the specified
volume or volumes.

Viewing All Assembly Information at Once

Once an assembly tree is created, all assemblies, parts, and part-to-volume associations
can be viewed using the command:

Metadata List Tree

This will print the names of all parts and assemblies in the output window, along with the
IDs of the volumes associated with each part.
It is also possible to view all parts, their properties, and their volume associations using a
spreadsheet application such as Microsoft Excel. This is done by generating a file using
the command:

Export Part_List "<filename>" [OverWrite]

This command writes an XML file in a format that Excel can convert to a spreadsheet. To
do this, simply import the XML file into Excel as an XML List. The data can then be sorted
and filtered by any of the parts' properties.
The Export Part_List command is particularly useful for identifying parts which are not
correctly associated with parts. Among the fields that can be filtered is the is-part field.
This field is FALSE for each volume that is not associated with a part. Filtering on this
value will show a list of all volumes that are not associated with any part. The volume-
ids field will show the ID of each unassociated volume, and the volume-name field will
show each unassociated volume's name, if any.
It is equally easy to identify parts that are not associated with volumes. Display only those
rows with a blank value in the volume-ids field to see a list of parts that have no
associated volume.
Similar methods can be used to identify missing materials information. Fields can also be
sorted to group the parts by material.

Metadata in the GUI

Metadata may be displayed and manipulated in the GUI. The tree view includes a
category for metadata. The category is labelled "Assemblies" in the tree view. Users are
able to drag volumes into parts on the tree. Also, selecting an Assembly or Part on the
tree will cause the attributes for the entity to be displayed in the property page where
further data manipulation is enabled.

Cubit_15.5_User_Documentation

363

import
Importing Geometry

• Importing ACIS Models
• Importing FASTQ Models
• Importing STEP Files
• Importing IGES Files

364

• Importing Facet Files
• Other Formats

Other Formats

Internally, CUBIT represents geometry as either ACIS solid model geometry or mesh-
based geometry. CUBIT can import ACIS geometry in the native "sat" file format. CUBIT
can also import STEP and IGES files and internally converts them into ACIS solid model
geometry. For compatibility with Sandia legacy applications, CUBIT can import FASTQ
input decks to create ACIS geometry, as well. If you have geometry that has been created
in another format, such as in SolidWorks, you will need to translate that geometry into
something that Cubit can read. Many solid modeling packages have an Export ACIS .sat
command, which is probably the easiest way of translating your model. If you do not have
that option, there are some other possibilities.

• Try a different file format, such as STEP or IGES.
• As a last resort, contact the Cubit team. They might have other options for

importing your file.

See Also

Importing a Mesh

Importing ACIS Files
The command used to read an ACIS file is:

Import Acis '<acis_filename>' [No_bodies][No_surfaces]

[No_curves][No_vertices][Group {'<name>'|<id>}] [Binary|Ascii]

[Show_Each] [Sort] [XML '<xml_filename>'] [Attributes_On]

[Separate_Bodies] [merge_gloabally] [Heal]

The import ACIS command is the primary mechanism for generating geometry within
CUBIT. ACIS parts can be generated and saved with CUBIT, but in most cases are
developed within a 3rd party CAD package and exported for use in CUBIT. CUBIT
provides the capability to import ACIS solid models and make modifications to them so
they can be meshed. CUBIT incorporates the commercial ACIS libraries developed and
maintained by Spatial Inc. for reading and writing ACIS format files. IGES and STEP
format files can also be imported and exported to/from CUBIT using the Spatial's libraries.

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or
are free. By using any of the options no_bodies, no_surfaces, no_curves, or
no_vertices, the user may exclude certain types of free entities.

http://www.spatial.com/

Cubit_15.5_User_Documentation

365

The group option of the import command will allow the user to create a group for each
set of imported geometry. The newly created group can later be accessed using the name
or id specified with the group option.
The import capability of ACIS files supports both the ASCII format (.sat) and binary format
(.sab). When importing, the filename extension will determine the default file type, be it
ASCII or binary. A (.sat) extension will default to ASCII, while a (.sab) extension will
default to binary. If you use a different file extension you can specify the type with the
[binary|ascii] option. Binary files can be significantly faster but are not guaranteed to be
upward compatible, nor cross-platform compatible. Therefore, it is recommended that
models be archived in ASCII format.
Normally the numerical IDs of the geometric entities contained in the ACIS model are
used directly within CUBIT. The sort option provides the capability to compress the IDs
read from the ACIS file. The sort option does the same thing as the compress ids sort
command, but combines it with the import command to remove a step in the process.
The show_each option is a graphics option that applies to how the volumes are shown
as they are imported. If there are multiple volumes in the file, the graphics display will be
updated between each volume during import.
The xml option will read assembly information and other metadata from an XML file in
the DART metadata XML format. See the metadata documentation and the Analyst's
Home Page for details.
The attributes_on option will enable attribute support for the file. Attributes include
properties like entity color, entity id, and meshing scheme. Including the attributes option
will only affect the current import. The settings will be restored to their previous settings
after importing.
To retain any possible merge information when importing an ACIS file use the
attribute_on command.
The separate_each option creates a separate body for each volume that is imported,
preventing multi-volume bodies from being imported.
When importing, the use may specify the scope of the merge using merge_globally. The
default behavior is to merge within the scope of the file being imported. With the
merge_globally option, imported entities will merge with anything, including entities
already in the Cubit session that have merge attributes on them.
Use the heal option to heal the entities when importing.

Importing ACIS files at startup

ACIS files can also be imported using the "-solid" option when starting CUBIT from the
UNIX command prompt. (See Execution Command Syntax for details.) Note that the
filename must be enclosed in single or double quotes. This command will create as many
bodies within CUBIT as there are bodies in the input file.
See also Exporting ACIS Files.

Importing Facet Files
CUBIT provides the capability to import a model composed of facets to create geometry.
The command to import facets from a file is:

http://www-irn.sandia.gov/analyst
http://www-irn.sandia.gov/analyst

366

Import [Facets|AVS] ''<filename>" [Feature_Angle <angle>]

[LINEAR||Spline] [MERGE|No_merge] [Make_elements] [Stitch] [Improve]

Import STL ''<filename>" [Feature_Angle <angle>] [Surface_Feature_Angle

<angle>] [LINEAR|Gradient|Quadratic|Spline] [MERGE|No_merge]

[Make_elements] [Stitch]

Facets are simply triangles that have been stitched together to form surfaces. Faceted
geometry representations are commonly used for graphics, bio-medical, geotechnical
and many other applications that output a discrete surface representation. Upon import,
the resulting geometry representation is Mesh-Based Geometry. Figure 1. shows an
example of a faceted model and the resulting geometry created in CUBIT.

Figure 1. Example of faceted model and the resulting solid model created in CUBIT from

the facets.

For convenience, the import facet command currently supports three different formats,
facet, AVS and STL

• Facet format: The facet file format is a simple ASCII file that contains vertex
coordinates and connectivities. The facet file format is described below.

• AVS format: The AVS format is a general geometry format that can support a
variety of polygonal shapes. In CUBIT's implementation of the AVS import, it will
support only triangles.

Cubit_15.5_User_Documentation

367

• STL format: Perhaps the most common format in the industry is
Stereolithography (STL). CUBIT supports both ASCII and binary forms of the
STL format. While the STL format is adequate for graphics and visualization, it
can be problematic for geometry applications such as CUBIT. Each triangle in
the STL format is represented independently. This means that multiple definitions
of a single vertex are included in the file. CUBIT will attempt to merge duplicate
vertices to form a water-tight surface. In cases where the vertex locations may
not correspond exactly, an optional tolerance argument may be used on the
import command. The tolerance option is used only for STL format files.

Facet File Format

The format for the ASCII facet file is as follows

n m
id1 x1 y1 z1
id2 x2 y2 z2
id3 x3 y3 z3
.
.
.
idn xn yn zn
fid1 id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]
.
.
.
fidm id<1> id<2> id<3> [id<4>]

Where:

n = number of vertices
m = number of facet
id<i> = vertex ID of vertex i
x<i> y<i> z<i> = location of vertex i
fid<j> = facet ID of facet j
id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the
facets serve as the underlying representation for the geometry. By default, the facets are
not visible once the geometry has been imported. To view the facets, use the following
command:

draw surf <id range> facets

Feature Angle

368

The feature angle option is used to specify the angle at which surfaces will be split by a
curve or where curves will be split by a vertex. 180 degrees will generate a surface for
every facet, while 0 degrees will define a single, unbroken surface from the shell of the
mesh. The default angle is 135 degrees. This feature is identical to the feature angle
option available when importing Exodus II files.
For the stl format, it is possible to independently control the feature angle for surfaces
and curves. If Surface_Feature_Angle is specified, it controls the angle at which
surfaces will be split by a curve, while Feature_Angle controls the angle at which curves
will be split by a vertex. If Surface_Feature_Angle is not specified, Feature_Angle will
control the angle for both surfaces and curves.

Smooth Curves and Surfaces

This option permits the use of a higher order approximation of the surface when
remeshing/refining the resulting geometry. Default is to use the original facets themselves
as the curve and surface geometry representation. If the facet model to be imported is to
represent geometry with curved surfaces, it may be useful to apply this option. If the
Spline option is selected, it will use a 4th order B-Spline approximation to the surface
[Walton,96]. More information on using smooth approximation of the facets is available in
Importing an Exodus II File.

Merge

This option allows the user to either merge or not merge the resulting surfaces. The
default option is to merge adjacent surfaces. This results in non-manifold topology, where
neighboring surfaces share common curves. The no_merge option, adjacent surfaces
will generate distinct/separate curves.

Make elements

This option creates mesh elements from each of the facets on the facet surface.

Stitch

The stitch option is used with the facet or avs format files to try to merge vertices and
triangles that are close. Figure 2 shows an example of where this might be employed.
The model on the left contains facets that are not connected between the red and blue
groups. In this case, the surfaces will not be water-tight, even though the vertices on the
boundary between the two groups may be coincident. The stitch option attempts to
eliminate the extra edge and vertex between the groups to form the model on the right.
This option can be useful when importing facet files for 3D meshing. CUBIT's 3D meshing
algorithms require a water-tight (closed) set of surfaces.

Cubit_15.5_User_Documentation

369

Figure 2. Example use of the stitch option on import.

Improve

The improve option will collapse short edges on the boundary of the triangulation that
are less than 30% the length of the average edge length in the model. In some cases,
short edges are the result of discrete boolean operations on the triangulation which may
result in edges that are of negligible length. This option is particularly useful for boundaries
where multiple surfaces come together at an edge. Figure 3. shows an example of where
the improve option improved the quality of the triangles at the boundary. This option is
especially useful if the facets themselves will be used for the FEA mesh.

Triangles near a boundary that

have not been used the improve
option

The same set of triangles where
improve option has collapsed

edges

Figure 3. Example use of the improve option

Importing FASTQ Files
CUBIT can read a FASTQ file and convert it into an ACIS model:

Import Fastq '<fastq_filename>'

370

Note that the filename must be enclosed in single or double quotes.
FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands
much like a CUBIT journal file. All FASTQ commands are fully supported except for the
"Body" command (it is unnecessary and ignored), the "corn" (corner) line type, and some
of the specialized mapping primitive "Scheme" commands. Standard mapping, paving,
and triangle primitive scheme commands are handled. The pentagon, semicircle, and
transition primitives are not handled directly, but are meshed using the paving scheme.
The FASTQ input file may have to be modified if the Scheme commands use any non-
alphabetic characters such as `+', `(`, or `)'. Circular lines with non-constant radius are
generated as a logarithmic decrement spiral in FASTQ; in CUBIT they will be generated
as an elliptical curve.
Since a FASTQ file by definition will be defined in a plane, it must be projected or swept
to generate three dimensional geometry. CUBIT supports sweeping options to convert
imported FASTQ geometries into volumetric regions.

Importing Granite Files
As of version 13.0, native Granite models are no longer supported.

Importing IGES Files
The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphics Exchange Specification) format.
The commands to import IGES files are:

Import Iges '<iges_filename>' [No_bodies] [No_surfaces] [No_curves]

[No_vertices] [Group {'<name>'|<id>}] [Nofreesurfaces] [HEAL|noheal]

[Logfile ['filename'] [Display]] [Show_Each] [Sort]

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. Default
operation is to read all entities in the file whether they are included as part of a body or
are free. By using any of the options no_bodies, no_surfaces, no_curves, or
no_vertices, the user may exclude certain types of free entities.
The group option of the import command will allow the user to create a group for each
set of imported geometry. The newly created group can later be accessed using the name
or id specified with the group option.
The nofreesurfaces option will automatically convert free surfaces to bodies. By default
this option is off.
By default, bodies are automatically healed when imported - if this causes problems, you
can disable this option by using the noheal argument.
The logfile option specifies a file where informational messages generated during import
of the STEP file will be written. The display option will display the file.
The show_each option is a graphics option that applies to how the volumes are shown
as they are imported. If there are multiple volumes in the file, the graphics display will be
updated between each volume during import.

Cubit_15.5_User_Documentation

371

Normally the numerical IDs of the geometric entities contained in the ACIS model are
used directly within CUBIT. The sort option provides the capability to compress the IDs
read from the ACIS file. The sort option does the same thing as the compress ids sort
command, but combines it with the import command to remove a step in the process.
Note that the IGES import and export functionality might not be available on all 64-bit
platforms.
See also Exporting IGES Files.

Importing STEP Files
The ACIS STEP translator provides bi-directional functionality for data translation
between ACIS and the file format standard STEP AP203.
STEP AP203 is an international standard which defines a neutral file format for
representation of configuration control design data for a product.
The command used to import a STEP file are:

Import Step '<step_filename>' [No_bodies][No_surfaces] [No_curves]

[No_vertices] [HEAL|Noheal] [Logfile ['filename'] [Display]] [Show_Each]

[Group {'<name>'|<id>}] [Sort] [XML '<xml_filename>']

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or
are free. By using any of the options no_bodies, no_surfaces, no_curves, or
no_vertices, the user may exclude certain types of free entities.
By default, bodies are automatically healed when imported - if this causes problems, you
can disable this option by using the noheal argument.
The logfile option specifies a file where informational messages generated during import
of the STEP file will be written. The display option will display the file.
The show_each option is a graphics option that applies to how the volumes are shown
as they are imported. If there are multiple volumes in the file, the graphics display will be
updated between each volume during import.
The group option of the import command will allow the user to create a group for each
set of imported geometry. The newly created group can later be accessed using the name
or id specified with the group option.
Normally the numerical IDs of the geometric entities contained in the STEP model are
used directly within CUBIT. The sort option provides the capability to compress the IDs
read from the STEP file. The sort option does the same thing as the compress ids sort
command, but combines it with the import command to remove a step in the process.
The xml option will read assembly information and other metadata from an XML file in
the DART metadata XML format. See the metadata documentation and the Analyst's
Home Page for details.
Beginning with version 13.0, Cubit will read assembly information embedded in the
imported STEP file. No additional arguments are required. The resultant assembly/part
structure will be displayed in the GUI's main entity tree.

372

Import Settings

By default, names on bodies in STEP files are not read in. To change this, the following
command is available:

[set] Read Step Body Names [on|OFF]

Exporting a STEP file from Pro/Engineer

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.
In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.

Also be sure your export option is set to Solids. If the geometry has problems in CUBIT,
you may need to increase the geometry accuracy in Pro/ENGINEER.
See also Exporting STEP Files.

export
Exporting Geometry
Geometry can be exported from CUBIT in a variety of formats, including the ACIS ".sat"
and ".sab" formats as well as in more portable exchange formats like STEP and IGES.

• Exporting ACIS Files

• Exporting STEP Files
• Exporting IGES Files
• Exporting Facet Files

Exporting ACIS Files
Geometry can be exported from within CUBIT to the ACIS "sat" (ASCII) and "sab" (binary)
formats. These formats can be used to exchange geometry between ACIS-compliant
applications. The command used to export geometry is:

Export Acis [Debug] 'filename' [<geometry_entity_list>] [Binary|Ascii]

[Current] [Overwrite]

The filename should be enclosed in single or double quotes. By convention, binary and
ASCII ACIS files use the .sab and .sat filename extensions, respectively. If a geometry
entity list is not specified, the entire ACIS model is exported. A geometry entity list is
specified in the same format used for other CUBIT commands (See Entity
Specification). Note that the model is saved as manifold geometry, and will have that
representation when imported back into CUBIT (See Non-Manifold Topology and
Geometry Merging.)
When exporting, the filename extension will determine the default file type, either ASCII
or binary. A .sat extension will default to ASCII; a .sab extension will default to binary. If

Cubit_15.5_User_Documentation

373

you use a different file extension you can specify the type with the [binary|ascii] option
(with an unsupported extension exporting will default to ASCII but importing requires the
type to be specified). Binary files can be significantly faster but are not guaranteed to be
upward compatible nor cross-platform compatible (although testing has determined
compatibility between NT and HP/UX).
In the GUI version, the current option will set the default filename for autosave (cntrl-S
or File->Save (auto inc)) to the imported filename. Also, the filename is then set in the
window titlebar.
When exporting with the "file overwrite" option on, the software will check to see if the
file exists already, and if it does, exporting will fail in the command line version or ask to
confirm the overwrite in the GUI version of CUBIT. The overwrite option will override this
option and overwrite the file. The "file overwrite" option defaults to ON in the GUI version,
OFF in the command line version.
When exporting, you can set the version of the Acis geometry. This allows backwards
compatibility to previous versions of Cubit or other Acis-based applications. The
command to change the Acis geometry engine version is:

Set Geometry Version [version_number]

where version_number can be one of the following:106, 107, 201, 300, 301, 401, 402,
403, 500, 501, 502, 503, 600, 601, 602, 603, 700, 701, 702, 703, 704, 705, 800, 1007,
1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2100, 2200, 2401, 2502. Note
that you cannot set a version number that is higher than that of your current engine. For
example, Cubit 6.0 was based on Acis 6.2, so you cannot set a geometry version of 700.
To retain any merging information during export of an ACIS file, set attribute on and set
attribute off need to be used before and after the export acis command.
See also Importing ACIS Models.

Exporting Facet Files
Facet files may be exported directly, or by converting from an ACIS representation. The
syntax for exporting facet files is:

Export Facets 'filename' <entity_list> [Overwrite]

The overwrite function allows you to overwrite an existing facet file.
STL facet files may be generated from geometry or from a triangle mesh. The syntax for
exporting to the STL format is:

Export STL [ASCII|binary] 'filename' [<entity_list>] [tri <id_range>]

[angle=15] [mesh|water tight] [sidesets] [Overwrite]

The [entity_list] option is a list of geometric entities (bodies, volumes, or surfaces). By
default, the graphics facets for the geometric entities will be written to the STL file. The
[angle] keyword specifies the dihedral angle used during facet generation. The [water
tight] option will enforce a "water-tight" set of graphics facets to be exported for solid

374

volumes. To export the triangle mesh on the geometric entities, instead of the graphics
facets, specify the [mesh] keyword. Note that STL export of quad meshes is not
supported.
The [sidesets] option will export all sidesets in your model as surface designation for any
or all triangles in the file. If present, one sideset will be generated for each surface
designation in the STL file. Following is an example surface designation in an STL file. It
would appear following all triangles.

 surface 1

 0 1 2 3 4 5 6 7 8 9

 10 11 12 13 14 15 16 17 18 19

 20 21 22 23

 endsurface 1

The id following the surface designation will be used as the sideset ID.
Alternatively, a list of mesh triangles can be specified for export. If neither geometry
entities nor mesh are specified, all volumes and sheet bodies are written out.

Exporting IGES Files
The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphic Exchange Standard) format. The command to export
IGES files is:

Export Iges 'filename' [<geometry_entity_list>] [Solid] [Logfile ['filename']

[Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified,
all ACIS entities are exported.
The logfile option is used to save information regarding the conversion to IGES
format. This information saved to a file with the name specified by the user, or named
'iges_export.log' by default. When running the GUI version of CUBIT, the logfile can be
displayed in a dialog window by using the display option.
The solid option allows solid volumes to be exported as Manifold Solid B-Rep Objects
(MSBO). Without this option, the iges file is simply a collection of stand-alone surfaces.
The overwrite option works the same as with ACIS file export.
See Importing IGES Files for information on setting up the IGES import and export
functionality.
Note that the IGES import and export functionality might not be available on all 64-bit
platforms.

Exporting STEP Files
CUBIT can export geometry to the STEP format, an emerging standard for storing
geometry and other information. The STEP AP203 and STEP AP214 standards are
supported. It is recommended to use AP214 for exchange of geometry information with
CUBIT. The command used to export a STEP file is:

Export Step 'filename' [<geometry_entity_list>] [Logfile ['filename']

[Display]] [Overwrite]

Cubit_15.5_User_Documentation

375

As with ACIS file export, you can specify which individual entities to export. If unspecified,
all ACIS entities are exported.
The logfile option is used to save information regarding the conversion to STEP
format. This information saved to a file with the name specified by the user, or named
'step_export.log' by default. When running the GUI version of CUBIT, the logfile can be
displayed in a dialog window by using the display option.
The overwrite option works the same as with ACIS file export.
See Importing STEP Files for information on setting up the STEP import and export
functionality.
Note that the STEP import and export functionality might not be available on all 64-bit
platforms.

Geometry Deletion
Geometry can be deleted from the model using the following command:

Delete [Body | Surface | Curve | Vertex] <id_range>

Any type of Body can be deleted, whether it is based on solid model geometry or another
representation. Other entities (Surface, Curve, Vertex) can be deleted when they are
"free", i.e. when they are not contained in an entity of higher topological order (Body,
Surface or Curve, respectively); this type of geometry is often created from the lowest
order topology up.

Geometry Orientation
The orientation of surface and curve geometry is the direction of the normal and tangent
vectors respectively.
Each surface has a forward (or top) side. The evaluation of the surface normal at any
point on the surface will return a vector at that point, orthogonal to the surface and directed
towards the forward side of the surface. The mesh faces generated on each surface will
have the same normal direction as their owning surface.
Each curve has a forward direction and a corresponding start and end vertex. The
direction of the curve is from start to end vertex. The evaluation of the tangent vector of
the curve at any point along the curve will result in a vector that is both tangent to the
curve and pointing in the forward direction of the curve (towards the end vertex along the
path of the curve.) The mesh edges created on each curve will be oriented in the same
direction as their owning curve. The exported nodes and edges of a curve mesh will be
written in the order they occur along the path of the curve.
Higher-dimension geometry has uses lower-dimension geometry with an associated
sense (forward or reversed) for each lower-dimension entity. For example, a volume as
a sense for each surface used to bound the volume. If the surface normal points outside
the volume, then the volume uses the surface with a forward sense. If the surface normal
points into the interior of the volume, the volume uses the surface with a reversed sense.
Similarly a surface is bounded by a set of curves forming a loop such that the direction of
the loop and the sense of each curve results in a cycle that is counter-clockwise around
the surface normal.

376

Adjusting Orientation
By default, a surface is oriented so that its normal points OUT of the volume of which it is
a part. For a merged surface (a surface which belongs to more than one volume) or a free
surface (a surface that belongs to no volume, also known as a sheet body), the orientation
of the surface is arbitrary. The orientation of a surface influences the orientation of any
elements created on that surface. All surface elements have the same orientation as the
surface on which they are created. The following commands are available to adjust the
normal-direction for a surface:

Surface <id_range> Normal Opposite

Surface <id_range> Normal Volume <id>

The orientation of a surface can be flipped from its current orientation by using the
"Opposite" keyword. The orientation of a merged surface can be set to point OUT of a
specific volume by specifying that volume in the "Volume" keyword.
Occasionally, volumes will be created "inside-out". The command:

Reverse {Body|Volume|Surface} <id_range>

will turn a given volume, surface, or body inside out. This should be equivalent to
reversing the normals on all the surfaces. This shouldn't be encountered very often, as it
is a very rare condition.
The following commands are available to adjust the tangent direction of a curve:

Curve <id_range> Tangent Opposite

Curve <id_range> Tangent {Forward|Reverse} Surface <id>

Curve <id_range> Tangent {Start|End} Vertex <id>

The first command reverses the tangent direction of the curve. The second command
sets the tangent direction such that it is used by a specific surface with a specified sense.
The third command sets the tangent direction of the curve such that the curve starts or
ends with the specified vertex. For the latter two forms of the command, the curve must
be adjacent to the specified surface or vertex.
The below command can be used to change the orientation of multiple curves at once.
With the direction option, the curve will be oriented along the specified direction. With the
location option, the vertex closest to the give location becomes the start vert in the
oriented curve. The curve orientation can be reversed using the opposite argument. Also,
a vertex id can be specified to make it the start vertex in the oriented curve.

Curve <id_range> Orient Sense {direction (options)|location (options)|vertex

<id_range>} [Opposite]

Cubit_15.5_User_Documentation

377

The above command is useful in changing the orientation of multiple curves at once using
various options described. This becomes helpful, e.g., when bias is applied on multiple
curves. By default, bias depends on the orientation of the curve, i.e., bias begins at start
vertex.

Entity Measurement
To output various properties of entities, the following Measure command options are
available.

• Measure Between

• Measure Small

• Measure Angle

• Measure Void

• Measure Volume

• Measure Surface

Measure Between

Measure Between { { Vertex|Curve|Surface |Volume|Node} <id1> | Location

<options> | Plane <options> | Axis <options> } With {

{Vertex|Curve|Surface|Volume|Node} <id2> | Location <options> | Plane

<options> | Axis <options> }

Measure Between {Surface|Curve} <id1 > [Surface|Curve] <id2> [Node]

Measure Between

{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id1> With

{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id2>

The Measure Between command outputs the distance from one entity, location, plane,
or axis to the next. The two entities in the command should be separated by the word
"with". The result will always be the minimum distance between entities. For example,
measuring between two spheres will output the minimum distance between them, not the
distance between centroids. The example shown below will output the minimum distance
between vertex 1 and surface 2.

measure between vertex 1 surface 2

The second form of the command is just for surfaces or curves and contains the Node
argument. This argument attempts to measure between corresponding nodes on a pair
of surfaces or curves. The command tries to determine a one-to-one mapping of nodes
between the pair. It returns the greatest distance between any two nodal pairs, least
distance between any two nodal pairs, and average distance between all of the nodal
pairs. The mapping algorithm works best on surfaces if they are parallel.

378

The last form of the command measures between any geometry or mesh entities. The
measurement to the mesh entities is to their center (i.e. the averaged vector location of
all of the nodes belonging to the mesh entity).
With 2 entities selected in the graphics window, the user can right click one of the entities
and measure the distance between the entities.

Measure Small

Measure Small {Length|Area|Volume|All} {Body|Surface} <id_list>

The Measure Small command locates all of the lengths, areas, or volumes smaller than
the Measure Small Tolerance setting. Entities meeting the small tolerance criteria are
listed in the output window and typically highlighted in the view port. The following two
commands set the small tolerance to 0.1 and output all of the curves within body 1 with
lengths at or below the small tolerance.

set measure small tolerance 0.1
measure small length body 1

Measure Angle

Measure Angle { Direction <options> | Plane <options> | Axis <options> }

With { Direction <options> | Plane <options> | Axis <options> }

The Measure Angle command displays the interior angle between the two entered
entities. When a plane and a direction are specified, the angle between the direction
vector and its projection into the plane is displayed. The measured angle represents the
distance between the orientations of entities, and does not require the entities to intersect.
Angles of model features can be measured by using the various options associated with
the Direction, Planes, and Axis commands.

measure angle direction tangent curve 1 with plane surf 1

Measure Void

Measure Void [Face | Tri] <range>[No_Checks]

The Measure Void command takes a closed list of quadrilaterals or triangles and
calculates the volume of the internal region defined by the given list of elements. This
command assumes that the normals on the given elements are consistently ordered. If
the normals are pointing away from the interior of the void, the reported volume may be
negative. This command will check to ensure that the given elements do form a closed,
manifold shell, otherwise an error is reported. Common uses will be to calculate the
volume of an internal void for use in determining bulk element properties for a thermal
analysis.
Rather than issuing an error, the no_checks option does not check for closure of the
faces and will compute a void volume regardless of their watertightness. This is useful if
faces are all touching, but may not have complete topological closure.

Measure Volume

Cubit_15.5_User_Documentation

379

Measure Volume <range> [Overlap | Shell]

The Measure Volume command prints summary information about the specified volumes
and surfaces of these volumes, such as average volume, minimum volume, angles,
average surface area, etc. If the shell option is specified information about the shells of
the volumes is additionally printed. The overlap option does not print any summary
information, but only reports pairs of intersecting volumes.

Measure Surface

Measure Surface <range>

The Measure Surface command prints summary information about the specified
surfaces and curves of these surfaces, such as average area, minimum area, angles,
minimum curve length, etc.

381

Mesh Generation

Mesh Generation

• Meshing the Geometry
• Interval Assignment
• Meshing Schemes
• Mesh Quality Assessment
• Mesh Modification
• Mesh Validity
• Mesh Adaptivity and Sizing Functions
• Mesh Deletion
• Free Meshes
• Skinning a Mesh

The methods used to generate a mesh on existing geometry are discussed in this chapter.
The definitions used to describe the process are first presented, followed by descriptions
of interval specification, mesh scheme selection, and available curve, surface, and
volume meshing techniques. The chapter concludes with a description of the mesh editing
capabilities, and the quality metrics available for viewing mesh quality.

Element Types
For each entity topology-type in the model geometry, CUBIT can discretize the entity
using one, or several, types of basic elements, for each order entity in the geometry
(vertex, curve, etc.). CUBIT uses a basic element designator to describe the
corresponding entity, or entities, in the mesh, and a given geometric topology entity can
be discretized with one, or several, of basic elements types in CUBIT. For example, a
geometric surface in CUBIT is discretized into a number of faces, where faces is the basic
element designator for surfaces. These faces can consist of two types of basic elements,
quadrilaterals or triangles. The basic element designators corresponding to each type of
geometric entity, along with the types of basic elements supported in CUBIT, are
summarized in the table below.
For each basic element, CUBIT also supports several element type definitions, whose
use depends on the level of accuracy desired in the finite element analysis. For example,
CUBIT can write both linear (4-noded) and quadratic (8- or 9-noded) quadrilaterals. The
element type definition is specified after meshing occurs, as part of the boundary
condition specification. See Finite Element Model Definition for a description of that
process and the various element types available in CUBIT.
Each mesh entity is associated with a geometric entity which "owns" it. This associativity
allows the user to mesh, display, color, and attach attributes to the mesh through the
geometry. For example, setting a mesh attribute on a surface affects all faces owned by
that surface.

Mesh Generation Process
Starting with a geometric model, the mesh generation process in CUBIT consists of four
primary steps:
Set interval size and count for individual entities or groups

Mesh Generation

382

The size or interval is always applied to a specific geometric entity. For example:
volume 1 size 2.0
Set mesh schemes
CUBIT supports numerous meshing schemes for meshing solid model entities. For
example:
volume 1 scheme sweep
Generate the mesh for the model
Use the mesh command to generate the mesh on a specified geometric entity. For
example:
mesh volume 1
Inspect mesh for quality and suitability for targeted analysis
CUBIT provides various quality metrics for the user to verify the suitability of the mesh for
analysis. The quality command can be used to check the elements generated on a
specific geometric entity. For example:
quality volume 1
There are also mechanisms for improving mesh quality locally using smoothing and local
mesh topology changes and refinement. For complex models, this process can be
iterative, repeating all of the steps above.
The mesh for any given geometry is usually generated hierarchically. For example, if the
mesh command is issued on a volume, first its vertices are meshed with nodes, then
curves are meshed with edges, then surfaces are meshed with faces, and finally the
volume is meshed with hexes. Vertex meshing is of course trivial and thus the user is
given little control over this process. However, curve, surface, and volume meshing can
be directly controlled by the user. Each of the steps listed are described in detail in the
following sections.

Geometry
Entity Type

Basic Element
Designator

Basic Element(s) In CUBIT

Vertex Node Node

Curve Edge Edge

Surface Face Quadrilateral, Triangle

Volume (or Body) Element
Hexahedron, Tetrahedron,
Pyramid, Wedge

Meshing the Geometry
After assigning interval or sizing attributes to a geometric entity and a meshing scheme
is applied, the geometry is ready to be meshed. To mesh a geometric entity, use the
command:

Mesh <entity> <id_range> [GLOBAL|Individual]

The <entity> to be meshed may be any one of the following:

Cubit_15.5_User_Documentation

383

Body
Volume
Surface
Curve
Vertex

The Global and Individual options affect how the constraints are gathered for interval
matching. With the Global option, the interval constraint equations are calculated from all
entities in the entity list. The Individual option calculates the interval constraint equations
from each entity individually. The Global option is the default.

Default Scheme and Interval Selection
If either interval settings or schemes have not already been set on the entities being
meshed, CUBIT will do its best to automatically set one or both of these attributes. See
Auto Scheme Selection and Auto Specification of Intervals for a description of how CUBIT
chooses these attributes. In cases where the automatic scheme selection algorithm fails
to select a scheme for the geometry, the meshing operation will fail. In this case explicit
specification of the meshing scheme and/or further geometry decomposition may be
necessary.

Continuing Meshing After a Mesh Failure
Frequently when meshing large assemblies containing a number of volumes, the mesh
command can be applied to a group of volumes with the same mesh command. Typically,
if a mesh failure is detected, the meshing operation will continue to mesh the remaining
volumes specified at the command line. The following command permits the user to
override this feature to discontinue meshing additional volumes and return to the
command line immediately after a mesh failure is detected:

Set Continue Meshing [ON|Off]

The default for this command is ON.
Turning this setting OFF is useful when meshing assemblies where a meshing failure of
one volume would adversely affect the meshing of adjoining volume(s). This occurs
frequently when meshing a sweep group using the sweep scheme.

interval assignment
Interval Assignment

• Interval Firmness
• Explicit Specification of Intervals
• Explicit Specification of Intervals Using Interval Size
• Automatic Specification of Intervals
• Additional Interval Constraints
• Vertex Sizing and Automatic Curve Biasing
• Interval Matching
• Periodic Intervals
• Relative Intervals
• Mesh Preview

Mesh Generation

384

Mesh density is usually controlled by the intervals, i.e. the number of mesh edges,
specified on curves. Intervals are set on a curve by either specifying the interval count
directly or by specifying a desired size for each interval. Intervals and interval size can be
specified for curves individually, or indirectly by specifying intervals for higher order
geometry containing those curves. Because of interval constraints imposed by various
meshing algorithms in CUBIT, the assignment of intervals to curves is not completely
arbitrary. For this reason, a global interval match must be performed prior to meshing one
or more surfaces or volumes.

Additional Interval Constraints
Interval equal_to is a one way constraint that is set in the interval matcher and resolved
when the interval matcher is run. If a user sets curve 33 interval equal_to curve 35 than
the interval matcher will constrain curve 35 to have the same interval as curve 33. If the
user hard sets an interval on curve 33 then curve 35 will have the same interval when the
interval matcher runs. If the user hard sets an interval on curve 35 then problems could
arise when the interval matcher tries to constrain it to the interval on curve 33.
Interval same is a two way constraint that is resolved immediately. If the user changes
the interval on curve 33 then the interval on curve 35 is changed immediately. And if the
user changes the interval on curve 35, curve 33 is changed immediately. One problem
with this constraint is that if the user hard sets an interval on either curve and then sets a
size on one of them, the hard set interval on the other curve is not changed.

Vertex Sizing and Automatic Curve Biasing
Sizes can now be specified on vertices to control biasing along curves. If a curve has a
bias scheme the vertex sizes will be honored, even if it is inherited from parent geometry.
Set a size on a vertex with the following command:

vertex <id> size <size>
Bias can be turned on with:

curve <id> scheme bias
For tri/tet meshing, curve biasing is on by default to generate higher quality tri/tet meshes.
Not only is the difference noticeable when setting sizes on vertices, but it is also
noticeable when setting various sizes on connected curves, surfaces, or volumes. To turn
curve biasing off issue the following command:

curve<id> scheme equal
In the following examples, the surfaces have been given sizes. In the first graphic auto
bias is not enabled. In the second graphic auto bias is enabled.

When auto bias is enabled sizes on vertices are respected. If a size hasn't been directly
set on a vertex the size is inherited from the parent(s). If there are multiple parents the
inherited size is averaged. In the examples shown above the sizes of the vertices

Cubit_15.5_User_Documentation

385

attached to both surfaces was an average of the two surface sizes. That affected the
biasing while curve meshing.

Explicit Specification of Intervals
The density of mesh edges along curves is specified by setting the actual number of
intervals or by specifying a desired interval size. The number of intervals can be explicitly
set curve by curve, or implicitly set by specifying the intervals on a surface or volume
containing that edge. For example, setting the intervals for a volume sets the intervals
on all curves in that volume.
The command to specify the number of intervals at the command line is:

{Curve|Surface|Volume|Body|Group} <range> Interval <intervals>
When setting interval counts for surfaces, volumes, bodies and groups, an interval's
firmness of soft is assigned to the owned curves. When setting the interval count for a
curve, a firmness of hard is assigned.
The user can scale the current intervals with the following commands. Scaling is done on
an entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> Interval Factor <factor>

Explicit Specification of Intervals Using Interval Size
The number of intervals along curves can be specifying by setting a desired interval
size. The interval size can be explicitly set curve by curve, or indirectly set by specifying
the interval size on a surface or volume containing that curve. The size for an entity is
determined with the following method. If the entity has a size explicitly set then that size
is used. Otherwise the entity averages the size determined for its parents. If an entity
doesn't have any parents then a size is automatically calculated from all of the geometry
in the model. If the auto size functionality is turned off then a default size of 1.0 is used.
Some meshing algorithms may calculate a different default size.
For example, Suppose you have two volumes that share a face and corresponding
curves. If the size on volume one is set to 1.0 and the size on volume two is set to 3.0
then the size for the common face will be set to 2.0. The size for the remaining faces on
volume one and two will be 1.0 and 3.0 respectively. The size for the common curves will
be set to 2.0.
The command to specify the interval size at the command line is:

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size <interval_size>
Interval sizes set directly on an entity are given the type “user_set”. Interval sizes
determined from parents or automatically calculated are give the type “calculated”.
When interval matching or meshing the interval count for each curve is computed by
dividing the curve's arc length by the specified interval size. Interval counts calculated in
this manner are considered to have a default firmness of soft. This firmness can be
changed with the following command:
 {geom_list} Interval {Default | Soft | Hard}
If an entity has a valid size, having one set explicitly or derived from its parents or
calculated automatically, then this command will set the firmness of the calculated
intervals. The setting is reset to default when a new size is set on this entity.
The user can scale the current intervals or size with the following commands. Scaling is
done on an entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size Factor <factor>

Mesh Generation

386

Automatic Specification of Interval Size
In addition to specifying intervals explicitly based on a known count or size, CUBIT is able
to compute interval sizes automatically based on characteristics of the model geometry.
The following automatic interval size setting command can be used:

{geom_list} Size Auto [Factor <factor>] [Individual] [Propagate]
Vertices are not valid in the geom_list for this command. Automatic interval size
assignment works by examining the geometric characteristics of the entities in the
geom_list and assigning a heuristic size to the entities and their child entities. The factor
may be a floating point number between 1.0 and 10.0, where 1.0 represents a fine interval
size and 10.0 represents a coarse size. Figure 1 shows an example of different auto size
specification on a CAD model.

(a) auto size factor = 7.0

(b) auto size factor = 5.0

Cubit_15.5_User_Documentation

387

(c) auto size factor = 1.0

The user may assign the interval size to be the arc length of the smallest curve contained
in the specified entity or entities using the following command:

{geom_list} Size Smallest Curve
Vertices are not allowed in the geom_list for this command. This command assigns a
soft interval firmness.

Automatic Interval Size Specification

An automatic interval size with an auto size factor of 5 will automatically be computed and
applied to any curve for which the following is true:

1) Intervals have not been explicitly defined by the user for a curve or its owning
entities.
2) An Interval size has not been explicitly defined by the user for a curve and it is
not possible to determine an interval size from its owning entities.

This automatic interval size is based upon all the geometry in the model. The automatic
interval size specifications can be overridden easily by specifying another auto size factor
or an explicit interval size.
If an auto size factor of 5 is undesirable for most meshing operations, the default factor
may be changed by using the following command:

Set Auto Size Default <value>
where value is a number from 1 to 10. This will be the default auto size factor used when
either a factor has not been specified on the size auto command or when an automatic
interval size specification is used.
In previous versions of CUBIT a default interval of 1 was assigned to all entities. If this
behavior is still desired, the following command may be used to enforce this condition:

Set Default Autosize [ON|off]

Maximum Spanning Angle on Arcs

Mesh Generation

388

On many CAD models, arcs or small holes require that a finer mesh be specified around
these entities in order to maintain reasonable mesh quality. To facilitate this, the user may
specify the maximum angle an element edge may span on an arc. To change or list the
maximum arc span, use the following commands

Set Maximum Arc_Span <angle>
List Maximum Arc_Span

The angle parameter must be a positive value less than 360. The maximum arc span
setting will only be used if there is not already a user defined interval set on the arc, and
if the interval setting produces mesh edges which exceed the maximum spanning angle.
Figure 2 shows the effect of three different maximum arc_span settings on a small hole
using the pave scheme.

Figure 2. Maximum arc_span settings of 90, 45 and 15 degrees respectively.

Default arc span setting: In addition to setting an automatic size factor, if there are
otherwise no user-defined interval sizes defined on an arc and no maximum arc_span
has been set by the user when a tetrahedral mesh or triangle mesh is defined, a maximum
spanning angle of 60 degrees will be used. Removing the use of the arc_span setting
can be accomplished with the following:

Set Maximum Arc_Span Default

Note that once interval sizes have been defined when the entity has been meshed, it may
be necessary to reset the interval settings (reset {geom_list}) to use a new maximum
arc span setting when remeshing.

Interval Matching
Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned
to the curves bounding the entity being meshed. For example, meshing any surface with
quadrilaterals requires that the surface be bounded by an even number of mesh edges.
This constrains the intervals on the bounding curves to sum to an even number. For a
collection of connected surfaces and volumes, these interval constraints must be resolved
globally to ensure that each surface will be meshable with the assigned scheme. The
global solution technique implemented in CUBIT is referred to as interval matching.
When meshing a surface or volume, matching intervals is performed automatically. In
some cases, interval matching needs to be invoked manually, for example when meshing
a collection of volumes, or a collection of surfaces not in a common volume. Interval

Cubit_15.5_User_Documentation

389

matching can also be called to check whether the assigned intervals and schemes are
compatible.
The command syntax for manually matching intervals is the following:

Match Intervals {Surface|Volume|Body|Group} <range>

Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and
curves.
The interval matcher assigns intervals as close as possible to the user-specified intervals,
while satisfying global interval constraints. The goal is to minimize the relative change in
pre-assigned intervals on all entities. Interval matching only changes curves with interval
firmness of soft or default .
Extra constraints can be added by the user to improve mesh quality locally; in particular,
curves can be constrained to have the same intervals using the command

Curve <range> Interval {Same|Different}

Specifying that curves have the "same" intervals stores them in a set. More curves may
be added to an existing set, and sets merged, by future commands. The current contents
of the affected sets are printed after each command. A curve may be removed from a set
by specifying that its intervals are "different."
The interval assignment algorithm tries to find one good interval solution from among the
possibly infinite set of solutions. However, if many curves are hard-set or already meshed,
there may be no solution. To improve the chances of finding a solution, it is suggested
that curves are soft-set whenever possible. Also, a solution might not exist due to the way
the local selections of corners and sides of mapped surfaces interact globally. If there is
no solution, the following command may help in determining the cause:

Match Intervals {Surface|Volume|Body|Group} <range> [Seed Curve

<range>] [Assign Groups [Only|Infeasible]] [Map|Pave]

Specifying Assign Groups will create groups that contain independent subproblems of
the global problem. Specifying Assign Groups Only will group independent
subproblems, but the algorithm will not attempt to solve these subproblems. Assign
Groups Infeasible will put each independent subproblem with no solution into specially
named groups. Often poor corner choices and surface meshing schemes will be
illuminated this way. If Map or Pave is specified, then only subproblems involving
mapping or paving constraints will be considered. If a Seed Curve is specified, then only
those subproblems containing that curve will be considered.
Advanced users may also wish to experiment with setting the following, which may
change the interval solution slightly:

Set Match Intervals Rounding {on|off}

Set Match Intervals Fast {on|off}

Mesh Generation

390

Set Match Intervals Delta <interval_difference = 0.>

If set match intervals rounding is set to on, the intervals will be rounded to the nearest
integer. If the setting is off, the intervals will be rounded toward the user specified
intervals.
If set match intervals fast is set to off a single curve will be fixed per iteration. Note in
rare cases this may produce better meshes. If set match intervals fast is set to on multiple
curves will be fixed per iteration.
Set match intervals delta allows the number of intervals assigned to a curve to be delta
intervals away from optimal unexpectedly. A larger value makes matching intervals faster,
but the quality of the solution may be worse; Hint: try delta = 1.0. Default is 0.0.
The user can also constrain the parity of intervals on curves:

{Curve|Surface|Volume} <range> Interval {Even | Odd}

If Even is specified, then during subsequent interval setting commands and during
interval assignment, curves are forced to have an even number of intervals. If the current
number of intervals is odd, then it is increased by one to be even. If Odd is specified then
intervals may be either even or odd. Setting intervals to even is useful in problems where
adjoining faces are paved one by one without global interval assignment.
Rather than specifying a specific size or interval for a curve or surface, which may
overconstrain the interval matcher, you can specify an upper and lower bound that is
acceptable. This would typically be used in a complex assembly where there may be
multiple intervals that may interact in order to get a compatible mapped/swept mesh
through the assembly.

Surface <surface_id_range> {Interval|Size|Periodic Interval} {Lower|Upper}

Bound {On|Off|<bound>}

Interval Firmness
Before describing the methods used to set and change intervals, it is important that the
user understand the concept of interval firmness. An interval firmness value is assigned
to a geometry curve along with an interval count or size; this firmness is one of the
following values:

hard: interval count is fixed and is not adjusted by interval size command
or by interval matching
soft: current interval count is a goal and may be adjusted up or down slightly
by interval matching or changed by other interval size commands.
default: default firmness setting, used for detecting whether intervals have
been set explicitly by the user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval
firmness along with an interval count or size. Commands and tools which change intervals
also affect the interval firmness of the curves. Those same commands and tools which
change intervals can only do so if the curves being changed have a lower-precedence
interval firmness. The firmness settings are listed above in order of decreasing

Cubit_15.5_User_Documentation

391

precedence. For example, some commands are only able to change curves whose
interval firmness is soft or default ; curves with hard firmness are not changed by these
commands.
More examples of interval setting commands and how they are affected by firmness are
given in the following sections.
A curve's interval firmness can be set explicitly by the user, either for an individual curve
or for all the curves contained in a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness of default , and any command that
changes intervals (including interval assignment) upgrades the firmness to at least soft .

Precedence

If a size is specified multiple times for a single entity, the following precedence is used:

• The highest firmness command takes precedence.
Hard commands include "curve <id> interval <val>", and "{geometry_list} interval
hard" will fix the size at the current size.

• Within a given firmness, the last-issued command takes precedence.
For example, if the user commands "surface 1 size 1" then "volume 1 size 2",
and surface 1 is part of volume 1, then surface 1 will have a size of 2.

Relative Intervals
If the user needs fine control over mesh density, then for curvy or slanted sides of swept
geometries, it is often useful to treat curves as if they had a different length when setting
interval sizes. For example, the user may wish to specify that a slanting side curve and a
straight side curve have the same "relative" length, despite their true length as shown in
the following figure. These are not interval matching constraints; interval matching may
change intervals so that the user-specified ratio does not hold exactly.

The relative lengths of curves are set with the following command:

{geom_list} Relative Length <size>

The following command is used to assign intervals proportional to these lengths:

{geom_list} Relative Interval <base_interval>

Mesh Generation

392

For a curve with relative length x, setting a relative interval of y produces xy intervals,
rounded to the nearest integer.

Mesh Interval Preview
It is sometimes useful to view the nodal locations/intervals on curves graphically before
meshing (which can take considerably more time). The command to do this is:

Preview Mesh {Body|Volume|Surface|Curve|Vertex} <id_range> [Hard]

To clear the display of the temporary nodes, simply issue a "display" command. The
purpose of the hard option is that only curves that have an interval firmness of hard will
be previewed.

Periodic Intervals
The number of intervals on a periodic surface, such as a cylinder, in the dimension that
is not represented by a curve is usually set implicitly by the surface size.
However, periodic intervals and firmness can be specified explicitly by the following
commands:

Surface <range> Periodic Interval <intervals>

Surface <range> Periodic Interval {Default|Soft|Hard}

meshing schemes
Meshing Schemes
Meshing schemes in CUBIT can be divided into four broad categories.

• Traditional Meshing Schemes

• Free Meshing Schemes
• Conversional Meshing Schemes
• Duplication Meshing Schemes

In addition, Cubit supports two parallel meshing applications, pCamal and Sculpt

• Parallel Meshing

If no scheme is selected, Cubit will attempt to assign a scheme using the automatic
scheme selection methods.

• Automatic Scheme Selection

Traditional Meshing Schemes

Cubit_15.5_User_Documentation

393

Traditional meshing schemes are used to apply a mesh to an existing geometry using the
methods described in Meshing the Geometry (i.e. setting a scheme, applying interval
sizes, and meshing). Traditional meshing schemes are available for all geometry types.

• Bias, Dualbias
• Circle
• Curvature
• Equal
• Hole
• Mapping
• Pave
• Pentagon
• Pinpoint
• Polyhedron
• Sphere

• STransition
• Stretch
• Submap
• Sweep
• Tetmesh
• Tetprimitive
• Tridelaunay
• TriAdvance
• Trimap
• Trimesh
• Tripave
• Triprimitive

Free Meshing Schemes

Free meshing schemes will create a free-standing mesh without any prior existing
geometry. The final mesh will have mesh-based geometry.

• Radialmesh

Conversional Meshing Schemes

Conversional meshing schemes are used to convert an existing mesh into a mesh of
different element type or size. For example, the THex scheme will convert a tetrahedral
mesh into a hexahedral mesh.

• HTet
• QTri
• THex
• TQuad

Duplication Meshing Scheme

The duplication meshing scheme is used to copy an existing mesh from one geometry
onto another similar geometry.

• Copy

General Meshing Information

Mesh Generation

394

Information on specific mesh schemes available in CUBIT is given in this section. The
following sections have important meshing-related information as well, and should be
read before applying any of the mesh schemes described below.
In most cases, meshing a geometric entity in CUBIT consists of three steps:

• Set the interval number or size for the entity (See Interval Assignment.)
• Set the scheme for the object, along with any scheme-specific information, using

the scheme setting commands described below.
• Mesh the object, using the command:

Mesh {geom_list}

This command will match intervals on the given entity, then mesh any unmeshed lower
order entities, then mesh the given entity.
After meshing is completed, the mesh quality is automatically checked (see Mesh Quality
Assessment), then the mesh is drawn in the graphics window.
The following table classifies the meshing schemes with respect to their applicable
geometry.

Curves Surfaces Volumes

Bias/Dualbias Circle Copy

Copy Copy HTet

Curvature Mapping

 Hole Polyhedron

Equal Mapping Sphere

Pinpoint Submap

Stretch Pave Sweep

 Pentagon TetMesh, TetINTRIA

 Polyhedron Tetprimitive

 QTri THex

 Submap

 TriDelaunay

 Triprimitive

 TriMap

 TriMesh

 TriAdvance

 TriPave

 STransition

duplication

Cubit_15.5_User_Documentation

395

Copying a Mesh

Applies to: Curves, Surfaces, Volumes
Summary: Copies the mesh from one entity to another
Syntax:

Curve <range> Scheme Copy source Curve <range> [Source Percent

[<percentage> | auto]] [Source [combine|SEPARATE]] [Target

[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex

<id_range>]]

Surface <id> Scheme Copy Source Surface <id> Source Curve <id> Target

Curve <id> Source Vertex <id> Target Vertex <id> [Nosmoothing] [mirror]

Volume <range> Scheme Copy [Source Volume] <id> [[Source Surface <id>

Target Surface <id>] [Source Curve <id> Target Curve <id>] [Source Vertex

<id> Target Vertex <id>]][Nosmoothing]

Copy Mesh Curve <id> Onto Curve <curve_id_range> [Source Node

<starting node id> <ending node id>] [Source Percent [<percentage>|auto]]

[Source Vertex <id_range>] [Target Vertex <id_range>]

Copy Mesh Surface <surface_id> Onto Surface <surface_id> Source Vertex

<id> Target Vertex <id> Source Curve <id> Target Curve <id> [interior

(pair vertex <id> <id>) ...] [smooth] [mirror] [preview]

Copy Mesh Volume <volume_id> Onto Volume <volume_id> [Source Vertex

<vertex_id> Target Vertex <vertex_id> [Source Curve <curve_id> Target

Curve <curve_id>] [Nosmoothing]

Related Commands:

Set Morph Smooth {on | off}

Discussion:
If the user desires to copy the mesh from a surface, volume, curve, or set of curves that
has already been meshed, the copy mesh scheme can be used. Note that this scheme
can be set before the source entity has been meshed; the source entity will be meshed
automatically, if necessary, before the mesh is copied to the target entity. The user has
the option of providing orientation data to specify how to orient the source mesh on the
target entity. For example, when copying a curve mesh, the user can specify which vertex
on the source (the source vertex) gets copied to which vertex on the target (the target
vertex). If you need to reference mesh entities for the copy, use the Copy Mesh
commands. If no orientation data is specified, or if the data is insufficient to completely
determine the orientation on the target entity, the copy algorithm will attempt to determine

Mesh Generation

396

the remaining orientation data automatically. If conflicting, or inappropriate, orientation
data is given, the algorithm attempts to discard enough information to arrive at a proper
mesh orientation.
Curve mesh copying has certain options that allow the copying of just a section of the
source curves' mesh. These options are accessed through the extra keyword options.
The percent option allows the user to specify that a certain percentage of the source
mesh be copied--in this context the auto keyword means that the percentage will be
calculated based on the ratio of lengths of the source and target curves. The combine
and separate keywords relate to how the command line options are interpreted. If the
user wishes to specify a group of target curves that will each receive an identical copy of
a source mesh, then the target separate option should be used (this is the default). If,
however, the user wishes the source mesh to be spread out along the range of target
curves, then the target combine option should be used. The source curves are treated
in a similar fashion.
Surface mesh copying with multiple holes in the surface may require matching up interior
pair vertices. This will be required if the algorithm cannot match them up spatially. Interior
pair vertices can be specified with the option Interior pair vertex ...
Volume mesh copying depends on the surface copying scheme. Because of this, the
target volume must not have any of its surfaces meshed already.
An exact copy of the mesh may not always happen. Dissimilar geometry or smoothing
may cause inexact copies. If the geometry is similar, the smoothing option may be turned
off to get an exact copy of the mesh, by either specifying Nosmoothing or by omitting
Smooth. If the geometry is dissimilar, the user may set the morph smoothing flag on,
which will activate a special smoother that will match up the meshes as closely as
possible.
Example:
As an example, the following copy is done with the command
copy mesh surf 23 onto surf 14 source curve 1 source vertex 1 target curve 24
target vertex 20
The source and target vertices match up, and are highlighted, while the source and target
curves match up and are highlighted. Matching the source and target curves/vertices help
define the orientation.

Cubit_15.5_User_Documentation

397

conversion

HTet

Applies to: Volumes
Summary: Converts an existing hex mesh into a conforming tetrahedral mesh.
Syntax:

HTet Volume <range> {UNSTRUCTURED | structured}

Discussion:
Unlike other meshing schemes in this section, The HTet command requires an existing
hexahedral mesh on which to operate. Rather than setting a meshing scheme for use

Mesh Generation

398

with the mesh command, the HTet command works after an initial hex mesh has been
generated.
Two methods for decomposing a hex mesh into tetrahedra are available. Set the method
to be used with the optional arguments unstructured and structured. The unstructured
method is the default. Figure 1 shows the difference between the two methods:

Figure 1. Left: Unstructured method creates 6 tets per hex. Right: Structured method

creates 28 tets per hex

Unstructured

This method creates 6 tetrahedra for every hexahedra. No new nodes will be generated.
The orientation of the 6 hexahedra will be based upon the element node numbering, as
a result orientations may change if node numbering changes. This method is referred to
as unstructured because the number of tetrahedra adjacent each node will be relatively
arbitrary in the final mesh. Tetrahedral element quality is generally sufficient for most
applications, however the user may want to verify quality before performing analysis.

Structured

With this approach, 28 tetrahedra are generated for every hexahedra in the mesh. This
method adds a node to each face of the hex and one to the interior. Although this method
generates significantly more elements, the orientation and quality of the resulting
tetrahedra are more consistent. Each previously existing interior node in the mesh will
have the same number of adjacent tetrahedra.

Cubit_15.5_User_Documentation

399

QTri

Applies to: Surfaces
Summary: Meshes surfaces using a quadrilateral scheme, then converts the
quadrilateral elements into triangles.
Syntax:

Surface <range> Scheme Qtri [Base Scheme quad_scheme>]

QTri { Surface <range> | Face <range> }

Set QTri Split [2|4]

Set QTri Test {Angle|Diagonal}

Discussion:
QTri is used to mesh surfaces with triangular elements. The surface is, first, meshed with
the quadrilateral scheme, and, then, the generated quads are split along a diagonal to
produce triangles. The first command listed above sets the meshing scheme on a surface
to QTri. The second form sets the scheme and generates the mesh in a single step.
In the first command, the user has the option of specifying the underlying quadrilateral
meshing scheme using the base scheme <quad_scheme> option. If no base scheme is
specified, CUBIT will automatically select a scheme. For non-periodic surfaces, the base
scheme will be set to scheme pave. For periodic surfaces, the base scheme will be set to
scheme map.
Generally, the second command, Qtri Surface <range>, is used on surfaces that have
already been meshed with quadrilaterals. If, however, this command is used on a surface
that has not been meshed, a base scheme will automatically be selected using CUBIT’s
auto-scheme capabilities. The user can over-ride this selection by specifying a
quadrilateral meshing scheme prior to using the qtri command (using the Surface <range>
Scheme <quad_scheme> command). QTri may also be performed on quadrilateral
elements on a surface or a subset of quadrilateral elements on a surface. To split existing
quadrilaterals, the QTri command can be given a list of faces.
In addition to the default 2 tris per quad, the set qtri split command may alter the QTri
scheme so that it will split the quad into 4 triangles per quad. Where the 4 option is used,
an additional mesh node is placed at the centroid of each quad.
There are two methods that may be used to calculate the best diagonal to use for splitting
the quadrilateral elements: angle or diagonal. The angle measurement uses the largest
angle, while the diagonal option uses the shortest diagonal. The largest angle
measurement will be more accurate but takes more time.
Also, the QTri scheme is used in the TriMesh command as a backup to the TriAdvance
triangle meshing scheme.

Mesh Generation

400

Figure 1. Surface meshed with scheme QTri

THex

Applies to: Volumes
Summary: Converts a tetrahedral mesh into a hexahedral mesh.
Syntax:

THex Volume <range>

Discussion:
The THex command splits each tetrahedral element in a volume into four hexahedral
elements, as shown in Figure 1. This is done by splitting each edge and face at its
midpoint, and then forming connections to the center of the tet.
When THexing merged volumes, all of the volumes must be THexed at the same time, in
a single command. Otherwise, meshes on shared surfaces will be invalid. An example of
the THex algorithm is shown in Figure 2.

Cubit_15.5_User_Documentation

401

Figure 1. Conversion of a tetrahedron to four hexahedra, as performed by the THex

algorithm.

.

Mesh Generation

402

Figure 2. A cylinder before and after the THex algorithm is applied.

TQuad

Applies to: Surfaces
Summary: Converts a triangular surface mesh into a quadrilateral mesh.
Syntax:

TQuad Surface <range>

Discussion:
The TQuad command splits each triangular surface element in four quadrilateral
elements, as shown in Figure 1. This is done by splitting each edge at its midpoint, and
then forming connections to the center of the triangle. The result is the same as using the
THex algorithm, but only applies to surfaces. In general it is better to use a mapped or
paved mesh to generate quadrilateral surface meshes. However, the TQuad scheme may
be useful for converting facet-based triangular meshes to quadrilateral meshes when
remeshing is not possible.

Cubit_15.5_User_Documentation

403

Figure 1. A triangle split into 3 quads using the TQuad scheme

traditional

Bias, Dualbias

Applies to: Curves

Summary: Meshes a curve with node spacing biased toward one or both curve ends.
Syntax:

Curve <range> Scheme Bias

Curve <range> Scheme Bias {Factor|First_Delta|Fraction} <double> [Start

Vertex <range>] [preview]

Curve <range> Scheme Dualbias {Factor|First_Delta|Fraction} <double>

[preview]

Curve <range> Scheme Bias Fine Size <double>

{Coarse Size <double> | Factor <double>} [Start Vertex <range>] [preview]

Curve <range> Scheme Dualbias Fine Size <double>

{Coarse Size <double> | Factor <double>} [preview]

Mesh Generation

404

Curve <range> Scheme Multi_bias Start <size>

[Fraction <value> <size>]... End <size>

[Start Vertex <id>][Respect_intervals][preview]

Related Commands:

Curve <range> Reverse Bias

Set Maximum Interval <int>

See also Surface Sizing Function Type Bias

See also Curve Scheme Stretch

The main differences between scheme bias and stretch are the following: scheme stretch
does not use strict geometric series for node placement. If you specify scheme bias or
dualbias using the "fine size" form, the interval count will be hard-set to a value that fills
in the curve.
Auto Bias
When using the command 'curve <range> scheme bias' with no additional parameters,
an auto setting will be enabled by default for tet and tri meshing. This scheme honors
sizes at a curve's vertices and that vertex size will be used to create a biased edge mesh.
For example, two volumes with different sizes set on the volumes are merged. The size
at the vertices (averaged from sizes on the parent entities) will be used to create the
biased edge mesh.
A user can set a size on a vertex with the following command:

Vertex <id> Size <size>

More Discussion:
The Bias and DualBias schemes space the curve mesh unequally, placing more nodes
towards (or away from) the ends of the curve according to a geometric progression. The
ratio of successive edges is the "factor," which may be greater than or less than one. For
bias, the series starts at the first vertex of the curve, or the "start vertex" if specified. For
dualbias, the series starts at both ends of the curve and meets in the middle.
The command behaves differently depending on which set of parameters are specified.
There are three basic variables: the interval count, the bias factor, or the first edge size.
The curve length is a given, fixed quantity. The user can specify any two of these
variables, and the third will be automatically determined.
If the "{Factor|First_Delta|Fraction}" form is specified, then the interval count is taken as
a given. The interval count is whatever was specified previously by an interval count or
size command (see Interval Assignment). If "Factor" is specified, then the first edge size
will be automatically chosen so that the geometric progression of edges "fit" onto the
curve. If "first_delta" is specified, then the first edge length is exactly that absolute value,
and the "factor" is automatically chosen. If "fraction" is specified, then the first edge length
is the curve length times that fraction, and again the "factor" is automatically chosen.

Cubit_15.5_User_Documentation

405

If the "fine size" is specified, then the first edge length is exactly that absolute value. If the
"factor" is specified, then the interval count is automatically chosen. If an approximate
coarse size is specified, then this also determines the factor, and again the interval count
is automatically chosen. If a surface sizing function type bias is used, then the curves of
the surface are sized using similar formulas.
If no start or end vertex is specified, the curve's start vertex is used as the starting point
of the bias. (A curve's start vertex can be identified by listing the curve from the "CUBIT>"
prompt.)
If a curve needs to have its nodes distributed towards the opposite end, it can be easily
edited using the reverse bias command. Reversing the curve bias using this command is
equivalent to setting a bias factor equal to the inverse of the original bias factor. Reversing
the bias can be performed on both meshed and unmeshed curves.
The maximum interval setting allows the user to set a maximum number of intervals on
any bias curve. This value is doubled for a curve with a dualbias scheme. It can be easy
to accidentally specify a very large number of intervals and this setting allows the user to
place an upper limit the number of intervals.
The preview option will allow the user to preview mesh size and distribution on the curve
before meshing.
The following figure shows the result of meshing edges with equal, bias and dualbias
schemes.
Multi Bias
The multi-bias scheme allows several biases to be created on a single curve by specifying
desired sizes at multiple locations along the curve (see Figure 1 below). The "start" and
"end" sizes must be specified, and any number of fraction-size pairs may be specified,
where the fraction value is between 0 - 1. If "Start Vertex" is given, the specified vertex is
considered to have the fraction value of 0, with the opposite vertex having the fraction
value of 1. If "respect_intervals" is not specified, the scheme will choose an appropriate
number of intervals for the curve based on the given sizes.

Figure 1. Curve with scheme multi_bias.

If the "respect_intervals" option is given, the multi-bias scheme will try to get as close to
the desired sizes as possible, but will always respect the number of intervals set on the
curve and adjust sizing as necessary (see Figure 2).

Figure 2. Same curve as in Figure 1, but with the respect_intervals option. Note the areas of

relatively dense mesh correspond to the dense mesh in the original.

Circle

Applies to: Surfaces
Summary: Produces a circle-primitive mesh for a surface

Mesh Generation

406

Syntax:

Surface <range> Scheme [Sector] Circle [Interval <int>] [fraction <double>]

Discussion:
The Circle scheme is used in regions that should be meshed as a circle. A "circle" consists
of a single loop of bounding curves containing an even number of intervals. Thus, the
circle scheme can be applied to circles, ellipses, ovals, and regions with "corners" (e.g.
polygons). The bounding curves should enclose a convex region. Non-planar bounding
loops can also be meshed using the circle primitive provided the surface curvature is not
too great. The mesh resembles that obtained via polar coordinates except that the cells
at the "center" are quadrilaterals, not triangles. See Figure 1 for an example of a circle
mesh. Radial grading of the mesh may be achieved via the optional [intervals] input
parameter. The Fraction option has the range 0 < fraction < 1 and defaults to 0.5. Fraction
determines the size of the inner portion of the circle mesh relative to the total radius of
the circle. The sector option was added to revert to legacy behavior which is not
recommended.

Figure 1. Circle Primitive Mesh

Curvature

Applies to: Curves
Summary: Meshes curves by adapting the interval size to the local curvature.
Syntax:

Curve <range> Scheme Curvature <double>

Cubit_15.5_User_Documentation

407

Discussion:
The value of <double> controls the degree of adaptation. If zero, the resulting mesh will
have nearly equal intervals. If greater than zero, the smallest intervals will correspond to
the locations of largest curvature. If less than zero, the largest intervals will correspond to
the locations of largest curvature. The default value of <double> is zero. Straight lines
and circular arcs will produce meshes with near-equal intervals. The method for
generating this mesh is iterative and may sometimes not converge. If the method does
not converge, either the <double> is too large (over-adaptation) or the number of intervals
is too small. Currently, the scheme does not work on periodic curves.

Equal

Applies to: Curves
Summary: Meshes a curve with equally-spaced nodes
Syntax:

Curve <range> Scheme Equal

Discussion:
See Interval Assignment for a description of how to set the number of nodes or the node
spacing on a curve.

Hole

Applies to: Annular Surfaces
Summary: Useful on annular surfaces to produce a "polar coordinate" type mesh (with
the singularity removed).
Syntax:

Surface <surface_id_range> Scheme Hole [Rad_intervals <int>] [Bias

<double>] [Pair Node <id> With Node <id>]

Discussion:
A polar coordinate-like mesh with the singularity removed is produced with this scheme.
The azimuthal coordinate lines will be of constant radius (unlike scheme map) The
number of intervals in the azimuthal direction is controlled by setting the number of
intervals on the inner and outer bounding loops of the surface (the number of intervals
must be the same on each loop). The number of intervals in the radial direction is
controlled by the user input, rad_intervals (default is one).
A bias may be put on the mesh in the radial direction via the input parameter bias. The
default bias of 0 gives a uniform grading, a bias less than zero gives smaller radial

Mesh Generation

408

intervals near the inner loop, and a bias greater than zero gives smaller radial intervals
near the outer loop.
The correspondence between mesh nodes on the inner and outer boundaries is
controlled with the pair node "<loop node-id> with node <loop node-id>" construct. One
id on the inner loop and one id on the outer loop should be given to connect the two nodes
by a radial mesh line. Not choosing this option may result in sub-optimal node pairings
with possible negative Jacobians. To use this option, mesh the inner and outer curve
loops and then determine the mesh node ids.

Figure 1. Example of Hole Scheme

Mapping

Applies to: Surfaces, Volumes
Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.
Syntax:

Volume <range> Scheme Map

Surface <range> Scheme Map [Direction {Options}]

Discussion:
A structured mesh is defined as one where each interior node on a surface/volume is
connected to 4/6 other nodes. Mappable surfaces contain four logical sides and four
logical corners of the map; each side can be composed of one or several geometric
curves. Similarly, mappable volumes have six logical sides and eight logical corners; each
side can consist of one or several geometric surfaces. For example, in Figure 1 below,

Cubit_15.5_User_Documentation

409

the logical corners selected by the algorithm are indicated by arrows. Between these
vertices the logical sides are defined; these sides are described in Table 1.

Figure 1. Scheme Map Logical Properties

Table 1. Listing of Logical Sides

Logical Side Curve Groups

Side 1 Curve 1

Side 2 Curve 2

Side 3 Curve 3, Curve 4, Curve 5

Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the
mesh shown in the right portion of Figure 1. (i.e. The number of intervals on logical side
1 is equated to the number of intervals on logical side 3). The process is similar for volume
mapping except that a logical hexahedron is formed from eight vertices. Note that the
corners for both surface and volume mapping can be placed on curves rather than
vertices; this allows mapping surfaces and volumes with less than four and eight vertices,
respectively. For example, the mapped quarter cylinder shown in Figure 2 has only five
surfaces.

Figure 2. Volume Mapping of a 5-surfaced volume

Mesh Generation

410

The mapper works on a bicubic interpolation of the points on the boundary to represent
the surface. There may be times that those points may not be on the surface exactly if
the surface is not suitable for bicubic interpolation. The Mapping Constraint flag tells the
mapper to relax the nodes to the geometry or not.

Set Mapping Constraint {ON|off}

When on, the mapping constraint relaxes the node to the nearest point on the geometry.
In some situations, the nearest point might be incorrect for the intent of the mesh. To help
the mesher find the correct location, a projection direction may optionally be specified for
surfaces.

Surface <range> Scheme Map [Direction {Options}]

If a projection direction is specified, the nodes are moved to the geometry in a straight
line along the given direction. The direction can be specified using any of the direction
options.

Pave

Applies to: Surfaces
Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.
Syntax:

Surface <range> Scheme Pave Related Commands:

[Set] Paver Diagonal Scale <factor (Default = 0.9)> [set] Paver Grid Cell

<factor (Default = 2.5)>[set] Paver LinearSizing {Off | ON} Surface <range>

Sizing Function Type ...

[Set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

[Set] Paver Cleanup {ON|Off|Extend}

Discussion:
Paving (Blacker, 91; White, 97) allows the meshing of an arbitrary three-dimensional
surface with quadrilateral elements. The paver supports interior holes, arbitrary
boundaries, hard lines, and zero-width cracks. It also allows for easy transitions between
dissimilar sizes of elements and element size variations based on sizing functions. Figure
1 shows the same surface meshed with mapping (left) and paving (right) schemes using
the same discretization of the boundary curves.

Cubit_15.5_User_Documentation

411

Figure 1. Map (left) and Paved (right) Surface Meshes

Element Shape Improvement

When meshing a surface geometry with paving, clean-up and smoothing techniques are
automatically applied to the paved mesh. These methods improve the regularity and
quality of the surface mesh. By default the paver uses its own smoothing methods that
are not directly-callable from CUBIT. Using one of CUBIT's callable smoothing methods
in place of the default method will sometimes improve mesh quality, depending on the
surface geometry and specific mesh characteristics. If the paver produces poor element
quality, switching the smoothing scheme may help. This is done by the command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

When the "Smooth Scheme" is selected, the smoothing scheme specified for the surface
will be used in place of the paver's smoother. See "Mesh Smoothing" for more information
about the available smoothing schemes in CUBIT.

Controlling Flattening of Elements

The smoothers flatten elements, such as inserted wedges, that have two edges on the
active mesh front. In meshes where this "corner" is a real corner, flattening the element
may give an unacceptable mesh. The following command controls how much the diagonal
of such an element is able to shrink.

[set] Paver Diagonal Scale <factor (Default = 0.9)>

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will force the element
to be a parallelogram as long as it is on the mesh front. A value of 0.5 will allow the
diagonal to be half its calculated length. The element may became triangular in shape
with the two sides on the mesh front being collinear.

Controlling the Grid Search for Intersection Checking

The paver divides the bounding box of a surface into a number of cells based on the
average length of an element. It uses these cells to speed intersection checking of new
element edges with the existing mesh. If both very long and very short edges fall in the
same area, it is possible that a long edge which spans the search region is excluded from

Mesh Generation

412

the intersection check when it does intersect the new element. The following command
allows the user to adjust the size of the grid cells.

[set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size, which then
becomes the grid cell size. The surface's bounding box is divided by this cell size to
determine the number of cells in each direction. A larger cell size means each cell
contains more nodes and edges. A smaller cell size means each cell has fewer nodes
and edges. A larger cell size forces the intersection algorithm to check more potential
intersections, which results in long paver times. A smaller cell size gives the intersection
algorithm few edges to check (faster execution) but may result in missed intersections
where the ratio of long to short element edges is great. Increase this value if the paver is
missing intersections of elements.

Controlling the Paver Sizing Function

The paving algorithm will automatically select a "linear" sizing function if the ratio the
largest element to the smallest is greater than 6.0 and no other sizing function is specified
for the surface. This is usually desirable. When it is not, the user can change this behavior
with the command:

[set] Paver LinearSizing {Off | ON}

Setting paver linear sizing to "off" will keep the default behavior. The size of the element
will be based on the side(s) of the element on the mesh front. For a discussion of sizing
functions, including how to automatically set up size transitions, see Adaptive Meshing.

Controlling Paver Cleanup

The paver uses a mesh clean-up process to improve mesh quality after the initial paving
operation. Clean-up applies local connectivity corrections to increase the number of
interior mesh nodes that are connected to four quadrilaterals. Sometimes it fails to
improve the mesh. The following command allows the user to control some aspects of
the clean-up process.

[Set] Paver Cleanup {ON|Off|Extend}

The default option is to clean-up the mesh. The off option will turn clean-up off and may
give an invalid mesh. The extend option enables a non-local topology replacement
algorithm. The command without any option will list the current setting.
The extend option attempts to group several defective nodes in a region that may be
replaced with a template that has fewer defects. The images below show a mesh before
and after using this option.

Cubit_15.5_User_Documentation

413

Figure 2. Paved mesh before using cleanup extend

Mesh Generation

414

Figure 3. Paved mesh after using cleanup extend

Pentagon

Applies to: Surfaces
Summary: Produces a pentagon-primitive mesh for a surface
Syntax:

Surface <range> Scheme Pentagon

Discussion:

Cubit_15.5_User_Documentation

415

The pentagon scheme is a meshing primitive for 5-sided regions. It is similar to the
triprimitive and polyhedron schemes, but is hard-coded for 5 sided surfaces.
The pentagon scheme indicates the region should be meshed as a pentagon. The
scheme works best if the shape has 5 well-defined corners; however shapes with more
corners can be meshed. The algorithm requires that there be at least 10 intervals (2 per
side) specified on the curves representing the perimeter of the surface. In addition, the
sum of the intervals on any three connected sides must be at least two greater than the
sum of the intervals on the remaining two sides. Figure 1 shows two examples of
pentagon meshes.

Figure 1. Examples of Pentagon Scheme Meshes

Pinpoint

Applies to: Curves
Summary:Meshes a curve with node spacing specified by the user.

Mesh Generation

416

Syntax:

Curve <range> Scheme Pinpoint Location <list of doubles>

Discussion:
The Pinpoint scheme allow the user to specify exactly where on a curve to place nodes.
The list of doubles are absolute positions, measured from the start vertex. The user can
enter as many as needed, and they do not need to be in numerical order. Below is an
example of a curve that has been meshed using the following scheme:

curve 2 scheme pinpoint location 1 4 5 6 6.2 6.4 6.6 9:

Polyhedron

Applies to: Surfaces and Volumes.
Summary: Produces an arbitrary-sided block primitive mesh for a surface or volume.
Syntax:

Volume <range> Scheme Polyhedron

Surface <range> Scheme Polyhedron

Discussion:
The polyhedron scheme is a meshing primitive for 2d and 3d n-sided regions. This is
similar to the triprimitive , tetprimitive, and pentagon schemes, except rather than 3, 4, or
5 sides, it allows an arbitrary number of sides. The scheme works best on convex regions.
Surfaces must have only one loop, and each vertex must be connected to exactly two
curves on the surface (e.g., no hardlines). Volumes must have only one shell, each vertex
must be connected to exactly three surfaces on the volume, and each surface should be
meshed with scheme polyhedron. There are some interval assignment requirements as
well, which should be automatically handled by CUBIT.
If the polyhedron scheme is specified for the volume, then the surfaces of the volume are
automatically assigned scheme polyhedron as well, unless they were hard-set by the
user. Schemes should be specified on all volumes of an assembly prior to meshing any
of them. Scheme polyhedron attaches extra data to volumes; if Cubit is behaving
strangely, the user may need to explicitly remove that data with a reset volume all, or
similar command.
Scheme polyhedron was designed for assemblies of material grains, where each volume
is roughly a Voronoi region, and the assembly is a periodic space-filling model (tile).
Figure 1 shows two examples of polyhedron meshes.

Cubit_15.5_User_Documentation

417

Mesh Generation

418

Figure 1. Examples of Polyhedron Scheme Meshes

Sphere

Applies to: Volumes topologically equivalent to a sphere and having one surface.
Summary: Generates a radially-graded hex mesh on a spherical volume.
Syntax:

Volume <range> Scheme Sphere [Graded_interval <int>] [Az_interval <int>]

[Bias <val>] [Fraction <val>] [Max_smooth_iterations <int=2>]

Discussion:
This scheme generates a radially-graded mesh on a spherical volume having a single
bounding surface. The mesh is a straightforward generalization of the circle scheme for
surfaces. The mesh consists of an inner region and an outer region. The inner region is
a mapped mesh of a cube and the outer region contains fronts that trasition from the cube
surface to the sphere surface. The following describes the parameters that control the
sphere mesh.
Graded_interval:
The number of intervals in the outer region from the inner mapped mesh to the surface of
the sphere is controlled by the graded_interval input parameter. Azimuthal mesh lines
in the outer portion of the sphere will have approximately constant radius. If
graded_interval is not specified, a default number of intervals will be computed based
on the interval size value assigned to the sphere volume.
Az_interval:
The number of azimuthal intervals around the equator is controlled by the az_interval
input parameter. To maintain symmetry, the az_interval will be rounded to the nearest
multiple of 8.
If az_interval is not specified, a default number of intervals will be computed either based
on the the the interval value or on the mesh size value assigned to the volume. If the
interval value is set (volume 1 interval 40, for example), the interval value will be used
to define the number of azimuthal intervals. Otherwise, the mesh size will be used as the
approximate size for elements on the inner mapped mesh.
Bias:
The bias parameter controls the amount of radial grading in the outer region of the mesh
from the inner mapped mesh to the sphere surface. A bias = 1 will results in equal size
intervals, while a bias < 1 will generate smaller intervals towards the sphere interior and
a bias > 1 will generate smaller elements towards the sphere surface. If the bias
parameter is not specified, a default bias will be computed so that element size gradually
increases from the inner mapped mesh to the sphere surface. The default bias value will
also be based on the interval size assigned to the sphere volume as it attempts to
maintain approximately isotropic elements throughout the sphere.
Fraction:

Cubit_15.5_User_Documentation

419

The fraction parameter (between 0 and 1) determines what fraction of the sphere is
occupied by the inner mapped mesh. The fraction is defined as ratio of the diagonal of
the cube containing the mapped mesh to sphere's diameter. The default value for fraction
is 0.5. Interval sizes in the inner mapped mesh are normally constrained by the
az_intervals. If az_intervals are not specified, element sizes in this region will be based
upon the interval size assigned to the sphere volume.
Max_smooth_iterations:
The Max_smooth_iterations parameter determines the number of smoothing iterations
following initial definition of the sphere mesh. By default, the number of smoothing
interations is set to 0, which will result in a symmetric mesh. Note that smoothing can
improve the quality of the mesh, however, it may disturb the bias and fraction. When bias
and fraction are critical then smoothing iterations should be set to 0.

SPHERE MESH: fraction 0.3 graded_interval 6 az_interval 40 bias 0.8

max_smooth_iterations 0

BIAS (uniform): fraction 0.3 graded_interval 6 az_interval 40 bias 1.0

max_smooth_iterations 0

Mesh Generation

420

FRACTION: fraction 0.7 graded_interval 6 az_interval 40 bias 1.0 max_smooth_iterations

0

INTERVAL: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0 max_smooth_iterations

0

Cubit_15.5_User_Documentation

421

SMOOTHING: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0

max_smooth_iterations 2

AZIMUTHAL (mesh coarseness): fraction 0.7 graded_interval 5 az_interval 32 bias 1.0

max_smooth_iterations 2

Mesh Generation

422

BIAS (graded): fraction 0.9 graded_interval 9 az_interval 32 bias 1.5

max_smooth_iterations 0

STransition

Applies to: Surfaces
Summary:
Produces a simple transitional mapped mesh.

Syntax:

Surface <surface_id_range> Scheme STransition [Triangle] [Coarse]

Discussion:
The STransition scheme transitions a mesh from one element density to another across
a surface. This scheme is particularly helpful when the Paving scheme produces a poor
mesh. The following two figures show a specific case where the STransition scheme may
offer an improvement.

Pave scheme

STransition scheme

Cubit_15.5_User_Documentation

423

The coarse option forces the mesh to transition to a coarser mesh in the first layer.

STransition scheme with
coarse option

For triangular surfaces, the STransition scheme with the triangle option will produce
similar results when compared to the Triprimitive scheme. However, STransition is
capable of handling more varied interval settings. The following triangle fails when using
the Triprimitive scheme but succeeds with the STransition scheme.

STransition scheme on a triangular
surface with intervals set to 3, 3, and
6.

The figures below show the STransition meshing scheme response to different shapes
and interval settings.

STransition scheme on a rectangular
surface with three intervals set to 2
and one set to 4.

STransition scheme on a rectangular
surface with intervals set to 2, 3, 4,
and 5.

The user also has the option of specifying END or SIDE surface vertex types.

Mesh Generation

424

STransition scheme on a hexagon
surface with five intervals set to 2, one
interval set to 8, and user specified
endpoints.

Note, that the Centroid Area Pull smoothing algorithm sometimes gives better results than
the default Winslow smoothing algorithm for STransition meshes.

Stretch

Applies to: Curves
Summary: Permits user to specify the exact size of the first and/or last edges on a curve.
Syntax:

Curve <range> Scheme Stretch [First_size <double>] [Last_size <double>]

[Start Vertex <id>]

Curve <range> Scheme Stretch [Stretch_factor <double>] [Start Vertex

<id>]

Related Commands:

Scheme Bias and Dualbias.

Discussion:
This scheme allows the user to specify the exact length of the first and/or last edge on a
curve mesh. Intermediate edge lengths will vary smoothly between these input values.
Reasonable values for these parameters should be used (for example, the sizes must be
less than the total length of the curve). If last_size is input, first_size must be input also.
If stretch_factor is input, neither first_size nor last_size can be input. This scheme does
not currently work on periodic curves.

Submap

Applies to: Surfaces, Volumes
Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical
sides
Syntax:

Cubit_15.5_User_Documentation

425

{Surface|Volume} <range> Scheme Submap

Related Commands:

{Surface|Volume} <range> Submap Smooth <on|off>

Discussion:
Submapping (Whiteley, 96) is a meshing tool based on the surface mapping capability
discussed previously, and is suited for mesh generation on surfaces which can be
decomposed into mappable subsurfaces. This algorithm uses a decomposition method
to break the surface into simple mappable regions. Submapping is not limited by the
number of logical sides in the geometry or by the number of edges. The submap tool,
however is best suited for surfaces and volumes that are fairly blocky or that contain
interior angles that are close to multiples of 90 degrees.
An example of a volume and its surfaces meshed with submapping is shown in Figure 1.

Figure 1. Quadrilateral and Hexahedral meshes generated by submapping

Like the mapping scheme, submapping uses vertex types to determine where to put the
corners of the mapped mesh (See Surface Vertex Types). For surface submapping,
curves on the surface are traversed and grouped into " logical sides " by a classification
of the curves position in a local "i-j" coordinate system.
Volume submapping uses the logical sides for the bounding surfaces and the vertex types
to construct a logical "i-j-k" coordinate system, which is used to construct the logical sides
of the volume. For surface and volume submapping, the sides are used to formulate the
interval constraints for the surface or volume.
Figure 2 shows an example of this logical classification technique, where the edges on
the front surface have been classified in the i-j coordinate system; the figure also shows
the submapped mesh for that volume.

Mesh Generation

426

Figure 2. Scheme Submap Logical Properties

In special cases where quick results are desired, submap cornerpicking can be set to
OFF. The corner picking will be accomplished by a faster, but less accurate algorithm
which sets the vertex types by the measured interior angle at the given vertex on the
surface. In most cases this is not recommended.

Set Submap CornerPicking {ON|off}

In special cases where 4 corners will be selected for a four-sided mapped region, but the
region has more than 4 reasonable locations for the 4 corners, one may choose between
the submapping or mapping corner picking algorithms to determine the 4 locations for 4
corners. In most cases this is not recommended. The following commands may be used.

Set Cornerpicking_MapAsSubmap {on|OFF}

Set Cornerpicking_SubmapAsMap {on|OFF}

List Cornerpicking_MapAsSubmap

List Cornerpicking_SubmapAsMap

After submapping has subdivided the surface and applied the mapped meshing
technique mentioned above, the mesh is smoothed to improve mesh quality. Because
the decomposition performed by submapping is mesh based, no geometry is created in
the process and the resulting interior mesh can be smoothed. Sometimes smoothing
can decrease the quality of the mesh; in this case the following command can turn off
the automatic smoothing before meshing:

{Surface|Volume} <range> Submap Smooth <on|off>

Surface submapping also has the ability to mesh periodic surfaces such as cylinders. An
example of a periodic surface meshed with submapping is shown in Figure 3. The
requirement for meshing these surfaces is that the top and bottom of the cylinder must
have matching intervals.

Cubit_15.5_User_Documentation

427

Figure 3. Periodic Surface Meshing with Submapping

For periodic surfaces, there are no curves connecting the top and bottom of the cylinder.
Setting intervals in this direction on the surface can be done by setting the periodic interval
for that surface (see Interval Assignment). No special commands need to be given to
submap a periodic surface, the algorithm will automatically detect the fact that the surface
is periodic. Currently, periodic surfaces with interior holes are not supported.

Surface Vertex Types

• Surface Vertex Commands

• Listing and Drawing Vertex Types
• Triangle Vertex Types

• Adjusting the Automatic Vertex Type Selection Algorithm

• Volume Curve Types

Several meshing algorithms in CUBIT "classify" the vertices of a surface or volume to
produce a high quality mesh. This classification is based on the angle between the edges
meeting at the vertex, and helps determine where to place the corners of the map,
submap or trimesh, or the triangles in the trimap or tripave schemes. For example, a
surface mapping algorithm must identify the four vertices of the surface that best
represent the surface as a rectangle. Figure 1 illustrates the vertex angle types for
mapped and submapped surfaces, and the correspondence between vertex types and
the placement of corners in a mapped or submapped mesh.

Mesh Generation

428

Figure 1. Angle Types for Mapped and Submapped Surfaces: An End vertex is contained

in one element, a Side vertex two, a Corner three, and a Reversal four.

The surface vertex type is computed automatically during meshing, but can also be
specified manually. In some cases, choosing vertex types manually results in a better
quality mesh or a mesh that is preferable to the user. Vertex types can be specified
directly as End, Side, Corner, or Reversal, or can be specified by giving the desired
interior angle as 90, 180, 270, or 360, respectively.
Vertex types have a firmness, just as meshing schemes do. Automatically selected vertex
types are soft, while user-set vertex types are hard.

Surface Vertex Commands

Vertex types are set using the following commands:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type

{End|Side|Corner|Reversal}

Surface <surface_id> [Vertex [<vertex_id_range> [Loop_index <int>]] Angle

<value>

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type

{Default|Soft|Hard}

If no vertices are specified, the command is applied to all vertices of each surface.
Note that a vertex may be connected to several surfaces and its classification can be
different for each of those surfaces.
The influence of vertex types when mapping or submapping a surface is illustrated in
Figure 2. There, the same surface is submapped in two different ways by adjusting the
vertex types of ten vertices.

Cubit_15.5_User_Documentation

429

Figure 2. Influence of vertex types on submap meshes; vertices whose types are changed

are indicated above, along with the mesh produced; logical submap shape shown below.

The loop_index is an advanced option used only for vertices where the boundary of a
single surface passes through the same vertex more than once. This case is not common.
If no loop index is specified for such a vertex, the specified vertex type is assigned to all
occurrences of the vertex. The loop index for a specific occurrence of a vertex can be
determined by listing the surface (list surface <id>) to show the list of curves in each
loop bounding the surface, with the start and end vertex listed for each curve. The loop
index begins at zero for the first curve in the first loop, and is incremented by one for
subsequent curves through the last curve in the last loop. The loop index values
corresponding to a specific vertex will be the loop index of each curve whose start vertex
is the desired vertex.

Listing and Drawing Vertex Types

Listing a surface lists the types of the vertices. The vertex type settings may also be drawn
with the following commands:

Draw Surface <surface_id_range> {Vertex Angle|Vertex Type}

Triangle Vertex Types

For a surface that will be meshed with scheme trimap or tripave, the user may specify the
angle below which triangles are inserted:

Surface <surface_id_range> Angle <angle>

The user may also set whether to add a triangle at a particular vertex:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type

{Triangle|Nontriangle}

Adjusting the Automatic Vertex Type Selection Algorithm

The user may specify the maximum allowable angle at a corner with the following
command:

Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the others
by changing the following absolute weights. The corner weight considers how large
angles are at corners. The turn weight considers how L-shaped the surface is. The
interval weight considers how much intervals must change. The large angle weight
affects only auto-scheme selection: surfaces with a large angle will be paved instead.
Each weight's default is 1 and must be between 0 and 10. The bigger a weight the more
that criteria is considered.

Mesh Generation

430

Set Corner Weight <value>

Set Turn Weight <value>

Set Interval Weight <value>

Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 2. The
meshes produced by submapping on the left and right result from adjusting the vertex
types of the eight vertices shown.

Volume Curve Types

When sweeping, a 2.5 dimensional meshing scheme, curves perpendicular to the sweep
direction can have a type with respect to the volume. These types are usually
automatically selected. The following commands are useful:

Draw Volume <surface_id_range> {Curve Angle|Curve Type}

List Volume <volume_id> Curve Type

Volume <volume_id> [Curve <curve_id_range>] Type

{End|Side|Corner|Reversal}

Volume <volume_id> [Curve <curve_id_range>] Type {Default|Soft|Hard}

Sweep

Applies to: Volumes
Summary: Produces an extruded hexahedral mesh for 2.5D volumes.
Syntax:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface]

<range>]

[Propagate bias]

[Sweep smooth {auto | smart affine | linear | residual | winslow}]

[Sweep transform {LEAST SQUARES | Translate}] [Autosmooth target

{ON|off}]

Volume <range> Scheme Sweep Vector <xval yval zval>

Volume <range> autosmooth target [off|ON]

Cubit_15.5_User_Documentation

431

fixed imprints [on|OFF]

smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>

nlayers <val >=0=5>

Related Commands:

Set Multisweep [On|Off]

Multisweep Smoothing {ON|Off}

Multisweep Volume <range> Remove

Volume <range> Redistribute Nodes {ON|off}

[Set] Legacy Sweeper {On|Off}

Discussion:
The sweep algorithm can sweep general 2.5D geometries and can also do pure
translation or rotations. A 2.5D geometry is characterized by source and target surfaces
which are topologically similar. The hexahedral mesh is swept (extruded) between source
and target along a single logical axis. Bounding the swept hexahedra between source
and target surfaces, are the linking surfaces. Figures 1 and 2 show examples of source,
target and linking surfaces.
Command Options: The user can specify the source and target surfaces. The user can
also specify a geometric vector approximating the sweep direction, and let CUBIT
determine the source and target surfaces. The user can specify just the source surfaces,
and let cubit guess the target, or "scheme auto" can also be used.

Figure 1. Sweep Volume Meshing

Mesh Generation

432

Figure 2. Multiple Linking Surface Volume Meshing with Scheme Sweep

In general, the procedure for using the sweep scheme is to first mesh the source surfaces.
Any surface meshing scheme may be employed. Figure 1 displays swept meshes
involving mapped and paved source surfaces. Linking surfaces must have either mapping
or submapping schemes applied. The sweep algorithm can also handle multiple surfaces
linking the source surface and the target surfaces. An example of this is shown in Figure
2. Note that for the multiple- linking-surface meshing case, the interval requirement is that
the total number of intervals along each multiple edge path from the source surface to the
target surface must be the same for each path. Once the appropriate mesh is applied to
the source surface and intervals assigned, the mesh command may be issued.
In many cases auto-scheme selection can simplify this process by recognizing sweepable
geometries and automatically select source and target surfaces. If the source and target
surfaces are not specified, CUBIT attempts to automatically select them. CUBIT also
automatically sets curve and vertex types in an attempt to make the mesh of the linking
surfaces lead from a source surface to a target surface. These automatic selections may
occasionally fail, in which case the user must manually select the source/target surfaces,
or some of the curve and vertex types. After making some of these changes, the user
should again set the volume scheme to sweep and attempt to mesh. In some cases of 1-
1 sweeps, the source and target are swapped. Precedence for which surface to use as
the source is {meshed, merged, specified as source}. If the user wants to avoid swaps
and enforce that a particular surface is the source, then they can mesh that prior to
sweeping.
Occasionally the user must also adjust intervals along curves, in addition to the usual
surface interval matching requirements. For a given pair of source/target surfaces, there
must be the same number of hexahedral layers between them regardless of the path
taken. This constrains the number of edges along curves of linking surfaces. For example,
in Figure 1 right, the number of intervals through the holes must be the same as along
the outer shell.
Propagate bias Option: The propagate bias option attempts to preserve the source bias
by propagating bias mesh schemes from the curves of the source surface to the curves
of the target surface. It also propagates bias from one linking curve to all other linking
curves.

Cubit_15.5_User_Documentation

433

Sweep transform Option: Swept meshes are created by projecting points between the
source and target surfaces using affine transformations and then connecting them to form
hexahedra. The method used to calculate the affine transformations is set using the
sweep transform option.

Least squares: If the least squares option is selected then affine
transformations between the source and target are calculated using a least
squares method.
translate: If the translate option is selected then a simple translate affine
transformation is calculated based upon the centroid of the source and
target.

Sweep smooth Option: Note: This option is available only in Legacy mode. The
command 'set legacy sweeper on|off controls the mode. Legacy mode is OFF by
default.
To ensure adequate mesh quality, optional smoothing schemes are available to reposition
the interior nodes. The sweep tool permits five types of smoothing that are set with the
following command prior to meshing a volume whose mesh scheme is sweep:

Linear: If this option is selected, no layer smoothing is performed. The node
positions are determined strictly by the affine transformation from the
previous layer. Good quality swept meshes can be constructed using
“linear” provided the volume geometry and meshed linking surfaces permit
the volume mesh to be created by a translation, scaling, and/or rotation of
the source mesh. Volumes for which this is nearly true may also produce
acceptable quality with “linear”. As one would expect, this option generates
swept meshes more quickly than the other sweep smooth options. This
option is rarely needed since the next option produces better results with
little time penalty.
Smart affine: The “smart affine” option does minimal smoothing of the
interior nodes. Affine transformations are used to project the source and
target surfaces to the middle surface of the volume. The position of the
middle surface nodes is the average of the projected nodes from the source
and target surfaces. The error in projecting from source and target is
computed, and this error is linearly distributed back to the source and target.
Residual: The “residual” method is often used for meshing volumes that
cannot be swept with the “smart linear” method. It tends to produce better
quality meshes than the “smart linear” method while running faster than the
Winslow-based smoother. The sweeping algorithm uses an affine
transformation to calculate the interior nodes’ positions, but the mesh on the
linking surface determines the positions of the nodes on the boundary of the
layer. For the “residual” method, CUBIT calculates corrective adjustments
for interior nodes using the “residuals” from boundary nodes. The “residual”
is defined as the distance between the boundary node’s position (as
determined by the surface mesh) and the boundary node’s ideal position
(as determined by the affine transformation of the previous layer). Cubit
computes the residual forward from the source and backward from the
target to get best the possible node position.

Mesh Generation

434

Winslow: Smooth scheme “winslow” smooths each layer using a weighted,
elliptic smoother. The weights are computed from the source mesh; they
help maintain any biased spacing that occurs on the source mesh. For
example, one might want to use the “winslow” option if the source was a
biased mesh that was created using scheme circle. The biasing of the outer
elements of the source mesh may be destroyed if one of the other smooth
options is used. The interior nodes are initially place using the residual
method.

AUTO: This is the default for the sweep smooth option. “auto” causes the
Sweeper to automatically choose between “smart affine” and “residual.”
Auto will choose “off” if the layer needs little or no smoothing or “residual” if
it needs smoothing. Scheme “auto” does not guarantee that no negative
Jacobians are produced. This option produces acceptable results in most
cases. If it fails to produce a quality mesh, then choose one of the other
sweep smooth options.
If none of these smooth schemes result in adequate mesh quality, one can
consider trying one of the volume smoothing schemes such as condition
number or mean ratio.

Autosmooth target Option and Command
During sweeping, a quad mesh is placed on each source surface. Then the collection of
nodes & quads from all the source surfaces is projected onto the target surface. The
autosmooth target command or sweep command options control the placement of the
nodes onto the target surface.

Volume <range> autosmooth target [off|ON]

fixed imprints [on|OFF]

smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>

nlayers <val >=0=5>

Issuing the command “Volume <id> autosmooth target off”, or using these options in the
sweep command, will project the source nodes onto the target without any subsequent
smoothing to improve quality. The result is that the relative placement of the nodes on
the target will be as close to identical as possible to the relative placement of the node on
the sources. This should be used when sweeping models that are very thin, and
smoothing of the target could result in significant skew introduced in the thin layers in the
sweep. Axisymmetric models might also want to turn OFF the autosmooth target so that
the nodes are identically placed on the symmetry plane surfaces.
Issuing the command “Volume <id> autosmooth target on”, or using it as an option in the
sweep command, will call a surface smoother after the initial projection of the nodes onto
the target in order to improve surface element quality. This smoothing does not consider
hex element quality, only quality of the target surface mesh. This command will smooth
all nodes on the target surface. Adding the “fixed imprint on” keyword onto the
command will cause the target nodes which are projections of source nodes on source
curves and vertices to remain fixed during smoothing. Only target nodes, which are
projections of source surface nodes will be smoothed. The “smart smooth on” option
provides further control to the user. If “smart smooth” is turned on, target surface
smoothing will only move nodes which are within “nlayers” of a target surface quad

Cubit_15.5_User_Documentation

435

element that has a scaled Jacobian quality measure less than the specified “tolerance”
value.

Multisweep

While the basic sweeping algorithm requires a single target surface, the sweeping
algorithm can also handle multiple target surfaces. The multisweep algorithm works by
recognizing possible mesh and topology conflicts between the source and target surfaces
and works to resolve these conflicts through the use of the virtual geometry capabilities
in CUBIT. Figure 4 shows some examples of volumes which have been meshed with the
multisweep algorithm.

Mesh Generation

436

Figure 4. Examples of Multisweep meshes.

Linear: If this option is active and/or target surfaces are omitted from the
scheme setting command, CUBIT will determine source and target surfaces
(See Automatic Scheme Selection). Sweeping can be further automated
using the "sweep groups" command.

• Limitations: Not all geometries are sweepable. Even some that
appear sweepable may not be, depending on the linking surface
meshes. Highly curved source and target surfaces may not be
meshable with the current sweep algorithm.

• Grouping Sweepable Volumes

Swept meshing relies on the constraint that the source and target
meshes are topologically identical or the target surface is unmeshed.
This results in there being dependencies between swept volumes
connected through non-manifold surfaces; these dependencies must
be satisfied before the group of volumes can be meshed
successfully. For example, if the model was a series of connected
cylinders, the proper way to mesh the model would be to sweep each
volume starting at the top (or bottom) and continuing through each
successive connected volume.
With larger models and with models that contain volumes that require
many source surfaces, the process of determining the correct
sweeping ordering becomes tedious. The sweep grouping capability
computes these dependencies and puts the volumes into groups, in
an order which represents those dependencies. The volumes are
meshed in the correct order when the resulting group is meshed.
To compute the sweep dependencies, use the command:

Cubit_15.5_User_Documentation

437

Group Sweep Volumes

This will create a group named "sweep_groups", which can then be
meshed using the command:

Mesh sweep_groups

In some automated meshing systems, the source and target
surfaces are named using a naming pattern. For example, all source
surfaces might be given names "xxx.source" and all target surfaces
might be named "xxx.target". This allows the automated setting of
the sweep direction based on predetermined names rather than ids.
The following command is used to set the source and targets based
on the naming pattern.

Set {Source|Target} Surface Pattern '<pattern>'

[Include Volume Name]

The pattern is checked against all surfaces in the model using a
simple case-sensitive substring match. All surfaces which contain
that string of letters in their name will be designated as either a
source or target surface, depending on which option the user
specifies. For example:
br x 10
surface 1 name 'brick.top'
surface 2 name 'brick.bottom'
set source surface pattern 'top'
set target surface pattern 'bottom'
volume 1 scheme sweep
list volume 1 brief

Node Redistribution

Volume <range> redistribute nodes {ON|off}

With redistribute set to ON, the boundary nodes of a mappable
surface are moved until the spacing between the nodes are
equivalent on the two opposing curves. In other words, the
parametric values of the nodes lying on the two opposite curves are
matched.
Redistribute option ON will assist in avoiding the skewness of the
mapped mesh. In the below examples, the linking surfaces are
meshed using mapped scheme, and with redistribute option ON, the
skewness is significantly avoided (see figures (4) and (5)).
Note:

1. Redistribute option ON will affect all mapped surfaces, not
just the linking surfaces of a swept volume. Even though the

Mesh Generation

438

example below shows a swept volume, the command can be
used independent of the sweeping command. That is, it can
be used while meshing surface models that contain mappable
surfaces.
2. If the linking surfaces of a swept mesh contain submappable
surfaces, then the affect of redistribute option ON is generally
not seen. The current implementation is restricted to mappable
surfaces only and doesn’t handle submappable surfaces. In
the future, we should be able to easily extend the redistribute
option to submappable surfaces.

Figure 1 - Linking surfaces of a many-to-one sweepable solid (shown

in green) is mappable

Cubit_15.5_User_Documentation

439

Figure 2 - Highly skewed elements on the linking mapped surface with

'redistribute nodes OFF'

Figure 3 - Quality of mesh with 'Redistribute Nodes OFF'

Mesh Generation

440

Figure 4 - High skew on the linking mapped surface can be avoided

with 'Redistribute Nodes ON'

Figure 5 - Quality of mesh with 'Redistribute Nodes ON'

Cubit_15.5_User_Documentation

441

TetMesh

Applies to: Volumes
Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.
Syntax:

Volume <range> Scheme TetMesh [Proximity Layers

{on[<num_layers>]|OFF}] [Geometry Approximation Angle <angle>]

Related Commands:

[Set] Tetmesher Optimize { { [Level <level> [Overconstrained Edges

{on|OFF}] [Overconstrained Tetrahedra {on|OFF}] [Sliver {on|OFF}] } |

Default }

[Set] Tetmesher Boundary Recovery {on|OFF}

[Set] Tetmesher Interior Points {ON|off}

[Set] Tetmesher HPC {on|OFF} [Threads <value=4>]

[Set] Trimesher Surface Gradation <value>

[Set] Trimesher Volume Gradation <value>

[Set] Trimesher Geometry Sizing {ON|off}

[Set] Trimesher Split Overconstrained Edges {on|OFF}

THex Volume All

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

Volume <volume_id> Tetmesh Respect Clear

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

Tetmesh Tri <range> [Make {Block|Group} [<id>]]

Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

Mesh Generation

442

Volume <id_range> Tetmesh growth_factor <value 1.0 to 10.0 = 1.05>

Discussion

The TetMesh scheme fills an arbitrary three-dimensional volume with tetrahedral
elements. The surfaces are first triangulated with one of the triangle schemes (TriMesh,
TriAdvance or TriDelaunay) or a quadrilateral scheme with the quadrilaterals being split
into two triangles (QTri). If a meshing scheme has not been applied to the surfaces, the
TriMesh scheme will be used.
Included in Cubit is a third party software library for generating tetrahedral meshes called
MeshGems. This is a robust and fast tetrahedral mesher developed by the French
laboratory INRIA and distributed by Distene. It utilizes an algorithm for automatic mesh
generation based upon the Voronoi-Delaunay method. Figure 1 shows a CAD model
meshed with the TetMesh scheme, with the TriMesh scheme used to mesh the surfaces.

(a) (b)

(c) (d)

Figure 1. Tetrahedral mesh generated with the TetMesh scheme using default settings. (a)

Initial CAD geometry (b) CAD model with surface mesh generated with TriMesh scheme.

(c) and (d) Cut-away views of the interior tetrahedral mesh

The TetMesh scheme is usually very good at generating a mesh with its default settings.
In most cases no adjustments to default settings are necessary. Using the size assigned

Cubit_15.5_User_Documentation

443

to the volume, either assigned explicitly or defined with an auto size, the TetMesh scheme
will attempt to maintain the assigned size, except where features smaller than the
specified size exist. In this case, smaller tets will automatically be generated to match the
feature size. The tet mesher will then generate a smooth gradation from the small tets
used to capture features, to the size specified on the volume. This effect is shown in figure
1 where internal transitions in tetrahedra size can be seen. User defined sizes and
intervals can also be assigned to individual surfaces and curves for more specific control
of element sizes.
A sizing function can also be used with the TetMesh scheme to control element sizes,
however the algorithm used for meshing surfaces will automatically revert to the
TriAdvance scheme. This is because the TetMesh scheme provides built-in capabilities
for adaptively controlling the element sizes based on geometry. More details can be found
in Geometry Adaptive Sizing for TriMesh and TetMesh Schemes
When using the TetMesh and TriMesh schemes, recommended practice is to mesh all
surfaces and volumes simultaneously. This provides the greatest flexibility to the
algorithms to determine feature sizes and their effect on neighboring surfaces and
volumes.

TetMesh Scheme Options

The Tetmesh options described below can be set to adjust the default behavior of the tet
mesher. Scheme options are assigned independently to each volume as part of the
scheme tetmesh command.

Proximity Layers {on[<num_layers>]|OFF}

In some thin regions of the model, it may be necessary to ensure a minimum number of
element layers through the thickness to better capture physical properties. Using the
proximity layers setting, the specified minimum num_layers of tetrahedra will be placed
in thin regions, even if the tetrahedra sizes drop below the size assigned to the volume.
The default setting for proximity layers is OFF where element sizes will not be affected
in thin regions.

Mesh Generation

444

Figure 2. Demonstrates the effect of using proximity layers on a cut-away section of a

volume. Note the layers of smaller tets placed in the thin region.

Geometry Approximation Angle <angle>

For non-planar CAD surfaces, an approximation must always be made to capture the
curved features using the linear faces of the tetrahedra. When a geometry
approximation angle is specified, the tet mesher will adjust element sizes on curved
surfaces so that the linear edges of the tetrahedra will deviate no greater than the
specified angle from the geometry. Figure 3 illustrates how the geometry approximation
angle is determined. If the red curve represents the geometry and the black segments
represent the mesh, the angle θ is the angle between the tangent plane at point A
and the plane of a triangle at A. θ represents the maximum deviation from the
geometry that the mesh will attempt to capture. As shown in figure 2(b), a smaller
geometry approximation angle will normally result in more elements, but it will more
closely approximate the actual geometry. The default approximation angle is 15 degrees.

Cubit_15.5_User_Documentation

445

(a) (b)

Figure 3. The geometry approximation angle θ is shown as the maximum deviation

between the tangent plane at A and the plane of a triangle at A.

Figure 4. Demonstrates the effect of the geometry approximation angle set on the volume.

Triangle sizes on the interior of surfaces will be adjusted to better capture curvature.

Global Tetmesher Options

Mesh Generation

446

The user may set options that control the operation of the tet-meshing algorithms. These
tetmesher options are global settings and apply to all tetmeshes generated when the
scheme is set to TetMesh until the option is changed by the user.

[Set] Tetmesher Optimize Level <level>

The Tetmesher Optimize Level command allows the user to control the degree of
optimization used to automatically improve element quality followng the initial generation
of tetrahedra. The optimization level is an integer in the range 0 to 6, which represent how
aggressively the algorithm will attempt to improve element quality by automatically
adjusting element connectivity and smoothing. The integers 0 to 6 can also be
represented as none (0), light (1), medium (2), standard (3), strong (4), heavy (5), and
extreme (6). Greater values will result in greater computation time, however may result
in improved mesh quality. The default is 3 or standard optimization.

[Set] Tetmesher Optimize Overconstrained Edges {on|OFF}

This option controls the splitting of overconstrained edges. An edge is considered
overconstrained when it connects two surface nodes but does not belong to the surface.
This condition may not be desirable for some FEA analysis. Splitting edges can useful to
guarantee two elements through the thickness. When using MeshGems-Tetra, this option
cannot be used by itself; it must be used with the optimize tetrahedra option. If using
MeshGems-Tetra HPC, it can be used by itself. The default for optimize
overconstrained edges is OFF.

[Set] Tetmesher Optimize Overconstrained Tetrahedra {on|OFF}

In some cases, the default mesh generated with the TetMesh scheme may result in cases
where more than one triangle face of a single tetrahedra lies on the same geometric
surface. This condition may not be desirable for some FEA analysis. The default for
optimize overconstrained tetrahedra is OFF.

[Set] Tetmesher Optimize Sliver {on|OFF}

A sliver tetrahedra is one in which the four nodes of the tet are nearly co-planar. Sliver
tets are a common occurrence when using the Delaunay method, but are normally
removed by standard optimization. In some cases, sliver tets may still remain even after
optimization. To facilitate removal of all sliver-shaped tets, the optimize sliver option may
be set to ON. In this event, additional processing will be done on the mesh to attempt to
identify and remove all sliver-shaped tets from the mesh. Since this step may take
additional time, and in most cases is not needed, the default setting is OFF.

[Set] Tetmesher Optimize Default

Cubit_15.5_User_Documentation

447

The Tetmesher Optimize Default command restores the default optimization values:
level = 3 (standard), overconstrained edges = off, overconstrained tetrahedra = off, and
sliver = off.

[Set] Tetmesher Boundary Recovery {on|OFF}

The TetMesh scheme includes a specialized module known as Boundary Recovery.
Normally if the quality of the surface mesh is good, the boundary recovery module is not
used and the resulting tet mesh will conform exactly to the triangles defined on the
surfaces without additional processing. In some cases where the surface mesh contains
triangles that are of poor quality (ie. highly stretched or sliver shaped triangles) the tet
mesher is unable to generate sufficiently good quality elements. When this occurs, the
boundary recovery module is automatically invoked. This module does additional
processing to temporarily modify boundary triangles so that reasonable quality tets may
be inserted. The boundary adjustment is done as an intermediate phase and in most
cases the boundary triangulation remains unchanged following meshing. The TetMesh
scheme in Cubit will automatically invoke the boundary recovery module if the minimum
surface mesh quality drops below a condition number of 0.2. However, if the the boundary
recovery option is set to ON, the tet mesher will use the boundary recovery module
regardless of surface mesh quality. Turning this setting ON will normally increase the time
to generate the mesh, but may result in improved mesh quality. The default setting is
OFF.

[Set] Tetmesher Interior Points {ON|off}

Infrequently, the user desires a model with as few interior points as possible. The Interior
Points command allows the user to enable or disable, or turn OFF the insertion of interior
points. If interior points are disabled, the tetmesher will attempt to mesh the volume using
only the exterior points. This may not be possible and a few points will be inserted to allow
tet-meshing to complete. The default setting is ON, meaning that interior points will be
inserted according to the specified element size.

[Set] Tetmesher HPC {on|OFF} [Threads <value=4>]

This option uses Distene's MeshGems-Tetra HPC, the multithread or distributed
tetrahedral volume mesh generator (as opposed to the default, MeshGems-Tetra). The
MeshGems-Tetra HPC software is an automatic multithread or distributed tetrahedral
mesh generator based on the constrained VORONOI-DELAUNAY method. Using the
threads option, one can specify the maximum number of threads MeshGemsTetra HPC
will use to generate the mesh. The effective number of threads used will be determined
by the number of parallel subdomains used. The default setting is OFF.

Using tets as the basis of an unstructured hexahedral mesh

Tet meshing can be used to generate hexahedral meshes using the THex command.
Each of the tetrahedron can be converted into 4 hexes, producing a fully conformal
hexahedral mesh, albeit of poorer quality. These meshes can often be used in codes that

Mesh Generation

448

are less sensitive to mesh quality and mesh directionality. The THex command requires
that all tets in the model be converted to hexahedra with the same command.

Conforming the tetmesh to internal features

In some cases it is necessary for the finite element mesh to conform to internal features
of the model. The tetmesh scheme provides this capability provided the tetmesh respect
command has been previously issued to define the features that will be respected.

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

The tetmesh respect command allows the user to specify mesh entities that will be part
of a tetrahedral mesh. These faces, triangles, edges, or nodes are inside the volume since
all surface mesh features will appear in the final tetrahedral mesh by default. These mesh
entities specified to be respected can be generated from other meshing commands on
free vertices, curves, or surfaces.

Figure 2. Example of using tetmesh respect to ensure node 9 is captured in the tetmesh.

Figure 2 is an example of using the tetmesh respect command to enforce a node at the
center of a cube. Node 9 in this example was generated by first creating a free vertex at
the center location and meshing the vertex. (mesh vertex 9). The following commands
would then be used to generate the tetmesh that respected node 9.

volume 1 scheme tetmesh
tetmesh respect node 9
mesh volume 1

The tetmesh respect command can also be used to enforce multiple mesh entities. To
accomplish this, the tetmesh respect command may be issued multiple times. For
example, If node 12 and a triangle 2 inside volume 3 was to appear in the volumetric
mesh, the following commands could be used:

volume 3 scheme tetmesh
volume 3 tetmesh respect node 12
volume 3 tetmesh respect tri 2
mesh volume 1

Cubit_15.5_User_Documentation

449

Unlike the tetmesh respect command described above, the tetmesh respect file and
tetmesh respect location commands do not require underlying geometry.

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

These two commands create mesh data that only the tetmesher knows about. Thus, to
respect a point at (1.0, 0.0, -1.0) in your model, enter the command

volume 1 tetmesh respect location 1 0 -1

This is much simpler than creating the vertex, meshing it, and then respecting it.
If the model has many points that must be respected, use the file version of the command.
First generate a file with all of the points, edges, and triangles that should be respected.
The format of the file is the format used by the facet file. Now, use the following command
to respect all of the information in the file for the given volume.

volume 2 tetmesh respect file 'my_points.facet'

Finally, the following command is used to remove the respected data from an entity.

Volume <volume_id> Tetmesh Respect Clear

The tetmesh respect clear command is the only way to remove respected data from a
volume without deleting the volume. Unfortunately, it removes all respected data from the
volume. Therefore, if the model has a lot of data to be respected, it is best to put it in a
file or keep a journal file that can be edited.

Controling the gradation of the mesh size inside the volume

Volume <id_range> Tetmesh growth_factor <value 1.0 to 10.0 = 1.05>

The growth_factor option controls how fast the tetrahedra sizes can change when
transitioning from small to larger sizes within the volume. For example a value of 1.5 will
attempt to limit the ratio between 2 adjacent tetrahedral edges. Valid values for gradation
should be greater than or equal to 1.0 and usually less than 2 or 3. The larger the value,
the faster the transition is. Likewise, values closer to 1.0 will result in a more uniform
mesh. The default setting for growth_factor is 1.05, allowing for a somewhat slow
transition between sizes within a volume. The size at the interior of a volume can be
controlled using the Volume <range> [Interval] Size <interval_size> command.
Gradation of the triangles on the surfaces can also be controlled independently using the
global settings [set] trimesher surface gradation and [set] trimesher volume
gradation.

Generating a Tetmesh from a Skin of Triangles

Tetmesh Tri <ids> [growth_factor <value>] [Make {Block|Group} [<id>]]

Mesh Generation

450

Tetmesh Tri <ids> [growth_factor <value>] {Add|Replace} {Block

<id>|Group <id>}

The Tetmesh Tri command generates a tetrahedral mesh from the list of triangles
entered. The triangles must form a closed surface. The command fails if they do not. The
list of triangles may be a skin, and thus a command such as tetmesh tri in block 1 would
be acceptable, should block 1 be a previously defined skin.
The first command form has optional arguments. If the make option and its arguments
are present, then the specified block or group will contain the generated tet elements. The
command fails with the make option if the specified block or group already exists. If the
block or group id is omitted, the next available block or group id is used.
The second command form has two options, add and replace. Each option requires
specifying an existing block or group. If the block or group does not exist, the command
fails. The add option appends the tet elements to the block or group. The replace option
removes any existing mesh from the block or group before adding the tet elements.
The growth_factor option helps control the transition from small to larger sizes within the
mesh. The value specified will be the approximate ratio in the size of adjacent tets going
from the boundary into the interior of the mesh. For example, a growth_factor of 1.0 will
give near-constant sizing, while a growth_factor of 1.3 allows approximately 30% growth
in each layer of adjacent tets.

Tetprimitive

Applies to: Volumes
Summary: Meshes a 4 "sided" object with hexahedral elements using the standard
tetrahedron primitive.
Syntax:

Volume <range> Scheme Tetprimitive [Combine Surface <range>] [Combine

Surface <range>] [Combine Surface <range>] [Combine Surface <range>]

Discussion:
The tetprimitive scheme is used to create a hexahedral mesh in a volume which fits the
shape of a tetrahedral primitive. The Tetprimitive scheme assumes that each of the four
surfaces have been meshed with the triprimitive, or similar, meshing scheme. If more than
four surfaces form the tetrahedron geometry, the surfaces forming a logical side can be
combined using the combine option.

Cubit_15.5_User_Documentation

451

Figure 1. Sphere octant hex meshed with scheme Tetprimitive, surfaces meshed using

scheme Triprimitive

TriAdvance

Applies to: Surfaces
Summary: Automatically meshes surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriAdvance

Discussion:
The triangle meshing scheme TriAdvance fills an arbitrary surface with triangle elements.
It is an advancing front algorithm which allows holes in the surface and transitions
between dissimilar element sizes. It can use a sizing function like the pave scheme if one
is defined for the surface. Future development will add hard lines to this scheme's
capabilities. You specify this scheme for a surface by giving the command:

TriDelaunay

Applies to: Surfaces
Summary: Automatically meshes parametric surface geometry with triangle elements.

Mesh Generation

452

Syntax:

Surface <range> Scheme TriDelaunay

Discussion:
The scheme TriDelaunay is a parametric meshing algorithm. It can be run in two
modes. The default mode (asp) combines the Delaunay [Watson,81] criterion for
connecting nodes into triangles with an advancing-front approach for inserting nodes into
the mesh. This method maximizes the number of regular triangles in the mesh but does
not guarantee the minimum angle quality of the triangles. A guaranteed quality (gq)
mode can be used for planar surfaces (only). This mode refines the initial Delaunay
configuration by placing points at the centroids of the worst triangles until the mesh has
an acceptable density. To switch between the two modes, use the following setting
command.

[Set] Tridelaunay point placement {gq | guaranteed quality | asp}

TriDelaunay can also utilize a sizing function if one is defined for the surface.

Note: This algorithm is unstable for periodic surfaces which include a singularity point,
E.G. spheres with poles, cone tips and some types of toruses. Use scheme TriMesh,
TriAdvance or QTri to mesh non-parametric or periodic parametric surfaces.

TriMap

Applies to: Surfaces
Summary: Places triangle elements at some vertices, and map meshes the remaining
surface.
Syntax:

Surface <range> Scheme Trimap

Related Commands:

Surface <range> Vertex <range> Type {Triangle|Notriangle}

Discussion:
Some surfaces contain bounding curves which meet at a very acute angle. Meshing these
surfaces with an all-quadrilateral mesh will result in a very skewed quad to resolve that
angle. In some cases, this is a worse result than simply placing a triangular element to
resolve that angle. This scheme resolves this situation by placing a triangular element in
these tight corners, and filling the remainder of the surface with a mapped mesh.

http://cubit.sandia.gov/help-version12.1/appendix/references.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/trimesh.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/triadvance.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/conversion/qtri.htm

Cubit_15.5_User_Documentation

453

The algorithm can automatically compute whether a triangular element is necessary,
along with where to place that element. To override the choice of where triangular
elements are used, the following command can be issued:

Surface <range> Vertex <range> Type {Triangle|Notriangle}

TriMesh

Applies to: Surfaces
Summary: Automatically meshes surface geometry with triangle elements using the third
part meshgems tool.
Syntax:

Surface <range> Scheme TriMesh [Geometry Approximation Angle

<angle>] [Meshgems] [Minimum Size <value>]

Related Commands:

[Set] Trimesher Surface Gradation <value>

[Set] Trimesher Volume Gradation <value>

[Set] Trimesher Geometry Sizing {ON|off}

[Set] Trimesher Split Overconstrained Edges {on|OFF}

Discussion:
The TriMesh scheme fills a surface of arbitrary shape with triangle elements. The
TriMesh scheme serves as the default method for meshing the surfaces of volumes for
the TetMesh scheme.
Included in Cubit is a third party software library for generating triangle meshes called
MeshGems. This is a robust and fast triangle mesher developed and distributed by
Distene. Figure 1 shows a CAD model where surfaces have been meshed with the
TriMesh scheme. The triangle mesh was then used as input to the TetMesh scheme.

Mesh Generation

454

Figure 1. Triangle meshes generated with the TriMesh scheme using default settings on the

surfaces of a CAD model.

The TriMesh scheme is usually very good at generating a mesh with its default settings.
In most cases no adjustments to default settings are necessry. Using the size assigned
to the surface, either assigned explicitly or defined with an auto size, the TriMesh scheme
will attempt to maintain the assigned size, except where features smaller than the
specified size exist. In this case, smaller triangles will automatically be generated to match
the feature size. The triangle mesher will then generate a smooth gradation from the small
triangles used to capture features, to the size specified on the surface. This effect is
shown in figure 1 where the transitions in triangle sizes can be seen. If no size is specified
on the surface, it will use the size that was set on its parent volume. User defined sizes
and intervals can also be assigned to individual curves for more specific control of element
sizes.
Although rare, if meshing fails when using the TriMesh scheme, Cubit will automatically
attempt to mesh the surface with the TriDelaunay scheme. Subsequent mesh failures
will also attempt meshing with the TriAdvance and QTri schemes.
A sizing function can also be used with the TriMesh scheme to control element sizes,
however the algorithm used for meshing will automatically revert to the TriAdvance
scheme. This is because the MeshGems algorithm provides built-in capabilities for
adaptively controlling the element sizes based on geometry. More details can be found in
Geometry Adaptive Sizing for TriMesh and TetMesh Schemes
When using the TriMesh and TetMesh schemes, recommended practice is to mesh all
surfaces and volumes simultaneously. This provides the greatest flexibility to the
algorithms to determine feature sizes and their effect on neighboring surfaces and
volumes.

TriMesh Scheme Options

The TriMesh options described below can be set to adjust the default behavior of the tri
mesher. Scheme options are assigned independently to each surface as part of the
scheme TriMesh command. Note that the options described here will apply only if the
TriMesh scheme is used. TriDelaunay and TriAdvance schemes will not utilize these
options when meshing.

Cubit_15.5_User_Documentation

455

Geometry Approximation Angle <angle>

For non-planar CAD surfaces and non-linear curves, an approximation must always be
made to capture the curved features using the linear edges of the triangle. When a
geometry approximation angle is specified, the triangle mesher will adjust triangle sizes
on curved boundaries so that the linear edges of the triangle will deviate from the
geometry by no greater than the specified angle. Figure 2 illustrates how the geometry
approximation angle is determined. If the red curve representes the geometry and the
black segments represent the mesh, the angle θ is the angle between the tangent
plane at point A and the plane of a triangle at A. θ represents the maximum
deviation from the geometry that the mesh will attempt to capture. As shown in figure 2(b),
a smaller geometry approximation angle will normally result in more elements, but it will
more closely approximate the actual geometry. The default approximation angle is 15
degrees.

(a) (b)

Figure 2. The geometry approximation angle θ is shown as the maximum deviation

between the tangent plane at A and the plane of a triangle at A.

Note that the geometry approximation angle is also effective in controlling the element
size on the interior of surfaces as illustrated in figure 3. This is most useful when used in
conjunction with the TetMesh Scheme where smaller tets will be placed in regions of
higher curvature.

Mesh Generation

456

Figure 3. Demonstrates the effect of the geometry approximation angle to better capture

surface curvature on the interior of surfaces.

Minimum Size <value>

By specifying a minimum size, the tri mesher will attempt to prevent creating elements
smaller than this specified size. It should be noted that there may still be a small number
of elements with a size slighly less that this value; it is not an exact setting.
The MeshGems option will use only the MeshGems triangle mesher on the specified
surfaces. It will not revert upon failure to the TriDelaunay or TriAdvance schemes.

Global Trimesher Gradation Options

The user may set options that control the gradation of the tri-meshing algorithms. These
trimesher options are global settings and apply to all trimeshes generated when the
scheme is set to TriMesh until the option is changed by the user.
The global gradation options control how fast the triangle sizes can change when
transitioning from small to larger sizes. For example a value of 1.5 will attempt to limit the
change in element size of adjacent triangles to no greater than a factor of 1.5. Valid values
for gradation should be greater than 1.0 and usually less than 2 or 3. The larger the value,

Cubit_15.5_User_Documentation

457

the faster the transition resulting in fewer total elements. Likewise, values closer to 1.0
can result in significantly more elements, especially when small features are present. The
default setting for gradation is 1.3. Gradation can be controlled for both surfaces and
volumes.

[Set] Trimesher Surface Gradation <value>

Surface gradation will control the growth of triangles where element size has been
determined by bounding curves. For example, Figure 4 shows a small feature where
element sizes have been determined locally by the length of the small curves. A gradation
is applied so that triangle sizes increase away from the small feature. A surface gradation
of 1.3 is shown on the left, while a surface gradation of 1.1 is shown on the right.

(a) (b)

Figure 4. Demonstrates the effect of changing the default gradation, where (a) is the default

gradtion of 1.3, compared with (b) using a gradation of 1.1. Note that both images use the

same interval size setting for the surface.

[Set] Trimesher Volume Gradation <value>

Volume gradation will control the growth of triangles where element size has been
determined by the proximity of other nearby surfaces. For example, Figure 5a and 5b
shows a brick with a small void where the surface meshes are generated with the TriMesh
scheme. The surface gradation has been adjusted to a large number so its effect is
negligible. The small element size determined for the void is propagated to the exterior
surfaces. The resulting gradation of the nearby triangles on the surface is determined by
the trimesh volume gradation setting.
Note that the trimesh volume gradation command is different than the growth factor
control setting. The trimesh volume gradation controls the gradation of triangles on the
surface due to nearby features where small tets will exist, whereas the volume <range>
tetmesh growth_factor command controls the gradation of the interior tet elements.

Mesh Generation

458

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size

on the interior void propagates to the exterior surfaces

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size

on the interior void propagates to the exterior surfaces

[Set] Trimesher Geometry Sizing {ON|off}

Cubit_15.5_User_Documentation

459

The global Geometry Sizing option can be toggled on or off. If set to on, the element
size will be influenced by the geometry approximation angle. If set to off, geometry
approximation angle will not be involved in the computation of element size. See
geometry approximtion angle for more information.

[Set] Trimesher Split Overconstrained Edges {on|OFF}

The global Split Overconstrained Edges, if set to on, splits edges owned by the surface,
but with both nodes on curves. This feature can help when two elements through the
thickness of the mesh is desired. Figure 6 shows the effect of this option.

Figure 6. Split overconstrained edges

TriPave

Applies to: Surface
Summary: Places triangle elements at some vertices, and paves the remaining surface.
Syntax:

Surface <range> Scheme Tripave

Related Commands:

Surface <range> Vertex <range> Type {triangle|notriangle}

Discussion:
Similar to the trimap algorithm, but uses paving instead of mapping to fill the remainder
of the surface with quadrilaterals.
The algorithm can automatically compute whether a triangular element is necessary,
along with where to place that element. To override the choice of where triangular
elements are used, the following command can be issued:

Surface <range> Vertex <range> Type {triangle|notriangle}

TriPrimitive

Applies to: Surfaces
Summary: Produces a triangle-primitive mesh for a surface with three logical sides
Syntax:

Mesh Generation

460

Surface <range> Scheme Triprimitive [SMOOTH | nosmoothing]

Discussion:
The triprimitive scheme indicates that the region should be meshed as a triangle. A surface may

use the triprimitive scheme if three "natural", or obvious, corners of the surface can be identified.

For instance, the surface of a sphere octant (shown in the figure below) is handled nicely by the

triprimitive scheme. The algorithm requires that there be at least 6 intervals (2 per side) specified

on the curves representing the perimeter of the surface and that the sum of the intervals on any

two of the triangle's sides be at least two greater than the number of intervals on the remaining

side. The following figure illustrates a triprimitive mesh on a 3D surface.

By default, the triprimitive algorithm will smooth the mesh with an iterative smoothing
scheme. This smoothing can be disabled by using the "nosmoothing" option with this
command. The quality of the mesh will often be significantly degraded by disabling
smoothing, but in certain cases the unsmoothed mesh may be preferred.

Figure 1. Surfaces meshed with scheme Triprimitive

parallel

pCamal

pCamal is an application written and maintained by the Cubit development team. It is
designed to work in a distributed computing environment to generate 3D hex elements of
a sweep mesh. It first uses the serial Cubit application to generate the 2D quad elements.

Cubit_15.5_User_Documentation

461

These elements are written to a file that can then be used by pCamal to generate the
most time consuming and memory intensive portion of the mesh: the 3D hex elements.
The following describes how to set up the necessary inputs to pCamal using Cubit's
sweeping command.
To set up for pCamal, first use the parallel meshing setting:

Set Parallel Meshing {on|OFF}

You would then use the sweep scheme and mesh your 3D volumes as normal. When Cubit

performs the mesh operation on a volume that has a sweep scheme applied when the parallel

meshing option is ON, only the surface entities will be meshed, leaving the hex elements for

pCamal. Surfaces will be meshed with appropriate source, target and linking surface

designations.

Exporting a Parallel Mesh for pCAMAL

The following command can be used for exporting a mesh in exodus format for use with
pCAMAL

Export Parallel "<filename>" [Block <id_list>] [Overwrite] [Processor

<number>]

The options are the same as those for the export genesis command except for the
addition of the processor option.
The processor option allows the user to specify the number of processors that will be
used to mesh the volume with the pCAMAL option. This same option exists in the
pCAMAL application and is more often used there since the number of available
processors is known then rather than when the output file is created in Cubit.
If the processor option is given, Cubit attempts to balance the number of sweepable
volumes to run on N processors by converting many-to-one sweeps to one-to-one
sweeps, subdividing the sweep volume along its sweep direction, or partitioning the
source surface of a one-to-one sweep if the number of source quads is much larger than
the number of layers.
To determine if you are currently in parallel meshing mode you may list the current status
using the List Parallel command.

List Parallel Meshing

Note: pCamal is not currently distributed with the current release of Cubit. Contact the
Cubit developers if you are interested in obtaining a copy of the executable for linux
operating systems.

Sculpt

Mesh Generation

462

Sculpt is a separate parallel application designed to generate all-hex meshes on complex
geometries with little or no user interaction. Sculpt was developed as a separate
application so that it can be run independently from Cubit on high performance computing
platforms. It was also designed as a separable software library so it can be easily
integrated as an in-situ meshing solution within other codes. Cubit provides a front end
command line and GUI for the Sculpt application. The command will build the appropriate
input files based on the current geometry and can also automatically invoke Sculpt to
generate the mesh and bring the mesh back to Cubit.

• Preparing to Use Sculpt
• Sculpt Parallel Command
• Controlling the Execution of Sculpt
• Sculpt Parallel Path Command
• Sculpt Examples
• Sculpt Technical Description
• Sculpt Application Documentation

Preparing to Use Sculpt

Platforms

Sculpt is available for Windows, Mac and Linux operating systems.

Sculpt Installation

Sculpt is a stand-alone executable, separate from Cubit. In order for Cubit to start up
Sculpt, it must be on your system and accessible to Cubit. The default installation of Cubit
should install files in the correct locations for this to occur. Check with Cubit support if it
did not come with your installation or you are not able to locate it or any of its supporting
applications.
To run Sculpt from Cubit, four executable files are needed:

• sculpt: Application that controls start-up of mpiexec and psculpt. Main entry
point from Cubit, that checks for the existence and compatibility of either the
system mpiexec application or will use a local cubit instalation of mpiexec.

• psculpt: The main mpi-based Sculpt application. Requires mpiexec to run.
• mpiexec: Standard application available on most linux-based operating systems

for starting up mpi-based applications on multiple processors. This should be
available with your Cubit installation, but is also available from open-mpi.org

• epu: Used for combining multiple exodus files, generated with Sculpt, into a
single exodus file. This executable is optional, but is useful for importing the
resulting mesh into Cubit for viewing. It is part of the SEACAS tool suite
developed by Sandia National Laboratories and is also included with your Cubit
installation. It can also be obtained in open source form from sourceforge.net.

To view the current path to these executables that Cubit will use, issue the following
command from the Cubit command window

http://open-mpi.org/
http://seacas.sourceforge.net/

Cubit_15.5_User_Documentation

463

 Sculpt Parallel Path List

See the Sculpt Parallel Path Command for more info on setting and customizing these
paths.
The following image illustrates the process flow when the sculpt parallel command is
used in Cubit.

For the Sculpt meshing process, a set of files, including a facet-based stl file are written
to disk. The sculpt application is then started up which in turn invokes mpiexec to start
up multiple instances of psculpt in parallel. psculpt then performs the meshing and
writes one exodus file per processor. These files can then be combined using epu and
then imported back into Cubit for viewing.

Setting your Working Directory

When using the Sculpt Parallel command in Cubit, several temporary files will be written
to the current working directory. Because of this, it is important to set your working
directory before using Sculpt to a desired location where you want these files placed.

Sculpt Parallel Command

The command syntax for preparing a model for Sculpt is:

 Sculpt Parallel [[volume <ids>] [block <ids>]]

 [processors <value>]

 [fileroot '<root filename>']

 [exodus '<exodus filename>']

 [{OVERWRITE|no_overwrite}]

Mesh Generation

464

 [absolute_path]

 [{EXECUTE|no_execute}]

 [size <value>|autosize <value>]

 [box {align | location <options>|expand <value>}]

 [smooth <value>]

 [csmooth <value>]

 [num_laplace <value>]

 [max_opt_iters <value>]

 [opt_threshold <value>]

 [curve_opt_thresh <value>]

 [max_pcol_iters <value>]

 [pcol_threshold <value>]

 [max_deg_iters <value>]

 [deg_threshold <value>]

 [xintervals <value>]

 [yintervals <value>]

 [zintervals <value>]

 [gen_sideset <value>]

 [{void|NO_VOID}]

 [void_block <value>]

 [stair <value>]

 [htet <value>]

 [pillow <value>]

 [adapt_type <value>]

 [adapt_threshold <value>]

 [adapt_levels <value>]

 [scale <value>]

 [xtranslate <value>]

 [ytranslate <value>]

 [ztranslate <value>]

 [{COMBINE|no_combine}]

 [{IMPORT|no_import}]

 [{SHOW|no_show}]

 [{capture|NO_CAPTURE}]

 [{CLEAN|no_clean}]

 [{gen_input_file <filename>|no_gen_input_file}]

 [debug <value>]

The following table is a summary of options that can be invoked from the Cubit sculpt
parallel command. It includes an abbreviated description of the option as well as the
option's default. If the option is not explicitly used in the command, the default value listed
will be used. The Sculpt option is the corresponding command that can be used in a
sculpt input file when sculpt is invoked directly from a terminal window. See Sculpt
Application for more information.

Cubit Option Description Default Sculpt Option

Cubit_15.5_User_Documentation

465

volume <ids> |
block <ids>

List of volumes or blocks to
include in the mesh.

Volume all stl_file,
diatom_file, cubit
option

processors
<value>

Number of processors to use for
meshing.

4 num_procs

fileroot '<root
filename>'

Root of file names for output. sculpt_parallel cubit option

exodus '<exodus
filename>'

Output Exodus mesh file name <'root
filename'>

exodus_file

OVERWRITE |
no_overwrite

Force overwrite of files in
directory

overwrite cubit option

absolute_path Use absolute path for filenames OFF (relative
path)

cubit_option

EXECUTE |
no_execute

Run sculpt or dump input files
only

execute cubit option

size <value> |
autosize <value>

Set size of cells in Cartesian grid autosize 10 cell_size, cubit
option

xintervals
<value>
yintervals
<value> zintervals
<value>

Number of cells in each
coordinate direction in the
overlay Cartesian grid

automatically
computed from
size

nelx, nely, nelz

box align Automatically align geometry to
grid

OFF align

box location
<options>

Define bounds of the Cartesian
grid

Enclosing
bounding box
with 2.5
additional cells
on each side

xmin, ymin, zmin,
xmax, ymax,
zmax, cubit
option

box expand
<value>

Define Cartesian grid by
expansion percentage from a
tight bounding box.

OFF bbox_expand

smooth <value> Smoothing method for volumes
and surfaces

1 smooth

csmooth <value> Smoothing method for curves 5 csmooth

num_laplace
<value>

Number of Laplacian smoothing
iterations

2 laplacian_iters

max_opt_iters
<value>

Maximum number of parallel
Jacobi optimization iterations

5 max_opt_iters

opt_threshold
<value>

Stopping criteria for Jacobi
optimization smoothing

0.6 opt_threshold

Mesh Generation

466

curve_opt_thresh
<value>

Metric at which curves are not
honored

0.1 curve_opt_thresh

max_pcol_iters
<value>

Maximum number of parallel
coloring smoothing iterations

100 max_pcol_iters

pcol_threshold
<value>

Stopping criteria for parallel color
smoothing

0.2 max_pcol_iters

max_deg_iters
<value>

Maximum number of degenerate
iterations

0 max_deg_iters

deg_threshold
<value>

Convert hexes below threshold
to degenerates

0.2 deg_threshold

gen_sidesets Sideset and nodeset generation
method

0 gen_sidesets

void Mesh void OFF mesh_void

void_block Block ID of void mesh 0 void_mat

stair <value> Generate Stair-step mesh OFF stair

htet <value> Convert hexes below quality
threshold to tets

-1 htet

pillow <value> Set pillowing criteria 0 pillow

adapt_type
<value>

Adaptive meshing type 0 adapt_type

adapt_threshold
<value>

Threshold for adaptive meshing 0.25 * cell_size
/
adapt_levels^2

adapt_threshold

adapt_levels
<value>

Number of levels of adaptive
refinement

2 adapt_levels

scale <value> Scale mesh by factor 1.0 scale

xtranslate
<value>
ytranslate
<value>
ztranslate
<value>

Translate mesh in coordinate
directions

0.0 xtranslate,
ytranslate,
ztranslate

COMBINE |
no_combine

Combine Exodus mesh files into
a single mesh for import

combine cubit option

IMPORT |
no_import

Import the mesh after mesh
generation in Sculpt

import cubit option

SHOW | no_show Echo the ouput of Sculpt to
command line window

show cubit option

capture |
NO_CAPTURE

Project boundary nodes to STL
geometry (beta feature)

no_capture capture

Cubit_15.5_User_Documentation

467

CLEAN | no_clean Delete temporary files generated
during Sculpt run

clean cubit option

gen_input_file
<file name> |
no_gen_input_file

Generate a Sculpt input file with
current settings

gen_input_file cubit option

debug <value> Set a debug processor for
debugging

-1 cubit option

Controlling the Execution of Sculpt

The following command options can be used to control the execution of Sculpt from within
Cubit and can be used with the sculpt parallel command. Follow the links above for
others not lsted here.
volume <ids> | block <ids>
List of volumes or blocks to include in the mesh. One file containing a faceted
representation (STL) per volume will be generated and saved in the current working
directory to be used as input to Sculpt. Each volume will be treated as a separate material
within sculpt and a conforming mesh will be generated where volumes touch. If the Block
command is used, one file per block will be used. Each block represents a separate
material in Sculpt.
fileroot '<root filename>'
Root of file names for output. When the sculpt parallel command is executed, Cubit will
generate multiple files in the working directory used for input to the Sculpt application.
The '<root filename>' will be used as the basis for naming these files.
OVERWRITE | no_overwrite
By default, Cubit will overwrite an existing set of files with the same '<root filename>'. To
over-ride, use the no_overwrite option.
absolute_path
By default, Cubit will write the relative path names of files used in the .run and .diatom
files. To force absolute path names to be written, use the absolute_path option

EXECUTE | no_execute
By default, Cubit will attempt to run sculpt in parallel on the machine Cubit is currently
running on. To generate just the required input to run Sculpt at a later time or on another
machine, use this option. A file of the form <root filename>.run will be generated in the
current working directory. (for example "model.run"). Executing the .run file from the linux
command line should run sculpt in parallel. It can also be used to run sculpt on a cluster
where a Cubit executable may not be available.
size <value> | autosize <value>
The size option is the absolute cell size for the Cartesian grid and is the same as the
cell_size option in sculpt. The autosize option is a value between 0 and 10. It represents
a model independent size where 1 is the small size and 10 is large. This is the same
scaling factor used in Cubit's auto sizing but is divided by ten. A size value will be
computed from the selected autosize and used as the absolute cell size for the base
Cartesian grid.

Mesh Generation

468

box location <options>
Location options define the bounds of the Cartesian grid. The first Location <option>
defines the minimum Cartesian coordinate of the grid and the second, the maximum. The
<options> can be any valid method for defining a coordinate location in cubit. In most
cases the position option can be used. The default is computed as an enclosing
bounding box with 2.5 additional cells on each side.
COMBINE | no_combine
If the no_combine option is used, following execution of Sculpt, the resulting exodus
meshes will not be combined using the epu seacas tool. Otherwise the default will
automatically combine the meshes generated by each processor into a single mesh. Note
that epu should be installed on your system and the path to epu defined using the sculpt
parallel path command. Epu is a code developed by Sandia National Laboratories and
is part of the SEACAS tool suite. It combines multiple Exodus databases produced by a
parallel application into a single Exodus database. The epu program should be included
with distributions of Cubit beginning with Version 15.0.

IMPORT | no_import
If the no_import option is used, following execution of Sculpt, the result will be not be
imported into Cubit as a free mesh. The default IMPORT option will automatically import
the mesh that was generated in Sculpt. If the no_combine option has been used, then
multiple free meshes will be imported with duplicate nodes and faces at processor domain
boundaries. Otherwise a single free mesh, the result of the epu code, will be imported.
Note that the resulting mesh will not be associated with the original geometry, however
Block (material) definitions will be maintained. In addition, a separate group will be
generated for each imported mesh (One per processor). The default will automatically
import the mesh following mesh generation in Sculpt.
SHOW | no_show
If the no_show option is used, while the external Sculpt process is running, no ouput
from the Sculpt application will be displayed to the command window. Otherwise, the
default SHOW is used and output from the Sculpt application will be echoed to the Cubit
command window. This option is only effective if the no_execute is not used.

CLEAN | no_clean
If the clean option is used, temporary files generated during the sculpt parallel command
will be deleted. This includes any exodus mesh files, .stl, .diatom, .log and .run files. The
default for this option is CLEAN, therefore, use the no_clean option to keep any
temporary files generated as part of the current Sculpt run.
gen_input_file <file name> | no_gen_input_file
An input file with the given file name will be generated when the command is executed.
This is a text file containing all sculpt options used in the command. The input file is
intended to be used for batch execution of sculpt. To run sculpt from the operating system
command line you would use the -i option. For example: sculpt -i myinputfile.i -j 4 where
myinputfile.i is the name of the input file specified with the gen_input_file option and -j
4 is the number of processors to use.

Cubit_15.5_User_Documentation

469

debug <value> The debug option is used only as a developer debugging tool. It will set
the debug processor and sleep upon execution to allow a debugger to be attached to the
process.

Sculpt Parallel Path Command

The command for letting Cubit know where the Sculpt and related applications are located
is:

 Sculpt Parallel Path [List|Psculpt|Epu|Mpiexec]

This command defines the path to psculpt, epu and mpiexec on your system. In most
cases, however, these paths should be automatically set provided Sculpt was
successfully installed with your Cubit installation. The list option will list the current paths
that Cubit will use for these tools. If an alternate path to these executables is desired, it
is recommended that this command be used in the .cubit initialization file so that it wont
be necessary to define these parameters every time Cubit is run.

Sculpt Mesh Quality Control

In most cases, the Sculpt tool can be used without adjusting default values. Depending
on the characteristics of the geometry to be meshed, the default values may not yield
adequate mesh quality. Upon completion, Sculpt reports to the command line, a summary
of the mesh that was generated. This includes a summary of the mesh quality. Care
should be taken to review this summary to ensure the minimum mesh quality is in a range
suitable for analysis.
The element metric used for computing mesh quality in Sculpt is the Scaled Jacobian.
This is a value between -1 and 1 that is a relative measure of the angles at the element's
nodes. A value of 1 indicates a perfect 90 degree angle between each of its edges. In
most cases a value less than zero, or negtive Jacobian element, indicates an unusable
mesh. Sculpt's default settings try to achieve a minimum Scaled Jacobian of 0.2, which
is normally usable in most analysis. The following discussion provides several options for
adjusting the model or Sculpt parameters to help improve mesh quality.

1. Locating poor mesh quality: When the Sculpt mesh has been imported back
into CUBIT it is a good idea to display the element quality. You can do this with
variations of the following commands:

 quality hex all scaled jacobian

quality hex all draw mesh

Identify regions where hexes are poor quality and zoom in to these regions.

2. Modifying the geometry: Zooming in to poor quality elements may reveal that
the mesh does not adequately represent the underlying geometry. In some cases
you may find that small features, or small gaps between parts may be on the
order of the size of the Sculpt cell size. If these features are not important to the

Mesh Generation

470

analysis, you may consider using Cubit's geometry modification tools to remove
features or close small gaps.

3. Modifying the cell size: In cases where small geometric features or gaps are
important to the simulation, it may be necessary to use a smaller base cell size.
Use the size or autosize input parameters or increase the numbers of intervals.
Normally to adequately capture a feature you would want the cell size to be no
greater than about 1/3 to 1/2 the size of the smallest feature you would want to
represent in the simulation.

4. Turning on Pillowing for multiple materials: For models that have more than
one material that share an interface, unless the geometry is precisely aligned
with the global axis, it is usually a good idea to turn on pillowing. Pillowing
automatically inserts an additional layer of hexes at interface boundaries to
improve mesh quality. Without pillowing may notice inverted or poor quality
elements at curve interfaces where 2 or more materials meet.

5. Modifying smoothing parameters: Sculpt includes a tiered approach to
smoothing to improve element quality. It starts by applying smoothing to all
nodes in the mesh and progressively restricts the smoothing operations to only
those nodes that fall below a user-defined scaled Jacobian threshold. Default
numbers of iterations and thresholds for each smoothing phase have been tuned
for general use, however it may be worthwhile to adjust these parameters. The
three smoothing phases include:

o Laplacian Smoothing: Applied to all elements. Very inexpensive fast
approach to improve quality, but can result in degraded element quality if
applied to excess. A fixed default of 2 iterations is applied to all hexes.
Increasing the num_laplace parameter can improve some cases,
especially convex shapes

o Optimization Smoothing: Applied only to elements who's scaled
Jacobian falls below the opt_threshold parameter (default 0.6) and their
surrounding elements. This approach uses a more expensive optimization
technique to improve regions of elements simultaneously. The
max_opt_iters parameter can control the maximum number of iterations
applied (default is 5). Iterations will terminate, however, if no further
improvement is detected. Because this method optimizes node locations
simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

o Spot Optimization: Also known as parallel coloring, is applied only to
elements who's element quality falls below the pcol_threshold parameter
(default 0.2). This technique is the most expensive of the techniques, but
focusses only on nodes that are immediately adjacent to poor quality
hexes. Each node is smoothed independently of its neighbors, and may
require a high number of iterations using the max_pcol_iters to achieve
desired results. Increasing the pcol_threshold and max_pcol_iters may
yield improved results.

Cubit_15.5_User_Documentation

471

Observing the mesh quality output to the command line following each smoothing
iteration can provide some insight on the effect of modifying smoothing
parameters.

6. Creating degenerate hexes: Some geometries will not permit a usable mesh
with a traditional all-hex mesh. Sculpt includes the option to automatically and
selectively collapse element edges to improve low-quality elements. The
max_deg_iters and the deg_threshold values are used to control the creation of
degenerates. Degenerate elements are treated as standard hex elements, but
use repeated nodes in the eight-node connectivity array.

7. Creating hex-dominant mesh Another option for avoiding mesh quality issues
is to generate a few tet elements in the mesh using the htet option. With this
option you can specify a scaled Jacobian threshold value below which hexes will
be converted to tet elements. The interface between hex and tet elements is
managed by an automatically defined set of nodesets and sidesets that describe
where multi-point constraints will be applied.

8. Defeaturing The defeature option does an initial filter on the cells of the base
grid and attempts to reassign the material ID for cells that meet certain criteria.
These are cases where a small grouping of cells form a small volume, or where
protrusions exist that would otherwise be difficult or impossible to mesh with
good quality elements. By reassigning the cells in these locations, in many cases
it will allow the mesh to be acceptable. This operation may result in small
changes to the boundary or surface definitions, however usually small enough to
still be a reasonable approximation.

Sculpt Examples

• Basic Sculpt
• Size and Bounding Box
• Meshing the Void
• Automatic Sideset Definition
• Running Sculpt Stand-Alone
• Meshing Multiple Materials With Sculpt

The following examples use this simple geometry. Execute these commands prior to
performing the example Sculpt Parallel command line operations

sphere rad 1

sphere rad 1

vol 2 mov x 2

cylinder rad 1 height 2

vol 3 rota 90 about y

vol 3 mov x 1

unite vol all

Mesh Generation

472

Figure 1. Geometry created from the above commands and used for the following

examples.

Basic Sculpt

This example illustrates use of Sculpt with all default options. So that we can view the
result, we will also use the overwrite, combine and import options.

sculpt parallel

draw block all

The result of this operation is shown in Figure 2. For this example, behind the scenes,
Cubit built an input file for Sculpt, ran it on 4 processors, combined the resulting 4 meshes,
and subsequently imported the resulting mesh into Cubit. Note that Volume 1 remains
"unmeshed" and we have created a free mesh that is not associated with a volume. The
result of any Sculpt command is always an unassociated free mesh.

Cubit_15.5_User_Documentation

473

Figure 2. Free mesh generated from sculpt command

Size and Bounding Box

This example illustrates the use of the size and box options

delete mesh

sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5

0

draw block all

In this case we have used the size option to define the base cell size for the grid. We
have also used the box option to define a bounding box in which the mesh will be
generated. Any geometry falling outside of the bounding box is ignored by Sculpt. Figure
3 shows the mesh generated with this command.

Mesh Generation

474

Figure 3. Sculpt "box" option limits the extent of the generated mesh.

Meshing the Void

In this example we illustrate the use of the void option:

delete mesh

sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5

0 void

draw block all

The result is shown in figure 4. Notice that this example is precisely the same as the last
with the exception of the addition of the void option. Mesh is generated in the space
surrounding the volume out to the extent of the bounding box. In this case, an additional
material block is defined and automatically assigned an ID of 2. The nodes and element
faces at the interface between the two blocks are shared between the two materials.

Cubit_15.5_User_Documentation

475

Figure 4. Sculpt "void" operation generates mesh outside the volume.

Automatic Sideset Definition

In this example we illustrate the use of the sideset option.
Generating sidesets on the free mesh with Cubit: Sideset boundary conditions can be
manually created on the resulting free mesh from Sculpt using the standard Sideset
<sideset_id> Face <id_range> syntax. The Group Seed command is also useful in
grouping faces based on a feature angle to be used in a single sideset.
Generating sidesets in Sculpt: Sculpt also provides several options for defining
sidesets as part of the Sculpt run. The following illustrates one option:

delete mesh

sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5

0 void sideset 2

list sideset all

draw sideset all

Mesh Generation

476

Once again we use the same syntax but add the sideset 2 option to automatically
generate a series of sidesets. The list command should reveal that 10 sidesets were
defined for this example with IDs 1 to 10. Figure 5 shows the result of the draw command
showing all of the sidesets in different colors. Note that for the sideset 2 option, sidesets
are created with the following criteria:

• Interfaces between materials

• Exterior surfaces
• Surfaces at the domain boundary

See the sideset option above for a description of other options for generating sidesets in
Sculpt.

Figure 5. Automatic sidesets created using Sculpt

Running Sculpt Stand-Alone

Cubit_15.5_User_Documentation

477

This example illustrates how to set up the files necessary to run Sculpt as a stand-alone
process. This can be done on the same desktop machine or moved to a larger cluster
machine more suited for parallel processing.
Begin by setting your working directory to a location that is convenient for placing example
files

 cd "path/to/my/sculpt/examples"

Next we issue the basic sculpt parallel command to mesh the volume

delete mesh

sculpt parallel processors 8 fileroot "bean" over no_execute

In this case, we used the no_execute option which does not invoke the Sculpt application.
Instead it will write a series of files to the working directory. The fileroot option defines
the base file name for the files that will be written; in this case "bean". We also use the
processors option to set the number of processors to be used to 8.
To see the files that Cubit placed in the working directory, bring up a terminal window on
your desktop and change directories to the current working directory (ie. cd
path/to/my/sculpt/examples). A directory listing should reveal 3 files as shown in Figure
6.

Figure 6. Directory listing of files written from Cubit

The following describes the purpose of each of the resulting files:

• bean.diatom: Diatoms is a file format used by Sandia's CTH and Alegra analysis
programs that includes a rich constructive solid geometry definition. A series of
directives for constructing and orienting primitives to build a complete solid model
can be used. Included in the Diatom description is an STL import option. While
any standard Diatom description may be used as input to Sculpt, for Cubit's
purposes, only the STL option is used. This file contains a listing of all STL files
that will be used as input to Sculpt.

• bean.run: The .run file contains the unix command line for running sculpt. Note
that the file permissions have been set to execute to allow this file to be used as
a unix script. Figure 7 shows the .run file for this example. Note that the
command uses mpiexec and the psculpt executables, along with their full path.
These paths may need to be edited when running on a different machine. It also
includes the default parameters for setting the sizes, bounding box and
smoothing parameters that have been computed by Cubit.

Mesh Generation

478

Figure 7. Unix command line for running Sculpt generated by Cubit

• bean_Volume_1.stl: The STL file is a copy of the geometric model. In our case,
it is a representation of the cylinder and sphere object we have been working
with. The STL format is a set of triangles that describe the surfaces of the object.
One STL file will be generated for each Volume. If the Block option is used, then
one file for each Block would be created.

To run sculpt on the same machine, from the terminal window in your current working
directory you would issue the following command:

./bean.run

If Sculpt is to be run on a different machine, copy the files in the working directory to the
other machine and issue the same command. Remember to change the path to the
mpiexec and psculpt executables to match those on the new machine. For running on
cluster machines that have scheduling of resources, check with your system administrator
for how to submit a job for running.
After running Sculpt, Figure 8 shows the resulting files that would be written to the current
working directory.

Figure 8. 8 Exodus files were generated and placed in working directory

Note that 8 exodus files have been generated, 1 from each processor. These files can be
used by themselves or used as-is for use in a simlation, or they can be combined into a
single file. The exodus files produced by Sculpt include all appropriate parallel
communication information as defined by the Nemesis format. Nemesis is an extension
of Sandia's Exodus II format that also includes appropriate parallel communication
information.
To combine the resulting exodus files into a single file, we can use the epu tool. Epu
should be included in your Cubit distribution, but may require you to set up appropriate

Cubit_15.5_User_Documentation

479

paths for it to be recognized. To run epu on this model, use the following command from
a unix terminal window:

epu -p 8 bean.diatom_result

The result should be a single file with the name bean.diatom_result.e. The mesh in this
file can then be imported into Cubit. Switch back to your Cubit application and from the
command line type the following command:

import mesh "bean.diatom_result.e" no_geom

The result should be the same mesh we generated previously that is shown in Figure 2.

Meshing Multiple Materials With Sculpt

This example illustrates using Sculpt to mesh models with multiple materials. To begin
with, we will modify our current model by adding some additional volumes. Use the
following commands:

delete mesh

cylinder rad 0.5 height 3

cylinder rad 0.5 height 3

vol 5 mov x 2

The resulting geometry should look like the image in Figure 9.

Mesh Generation

480

Figure 9. Geometry used to demonstrate multiple materials with Sculpt

Use this geometry to generate a mesh using Sculpt.

sculpt parallel size 0.075

draw block all

The resulting mesh should look like the image in Figure 10.

Cubit_15.5_User_Documentation

481

Figure 10. Mesh generated on multiple materials

Notice that one mesh block per volume was created. We should also note that no boolean
operations were performed prior to building the mesh with Sculpt. In fact, volumes 4 and
5 were significantly overlapping volume 1. This would be an invalid condition for normal
Cubit meshing operations. Figure 11 shows a cut-away image of the mesh using the
Clipping Plane tool.

Mesh Generation

482

Figure 11. Cut-away of mesh generated on multiple materials

We should also note that imprint/merge operations typically needed, were also not
required. While it is usually best to avoid overlaps to avoid ambiguities in the topology,
Sculpt is able to generate a mesh giving precedence to the most recently defined
materials. Merging is performed strictly by geometric proximity. Volumes closer than
about one half the user input size will normally be automatically merged.
Next, we will examine the mesh quality of the free mesh. The following command will
display a graphical representation of the Scaled Jacobian metric.

quality hex all scaled jacobian draw mesh

The result is shown in Figure 12. Note the elements (colored red) at the interface between
materials are unacceptable for simulation. This is caused by the Sculpt algorithm
projecting nodes to a common curve interface shared by the materials.

Cubit_15.5_User_Documentation

483

Figure 12. Mesh quality of multi-material mesh.

In most cases, the poor element quality at material interfaces can be improved by using
the pillow option. Adding this option will direct Sculpt to add an additional layer of
elements surrounding each surface. To see the result of pillowing, issue the following
commands:

delete mesh

sculpt parallel size 0.075 over combine import pillow 1

quality hex all scaled jacobian draw mesh

Mesh Generation

484

Figure 13. Mesh quality of multi-material mesh using pillow option

The resulting mesh is showed in Figure 13. Note the improved mesh quality at the shared
curve interface. A closer look at the mesh, shown in Figure 14. reveals the additional layer
of hexes surrounding each surface that allows for improved mesh quality when compared
with Figure 11. When generating meshes with multiple materials that must share common
interfaces, the pillow option is usually recommended.

Cubit_15.5_User_Documentation

485

Figure 14. Cutaway of mesh reveals the additional layer of hexes surrounding

each surface when the pillow option is used.

Sculpt Technical Description

This document provides a brief technical overview of the Sculpt application, a separate
companion application to Cubit designed to generate all-hex meshes of complex
geometries. Details on command arguments to Sculpt may be found here. Also
information for using Cubit to set up input for Sculpt may be found here.
The method for generating an all-hex mesh employed by Sculpt is often referred to in the
literature as an overlay-grid or mesh-first method. This differs significantly from the
algorithms employed by Sweeping and Mapping, which are classified as geometry-first
methods. Mapping and Sweeping start with the geometry, carefully fitting logical
groupings of hexes to conform to a recognized topology. In contrast, the Sculpt method
begins with a base Cartesian grid encompassing the geometry which is used as the basis
for the mesh. Geometric features are carved or sculpted from the Cartesian grid and
boundaries smoothed to create the final hex mesh. The obvious benefit of the Sculpt
(mesh-first) method over Mapping and Sweeping (geometry-first) methods is there is no
need to decompose the geometry into mappable or sweebable components, a process
that can often be very time consuming, tedious and sometimes impossible. Input to Sculpt
can be any geometry regardless of features and complexity.
The basic Sculpt procedure is illustrated in figure 1. Beginning with a Cartesian grid as
the base mesh, shown in figure 1(a), a geometric description is imposed. Nodes from the

Mesh Generation

486

base grid that are near the boundaries are projected to the geometry, locally distorting
the nearby hex cells (figure 1(b)). A pillow layer of hexes is then inserted at the surfaces
by duplicating the interface nodes on either side of the boundaries and inserting hexes
(figures 1(c) and (d)). While constraining node locations to remain on the interfaces,
smoothing procedures can now be employed to improve mesh quality of nearby hexes
(figure 1(e)).

Figure 1. The procedure for generating a hex mesh using the Sculpt overlay grid
method
Sculpt is limited to capturing geometric features with the available resolution of the
selected base mesh. Because of this, care should be taken in selecting an appropriate
cell size. In addition, no attempt is made by the Sculpt procedure to capture sharp exterior
features. Figure 2 shows an example of a sculpt mesh of a CAD model. Note that exterior
corner features are rounded, however the effect of sharp feature capture becomes less
pronounced as resolution increases as demonstrated in figures 3(a) and (b).

Cubit_15.5_User_Documentation

487

Figure 2. Hex mesh generated using the Sculpt overlay grid procedure

Mesh Generation

488

Cubit_15.5_User_Documentation

489

Figure 3. Examples of the same model meshed at two different resolutions showing
a cutaway view of the mesh.
Another aspect of model preparation for computational simulation involves geometry
cleanup and simplification. In most cases, geometry-first methods, such as Sweeping,
require an accurate non-manifold boundary representation before mesh generation can
begin. Small, sometimes unseen gaps, overlaps and misalignments can result in sliver
elements or mesh failure. Tedious manual geometry simplification and manipulation is
often required before meshing can commence. Sculpt, however employs a solution that
avoids much of the geometry inaccuracy issues inherent in CAD design models. Using a
faceted representation of the solid model, a voxel-based volume fraction representation
is generated. Figure 4 illustrates the procedure where a CAD model serving as input
(figure 4(a)) is processed by a procedure that will generate volume fraction scalar data
for each cell of an overlay Cartesian grid (figure 4(b)). One value per material per cell is
computed that represents the volume fraction of material filling the cell. A secondary
geometry representation is then extracted using an interface tracking technique from
which the final hex mesh is generated (figure 4(c)). While similar to its initial facet-based
representation, the new secondary geometry description developed from the volume

Mesh Generation

490

fraction data results in a simplified model that tends to wash over small features and
inaccuracies that are smaller than the resolution of the base cell size.

Figure 4. A representation of the procedure used to generate a hex mesh with
Sculpt using Volume Fractions.
While acknowledging some loss in model fidelity in this new volume-fraction based
geometric model, the advantage and time-savings to the analyst of being able to ignore
troublesome geometry issues is enormous. At the same time it may be important to
understand what the additional discrete approximations will make to solution accuracy
and employ relevant engineering judgement in the use of this technology.

References

The following technical papers, written by the author of Sculpt, describe the Sculpt
procedure in more depth. These papers were presented at the International Meshing
Roundtable and are external links to pdf documents.
 Parallel Hex Meshing from Volume Fractions: Describes the basic algorithms and
mathematics used in the Sculpt procedure.
 Parallel Smoothing for Grid-Based Methods: A brief description of the smoothing
procedures used in Sculpt.
 Validation of Grid-Based Hex Meshes with Computational Solid Mechanics:
Describes a study where computational results from Sculpt meshes are compared with
Sweep meshes using the Sierra Solid Mechanics Tool as a comparison.
 A Template-Based Approach for Parallel Hexahedral Two-Refinement: Describes
the refinement procedures used for generating adapted Sculpt meshes.

Sculpt Application

This page describes the Sculpt application, a separate companion application to Cubit
designed to run in parallel for generating all-hex meshes of complex geometry. Sculpt
was developed as a separate application so that it can be run independently from Cubit
on high performance computing platforms. It was also designed as a separable software
library so it can be easily integrated as an in-situ meshing solution within other codes. As
installed with Cubit, Sculpt can be set up and run directly from Cubit, in a batch process

http://www.imr.sandia.gov/papers/imr20/Owen.pdf
http://www.imr.sandia.gov/papers/imr21/RNOwen.pdf
http://www.imr.sandia.gov/papers/imr22/IMR22_3_Owen.pdf
http://www.imr.sandia.gov/papers/imr24/03_IMR24_Owen.pdf

Cubit_15.5_User_Documentation

491

from the unix command line or from a user-defined input file. This documentation
describes the input file and command line syntax for the Sculpt Application when running
in batch mode. See this page for using Cubit to set up input for Sculpt. A brief technical
description of Sculpt may also be found here.

• Sculpt System Requirements
• Running Sculpt
• Sculpt Command Summary

o Process Control
o Input Data Files
o Output
o Overlay Grid Specification
o Mesh Type
o Boundary Conditions
o Adaptive Meshing
o Smoothing
o Mesh Improvement
o Mesh Transformation
o Boundary Layers

• Sculpt Examples

Sculpt System Requirements

Sculpt is currently built for windows, linux and mac operating systems. Current supported
OS versions should be the same as those supported by Cubit. It is designed to take
advantage of 64 bit multicore and distributed memory computers, using open-mpi as the
basis for parallel communications.

Running Sculpt

Sculpt can be run using one of two excutables:
1. psculpt

1. requires the use of mpiexec to start the process. Number of processors to
use is specified by the -np argument to mpiexec. psculpt and its input
parameters are also used as input to mpiexec. For example:

mpiexec -np 8 psculpt -stl myfile.stl -cs 0.5

2. If appropriate system paths have not been set, you may need to use full
paths when referring to mpiexec and psculpt.

2. sculpt
1. This application assumes that mpiexec is included in the standard CUBIT

installation directory. The number of processors to use is specified by the -
j option. For example:

sculpt -j 8 -stl myfile.stl -cs 0.5

Mesh Generation

492

2. If the -j option is not used, sculpt will default to a single processor for
execution. The -mpi option can also be used with the sculpt application to
indicate a specific mpi installation that is not included with CUBIT. For
example:

sculpt -j 8 -mpi /path/to/mpiexec -stl myfile.stl -cs 0.5

3. If the path specified by the -mpi option does not exist or the mpi version is
incompatible, sculpt will attempt to use the local CUBIT-installed mpiexec
or else the system mpiexec in the PATH environment.

Sculpt Examples

The following illustrate simple use cases of the Sculpt application. To use these
examples, copy the following stl and diatom files to your working directory

1.

brick1.stl

brick2.stl

bricks.diatom

Example 1

sculpt -j 4 -stl brick1.stl -cs 0.5

Runs sculpt with 4 processors with geometry input from brick1.stl. Uses a base Cartesian
cell size of 0.5. The bounding box and all other parameters will be defaulted. The result
should be the 4 exodus files:

 brick1.stl_results.e.4.0

 brick1.stl_results.e.4.1

 brick1.stl_results.e.4.2

 brick1.stl_results.e.4.3

These files can be combined into a single file using the SEACAS tool epu

epu -p 4 brick1.stl_results

The result of this operation should be a single file:

 brick1.stl_results.e

To view the resulting mesh in Cubit, use the import free mesh command. For example:

1. import mesh "brick1.stl_results.e" no_geom

Cubit_15.5_User_Documentation

493

Figure 1. Example 1 mesh

Example 2

mpiexec -np 4 psculpt -x 46 -y 26 -z 26 -t -6.5 -u -6.5 -v -6.5 -q 16.5 -r

6.5 -s 6.50 -d bricks.diatom

In this case we use mpiexec to start 4 processes of psculpt. We explicitly define the
number of Cartesian intervals and the dimensions of the grid. Rather than using the -stl
option, we use the -d option which allows us to specify the diatom file, bricks.diatom. This
file allows us to specify multiple stl files, where each one represents a different material.
In this case we use both brick1.stl and brick2.stl, which are called out in bricks.diatom.

We can use similar commands as used in Example 1 to combine and import the free
mesh into Cubit for display.

Mesh Generation

494

Figure 2. Example 2 mesh

 diatoms

 package 'Brick1'

 material 1

 iterations 3

 insert stl

 FILE = 'brick1.stl'

 endinsert

 endp

 package 'Brick2'

 material 2

 iterations 3

 insert stl

 FILE = 'brick2.stl'

 endinsert

 endp

 enddia

solid Body 1

 facet normal 0.000000e+00 0.000000e+00 1.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex -5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 0.000000e+00 1.000000e+00

 outer loop

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 vertex -5.000000e+00 5.000000e+00 5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

Cubit_15.5_User_Documentation

495

 facet normal 0.000000e+00 0.000000e+00 -1.000000e+00

 outer loop

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal -0.000000e+00 0.000000e+00 -1.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 -1.000000e+00 0.000000e+00

 outer loop

 vertex -5.000000e+00 -5.000000e+00 5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 -1.000000e+00 -0.000000e+00

 outer loop

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

 outer loop

 vertex -5.000000e+00 5.000000e+00 5.000000e+00

 vertex -5.000000e+00 5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

 outer loop

 vertex -5.000000e+00 -5.000000e+00 5.000000e+00

 vertex -5.000000e+00 5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 1.000000e+00 0.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 1.000000e+00 0.000000e+00

 outer loop

 vertex -5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 vertex -5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

Mesh Generation

496

 outer loop

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

endsolid Body 1

solid Body 1

 facet normal 0.000000e+00 0.000000e+00 1.000000e+00

 outer loop

 vertex 1.500000e+01 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 1.500000e+01 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 0.000000e+00 1.000000e+00

 outer loop

 vertex 1.500000e+01 -5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 0.000000e+00 -1.000000e+00

 outer loop

 vertex 1.500000e+01 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 1.500000e+01 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal -0.000000e+00 0.000000e+00 -1.000000e+00

 outer loop

 vertex 1.500000e+01 5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 -1.000000e+00 0.000000e+00

 outer loop

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 1.500000e+01 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 -1.000000e+00 -0.000000e+00

 outer loop

 vertex 1.500000e+01 -5.000000e+00 5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 vertex 1.500000e+01 -5.000000e+00 -5.000000e+00

 endloop

Cubit_15.5_User_Documentation

497

 endfacet

 facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

 outer loop

 vertex 5.000000e+00 -5.000000e+00 5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 1.000000e+00 0.000000e+00

 outer loop

 vertex 1.500000e+01 5.000000e+00 5.000000e+00

 vertex 1.500000e+01 5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 0.000000e+00 1.000000e+00 0.000000e+00

 outer loop

 vertex 5.000000e+00 5.000000e+00 5.000000e+00

 vertex 1.500000e+01 5.000000e+00 -5.000000e+00

 vertex 5.000000e+00 5.000000e+00 -5.000000e+00

 endloop

 endfacet

 facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

 outer loop

 vertex 1.500000e+01 -5.000000e+00 5.000000e+00

 vertex 1.500000e+01 -5.000000e+00 -5.000000e+00

 vertex 1.500000e+01 5.000000e+00 5.000000e+00

 endloop

 endfacet

 facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

 outer loop

 vertex 1.500000e+01 5.000000e+00 5.000000e+00

 vertex 1.500000e+01 -5.000000e+00 -5.000000e+00

 vertex 1.500000e+01 5.000000e+00 -5.000000e+00

 endloop

 endfacet

endsolid Body 1

Parallel Meshing

Cubit has been designed as a serial application, using a single CPU to generate its
meshes. In some cases, where memory or time constraints are critical, parallel meshing
may be necessary. Cubit currently provides a few separate applications designed to run
in parallel either on a desktop or on massively parallel cluster machines. In these cases,
Cubit can be used as a pre-processor to manipulate geometry and set up for meshing,

Mesh Generation

498

however the actual meshing procedure is performed as a separate process or on another
machine. The following two parallel meshing applications are available:

• pCamal
• Sculpt

A separate application for parallel refinement is also available:

• STK_Adapt

Sculpt Mesh Transformation

Sculpt options for applying transformations to the mesh following mesh generation. For
cases where the initial geometry description may not be at the desired scale or bounds,
the transformation options provide the ability to apply transformations to the node
locations following the mesh generation procedure. This can be effective for
microstructure models, where the size and location may be defined by the given intervals
of the data.

Mesh Transformation --transform -tfm

 --xtranslate -xtr <arg> Translate final mesh coordinates in X

 --ytranslate -ytr <arg> Translate final mesh coordinates in Y

 --ztranslate -ztr <arg> Translate final mesh coordinates in Z

 --scale -scl <arg> Scale final mesh coordinates by

constant

Sculpt Command Summary

Translate Mesh Coordinates in X

Command: xtranslate Translate final mesh coordinates in X

Input file command: xtranslate <arg>

Command line options: -xtr <arg>

Argument Type: floating point value

Command Description:
Translate all mesh coordinates written to Exodus file by X delta distance.

Translate Mesh Coordinates in Y

Command: ytranslate Translate final mesh coordinates in Y

Cubit_15.5_User_Documentation

499

Input file command: ytranslate <arg>

Command line options: -ytr <arg>

Argument Type: floating point value

Command Description:
Translate all mesh coordinates written to Exodus file by Y delta distance.

Translate Mesh Coordinates in Z

Command: ztranslate Translate final mesh coordinates in Z

Input file command: ztranslate <arg>

Command line options: -ztr <arg>

Argument Type: floating point value

Command Description:
Translate all mesh coordinates written to Exodus file by Z delta distance.

Scale Mesh Coordinates by Constant

Command: scale Scale final mesh coordinates by constant

Input file command: scale <arg>

Command line options: -scl <arg>

Argument Type: floating point value

Command Description:
Scale all mesh coordinates written to Exodus file by a constant scalar value.

Sculpt Adaptive Meshing

Sculpt options for specifying adaptive meshing. Sculpt uses an initial overlay Cartesian
grid that serves as the basis for the all-hex mesh. The default mesh size will roughly follow
the constant size cells of the overlay grid. The adaptivity option allows the user to
automatically split cells of the Cartesian grid based on geometric criteria, resulting in
smaller cells in regions with finer details. The adapted grid is then used as the basis for
the Sculpt procedure.

Mesh Generation

500

Adaptive mesh begins with constant size coarse Cartesian grid. Cells are recursively split
based on geometry criteria and transitions added between levels. Projections and
smoothing are performed to improve element quality.

Three options are used for controlling the adaptivity in sculpt: adapt_type, adapt_levels
and adapt_threshold. The adapt_type option controls the method and geometric criteria
used for deciding which cells to split in the grid, while the adapt_levels option controls the
the maximum number of times any one cell can be split. Depending upon the adapt_type
selected, the adapt_threshold is used as the specific geometric threshold value at which
the decision is made to split any given cell.

Initial cut-away view of adapted grid from dragon model before performing Sculpt
operations.

The final mesh of the dragon model and cutaway view of the mesh is shown with up to 4
levels of adaptive refinement.

Adaptive Meshing --adapt -adp

 --adapt_type -A <arg> Adaptive meshing type

 --adapt_threshold -AT <arg> Threshold for adaptive meshing

 --adapt_levels -AL <arg> Number of levels of adaptive

refinement

 --adapt_export -AE Export exodus mesh of refined grid

 --adapt_non_manifold -ANM Refine at non-manifold conditions

Cubit_15.5_User_Documentation

501

Sculpt Command Summary

Adaptive Refinement Type

Command: adapt_type Adaptive meshing type

Input file command: adapt_type <arg>

Command line options: -A <arg>

Argument Type: integer (0, 1, 2, 3, 4, 5)

Input arguments: off (0)

 facet_to_surface (1)

 surface_to_facet (2)

 surface_to_surface (3)

 vfrac_average (4)

 coarsen (5)

 vfrac_diff (6)

 vfrac_difference (6)

Command Description:
This option will automatically refine the mesh according to a user-defined criteria. Without
this option, a constant cell size will be assumed everywhere in the model. To build the
mesh, Sculpt uses an approximation to the exact geometry of the CAD model by
interpolating mesh surfaces from volume fraction samples in each cell of the Cartesian
grid. In general, the, higher the resolution of the Cartesian grid, the more sampling is done
and the more accurate the mesh will represent the initial geometry. The adapt_type
selected will control the criteria used for refining the mesh. If the criteria is not satisfied,
the refinement will continue until a threshold indicated by the adapt_threshold parameter
is satisfied everywhere, or the maximum number of levels (adapt_levels) is reached. The
following criteria for refinement are available:

• off (0): Cartesian grid is defined only by nelx, nely, and nelz or cell_size which
is used as the basis for the sculpt mesh. No refinement will be performed.

• facet_to_surface (1): This option will evaluate every location where an edge in
the Cartesian grid intersects a triangle of the STL model and measures the
closest distance to the approximated geometry. The cells adjacent to intersecting
edges where the measured distance is greater than the adapt_threshold will be
identified for uniform refinement. This is done for each refinement level where a
new approximated geometry is then computed based upon the finer resolution
grid. The refinement will continue until all measured distances are less than the
adapt_threshold, or the maximum number of levels (adapt_levels) is reached.
This option can only be used if input comes from an STL file. Microstructures and
diatoms are currently not supported.

Mesh Generation

502

Distance from STL Facet to Approximated Geometry. The distance d is measured
between the facets (green) where they cross the edges of the grid, to the closest
point on the interpolated geometry. If d > adapt_threshold then the cell is split.

surface_to_facet (2): This criteria is similar to facet_to_surface (1) except that
the locations selected for sampling are chosen from the vertices representing the
approximated surfaces. The closest distance measured to any of the facets in the
STL model is used as the criteria for refinement. Those cells at vertices where the
distance measured exceeds the adapt_threshold are identified for refinement.
This option is generally faster than 1, but may miss features if the initial resolution
of the grid is too coarse. This option can also only be used if input geometry comes
from an STL file. Microstructures and diatoms are currently not supported.

Distance from Approximated Geometry to STL Facet. The distance d is measured
between points on the interpolated geometry corresponding to a projected point
on the grid, to its closest point on one of the STL facets. If d > adapt_threshold
then the cell is split.

surface_to_surface (3): This criteria will test each cell to compute the local
interpolated surface for the cell and compare with the surface interpolated for its
eight subdivided child cells. If the distance between these two approximated
surfaces is greater the the user defined adapt_threshold, then the cell will be
uniformly refined. This option can be used with STL and diatom input geometry,
but not with Microstructures.

Cubit_15.5_User_Documentation

503

Distance Between Child and Parent Approximated Geometry. After computing the
interpolated geometry for level n and level n+1, d is the distance between the two
geometry representations. Cells where d > adapt_threshold are split.

vfrac_average (4): Each cell of the Cartesian grid is tested to determine if it should
be subdivided into eight cells. The volume fraction of the parent cell is compared
with the average volume fraction of its eight child cells. If the absolute difference
between the average child volume fraction and its parent volume fraction is greater
than the user defined adapt_threshold then the cell is uniformly refined. The
adapt_threshold for this case should be a number between 0 and 1. A smaller
number will be more sensitive to changes in geometry, usually resulting in more
refinement at interfaces.

Difference of Cell Volume Fraction. Volume fractions are evaluated for the 8 child
cells of a cell at level n. This example shows where one or more of the volume
fractions at level n+1 of the lower left cells does not differ by more than a threshold
d, so it remains unsplit.

coarsen (5): Given a dense set of data on a Cartesian Grid, Sculpt will begin at a
coarse resolution and refine to capture changes in the data. It uses the
adapt_levels option to determine the coarseness of the initial grid. For example, a
dense grid of LxMxN cells will begin with an initial resolution of L/2^a x M/2^a x
N/2^a, where a is the user defined adapt_levels value. Cells will be identified for
refinement if the volume fraction of any material in a cell is greater than the user
defined adapt_threshold and less than 1.0-adapt_threshold. This option is
available only for input_spn and input_micro formats. It is most useful for cases
where very dense data is initially provided which would be too fine to serve as an
FEA mesh. This method will effectively coarsen the mesh on the interior and
exterior of solids, but maintain a fine resolution at geometry boundaries.

Mesh Generation

504

Refine to Dense Data (Coarsening). Initial grid at resolution N X M is coarsened to
N0 X M0 based on the adapt_levels value. Coarse cells are then split similar to
criteria in adapt_type = 4.

vfrac_difference (6): Each cell of the Cartesian grid is tested to determine if it
should be subdivided into eight cells. The volume fraction of the parent cell is
compared with each of the volume fractions of its eight child cells. If the absolute
difference between any of the child volume fractions and its parent volume fraction
is greater than the user defined adapt_threshold then the cell is uniformly refined.
The adapt_threshold for this case should be a number between 0 and 1. A smaller
number will be more sensitive to changes in geometry, usually resulting in more
refinement at interfaces.

To maintain a conforming mesh, transition elements will be inserted to transition between
smaller and larger element sizes. Default for the adapt_type option is off (0) (or that no
adaptive refinement will take place).
In all cases the initial Cartesian grid defined by xint, yint and zint or the cell_size value
will be used as the basis for refinement and will define the approximate largest element
size in the mesh.

Adaptive Refinement Threshold

Command: adapt_threshold Threshold for adaptive meshing

Input file command: adapt_threshold <arg>

Command line options: -AT <arg>

Argument Type: floating point value >= 0.0

Command Description:
This value controls the sensitivity of of the adaptivity. The value used should be based
upon the adapt_type:

• facet_to_surface (1)
• surface_to_facet (2)
• surface_to_surface (3)

For these options, the adapt_type selected represents an absolute distance
between surfaces or facets. Where the distance exceeds adapt_threshold the
nearby cell or cells will be identified for refinement. The smaller this number the
more sensitive will be the adaptation and greater the resulting number of elements.
If not specified, the adapt_threshold will be determined as follows:

Cubit_15.5_User_Documentation

505

 adapt_threshold = 0.25 * cell_size / adapt_levels^2

• vfrac_average (4)
• coarsen (5)

The adapt_threshold value in this case represents the maximum difference in
volume fraction between a parent cell and the average of its eight child cells. This
value should be between 0.0 and 1.0. The smaller the number, the more sensitive
will be the adaptation and the greater the number of resulting elements. A default
adapt_threshold of 0.01 is used if not specified.

Note that the user defined adapt_threshold may not be satisfied everywhere in the mesh
if the value defined for adapt_levels is exceeded.

Number of Adaptive Levels

Command: adapt_levels Number of levels of adaptive refinement

Input file command: adapt_levels <arg>

Command line options: -AL <arg>

Argument Type: integer >= 0

Command Description:
The maximum number of levels of adaptive refinement to be performed. One level of
refinement will split each Cartesian grid cell identified for uniform refinement into eight
child cells. Two levels of refinement will split each cell again into eight, resulting in sixty-
four child cells, three levels into 256, and so on. The maximum number of subdivision per
cell is give as:

 number of cells = 8^adapt_levels

The minimum edge length for any cell will be given by:

 min cell edge length = cell_size / adapt_levels^2

The actual number of refinement levels used will be determined by whether all cells meet
the adapt_threshold, or the adapt_levels value is exceeded. The default adapt_levels is
2. Note that setting the adapt_levels more than 4 or 5 can result in long compute times.

Export Refined Cartesian Grid

Command: adapt_export Export exodus mesh of refined grid

Input file command: adapt_export

Command line options: -AE

Command Description:
Export an exodus mesh containing the refined Cartesian grid. Interface reconstruction,
boundary layer insertion and smoothing have not yet been applied to this mesh. It is the
base mesh used as input to Sculpt. One file per processor will be exported in the form

Mesh Generation

506

"vfrac_adapt.e.x.x". The exodus mesh produced will also contain the computed volume
fractions for each material present in the model represented as element variables.
This option is primarily used for debugging the refinement option. However the mesh
produced with this option can be used as the base mesh when used with the input_mesh
option. For example, instead of Cartesian grid options, the input mesh may be specified
as input_mesh = vfrac_adapt.e.1.0. Sculpt will use the refined mesh and the volume
fraction element variables to build the final mesh.

Adapt Cells at Non-manifold Nodes

Command: adapt_non_manifold Refine at non-manifold conditions

Input file command: adapt_non_manifold

Command line options: -ANM

Command Description:
If refinement results in a non-manifold condition at a node, the surrounding cells will be
identified for refinement. In some cases, using this option will result in a closer match to
geometry for thin layers or small features. Using this option will normally result in more
elements at material interfaces. Note that in all cases non-manifold conditions will be
resolved even without this option in a subsequent step, however without this option, the
resulting solution may not match geometry as accurately.
The adapt_non_manifold option is off by default. It is currently only implemented for
adapt_type that use an STL geometry definition. (adapt_type = 1,2,3)

Sculpt Boundary Conditions

Sculpt options for specifying the methods for generating nodesets, sidesets and blocks
on the mesh. Several automatic methods for generating nodesets and sidesets are
provided in Sculpt using the gen_sidesets option. Where multiple blocks are required,
Block IDs are normally defined using the material ID in the diatom file. Each STL file can
be associated with a different block ID. If the mesh_void option is used, the ID for the
block of elements in the void region can be set using the void_mat option.
For other input formats such as volume fraction microstructure data or Cartesian Exodus
files, the Block IDs are defined by the individual formats.

Boundary Conditions --boundary_condition -bc

 --void_mat -VM <arg> Void material ID (when

mesh_void=true)

 --gen_sidesets -SS <arg> Generate sidesets

 --free_surface_sideset -FS <arg> Free Surface Sideset

 --match_sidesets -mss <arg> Sidesets ids of matching pairs

Sculpt Command Summary

Cubit_15.5_User_Documentation

507

Void Material ID

Command: void_mat Void material ID (when mesh_void=true)

Input file command: void_mat <arg>

Command line options: -VM <arg>

Argument Type: integer > 0

Command Description:

When the mesh_void option is used, this value is the material (block) ID assigned to all
elements in the void region. If void_mat option is not used, the material ID of elements in
the void region will be the maximum material ID in the model + 1. Note that the void_mat
may be the same as an existing material in another part of the model.

Generate Sidesets

Command: gen_sidesets Generate sidesets

Input file command: gen_sidesets <arg>

Command line options: -SS <arg>

Argument Type: integer (0, 1, 2, 3, 4, 5)

Input arguments: off (0)

 fixed (1)

 variable (2)

 geometric_surfaces (3)

 geometric_sidesets (4)

 rve (5)

 input_mesh_and_stl (6)

 input_mesh_and_free_surfaces (7)

 rve_variable (8)

Command Description:

Geometry used in sideset examples below.

Generate exodus sidesets using one of the following options:
off (0): No sidesets will be generated
fixed (1): Exactly 3 sidesets will be generated according to the following:

• Sideset 1: All sides at the domain boundary. Sides will only be present in this
sideset if the model intersects the enclosing bounding box or the void option is
used.

Mesh Generation

508

• Sideset 2: All sides at the model boundary. Any side on the model that is not
interior will be included. This should represent a full enclosure of the model if it
does not intersect the domain boundary.

• Sideset 3: All sides at material interfaces. Includes sides on the interior where
adjacent blocks are different.

Example of fixed(1) sidesets.

variable (2): A variable number of sidesets will be generated with the following
characteristics:

• Surfaces at the domain boundary
• Exterior material surfaces
• Interfaces between materials

Unlike Fixed sidesets, grouping of sides will be contiguous. A separate sideset will be
generated for each set of contiguous sides.

Cubit_15.5_User_Documentation

509

Example of variable(2) sidesets.

geometric_surfaces (3): Sidesets will be generated according to imported surface ID
information. STL files may include an optional surface designation for any or all triangles
in the file. Surface information may be written automatically from Cubit based on
geometric surface IDs or sideset IDs. See the cubit sculpt parallel sideset option for more
details. Alternatively, use the "export stl ..." command with the "sidesets" option to export
all sidesets in a Cubit model as surface information. If present, one sideset will be
generated for each surface designation in the STL file. Following is an example surface
designation in an STL file. It would appear following all triangles.

 surface 1

 0 1 2 3 4 5 6 7 8 9

 10 11 12 13 14 15 16 17 18 19

 20 21 22 23

 endsurface 1

The id following the surface designation will be used as the sideset ID. Up to 10 triangle
IDs, per line may be assigned to the surface. Triangle IDs are assigned based on order
they appear in the STL file. Any number of surfaces may be defined. For this option, the
assumption is that all triangles included in the STL files will be included in at least one
surface designation.

Mesh Generation

510

Example of all geometric surfaces (3) defining sidesets.

geometric_sidesets (4): Similar to geometric_surfaces, except that only a portion of
the triangles may be designated as sideset surfaces. This option is useful when using
Cubit to identify specific surfaces as sidesets.

Example of selected geometric sidesets (4) in Cubit defining sidesets in Sculpt.

RVE (5): When using the full bounding box, such as representative volume elements
(RVE) for microstructures, the nodesets and sidesets with IDs 1 to 6 are reserved for the
six faces of the bounding box. They are assigned as follows:

 Nodeset/Sideset ID Contains nodes/faces

Cubit_15.5_User_Documentation

511

 1 on minimum X domain boundary

 2 on maximum X domain boundary

 3 on minimum Y domain boundary

 4 on maximum Y domain boundary

 5 on minimum Z domain boundary

 6 on maximum Z domain boundary

In addition, a nodeset and sideset will be generated on interior surfaces for each unique
pair of adjacent material IDs. One final nodeset will also be generated along interior
curves at all internal triple junctions (curves where at least 3 surfaces share a common
curve).

Example of automatically defined sidesets at domain boundaries of an RVE and at all
interface surfaces between materials.

input_mesh_and_stl (6): Used with the input_mesh option where an exodus file is used
as the base grid. Sidesets and nodesets defined in the input exodus mesh are transferred
to the output mesh if the surface is not an interior surface. Sidesets defined in the
augmented STL input file are transferred to the output mesh for interior surfaces. See
also the free_surface_sideset option for prescribing a sideset on interior surfaces cut by
the STL definition when using the input_mesh option.

Mesh Generation

512

Example of sidesets defined in the input mesh and corresponding domain boundary
sidesets in the output mesh.

input_mesh_and_free_surfaces (7): Used with the input_mesh option where an
exodus file is used as the base grid. Sidesets and nodesets defined in the input exodus
mesh are transferred to the output mesh if the surface is not an interior surface. Sidesets
defined in the free_surface_sideset option are used to define sidesets for interior
surfaces.

Example of sidesets defined in the input mesh and corresponding domain boundary
sidesets in the output mesh.

Cubit_15.5_User_Documentation

513

rve_variable (8): Nodesets 1-6 and Sidesets 1-6 are defined at the boundaries as
described in the gen_sidesets = rve (5) option. With the rve_variable option, additional
nodesets and sidesets at material interfaces on the interior of the mesh are defined similar
to the gen_sidesets = variable (2) option. Grouping of interior sides in a sidesets will be
contiguous, where a separate sideset will be generated for each unique set of contiguous
sides. Nodesets will be generated in a similar manner.

Free Surface Sidesets

Command: free_surface_sideset Free Surface Sideset

Input file command: free_surface_sideset <arg>

Command line options: -FS <arg>

Argument Type: integer(s) >= 0

Command Description:
Given exodus sidesets are treated as interior surfaces for STL projection.
Used with the input_mesh option when using an exodus mesh as the base grid. This
may be useful if the capture option is enabled and some of the STL surfaces are close
in proximity to the boundaries of the input exodus mesh. When close in proximity, sculpt
will by default not project those boundary nodes to the STL surface but keep them on the
domain boundary. If a list of sideset IDs are given here, the sideset faces will be projected
to the STL. The sideset IDs should refer to sidesets that are defined in the specified
input_mesh exodus file.

Example of free_surface_sideset defined on the top surface faces of an input mesh

Match Sideset Ids

Command: match_sidesets Sidesets ids of matching pairs

Input file command: match_sidesets <arg>

Command line options: -mss <arg>

Argument Type: integer(s) >= 0

Command Description:

Mesh Generation

514

If used with an unstructured base grid (input mesh), this option allows the user to define
a crack in the input mesh, where the faces of each vertical side (wall) of the crack are
each in a different sideset. The faces at the bottom of the crack share a common edge
(V-bottom) or face (square-bottom). Sculpt will match or equalize the volume fractions of
the bottom cells on either side of the crack. This produces a uniform, higher quality mesh
at the crack. The sidesets must be specified in a pairwise order. This option must be used
with the --input_mesh (-im) option.

Sculpt Boundary Layers

Sculpt options for defining boundary layers in the mesh. Boundary layers are thin hex
layers that can be defined at surfaces, extending either inward or outward from a material.
The user may specify the number and thickness of the hex layers as well as the material
ID of the layers. Layer thicknesses should normally be "thin" with respect to the size of
the cells. Layers will not intersect, so should be defined on surfaces where nearby layers
will not overlap. Boundary layers are specified based upon a material ID, where hex layers
will be placed at surfaces where the material interfaces with other materials, or at free
surfaces.

Example of boundary layers.

Boundary layers defined at the surfaces of a material.

Boundary Layers --boundary_layer -bly

 --begin -beg <arg> Begin specification blayer or

blayer_block

 --end -zzz <arg> End specification blayer or

blayer_block

 --material -mat <arg> Boundary layer material specification

 --num_elem_layers -nel <arg> Number of element layers in blayer

block

Cubit_15.5_User_Documentation

515

 --thickness -th <arg> Thickness of first element layer in

block

 --bias -bi <arg> Bias of element thicknesses in blayer

block

Sculpt Command Summary

Boundary Layer Begin

Command: begin Begin specification blayer or blayer_block

Input file command: begin <arg>

Command line options: -beg <arg>

Argument Type: blayer, blayer_block

Command Description:
Defines the beginning of a specification block. Must be closed with "end" argument.
Currently supports the following specifications:
blayer
Defines a boundary layer specification. Layers of hex elements are placed at the interface
of a given material. Valid argumnts used within a blayer specification include: material,
and begin blayer_block.
blayer_block
Defines a set of element layers within a given blayer definition that share a common
material ID. Valid arguments used within a blayer_block specification include: material,
num_elem_layers, thickness and bias.
Example:
The following example shows a boundary layer specification in a sculpt input file. In this
example, two boundary layer blocks are defined at the interface of materials 1 and 2. Two
material blocks with ID 3 and 4 are generated with 1 and 2 element layers respectively.

 BEGIN BLAYER

 MATERIAL = 1 2

 BEGIN BLAYER_BLOCK

 MATERIAL = 3

 NUM_ELEM_LAYERS = 1

 THICKNESS = 0.1

 END BLAYER_BLOCK

 BEGIN BLAYER_BLOCK

 MATERIAL = 4

 NUM_ELEM_LAYERS = 2

 THICKNESS = 0.2

 BIAS = 1.3

 END BLAYER_BLOCK

 END BLAYER

Mesh Generation

516

Example schema for boundary layers corresponding to input file below.

Boundary Layer End

Command: end End specification blayer or blayer_block

Input file command: end <arg>

Command line options: -zzz <arg>

Argument Type: blayer, blayer_block

Command Description:
Defines the end of a specification block. Must be preceded with "begin" argument.
Currently supports arguments blayer and blayer_block.

Boundary Layer Material

Command: material Boundary layer material specification

Input file command: material <arg>

Command line options: -mat <arg>

Argument Type: integer > 0

Command Description:
Defines a material ID in a boundary layer specification. When used within a BLAYER
specification, it references one or two existing materials in the input where boundary
layers will be generated. If a single material is specified, hex layers will be generated at

Cubit_15.5_User_Documentation

517

all interfaces of the designated material with any adjacent material. If two material IDs are
specified, layers will be generated only at interfaces where the two materials are adjacent.
In most cases, the material ID(s) in the BLAYER specification refer to material IDs defined
in the diatom file for specific geometry inserts such as STL files or diatom primitives. It
can also be defined as the void material ID (VOID_MAT) or a material in a volume fraction
description such as input_vfrac, input_micro, input_cart_exo or input_spn.
When used within a BLAYER_BLOCK specification, it refers to a new block that will be
generated for which all elements in the blayer_block will be assigned. Normally it refers
to a unique material ID that is not already referenced in the input. Where the material ID
is already used, elements in the blayer block will be added to the existing material.
A material ID must be defined for both a BLAYER and BLAYER_BLOCK. This value does
not have a default.

Number of Element Layers in Boundary Layer

Command: num_elem_layers Number of element layers in blayer block

Input file command: num_elem_layers <arg>

Command line options: -nel <arg>

Argument Type: integer > 0

Command Description:
Number of element layers to be defined within a BLAYER_BLOCK specification.
num_elem_layers must be defined for all BLAYER_BLOCKs.

Boundary Layer Thickness

Command: thickness Thickness of first element layer in block

Input file command: thickness <arg>

Command line options: -th <arg>

Argument Type: floating point value

Command Description:
Thickness of the first layer defined in a BLAYER_BLOCK. Value is an absolute distance.
No default is provided and must be defined for all BLAYER_BLOCKs

Boundary Layer Bias

Command: bias Bias of element thicknesses in blayer block

Input file command: bias <arg>

Command line options: -bi <arg>

Argument Type: floating point value

Command Description:

Mesh Generation

518

Bias factor applied to additional layers of a BLAYER_BLOCK. Used in conjunction with
the THICKNESS parameter (thickness of first layer) it defines a multiplier for the thickness
for subsequent element layers defined within the same BLAYER_BLOCK. Default BIAS
is 1.0 and is optional.

Sculpt Command Summary

Following is a listing of the available input commands to either sculpt or psculpt. When
used from the unix command line, commands may be issued using the short form
argument, designated with a single dash(-), or with the longer form, designated with two
dashes (--). When used in an input file, only the long form may be used, omitting the two
dashes (--)

Process Control --process -pc

 --num_procs -j <arg> Number of processors requested

 --input_file -i <arg> File containing user input data

 --debug_processor -D <arg> Sleep to attach to processor for

debug

 --debug_flag -dbf <arg> Dump debug info based on flag

 --quiet -qt Suppress output

 --print_input -pi Print input values and defaults then

stop

 --version -vs Print version number and exit

 --threads_process -tpp <arg> Number of threads per process

 --iproc -ip <arg> Number of processors in I direction

 --jproc -jp <arg> Number of processors in J direction

 --kproc -kp <arg> Number of processors in K direction

 --periodic -per Generate periodic mesh

 --check_periodic -cp <arg> Check for periodic geometry

 --check_periodic_tol -cpt <arg> Tolerance for checking periodicity

 --periodic_axis -pax <arg> Axis periodicity is about

 --periodic_nodesets -pns <arg> Nodesets ids of master/slave nodesets

 --build_ghosts -bg Write ghost layers to exodus files

for debug

 --vfrac_method -vm <arg> Set method for computing volume

fractions

Input Data Files --input -inp

 --stl_file -stl <arg> Input STL file

 --diatom_file -d <arg> Input Diatom description file

 --input_vfrac -ivf <arg> Input from Volume Fraction file base

name

 --input_micro -ims <arg> Input from Microstructure file

 --input_cart_exo -ice <arg> Input from Cartesian Exodus file

 --input_spn -isp <arg> Input from Microstructure spn file

 --spn_xyz_order -spo <arg> Ordering of cells in spn file

 --lattice -l <arg> STL Lattice Template File

Output --output -out

 --exodus_file -e <arg> Output Exodus file base name

 --volfrac_file -vf <arg> Output Volume Fraction file base name

 --quality -Q Dump quality metrics to file

Cubit_15.5_User_Documentation

519

 --export_comm_maps -C Export parallel comm maps to debug

exo files

 --write_geom -G Write geometry associativity file

 --write_mbg -M Write mesh based geometry file <beta>

 --compare_volume -cv Report vfrac and mesh volume

comparison

Overlay Grid Specification --overlay -ovr

 --nelx -x <arg> Num cells in X in overlay Cartesian

grid

 --nely -y <arg> Num cells in Y in overlay Cartesian

grid

 --nelz -z <arg> Num cells in Z in overlay Cartesian

grid

 --xmin -t <arg> Min X coord of overlay Cartesian grid

 --ymin -u <arg> Min Y coord of overlay Cartesian grid

 --zmin -v <arg> Min Z coord of overlay Cartesian grid

 --xmax -q <arg> Max X coord of overlay Cartesian grid

 --ymax -r <arg> Max Y coord of overlay Cartesian grid

 --zmax -s <arg> Max Z coord of overlay Cartesian grid

 --cell_size -cs <arg> Cell size (nelx, nely, nelz ignored)

 --align -a Automatically align geometry to grid

 --bbox_expand -be <arg> Expand tight bbox by percent

 --input_mesh -im <arg> Input Base Exodus mesh

 --input_mesh_blocks -imb <arg> Block ids of Input Base Exodus mesh

 --input_mesh_material -imm <arg> Material definition with input mesh

 --input_mesh_pamgen -imp <arg> Input Base mesh defined by Pamgen

Mesh Type --type -typ

 --stair -str <arg> Generate Stair-step mesh

 --mesh_void -V <arg> Mesh void

 --htet -ht <arg> Convert hexes below quality threshold

to tets

 --trimesh -tri Generate tri mesh of geometry

surfaces

 --tetmesh -tet <arg> Under Development

 --deg_threshold -dg <arg> Convert hexes below threshold to

degenerates

 --max_deg_iters -dgi <arg> Maximum number of degenerate

iterations

 --htet_material -htm <arg> Convert hexes in given materials to

tets

 --htet_transition -htt <arg> Transition method between hexes and

tets

 --htet_pyramid -htp <arg> Local transition pyramid

 --htet_tied_contact -htc <arg> Local transition tied contact

 --htet_no_interface -htn <arg> Local transition none

Boundary Conditions --boundary_condition -bc

 --void_mat -VM <arg> Void material ID (when

mesh_void=true)

 --gen_sidesets -SS <arg> Generate sidesets

 --free_surface_sideset -FS <arg> Free Surface Sideset

 --match_sidesets -mss <arg> Sidesets ids of matching pairs

Adaptive Meshing --adapt -adp

 --adapt_type -A <arg> Adaptive meshing type

Mesh Generation

520

 --adapt_threshold -AT <arg> Threshold for adaptive meshing

 --adapt_levels -AL <arg> Number of levels of adaptive

refinement

 --adapt_export -AE Export exodus mesh of refined grid

 --adapt_non_manifold -ANM Refine at non-manifold conditions

Smoothing --smoothing -smo

 --smooth -S <arg> Smoothing method

 --csmooth -CS <arg> Curve smoothing method

 --laplacian_iters -LI <arg> Number of Laplacian smoothing

iterations

 --max_opt_iters -OI <arg> Max. number of parallel Jacobi opt.

iters.

 --opt_threshold -OT <arg> Stopping criteria for Jacobi opt.

smoothing

 --curve_opt_thresh -COT <arg> Min metric at which curves won't be

honored

 --max_pcol_iters -CI <arg> Max. number of parallel coloring

smooth iters.

 --pcol_threshold -CT <arg> Stopping criteria for parallel color

smooth

 --max_gq_iters -GQI <arg> Max. number of guaranteed quality

smooth iters.

 --gq_threshold -GQT <arg> Guaranteed quality minimum SJ

threshold

 --geo_smooth_max_deviation -GSM <arg> Geo Smoothing Maximum Deviation

Mesh Improvement --improve -imp

 --pillow -p <arg> Set pillow criteria (1=surfaces)

 --pillow_surfaces -ps Turn on pillowing for all surfaces

 --pillow_curves -pc Turn on pillowing for bad quality at

curves

 --pillow_boundaries -pb Turn on pillowing at domain

boundaries

 --pillow_curve_layers -pcl <arg> Number of elements to buffer at

curves

 --pillow_curve_thresh -pct <arg> S.J. threshold to pillow hexes at

curves

 --pillow_smooth_off -pso Turn off smoothing following pillow

operations

 --capture -c <arg> Project to facet geometry <beta>

 --capture_angle -ca <arg> Angle at which to split surfaces

<beta>

 --capture_side -sc <arg> Project to facet geometry with

surface ID

 --defeature -df <arg> Apply automatic defeaturing

 --min_vol_cells -mvs <arg> Minimum number of cells in a volume

 --defeature_bbox -dbb Defeature Filtering at Bounding Box

 --defeature_iters -dfi <arg> Maximum Number of Defeaturing

Iterations

 --thicken_material -thm <arg> Expand a given material into

surrounding cells

 --micro_expand -me <arg> Expand Microstructure grid by N

layers

 --micro_shave -ms Remove isolated cells at micro.

boundaries

Cubit_15.5_User_Documentation

521

 --remove_bad -rb <arg> Remove hexes with Scaled Jacobian <

threshold

Mesh Transformation --transform -tfm

 --xtranslate -xtr <arg> Translate final mesh coordinates in X

 --ytranslate -ytr <arg> Translate final mesh coordinates in Y

 --ztranslate -ztr <arg> Translate final mesh coordinates in Z

 --scale -scl <arg> Scale final mesh coordinates by

constant

Boundary Layers --boundary_layer -bly

 --begin -beg <arg> Begin specification blayer or

blayer_block

 --end -zzz <arg> End specification blayer or

blayer_block

 --material -mat <arg> Boundary layer material specification

 --num_elem_layers -nel <arg> Number of element layers in blayer

block

 --thickness -th <arg> Thickness of first element layer in

block

 --bias -bi <arg> Bias of element thicknesses in blayer

block

Sculpt Mesh Improvement

Sculpt options for modifying the mesh to improve mesh quality.
Automatic smoothing provides an effective method for improving element quality.
However there may be some cases that cannot be improved with smoothing alone. The
options included in this section will apply changes to the underlying hex mesh or to the
volume fraction data to increase the opportunity for smoothing to produce a good quality
mesh.

Mesh Improvement --improve -imp

 --pillow -p <arg> Set pillow criteria (1=surfaces)

 --pillow_surfaces -ps Turn on pillowing for all surfaces

 --pillow_curves -pc Turn on pillowing for bad quality at

curves

 --pillow_boundaries -pb Turn on pillowing at domain

boundaries

 --pillow_curve_layers -pcl <arg> Number of elements to buffer at

curves

 --pillow_curve_thresh -pct <arg> S.J. threshold to pillow hexes at

curves

 --pillow_smooth_off -pso Turn off smoothing following pillow

operations

 --capture -c <arg> Project to facet geometry <beta>

 --capture_angle -ca <arg> Angle at which to split surfaces

<beta>

 --capture_side -sc <arg> Project to facet geometry with

surface ID

 --defeature -df <arg> Apply automatic defeaturing

 --min_vol_cells -mvs <arg> Minimum number of cells in a volume

Mesh Generation

522

 --defeature_bbox -dbb Defeature Filtering at Bounding Box

 --defeature_iters -dfi <arg> Maximum Number of Defeaturing

Iterations

 --thicken_material -thm <arg> Expand a given material into

surrounding cells

 --micro_expand -me <arg> Expand Microstructure grid by N

layers

 --micro_shave -ms Remove isolated cells at micro.

boundaries

 --remove_bad -rb <arg> Remove hexes with Scaled Jacobian <

threshold

Sculpt Command Summary

Pillow

Command: pillow Set pillow criteria (1=surfaces)

Input file command: pillow <arg>

Command line options: -p <arg>

Argument Type: integer (0, 1, 2, 3)

Input arguments: off (0)

 surfaces (1)

 curves (2)

 domain_boundaries (3)

 surfaces_no_smoothing (100)

 curves_2_layers (212)

 curves_3_layers (213)

 curves_4_layers (214)

 curves_5_layers (215)

 curves_2_layers_no_smoothing (202)

 curves_3_layers_no_smoothing (203)

 curves_4_layers_no_smoothing (204)

 curves_5_layers_no_smoothing (205)

Command Description:
For models that have more than one material that share an interface, unless the geometry
is precisely aligned with the global axis, it is usually a good idea to turn on pillowing.
Pillowing automatically inserts an additional layer of hexes at interface boundaries to
improve mesh quality. Without pillowing you may notice inverted or poor quality elements
at curve interfaces where 2 or more materials meet.
The pillow option will generate an additional layer of hexes at surfaces as a means to
improve element quality near curve interfaces. This is intended to eliminate the problem
of 3 or more nodes from a single hex face lying on the same curve. Use one or more of
the following options to set up pillowing:

• pillow_surfaces: Pillow around all surfaces

• pillow_curves: Pillow bad quality at curves
• pillow_boundaries: Pillow at domain boundaries
• pillow_curve_layers: Number of element layers to buffer curves
• pillow_smooth_off: Turn OFF smoothing following pillow operations

sculpt_commands.htm

Cubit_15.5_User_Documentation

523

See help on the above options for more information

Pillow All Surfaces

Command: pillow_surfaces Turn on pillowing for all surfaces

Input file command: pillow_surfaces

Command line options: -ps

Command Description: Pillow option to insert a layer of hexes surrounding each internal
surface in the mesh. Where two volumes share a common interface is defined as a
surface. All hexes that have at least one of its faces on a surface are defined as the
"shrink set" of hexes. A separate shrink set is defined for each unique surface. Hexes in
the set are shrunk away from their hex neighbors not in the shrink set. A layer of hexes
is then inserted surrounding all hexes in each set. This enforces the condition where no
more than one hex edge will lie on any single curve thus allowing more freedom for the
smoother to improve element quality.

Example of surface pillowing, before and after smoothing

Mesh Generation

524

Surface pillowing is off by default. If both pillow_curves and pillow_surfaces options
are used, curve pillowing will be performed before surface pillowing. See the pillow option
for more information on setting additional options for pillowing.

Pillow Bad Quality at Curves

Command: pillow_curves Turn on pillowing for bad quality at curves

Input file command: pillow_curves

Command line options: -pc

Command Description: Pillow option to selectively pillow hexes at curves. Only hexes that
have faces with 3 or more nodes on a curve will be pillowed. Additional buffer layers of
hexes beyond the poor quads at the curves will be included in the pillow region. The
number of buffer layers beyond the curve can be controlled with the
pillow_curve_layers, where the default will be 3 layers.

Example of curve pillowing with four pillow_curve_layers, before and after smoothing

Curve pillowing is off by default. If both pillow_curves and pillow_surfaces options are
used, curve pillowing will be performed before surface pillowing. See the pillow option
for more information on setting additional options for pillowing.

Cubit_15.5_User_Documentation

525

Pillow at Domain Boundaries

Command: pillow_boundaries Turn on pillowing at domain boundaries

Input file command: pillow_boundaries

Command line options: -pb

Command Description: Pillow option to insert pillow layers at domain boundaries of the
initial Cartesian grid definition. One layer of hexes is inserted on each of the six faces of
the Cartesian Domain. This option is useful where the void option is used to generate a
mesh in the full Cartesian grid and where the adapt option has been used. Without this
option, it is likely that hexes with two faces on the same domain boundary will occur if the
adaptation extends to the boundary. Turning on the pillow_boundaries option should
correct for these cases.

Example of pillowing at boundaries on a microstructure RVE. (b) before smoothing (c)
after smoothing

Boundary pillowing is off by default. The pillow_boundaries option may be used in the
same input as pillow_surfaces or pillow_curves. The pillow_boundaries option must
also be used with the mesh_void option to ensure hexes will exist at the Cartesian
domain boundary. See the pillow option for more information on setting additional options
for pillowing.

Number of Element Layers to Buffer Curves

Command: pillow_curve_layers Number of elements to buffer at curves

Input file command: pillow_curve_layers <arg>

Command line options: -pcl <arg>

Argument Type: integer > 0

Command Description: Used for setting the number of buffer hex layers when the
pillow_curves option is used. When pillow_curves is used a shrink set is formed from
hexes that would otherwise have two or more edges on the same curve. This value will
control the extent to which neighboring hexes will be included in the shrink set. The default
pillow_curve_layers is 3. Setting this value lower will localize the modifications to the
hex mesh, whereas, more layers will extend the region that is affected in correcting the
poor quality at curves.

Scaled Jacobian Threshold for Curve Pillowing

Mesh Generation

526

Command: pillow_curve_thresh S.J. threshold to pillow hexes at curves

Input file command: pillow_curve_thresh <arg>

Command line options: -pct <arg>

Argument Type: floating point value (-1.0->1.0)

Command Description: Used for setting the quality threshold for pillowing hexes at curves.
When determining hexes to include in the shrink set, the pillow_curves option will look
for hexes with more than two nodes of a hex on the same curve. If this condition is
satisfied, it will test the mesh quality of quads on the adjacent surfaces that share the
common curve. If at least 3 nodes are on a common curve and the Scaled Jacobian of
any of the attached quads falls below the, pillow_curve_thresh scaled Jacobian metric,
then the associated hexes will be included in the shrink set.
Default for pillow_curve_thresh is 0.3. Increasing this value will tend to increase the
total number of hexes added to the mesh, but may result in better mesh quality after
smoothing. Lowering this value may reduce the number of additional hexes but could
potentially result in more hexes with poor or bad Scaled Jacobian metrics.

Turn OFF Smoothing Following Pillow Operations

Command: pillow_smooth_off Turn off smoothing following pillow operations

Input file command: pillow_smooth_off

Command line options: -pso

Command Description: Controls the smoothing following pillow operations. To maximize
element quality at pillowed hexes, smoothing is always performed after inserting the hex
layers. The smoothing step may be omitted if pillow_smooth_off is set. This option can
be useful for visualizing the pillow layers that have been inserted, but in most cases will
generate poor quality or inverted elements.

Capture

Command: capture Project to facet geometry <beta>

Input file command: capture <arg>

Command line options: -c <arg>

Argument Type: integer (0, 1, 2)

Input arguments: off (0)

 on (1)

 external_surfaces (2)

 projections_only (3)

 feature_angle_smooth (4)

 topology_smooth (5)

Command Description:
This is an experimental option still in development. Nodes at the surfaces of a default
sculpt mesh will not necessarily exactly lie on the geometric surfaces prescribed by the
input STL geometry. While this characteristic can provide additional flexibility for

Cubit_15.5_User_Documentation

527

defeaturing and element quality, there are cases where a more exact surface
representation may be desired. The capture option attempts to address this by extracting
sharp features and/or projecting nodes to the facet geometry.

Simple example illustrating the effect of the capture = 5 option. Options smooth =
to_geometry and pillow_curves = true are also used for this example.

Several options are currently being studied as possible solutions. They include the
following:
0 = (off) Capture option is off. No attempt is made at capturing sharp features.
1 = (on) STL geometry is used as basis for feature capture. A user defined feature angle
is used (capture_angle) to first generate groups of facets from the STL geometry based
on capture_angle. Topological curves are defined based on projections to closest surface
facets and edges. With default smoothing option, the surface nodes will be projected to
the closest STL surfaces as a final step before exporting the exodus mesh. Consider
using smooth = to_geometry option.
2 = (exterior_surfaces) Only exterior surfaces are captured. Uses the same procedure as
described in capture = 1, except that interior surfaces (those with two adjacent volumes),
will be ignored in the capture and projections stage.
3 = (projections_only) For this option, additional topology based on feature angle is not
extracted. Only the final projection of surface nodes to the STL facets is done. Note that
this option is useful for organic shapes that do not have sharp features, or where sharp
features should be ignored.
4 = (feature_angle_smooth) This option uses the procedure outlined in capture = 1,
except that the smooth = to_geometry is used by default. Note that capture = 1 used
with smooth = to_geometry should be identical to this option.
5 = (topology_smooth) Curve topology is defined similar to capture = 1, except that
element face topology is first determined based on closest assigned facet. Curve topology
is then extracted based on adjacent element face associativity. Surface node projections
are only done for nodes that have unambiguous neighbor associativity. This provides for
a tolerant approach to resolving topology that may result in defeaturing. (i.e. where the
STL facet topology may be locally more complex than can be resolved by the prescribed
resolution). This option also uses the smooth = to_geometry option as default for
smoothing. Also note that capture = 5 it is only currently available for serial execution
(j=1)

Capture Angle

Mesh Generation

528

Command: capture_angle Angle at which to split surfaces <beta>

Input file command: capture_angle <arg>

Command line options: -ca <arg>

Argument Type: floating point value (0 -> 360)

Command Description:
This is an experimental option still in development. Feature angle for capture option.

Capture Side

Command: capture_side Project to facet geometry with surface ID

Input file command: capture_side <arg>

Command line options: -sc <arg>

Argument Type: integer > 0

Command Description:
Similar to the capture option, the capture_side option will project nodes to the initial
triangle facets, however projections will be limited only to surface nodes closest to the
surface ID specified by the argument. Note that the input STL file can identify and group
facets according to a surface ID. However surface IDs are utilized only when using the
gen_sidesets option with arguments 3 and 4. When using Cubit, the STL file written when
using the sculpt parallel command with sideset options 3 and 4 will include surface
identification for surfaces in the STL file. A workflow for using the capture_side option
might include the following:

1. Generate or import CAD model into Cubit.
2. Identify and group selected surfaces into a single sideset with unique ID.
3. In the Sculpt GUI set the sideset generation option to 4.
4. Turn on the option: Do not Run Sculpt.
5. In your working directory edit the input file (.i).
6. Add the option capture_side = <id> to the input file.
7. Run sculpt in batch using the input file to control execution.

The result should be a mesh where surface nodes closest to the surfaces identified by
the unique sideset ID will lie precisely on their closest surface.

Defeature

Command: defeature Apply automatic defeaturing

Input file command: defeature <arg>

Command line options: -df <arg>

Argument Type: integer (0, 1, 2, 3)

Input arguments: off (0)

 filter (1)

Cubit_15.5_User_Documentation

529

 collapse (2)

 filter_and_collapse (3)

Command Description:
Option to automatically detect and remove small features. Primarily used for defeaturing
microstructure data, however can be used with any input format. The following options
are available:

• off (0): No defeaturing performed (default)
• filter (1): Filters the Cartesian grid data so that groupings of cells of a common

material with less than min_vol_cells will be reassigned to the predominant
neighboring material. If the min_vol_cells argument is not specified, the
minimum number of cells in a volume will be set to 5. This has the effect of
removing small volumes that would otherwise be generated. This option will also
remove protrusions, where a cell surrounded on 4 or 5 sides by another material
ID will be reassigned to the predominant neighboring material. This option is
available with multiple processors.

See also the defeature_iters and defeature_bbox options for additional control
of the defeature = filter option. The compare_volume option can also be used to
validate that changes made to material volumes are within acceptable limits.

Example grid cells before and after defeaturing has been applied

Final mesh after using defeaturing.

• collapse (2): Curve and surface collapses are performed. This option is only
available when used with the trimesh option. After geometry has been extracted
and built from the volume fraction data curves containing exactly one mesh edge
are collapsed into a single vertex. Surfaces that are identified with exactly 2
curves, each of which have 2 mesh edges are collapsed into a single curve. Only
available as serial option (-j 1)

Mesh Generation

530

Example collapsing of small curve on microstructure model when using
defeature=2 and trimesh option

• filter_and_collapse (3): Performs both option filter (1) and collapse (2) on a
trimesh. Only available as serial option (-j 1)

Minimum Number of Cells in a Volume

Command: min_vol_cells Minimum number of cells in a volume

Input file command: min_vol_cells <arg>

Command line options: -mvs <arg>

Argument Type: integer >= 0

Command Description:
When used with defeature options filter (1) or filter_and_collapse (3), specifies the
minimum number of cells below which a volume will be eliminated. The cells of small
volumes will be absorbed into the predominant material of the neighboring cells. If not
specified and defeature options filter (1) or filter_and_collapse (3) are used, the
min_vol_cells value will be set to 5.

Defeature at Bounding Box

Command: defeature_bbox Defeature Filtering at Bounding Box

Input file command: defeature_bbox

Command line options: -dbb

Command Description:
The defeature_bbox option is used in conjunction with defeature = filter (1). It is used
to modify the defeature filter criteria at cells that are immediately adjacent to the Cartesian
grid's domain boundary. It is most effective for microstructure data but can be used with

Cubit_15.5_User_Documentation

531

any input format. The defeature = filter (1) option will remove protrusions identified by
cells that are surrounded on 4 or 5 sides by another material. For cells that are at the
domain boundary, cells will have missing adjacent cells on at least one face. If the
defeature_bbox=true option is used, the missing adjacent cells are considered a
different material and counted in the 4 or 5 surrounding cells with a different material. In
contrast, the defeature_bbox=false option will not count the missing adjacent cells.
Using the defeature_bbox=true has the effect of more aggressively modifying cells at
the domain boundaries to avoid protrusions. The default for this option is
defeature_bbox=false. It will be ignored if defeature = filter (1) is not used.

Maximum Number of Defeature Iterations

Command: defeature_iters Maximum Number of Defeaturing Iterations

Input file command: defeature_iters <arg>

Command line options: -dfi <arg>

Argument Type: integer >=0

Command Description:
Used with the defeature option. Controls the maximum number of iterations of defeature
filtering that will be performed. Setting this value greater than the default of 10 can be
useful for very noisy data where a significant number of iterations will need to be
performed to resolve the geometry.
When performing non-manifold resolution, the defeature state of some of the cells may
be effected. As a result, the defeaturing and non-manifold resolution procedures are
performed in a loop until no further changes can be made. The defeature_iters sets the
maximum number of defeature and non-manifold resolution procedures that will be
performed. Note that if defeaturing reaches the maximum iteration value without
completely resolving all non-manifold conditions, that subsequent sculpt procedures may
not succeed. Set this value higher to allow the defeaturing and non-manifold resolution to
run to completion. The stair = 1 option can be used to interrogate the model to see where
non-manifold conditions may still exist.

Thicken a material

Command: thicken_material Expand a given material into surrounding cells

Input file command: thicken_material <arg>

Command line options: -thm <arg>

Argument Type: integer >= 0 floating point value (0.0->1.0)

Command Description:
Used with the defeature option. Add additional cells at the boundary of a given material.
Takes two input values, a material and a volume fraction between 0 and 1. This option is
useful for noisy input data that may not form contiguous volumes. Thickening a material
may close small gaps making the material continuous. To perform the thicken operation,
cells in adjacent materials are removed and reassigned to the indicated material. This

Mesh Generation

532

option requires both a valid material ID and volume fraction value, where the volume
fraction represents the amount of material to be added to each neighboring cell. For
example:
thicken material = 1 0.2
thicken_material = 2 0.5
each neighboring cell to material 1 will change approximately 20 percent of its volume to
be material 1. Other materials present in the cell will be decreased accordingly to maintain
a sum of 1.0 for each cell. Additional material is accumulated in neighboring cells from
each adjacent cell it shares with material 1, so that if for example a neighbor cell shares
faces with three cells of material 1, it will add 0.6 (0.2 X 3) of material 1 volume fraction
to the neighbor. If more than one thicken_material option is used, the thicken operation
will be performed in the order they appear in the input. For the above example, material
1 would first be thickened, followed by material 2. If materials 1 and 2 are adjacent,
thickening in this case, material 2 would take precedence, potentially removing cells from
material 1 at their interface.

Bitmap input is used on a Cartesian base grid to generate the mesh for complex head
and brain anatomy. Left: Some of the materials prior to applying the thicken_material
option. Right: After applying the thicken_material option.

Microstructure Expansion

Command: micro_expand Expand Microstructure grid by N layers

Input file command: micro_expand <arg>

Command line options: -me <arg>

Argument Type: integer >= 0

Command Description:
This option expands the Cartesian grid by a specified number of layers. It can be used
with any of the following input options:

Cubit_15.5_User_Documentation

533

 --input_micro

 --input_cart_exo

 --input_spn

In some cases the interior material interfaces may intersect the domain boundaries at
small acute angles. When this occurs it may be difficult or impossible to achieve
computable mesh quality at these intersections. To address this problem, one or more
layers of hexes may be added to the Cartesian grid. The volume fractions from cells at
the boundary are copied to generate additional layers. This has the effect of increasing
the angle of intersection for any material interfaces intersecting the domain boundary.
Usualy a value of 1 or 2 is sufficient to sufficiently improve quality.
Note that the resulting mesh in the expanded layers serves only to improve mesh quality
and will only duplicate existing data at the boundaries. It may not reflect the actual material
structure within the expansion layers.

(a) Initial mesh (b) One expansion layer added (c) Two expansion layers added

Microstructure Shave

Command: micro_shave Remove isolated cells at micro. boundaries

Input file command: micro_shave

Command line options: -ms

Command Description:
This option potentially modifies the outermost layer of Cartesian cells of a microstructures
file. It will identify isolated cells where the assigned material is unique from all of its
surrounding cells at the boundary. When this occurs, the cell material is reassigned to the
dominant nearby material.
This option is useful if it is noted that a cell structure just barely grazes the exterior planar
boundary surface. Poor quality elements can often result with this condition. The
micro_shave option will, in effect, remove material from the cell structure, but will result
in better quality elements by removing the intersection region with the boundary.
micro_shave can be used with any of the following input options:

 --input_micro

 --input_cart_exo

 --input_spn

Remove bad elements below threshold

Command: remove_bad Remove hexes with Scaled Jacobian < threshold

Mesh Generation

534

Input file command: remove_bad <arg>

Command line options: -rb <arg>

Argument Type: floating point value -1.0 >= 1.0

Command Description:
Remove hexes below the specified scaled Jacobian metric.

Sculpt Input Data Files

Options for specifying input files to Sculpt. Sculpt uses a method for representing
geometry based upon volume fractions defined on a Cartesian or unstructured grid.
Sculpt will accept facet-based (STL) or analytic (diatom) geometry, but will first convert
the input geometry to the required volume fraction description before generating the
hexahedral mesh. Various formats for volume fraction data can also be imported directly
into Sculpt and used as the basis for hex meshing. The following formats for geometry
are currently supported in Sculpt:

• STL (stl_file)
• Diatom (diatom_file)
• Volume Fractions

o Exodus element variables (import_vfrac)
o Exodus blocks (import_cart_exo)
o Ascii Voxel Data (import_spn)
o Ascii Volume Fraction Data (import_micro)

Input Data Files --input -inp

 --stl_file -stl <arg> Input STL file

 --diatom_file -d <arg> Input Diatom description file

 --input_vfrac -ivf <arg> Input from Volume Fraction file base

name

 --input_micro -ims <arg> Input from Microstructure file

 --input_cart_exo -ice <arg> Input from Cartesian Exodus file

 --input_spn -isp <arg> Input from Microstructure spn file

 --spn_xyz_order -spo <arg> Ordering of cells in spn file

 --lattice -l <arg> STL Lattice Template File

Sculpt Command Summary

STL File

Command: stl_file Input STL file

Input file command: stl_file <arg>

Command line options: -stl <arg>

Argument Type: file name with path

Command Description:

Cubit_15.5_User_Documentation

535

File name of a single STL (facet geometry) file to be used as input. Either an stl_file or
diatom_file designation should be included to run Sculpt. The stl_file option will support a
single STL file. To use multiple STL files, where each file represents a different material,
use the diatom_file file option where multiple file names may be specified.
It is recommended that STL files used as input to Sculpt be "water-tight". While in many
cases non-watertight geometries will be successful, unexpected or incorrect results may
result. It is recommended practice to use Cubit to first import the STL geometry and allow
the sculpt parallel command to write a new STL geometry file for use in Sculpt. Cubit's
sculpt parallel command will attempt to stitch and repair any triangle facets that are not
completely closed. Other commercial tools are available for STL geometry that may be
effective in repairing the geometry prior to use in Sculpt.

Diatom File

Command: diatom_file Input Diatom description file

Input file command: diatom_file <arg>

Command line options: -d <arg>

Argument Type: file name with path

Command Description:
File name of a diatom file to be used as input to Sculpt. Both stl_file and diatom_file cannot
be used simultaneously. A diatom file is a constructive solid geometry description
containing primitives for generating a full geometric definition of the model. Diatoms are
commonly used as input to Sandia's CTH and Alegra codes. Multiple STL files can also
be defined in a Diatom file. The following is a simple example of a diatom file that would
read 3 different STL files:

 diatoms

 package 'blue_material'

 material 1

 insert stl

 file = 'blue_part1.stl'

 endinsert

 insert stl

 file = 'blue_part2.stl'

 endinsert

 endpackage

 package 'red_material'

 material 2

 insert stl

 file = 'red_part1.stl'

 endinsert

 endpackage

 enddiatom

Note that the first two files, blue_part1.stl and blue_part2.stl belong to the same material.
As a result, elements generated within the geometry of these files will belong to block 1.
Likewise, the elements generated within the geometry of red_part1.stl will belong to block
2.
Bitmap Files

Mesh Generation

536

The Diatom format will also support bitmap files. These are binary files that set each cell
either on or off for the specified material. The following is an example diatom specification
for a bitmap file. Note that the bitmap specification includes nx, ny, nz dimensions for the
size of the input file.

 diatoms

 package 'Skull'

 material 1

 insert bitmap

 file = 'skull_bitmap_file'

 nx = 680

 ny = 408

 nz = 236

 endinsert

 endpackage

 enddiatom

Example mesh generated with Diatom bitmap option

For a full description of the diatom format see the CTH or Alegra documentation.
D. A. Crawford, A. L. Brundage, E. N. Harstad, K. Ruggirello, R. G. Schmitt, S. C.
Schumacher and J. S. Simmons, "CTH User’s Manual and Input Instructions, Version
10.3", CTH Development Project, Sandia National Laboratories, Albuquerque, New
Mexico 87185, February 14, 2013

Input Volume Fraction File

Command: input_vfrac Input from Volume Fraction file base name

Input file command: input_vfrac <arg>

Command line options: -ivf <arg>

Argument Type: base file name with path

Command Description:
Sculpt can optionally take an exodus file containing volume fraction data stored as
element variables. Normally the exodus file has initially been written using the --

Cubit_15.5_User_Documentation

537

volfrac_file (-vf) option. Since the exodus file will be a Cartesian grid spread across
multiple processors, the base filename for the parallel series of exodus files is used as
the argument for this command. The input volume fraction file(s) would be used instead
of an STL or diatom file. Since computing volume fractions from geometry can be time
consuming, precomputing the volume fractions and reading them from a file can be
advantageous if multiple meshes are to be generated from the same volume fraction data.

Input Microstructure File

Command: input_micro Input from Microstructure file

Input file command: input_micro <arg>

Command line options: -ims <arg>

Argument Type: file name with path

Command Description:

Example all-hex mesh of microstructure

A microstructure file is an ascii text file containing volume fraction data for each cell of a
Cartesian grid. The format for this file includes header information followed by data for
each cell. The following is an example:

TITLE = triple line system

VARIABLES = x y z, phi_1, phi_2, phi_3

ZONE i = 2 , j = 2 , k = 2

0.0000 0.0000 0.0000 0.5000 0.5000 0.0000

1.0000 0.0000 0.0000 0.3333 0.3333 0.3334

0.0000 1.0000 0.0000 1.0000 0.0000 0.0000

1.0000 1.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 1.0000 0.2000 0.4000 0.4000

1.0000 0.0000 1.0000 0.6000 0.1000 0.3000

0.0000 1.0000 1.0000 0.0000 0.0000 1.0000

Mesh Generation

538

1.0000 1.0000 1.0000 0.9000 0.0000 0.1000

The header information should contain the following:
TITLE: any descriptive character string
VARIABLES: a list of variables separated by spaces or commas. It should include x, y, z
as the first three variable names. The remaining names are arbitrary. The number of
variable names listed must correspond to the number of data values for each cell of the
Cartesian grid.
ZONE: Specify the number of cells in the i, j and k directions (corresponding to x, y, and
z respectively)
The body of the file will contain one line per cell of the grid. The first three values
correspond to the centroid location of a cell in the grid. The remaining values represent
volume fractions for the cell for each variable listed. The sum of the volume fractions for
each individual cell should be 1.0
Currently this format assumes that cell sizes are exactly 1.0 x 1.0 x 1.0 and the minimum
cell centroid location is always 0.0, 0.0, 0.0. This results in a Cartesian grid with minimum
coordinate = (-0.5, -0.5, -0.5) and maximum coordinate = (i-0.5, j-0.5, k-0.5). If a size other
than 1x1x1 is required consider using the scale and/or translate options.
Example usage of this command is as follows:

 sculpt -j 8 -ims my_micro_file.tec -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include:

--smooth 9 (surface smoothing option - no surface projection)

--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but
may not adhere strictly to the volume fraction geometric definition. To over-ride the
defaults, consider using the following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)

--csmooth 5 (curve smoothing option - projection to interpolated curve)

Pillowing: For most 3D models it is recommended using pillowing since triple junctions
(curves with at least 3 adjacent materials) will typically be defined where malformed hex
elements would otherwise be generated. Surface pillowing (option 1) is usually sufficient
to remove poor quality elements at triple junctions.

Pillows (hex layers) inserted at surfaces to improve element quality around curves. Note
mesh quality at curve between surfaces A and B.

Cubit_15.5_User_Documentation

539

Input Cartesian Exodus File

Command: input_cart_exo Input from Cartesian Exodus file

Input file command: input_cart_exo <arg>

Command line options: -ice <arg>

Argument Type: file name with path

Command Description: An exodus mesh containing a Cartesian grid of elements can also
be used as the source of a sculpt mesh. For this option the following conditions must be
met:

Example Cartesian Exodus file and the resulting hex mesh.

1. A single (non-parallel) exodus II format file.
2. Contains only hex elements configured as a Cartesian grid.
3. All hex elements must be exactly equilateral cubes.
4. Each hex element has been assigned to exactly one block. (Any number of

blocks may be defined in the file)

Provided these conditions are met, sculpt will treat each block as a separate material and
generate a smooth conforming mesh between the materials. This option is useful for
converting a stair-step mesh into a smooth conforming mesh. The resulting sculpt mesh
will have the same dimensions as the original exodus mesh, but will add layers of hexes
at material interfaces.
Example usage of this command is as follows:

 sculpt -j 8 -ice my_cartesian_file.e -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include

--smooth 9 (surface smoothing option - no surface projection)

--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but
may not adhere strictly to the volume fraction geometric definition. To over-ride the
defaults, consider using the following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)

--csmooth 5 (curve smoothing option - projection to interpolated curve)

Pillowing: For most 3D models it is recommended using pillowing since triple junctions
(curves with at least 3 adjacent materials) will typically be defined where malformed hex

Mesh Generation

540

elements would otherwise be generated. Surface pillowing (option 1) is usually sufficient
to remove poor quality elements at triple junctions.

Input Microstructure SPN File

Command: input_spn Input from Microstructure spn file

Input file command: input_spn <arg>

Command line options: -isp <arg>

Argument Type: file name with path

Command Description:
A .spn file is an optional method for importing volume fraction data into sculpt for meshing.
This format is a simple ascii text file containing one integer per cell of a Cartesian grid.
Each integer represents a unique material identifier. Any number of materials may be
used, however for practical purposes, the number of unique materials should not exceed
more than about 50 for reasonable performance.
An example file containing a 3 x 3 x 3 grid with 2 materials may be defined as follows:

 1 1 2 1 2 1 1 1 1

 1 2 2 1 2 2 1 1 2

 2 1 1 1 2 1 1 2 2

Any unique integer may be used to identify a material. All cells with the same ID will be
defined as a continuous block with the same exodus block ID in the final mesh. All integers
should be separated by a space or newline. The number of integers in the file should
exactly correspond to the size of the Cartesian grid. The dimensions of the Cartesian grid
must be specified on the command line as part of the input. The following is an example:

 sculpt -j 8 -x 10 -y 24 -z 15 -isp "my_spn_file.spn" -p 1

The default order of the cells in the input file will be read according to the following
schema:

 for (i=0; i<nx; i++)

 for (j=0; j<ny; j++)

 for (k=0; k<nz; k++)

 // read next value from file

Where nx, ny, nz are the number of cells in each Cartesian direction. This ordering can
be changed to nz, ny, nx using the spn_xyz_order option. The initial size of the Cartesian
grid will be exactly nx X ny X nz with the minimum coordinate at (0.0, 0.0, 0.0). If a size
other than the default is required, consider using the scale and/or translate options.
Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include:

--smooth 9 (surface smoothing option - no surface projection)

--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but
may not adhere strictly to the volume fraction geometric definition. To over-ride the
defaults, consider using the following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)

Cubit_15.5_User_Documentation

541

--csmooth 5 (curve smoothing option - projection to interpolated curve)

Pillowing: For most 3D models it is recommended using pillowing since triple junctions
(curves with at least 3 adjacent materials) will typically be defined where malformed hex
elements would otherwise be generated. Surface pillowing (option 1) is usually sufficient
to remove poor quality elements at triple junctions.

XYZ ordering of cells in SPN File

Command: spn_xyz_order Ordering of cells in spn file

Input file command: spn_xyz_order <arg>

Command line options: -spo <arg>

Argument Type: integer (0 to 5)

Input arguments: xyz (0)

 xzy (1)

 yxz (2)

 yzx (3)

 zxy (4)

 zyx (5)

Command Description:
This option is valid with the 'input_spn' option. The default order of the cells in the spn
input file will be read according to the following schema:

 for (i=0; i<nx; i++)

 for (j=0; j<ny; j++)

 for (k=0; k<nz; k++)

 // read next value from file

If the spn file has the cells in a different order, use this option to specify the order. 0 (xyz)
is the default.

STL Lattice Template File

Command: lattice STL Lattice Template File

Input file command: lattice <arg>

Command line options: -l <arg>

Argument Type: file name with path

Command Description:

Lattice geometry generated from exodus mesh.

Mesh Generation

542

Generate a lattice structure from a hex mesh. This command takes the name of an STL
format template file which defines the lattice over a unit cube. To generate a valid lattice
structure, the facets should be symmetric to the three coordinate planes. The lattice
structure will be transformed and copied into each hex of the mesh. The result will be an
STL file containing lattice geometry for the mesh.
This option currently requires the name of an exodus mesh on which to define the lattice.
Use the --exodus_file (-e) option to specify its path. The current implementation is limited
to one block, however if a second block is contained in the Exodus file it will be treated
as a solid and stl facets will be generated at the skin of the block.
The name of the output STL file may also be defined by using the --stl_file (-stl) option. If
no stl file is specified, the output will use the name of the input exodus file with the
extension "_lattice.stl" appended.
In addition to the full lattice geometry, an additional file containing only the lattice from the
first layer of hexes will be written. This may be useful in reducing the size of the STL file
for visualization purposes only. The name of this file will be the name of the full STL
geometry file with the extension ".vis.stl" appended.
The following is an example input file using the lattice option:

 BEGIN SCULPT

 lattice = lattice_template.stl $contains unit cube with triangles

 exodus_file = file.e $ hex mesh containing one or two element blocks

 stl_file = file.stl $ name of output stl file

 END SCULPT

Note that this option is currently limited to serial execution (-j 1)

Sculpt Mesh Type

Sculpt options for specifying the type of mesh that will be generated. The default mesh
type that will be produced from Sculpt is an unstructured all-hex mesh that will attempt to
conform as closely as possible to the input geometry. Sculpt will normally generate its
mesh on the interior of the input geometry, however with the mesh_void option, it can
also generate the mesh on the exterior of the geometry, out to the extent of the user-
defined Cartesian overlay grid.
In addition to the default hex mesh, other types of meshes may be produced. This
includes the stair-step mesh where the cells of the Cartesian grid inside or intersecting
the geometry are used directly as the mesh without projections or smoothing. A triangle
mesh may also be generated, which can be used as the basis for a facet-based geometry
representation. Other methods include the capabilities to generate a hex-dominant mesh
with hexes and tets as well as the ability to include degenerate elements.

Mesh Type --type -typ

 --stair -str <arg> Generate Stair-step mesh

 --mesh_void -V <arg> Mesh void

 --htet -ht <arg> Convert hexes below quality threshold

to tets

Cubit_15.5_User_Documentation

543

 --trimesh -tri Generate tri mesh of geometry

surfaces

 --tetmesh -tet <arg> Under Development

 --deg_threshold -dg <arg> Convert hexes below threshold to

degenerates

 --max_deg_iters -dgi <arg> Maximum number of degenerate

iterations

 --htet_material -htm <arg> Convert hexes in given materials to

tets

 --htet_transition -htt <arg> Transition method between hexes and

tets

 --htet_pyramid -htp <arg> Local transition pyramid

 --htet_tied_contact -htc <arg> Local transition tied contact

 --htet_no_interface -htn <arg> Local transition none

Sculpt Command Summary

Stair

Command: stair Generate Stair-step mesh

Input file command: stair <arg>

Command line options: -str <arg>

Argument Type: integer (0, 1, 2, 3)

Input arguments: none (0)

 off (0)

 on (1)

 full (1)

 interior (2)

 fast (3)

Command Description:

Example stair-step mesh on STL geometry.

The stair option generates a stair-step mesh where the cells of the Cartesian grid are
used in the final mesh without projection or smoothing to the material interfaces. Cells
selected from the Cartesian grid to be used in the final mesh will have volume fraction
greater than 0.5. Several different options for the stair argument are available:
off (0): Stair option is off (default)
full (1): Stair-step mesh is generated, but additional processing is done to ensure material
interfaces are manifold. This option may add or subtract cells from the basic mesh (where

Mesh Generation

544

volume fraction > 0.5) to ensure no non-manifold connections between nodes and edges
exist in the final mesh.
interior (2): The exterior boundary will be smooth while internal material interfaces will
be stair-step. This option also ensures manifold connections between elements.
fast (3): Generates the final mesh based only on volume fraction criteria. No additional
processing is done to ensure manifold connections between edges and nodes.

Mesh Void

Command: mesh_void Mesh void

Input file command: mesh_void <arg>

Command line options: -V <arg>

Argument Type: true/false or only

Input arguments: off (0)

 false (0)

 on (1)

 true (1)

 only (2)

Command Description:

Mesh is generated in the void region surrounding the STL geometry.

The mesh_void accepts the following parameters:
off (0): No mesh is generated in the void region
on (1): Mesh is generated in the void region
only (2): Mesh is generated only in the void region and not in the material
If mesh_void option is set to on or only, then the void space surrounding the geometry
will be treated as a separate material. Elements will be generated in the void to the extent
of the Cartesian grid boundaries. If void_mat option is not used, the material ID of
elements in the void region will be the maximum material ID in the model + 1.

Cubit_15.5_User_Documentation

545

HTet

Command: htet Convert hexes below quality threshold to tets

Input file command: htet <arg>

Command line options: -ht <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Tet elements generated where quality drops below threshold.

Automatically generate tets in place of poor quality elements. This option can be used to
eliminate poor quality hex elements by replacing each hex that falls below the user
defined Scaled Jacobian with 24 tets. The 24 tets are formed by inserting one node at the
center of each face and one on the interior. Default value for htet is -1.0.
If an neighboring element is a hex, and will not be split, one may choose whether to use
pyramid transitions or have hanging nodes. The default is to have hanging nodes with a
tied contact condition being created. The transition type may be specified with the
htet_transition command.
If tet blocks are created, their ids will be the material id plus an offset based on the
maximum material id. Likewise, any pyramid blocks created will be offset as well, with
their ids coming after hex block ids if there are no tets, or with their ids coming after tet
blocks.

Trimesh

Command: trimesh Generate tri mesh of geometry surfaces

Input file command: trimesh

Command line options: -tri

Command Description:

Mesh Generation

546

Trimesh generated from voxel microstructure data.

Generate a triangle mesh of the surface geometry. Surface geometry will be defined
based on input grid resolution as well as user defined smoothing smoothing parameters.
Resulting exodus mesh will contain only TRI elements. All TRI elements will be assigned
to the same block in the exodus file.
This option is most often used in conjunction with the --write_geom option used to build
a mesh-based geometry in Cubit. Use the following command in Cubit to import a Sculpt
trimesh exodus file and s2g file (produced from --write_geom)

 import s2g <root filename>

See write_geom for more information on s2g files.

Tetmesh

Command: tetmesh Under Development

Input file command: tetmesh <arg>

Command line options: -tet <arg>

Argument Type: none

Input arguments: off (0)

 on (1)

 true (1)

 meshgems (2)

Command Description:
Under Development - uses space-filling tets as base grid. Size and extent is defined by
bounding box options.
The meshgems (2) option uses a third party tet mesher to place interior tets. Triangle
mesh is defined by splitting quads on surface. Both tetmesh options are currently only
implemented for serial execution.

Degenerate (Edge Collapse) Threshold

Command: deg_threshold Convert hexes below threshold to degenerates

Input file command: deg_threshold <arg>

Command line options: -dg <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Cubit_15.5_User_Documentation

547

Examples of degenerates hexes where select edges have been collpased.

Some geometries will not permit a usable mesh with a traditional all-hex mesh. Sculpt
includes the option to automatically and selectively collapse element edges to improve
low-quality elements. The max_deg_iters and the deg_threshold values are used to
control the creation of degenerates. Degenerate elements are treated as standard hex
elements, but use repeated nodes in the eight-node connectivity array.
The deg_threshold value indicates scaled Jacobian threshold for edge collapses. Nodes
at hexes below this threshold will be candidates for edge collapses, provided doing so will
improve the minimum scaled Jacobian at the neighboring hexes. Default is -1.0.

Maxmimum Degenerate Iterations

Command: max_deg_iters Maximum number of degenerate iterations

Input file command: max_deg_iters <arg>

Command line options: -dgi <arg>

Argument Type: integer >= 0

Command Description:
Maximum number of edge collapse iterations to perform to create degenerate hex
elements. Default is 0. See also deg_threshold

HTet Material

Command: htet_material Convert hexes in given materials to tets

Input file command: htet_material <arg>

Command line options: -htm <arg>

Argument Type: integer >= 0

Command Description:

Mesh Generation

548

Generate tets in place hexes in a given material. This option can be given multiple times
to specify multiple materials. Each hex in a material is replaced with 24 tets. The 24 tets
are formed by inserting one node at the center of each face and one on the interior.
If an neighboring element is a hex, and will not be split, one may choose whether to use
pyramid transitions or have hanging nodes. The default is to have hanging nodes with a
tied contact condition being created. The transition type may be specified with the
htet_transition command.
If tet blocks are created, their ids will be the material id plus an offset based on the
maximum material id. Likewise, any pyramid blocks created will be offset as well, with
their ids coming after hex block ids if there are no tets, or with their ids coming after tet
blocks.

 htet_material = 10

 htet_material = 12

 htet_transition = pyramid

 htet_no_interface = 10 13

Simple example of the use of hybrid tet-hex capability using the above example input.
Materials 10 and 12 use tet elements while 13 remains hexes. The default transition is to
use pyramids, while the specific interface between 10 and 13 has no interface.

HTet Transition

Command: htet_transition Transition method between hexes and tets

Input file command: htet_transition <arg>

Command line options: -htt <arg>

Argument Type: none/pyramid/tied_contact

Input arguments: none (0)

 pyramid (1)

 tied_contact (2)

Command Description:

Cubit_15.5_User_Documentation

549

When generating tets adjacent to hexes, the transition type between the two elements
can be defined. Possible options are:

• none (0): No transition between hex and tet
• pyramid (1): Pyramid transition between hex and tet
• tied_contact (2): Tied contact condition between hex and tet

If pyramid transition is specified, the hex may be split into 1 pyramids and 20 tets, 2
pyramids and 16 tets, 3 pyramids and 12 tets, and so forth. The mesh will remain
conformal if pyramid transition is specified.
A tied contact condition can be defined to ensure continuity of the neighboring tets and
hexes. To facilitate this, one additional nodeset and sideset will be generated and output
to the exodus file if the gen_sidesets = variable (2) option is specified. The sideset and
nodeset will be identified with the following IDs:
Sideset 10000 = the set of hex faces that interface a set of 4 tets.
Nodeset 1000 = the set of nodes at the interface between hexes and tets. One node per
face in Sideset 10000 will be included.

Local HTet Transition Pyramid

Command: htet_pyramid Local transition pyramid

Input file command: htet_pyramid <arg>

Command line options: -htp <arg>

Argument Type: integer(s) >= 0

Command Description:
When generating tets adjacent to hexes, pyramid transitions can be specified for a given
material or material interface. To specify a material interface, two material ids are given
to specify pyramid transition between the two materials. To specify multiple materials or
multiple material interfaces, this command may be used multiple times.

Local HTet Transition Tied Contact

Command: htet_tied_contact Local transition tied contact

Input file command: htet_tied_contact <arg>

Command line options: -htc <arg>

Argument Type: integer(s) >= 0

Command Description:
When generating tets adjacent to hexes, tied contact transitions can be specified for a
given material or material interface. To specify a material interface, two material ids are
given to specify tied contact transition between the two materials. To specify multiple
materials or multiple material interfaces, this command may be used multiple times.

Mesh Generation

550

Local HTet Transition None

Command: htet_no_interface Local transition none

Input file command: htet_no_interface <arg>

Command line options: -htn <arg>

Argument Type: integer(s) >= 0

Command Description:
When generating tets adjacent to hexes, no transition can be specified for a given material
or material interface. To specify a material interface, two material ids are given to specify
no transition between the two materials. To specify multiple materials or multiple material
interfaces, this command may be used multiple times.

Sculpt Output

Sculpt options for specifying output. The primary format for the hex meshes produced
from Sculpt is Exodus II. One exodus file will be produced for each processor based upon
the -j or num_procs argument. If required, the exodus files can be joined using the epu
utility.
Other options for export include the ability to dump the volume fraction representation of
the input geometry as well as the ability to write geometry files for use in Cubit.

Output --output -out

 --exodus_file -e <arg> Output Exodus file base name

 --volfrac_file -vf <arg> Output Volume Fraction file base name

 --quality -Q Dump quality metrics to file

 --export_comm_maps -C Export parallel comm maps to debug

exo files

 --write_geom -G Write geometry associativity file

 --write_mbg -M Write mesh based geometry file <beta>

 --compare_volume -cv Report vfrac and mesh volume

comparison

Sculpt Command Summary

Exodus File

Command: exodus_file Output Exodus file base name

Input file command: exodus_file <arg>

Command line options: -e <arg>

Argument Type: character string

Command Description:
The base file name of the resulting exodus mesh. Exodus files will be in the form
<exodus_file>.e.<nproc>.<iproc>. For example, if the number of processors used is 3 and
the exodus_file argument is "model" the following files would be written:

Cubit_15.5_User_Documentation

551

 model.e.3.0

 model.e.3.1

 model.e.3.2

If no exodus_file argument is used, output files will be in the form
<stl_file>_diatom_results.e.<nprocs>.<iproc>. For example, if the number of processors
used is 3 and the stl_file (or diatom_file) is "model.stl", the following files would be written:

 model_diatom_results.e.3.0

 model_diatom_results.e.3.1

 model_diatom_results.e.3.2

A full path may be used when specifying the base exodus file name, otherwise files will
be placed in the current working directory. If the exodus_file option is not used, exodus
files will be placed in the same directory as the input diatom or stl file.

Volume Fraction File

Command: volfrac_file Output Volume Fraction file base name

Input file command: volfrac_file <arg>

Command line options: -vf <arg>

Argument Type: character string

Command Description:
Optionally generate exodus files containing a hex mesh of the Cartesian grid containing
volume fraction data as element variables. This series of parallel exodus files can later
be used as direct input to sculpt using the --input_vfrac (-ivf) command. If not specified,
no volume fraction data files will be generated.

Quality

Command: quality Dump quality metrics to file

Input file command: quality

Command line options: -Q

Command Description:
A file named 'quality.csv' will be created in the current working directory (or appended).
Quality metrics and other details of the run will be written to this file. This option is currently
off by default.

Export Communication Maps

Command: export_comm_maps Export parallel comm maps to debug exo files

Input file command: export_comm_maps

Command line options: -C

Command Description:

Mesh Generation

552

Used for debugging and verification. Exodus files of the mesh containing the
communication nodes and faces at processor boundaries will be written as nodes and
side sets. This provides a way to visually check the validity of the parallel communication
maps.

Write S2G Geometry File

Command: write_geom Write geometry associativity file

Input file command: write_geom

Command line options: -G

Command Description:
An s2g (Sculpt to Geometry) file, with the pattern <fileroot>.s2g, will be produced when
this argument is used where fileroot is the string specified by the --exodus_file or -e option.
An s2g file includes geometry associativity for the exodus file that is written. If used with
Cubit's "import s2g <fileroot>" a mesh-based geometry will be generated in Cubit with
geometric entities prescribed by Sculpt through the s2g file.
When used with the --trimesh option, the s2g file can provide information to Cubit to build
a set of mesh-based geometry volumes where only the surfaces are meshed. This is
useful for using the tet meshing capabilities in Cubit to mesh the discrete geometry that
was generated in Sculpt. For example, a tet mesh may be constructed from
microstructures spn data (see import_spn) with the following workflow:

1. Run Sculpt to generate an exodus and s2g file. An example input file may look
like the following:

 begin sculpt

 import_spn = myfile.spn

 trimesh = true

 write_geom = true

 pillow = 1

 end sculpt

2. Import the file into Cubit to generate a mesh based geometry:

 import s2g myfile

3. Delete the triangle mesh, set sizes and mesh:

 delete mesh

 vol all scheme tetmesh

 vol all size 2.0

 mesh vol all

Cubit_15.5_User_Documentation

553

Note that the write_geom and trimesh options are still in development and will currently
only work with a single processor (-j 1).

Write Mesh Based Geometry

Command: write_mbg Write mesh based geometry file <beta>

Input file command: write_mbg

Command line options: -M

Command Description:
An MBG (Mesh Based Geometry) file will be produced when this argument is used with
the pattern <fileroot>.mbg, where fileroot is the string specified by the --exodus_file or -e
option. An MBG file includes the surface and topology definition defined by sculpt as a
result of the interface reconstruction process. It will correspond to the boundary of the 3D
elements that are generated in the exodus file, or the surface elements generated with
the --trimesh option.
An MBG file can be be imported into Cubit using the following Cubit command line
options:

 import mbg "<fileroot>.mbg"

Report VFrac to Mesh Volume Comparison

Command: compare_volume Report vfrac and mesh volume comparison

Input file command: compare_volume

Command line options: -cv

Command Description:
A report will be generated and printed to the terminal following the mesh summary that
compares the input volume fraction of the geometry with that of the final finite element
mesh. If a volume fraction format is not used as input, the volume fractions will be
computed on the refined base grid and used as comparison. Note that exact geometric
volumes of the STL or analytic geometry are not used for comparison, rather the volume
fraction approximation of the geometry on the refined Cartesian grid.

Example output from the compare_volume command.

The following is a brief description of each column:

Mesh Generation

554

• Block ID: ID of material/block
• Num Elems: Number of hex elements assigned to block in final mesh
• Sum VFrac: Sum of input volume fraction for block. For STL or diatom geometry,

approximates the volume fraction. For 3D image data (ie. bitmap, input_spn)
sums the exact volume fraction input.

• Elem Vol: Sum of final mesh volume for block
• Diff: Absolute difference between input and output volume fractions for block.

(Elem Vol - Sum VFrac)
• Percent Err: Percent error represented by Difference between input and output

volume fractions for block
• VFrac: Total volume fraction represented by Elem Vol. for block. VFrac volume

should sum to 1.0.

Sculpt Process Control

Options for controlling the execution of Sculpt. Sculpt is a parallel application that uses
MPI to distribute and build the hex mesh on multiple processors. The -j or num_procs
option is normally used to specify the number of processors to use. Sculpt will write a
separate exodus file for each processor, which can be joined into a single file using the
epu utility. While any number of processors may be used, you would normally use a -j
value less than or equal to the number of cores available on your hardware.
Sculpt options can be specified directly from the command line using the "short"
commands, or from an input file where the longer forms of the commands are used. Since
an input file can be commented and modified, it is generally the recommended method
for running Sculpt.

Process Control --process -pc

 --num_procs -j <arg> Number of processors requested

 --input_file -i <arg> File containing user input data

 --debug_processor -D <arg> Sleep to attach to processor for

debug

 --debug_flag -dbf <arg> Dump debug info based on flag

 --quiet -qt Suppress output

 --print_input -pi Print input values and defaults then

stop

 --version -vs Print version number and exit

 --threads_process -tpp <arg> Number of threads per process

 --iproc -ip <arg> Number of processors in I direction

 --jproc -jp <arg> Number of processors in J direction

 --kproc -kp <arg> Number of processors in K direction

 --periodic -per Generate periodic mesh

 --check_periodic -cp <arg> Check for periodic geometry

 --check_periodic_tol -cpt <arg> Tolerance for checking periodicity

 --periodic_axis -pax <arg> Axis periodicity is about

 --periodic_nodesets -pns <arg> Nodesets ids of master/slave nodesets

 --build_ghosts -bg Write ghost layers to exodus files

for debug

 --vfrac_method -vm <arg> Set method for computing volume

fractions

Cubit_15.5_User_Documentation

555

Sculpt Command Summary

Number of Processors

Command: num_procs Number of processors requested

Input file command: num_procs <arg>

Command line options: -j <arg>

Argument Type: integer > 0

Command Description:
The number of processors that Sculpt will use to generate the mesh. For a structured,
Cartesian base grid, the domain will be automatically divided into roughly equal sized
rectangular regions based on this value. For unstructured input (see --input_mesh), to
utilize more than one processor, the base mesh must first be docomposed into the same
number of regions specified by num_procs. The decomp tool, part of the Sandia,
SEACAS tool suite can be used to break up an exodus mesh into multiple regions suitable
for sculpt input. An independent mesh of a portion of the domain is generated on each
processor. Continuity across processor boundaries is maintained with MPI (Message
Passing Interface). Each processor will write a separate Exodus II file to disk containing
its portion of the domain. The Sandia SEACAS tool, epu can be used to join parallel files
into a single file if desired.
If not specified on the command line, the number of processors used will be 1.
For additional control on the arrangement of processor domains on a Cartesian base grid,
see arguments iproc, jproc, kproc.

Input File

Command: input_file File containing user input data

Input file command: input_file <arg>

Command line options: -i <arg>

Argument Type: file name with path

Command Description:
Rather than specifying a complicated series of arguments on the command line, an input
file may also be used. An input file is a simple text file containing all arguments and
parameters to be used in the current sculpt run. Input files are normally expected to have
a ".i" extension. Arguments used in the input file are limited to the Long Names indicated
for each command.
User comments can also be made anywhere in the file but must follow a "$" sign. The
argument assignments that are intended to be read must be contained within a "begin
sculpt" and "end sculpt" block. All arguments may use upper or lower case and can
optionally use "=" between the command and its parameter. The following is an example
input file:

 BEGIN SCULPT

Mesh Generation

556

 stl_file = "mygeom.stl"

 cell_size = 0.5

 exodus_file = "mymesh"

 mesh_void = true

 END SCULPT

The following is an example of using an input file with sculpt:

 sculpt -j 4 -i myinput.i

Note that the number of processors (-j) should always be used on the command line and
cannot be included in the input file. Relative or absolute paths for files may also be used.

Debug Processor

Command: debug_processor Sleep to attach to processor for debug

Input file command: debug_processor <arg>

Command line options: -D <arg>

Argument Type: integer >= 0

Command Description:
Used for debugging. All processes will sleep until the designated process is attached to
a debugger. Note: value of 0 corresponds to first processor, 1 to second, etc.

Debug Flag

Command: debug_flag Dump debug info based on flag

Input file command: debug_flag <arg>

Command line options: -dbf <arg>

Argument Type: integer >= 0

Command Description:
Used for debugging. Set flag to dump specific info based on the following:
0 Default, No debug output
1 Dump processor lost node info
2 Export Non-manifold resolution state as exodus file after each inner and outer iteration.
3 Export Defeature state as exodus file after each inner and outer iteration.
4 Export the Thickened state as exodus file after each material has been thickened.
Guaranteed Quality:
5 Turn off initial minimizer projection.
6 Use Non-manifold reversal case
7 Combine debug_flag 5 and 6
8 Use guaranteed quality laplacian color smoothing
9 Combine debug_flags 5,6 and 8

Quiet

Cubit_15.5_User_Documentation

557

Command: quiet Suppress output

Input file command: quiet

Command line options: -qt

Command Description:
Suppress any output to the command line from Sculpt as it is running.

Print Input

Command: print_input Print input values and defaults then stop

Input file command: print_input

Command line options: -pi

Command Description:
Display all input parameters and defaults used in the current Sculpt run to the output
window and then stop. No mesh (or volume fractions) will be generated.

Version

Command: version Print version number and exit

Input file command: version

Command line options: -vs

Command Description:
Prints Sculpt version information and exits.

Threads Per Processor

Command: threads_process Number of threads per process

Input file command: threads_process <arg>

Command line options: -tpp <arg>

Argument Type: integer > 0

Command Description:
This option is currently experimental and under development. Sculpt may use shared
memory parallelism to improve performance. When built with the Kokkos library, some
algorithms in sculpt will use shared memory parallel threads in addition to MPI distributed
memory parallelism (MPI+X). Currently this option is implemented only for surface and
volume Laplacian smoothing algorithms. This option may not be available requiring a
custom build of sculpt to be used. Check with developers if you would like to use this
option.

Number of processors in I

Mesh Generation

558

Command: iproc Number of processors in I direction

Input file command: iproc <arg>

Command line options: -ip <arg>

Argument Type: integer > 0

Command Description:
Arguments iproc, jproc and kproc provide user control over the processor decomposition
in I, J, and K directions respectively. iproc * jproc * kproc must equal the number of
processors specified on the command line using the -j option.

Number of processors in J

Command: jproc Number of processors in J direction

Input file command: jproc <arg>

Command line options: -jp <arg>

Argument Type: integer > 0

Command Description:
Arguments iproc, jproc and kproc provide user control over the processor decomposition
in I, J, and K directions respectively. iproc * jproc * kproc must equal the number of
processors specified on the command line using the -j option.

Number of processors in K

Command: kproc Number of processors in K direction

Input file command: kproc <arg>

Command line options: -kp <arg>

Argument Type: integer > 0

Command Description:
Arguments iproc, jproc and kproc provide user control over the processor decomposition
in I, J, and K directions respectively. iproc * jproc * kproc must equal the number of
processors specified on the command line using the -j option.

Generate Periodic Mesh

Command: periodic Generate periodic mesh

Input file command: periodic

Command line options: -per

Command Description:
Generates a periodic mesh for either Cartesian or unstructured mesh input. Ensures that
resulting mesh nodes and faces are precisely matching on opposite sides of the mesh.

Cubit_15.5_User_Documentation

559

Unstructured mesh input: When used with the --input_mesh option opposite sides of
the mesh must be identified using pairs of leading and trailing nodesets using the --
periodic_nodesets (-pns) option. Nodes in the nodeset pairs must be separated by a
constant translation or rotation. If a rotation is used between leading and trailing nodesets,
the --periodic_axis (-pax) option must be used. If not used, then the transformation is
assumed to be pure translation. Input geometry is assumed to be periodic with a period
equal to that of the input mesh. Results from non-periodic geometry used with the
periodic option may be unpredictable. The following is an example of an input file that
uses the periodic option on an unstructured input mesh:

 BEGIN SCULPT

 diatom_file = geometry_file.diatom

 input_mesh = input_exodus_file.g

 exodus_file = output_exodus_file

 smooth = to_geometry

 capture = 5

 capture_angle = 10

 free_surface_sideset = 1000

 gen_sidesets = input_mesh_and_free_surfaces

 periodic = true

 periodic_nodesets = 3224 3225

 periodic_axis = 0 0 0 0 1 0

 END SCULPT

Cartesian grid input: This option is often used for computational materials modeling.
Sculpt can generate a true periodic mesh in a representative volume element (RVE)
where meshes on all opposite faces of the RVE will precisely match. When used with a
Cartesian grid, the --periodic_nodesets and --periodic_axis options are ignored. The
following is an example sculpt input file that utilizes the --periodic option on a Cartesian
grid with geometry defined in a diatom file. It also utilizes the --adapt_type option to
automatically refine and the gen_sidesets = RVE option to generate sidesets at the six
RVE faces.

 BEGIN SCULPT

 diatom_file = spheres_periodic.diatom

 xmin = -18.705510

 ymin = -18.705510

 zmin = -18.705510

 xmax = 18.705510

 ymax = 18.705510

 zmax = 18.705510

 nelx = 38

 nely = 38

 nelz = 38

 periodic = true

 defeature = 1

 min_vol_cells = 10

 adapt_type = vfrac_average

 adapt_levels = 2

 adapt_threshold = 0.00001

 gen_sidesets = RVE

 exodus_file = spheres_periodic

 mesh_void = true

 END SCULPT

Mesh Generation

560

Geometry Requirements: In order to generate a valid periodic mesh, the input geometry
must also be periodic and the bounding box parameters should span exactly one period
of the geometry. To check the periodicity of the geometry and prescribed bounding box,
see the check_periodic option. Note: The resulting mesh at the boundaries of the
Cartesian grid (RVE) will not be projected to the planes of the bounding box. The result
will be a "ragged" boundary in order to maintain periodicity between nodes on opposite
sides of the mesh. Also note that results from the use of the periodic option may be
undefined or unstable when used with non-periodic input geometry.

Periodic geometry used for example described in diatom file. RVE boundary shown with
respect to the geometry.

Resulting periodic mesh generated from example input.

Cubit_15.5_User_Documentation

561

Six faces of the RVE from above example illustrating periodicity on a 32 processor
decomposition. Note that top three images are a mirror image of the bottom three images.

Check for periodic geometry

Command: check_periodic Check for periodic geometry

Input file command: check_periodic <arg>

Command line options: -cp <arg>

Argument Type: on, off, only

Input arguments: off (0)

 on (1)

 only (2)

Command Description:
When using the periodic option with a Cartesian base grid, the input geometry must be
periodic with respect to the grid bounding box in order to meet the minimum requirements
of a valid periodic mesh. The bounding box must span exactly one period in each
dimension. If this requirement is not met, a valid mesh may still be generated, however,
periodicity will not be guaranteed. The check_periodic option is used to check this
requirement. See also check_periodic_tol to set the tolerance for checking periodicity.
Options:

• ON: The check_periodic option is ON by default to ensure periodicity is
enforced. Sculpt will fail if the geometry and bounding box do not meet the
requirements for periodicity.

• OFF: Turning this option OFF will by-pass this check and attempt to generate the
mesh even if periodic requirements are not met.

• ONLY: The ONLY option will perform a check for periodic requirements and
report diagnostics. An exodus file (or files) will be produced with the name

Mesh Generation

562

"check_periodic.0.0.x.x". A stair-step mesh of the domain will be produced with
an additional 2 blocks: 999 and 998. Block 999 shows master cells that are not
matched. Block 998 shows paired ghost cells that should have the same volume
fraction as those in block 999, but do not. Sculpt will immediately stop execution
after producing the "check_periodic.0.0.x.x" mesh. Note that 2 additional layers
on all sides of the Cartesian grid will be present in the mesh. These are used
internally in Sculpt for parallel ghosting.

The check_periodic option is ignored if the periodic option is OFF or set to false.

Tolerance used for periodic check

Command: check_periodic_tol Tolerance for checking periodicity

Input file command: check_periodic_tol <arg>

Command line options: -cpt <arg>

Argument Type: floating point value

Command Description:
Used on conjunction with the check_periodic option. It specifies a tolerance value when
checking periodicity. Check periodic option checks the difference between computed
volume fractions for cells on the overlay grid that are separated by exactly one period.
The periodic tolerance is the allowable volume fraction difference between cells
separated by one period. Default value is 1e-6.

Periodic Mesh Axis

Command: periodic_axis Axis periodicity is about

Input file command: periodic_axis <arg>

Command line options: -pax <arg>

Argument Type: six floating point values

Command Description:
For an unstructured base grid, specifies an axis about which the nodes in the master
(leading) nodesets will be rotated about to produce the slave (trailing) nodesets. Six
floating point numbers are specified, the first three define the origin of the axis and the
last three define the axis direction. This option must be used with --periodic (-per), --
periodic_nodesets (-pns), and --input_mesh (-im) options. If the --periodic (-per) option
is used without the --periodic_axis option, the transformation between leading and trailing
nodesets is assumed to be pure translation.

Periodic Nodeset Ids

Command: periodic_nodesets Nodesets ids of master/slave nodesets

Cubit_15.5_User_Documentation

563

Input file command: periodic_nodesets <arg>

Command line options: -pns <arg>

Argument Type: integer(s) >= 0

Command Description:
For an unstructured base grid, specifies the master-slave (leading-trailing) nodeset pairs.
Master nodesets should be able to be translated or rotated about a specified axis to
produce the nodes in the slave nodesets. Nodesets must be specified in pairs, where
each master (leading) nodeset corresponds to a single slave (trailing) nodeset. Each
nodeset pair must maintain an identical translation or rotation. If a rotation is used, the
axis and origin of rotation must be specified with the --periodic_axis (-pax) option. This
option should be used with --periodic (-per), --periodic_nodesets (-pns), and --
input_mesh (-im) options.)

Unstructured input mesh used to generate periodic mesh. Matching leading and training
nodesets are defined in the exodus file.

Write the ghost layers for debug

Command: build_ghosts Write ghost layers to exodus files for debug

Input file command: build_ghosts

Command line options: -bg

Command Description:
If set, this option will dump the ghost hexes at the boundaries of processor domains to
the exodus files. This is used only for debugging.

Volume Fraction Calculation Method

Command: vfrac_method Set method for computing volume fractions

Input file command: vfrac_method <arg>

Command line options: -vm <arg>

Argument Type: integer (1, 2)

Input arguments: cth (0)

 cth (1)

 r3d (2)

Command Description:

Mesh Generation

564

Sets the method used for computing volume fractions from geometry input. Two options
are currently available:
CTH (1): The default method. It uses the CTH third party library from Sandia Laboratories
for approximating intersections using an adaptive ray firing method to determine inside-
outside status of multiple locations within a grid cell. This method can be used with STL
and all valid primitive types defined by the diatom format.
R3D (2): Uses the R3D third party library developed by Los Alamos Laboratories.
Machine precision intersection calculations are performed to generate accurate volume
fractions from the STL description. This method is valid for STL and diatom input
packages specifying STL input files. Non STL format geometry defined in the diatom file
will be ignored for this format.

Sculpt Overlay Grid Specification

Sculpt options for setting up the overlay grid. Sculpt is an overlay-grid method that
requires a base mesh that it will modify to generate the final mesh. The base mesh can
be in the form of a Cartesian grid, but can also be any general unstructured hexahedral
mesh defined in an exodus file (see the input_mesh option). Pamgen can also be used
to generate an unstructured base mesh (see input_mesh_pamgen).
When an overlay Cartesian grid is used as the basis for the all-hex mesh that will be
produced, the bounds and size of the cells defining the grid must be specified. The
Cartesian grid can be defined in one of two ways:

1. Define the bounding box and number of intervals in each coordinate direction.
(xmin, ymin, zmin, xmax, ymax, zmax, nelx, nely, nelz)

2. Define a cell_size. Sculpt will then automatically define the Cartesian grid
coordinates and intervals by evaluating the bounding box of the input geometry
and adding a small number of cells in each coordinate direction.

Other options for setting up the Cartesian base grid include align and expand which are
normally used with the second method. The align option will automatically rotate the grid
to best match the characteristic direction of the geometry rather than maintaining
alignment with the global Cartesian directions. The expand option over-rides the default
expansion of the Cartesian grid beyond the bounding box of the geometry and allow the
user to specify a specific expansion percentage.

Overlay Grid Specification --overlay -ovr

 --nelx -x <arg> Num cells in X in overlay Cartesian

grid

 --nely -y <arg> Num cells in Y in overlay Cartesian

grid

 --nelz -z <arg> Num cells in Z in overlay Cartesian

grid

 --xmin -t <arg> Min X coord of overlay Cartesian grid

 --ymin -u <arg> Min Y coord of overlay Cartesian grid

 --zmin -v <arg> Min Z coord of overlay Cartesian grid

 --xmax -q <arg> Max X coord of overlay Cartesian grid

Cubit_15.5_User_Documentation

565

 --ymax -r <arg> Max Y coord of overlay Cartesian grid

 --zmax -s <arg> Max Z coord of overlay Cartesian grid

 --cell_size -cs <arg> Cell size (nelx, nely, nelz ignored)

 --align -a Automatically align geometry to grid

 --bbox_expand -be <arg> Expand tight bbox by percent

 --input_mesh -im <arg> Input Base Exodus mesh

 --input_mesh_blocks -imb <arg> Block ids of Input Base Exodus mesh

 --input_mesh_material -imm <arg> Material definition with input mesh

 --input_mesh_pamgen -imp <arg> Input Base mesh defined by Pamgen

Sculpt Command Summary

Number of Intervals X

Command: nelx Num cells in X in overlay Cartesian grid

Input file command: nelx <arg>

Command line options: -x <arg>

Argument Type: integer > 0

Command Description:
Defines the number of intervals in the x direction of the base Cartesian grid used for
defining the volume fraction definition and meshing For best results the intervals specified
should result in approximately equilateral cells.
See also nely, nelz

Number of Intervals Y

Command: nely Num cells in Y in overlay Cartesian grid

Input file command: nely <arg>

Command line options: -y <arg>

Argument Type: integer > 0

Command Description:
Defines the number of intervals in the y direction of the base Cartesian grid used for
defining the volume fraction definition and meshing For best results the intervals specified
should result in approximately equilateral cells.
See also nelx, nelz

Number of Intervals Z

Command: nelz Num cells in Z in overlay Cartesian grid

Input file command: nelz <arg>

Command line options: -z <arg>

Argument Type: integer > 0

Command Description:

Mesh Generation

566

Defines the number of intervals in the z direction of the base Cartesian grid used for
defining the volume fraction definition and meshing For best results the intervals specified
should result in approximately equilateral cells.
See also nelx, nely

Xmin Bounding Box Range

Command: xmin Min X coord of overlay Cartesian grid

Input file command: xmin <arg>

Command line options: -t <arg>

Argument Type: floating point value

Command Description:
Defines the minimum x coordinate of the bounding box or range of the Cartesian mesh to
be used for meshing.
See also ymin, zmin, xmax, ymax, zmax.

Ymin Bounding Box Range

Command: ymin Min Y coord of overlay Cartesian grid

Input file command: ymin <arg>

Command line options: -u <arg>

Argument Type: floating point value

Command Description:
Defines the minimum y coordinate of the bounding box or range of the Cartesian mesh to
be used for meshing.
See also xmin, zmin, xmax, ymax, zmax.

Zmin Bounding Box Range

Command: zmin Min Z coord of overlay Cartesian grid

Input file command: zmin <arg>

Command line options: -v <arg>

Argument Type: floating point value

Command Description:
Defines the minimum z coordinate of the bounding box or range of the Cartesian mesh to
be used for meshing.
See also xmin, ymin, xmax, ymax, zmax.

Xmax Bounding Box Range

Cubit_15.5_User_Documentation

567

Command: xmax Max X coord of overlay Cartesian grid

Input file command: xmax <arg>

Command line options: -q <arg>

Argument Type: floating point value

Command Description:
Defines the maximum x coordinate of the bounding box or range of the Cartesian mesh
to be used for meshing.
See also xmin, ymin, zmin, ymax, zmax.

Ymax Bounding Box Range

Command: ymax Max Y coord of overlay Cartesian grid

Input file command: ymax <arg>

Command line options: -r <arg>

Argument Type: floating point value

Command Description:
Defines the maximum y coordinate of the bounding box or range of the Cartesian mesh
to be used for meshing.
See also xmin, ymin, zmin, xmax, zmax.

Zmax Bounding Box Range

Command: zmax Max Z coord of overlay Cartesian grid

Input file command: zmax <arg>

Command line options: -s <arg>

Argument Type: floating point value

Command Description:
Defines the maximum z coordinate of the bounding box or range of the Cartesian mesh
to be used for meshing.
See also xmin, ymin, zmin, xmax, ymax.

Cell Size

Command: cell_size Cell size (nelx, nely, nelz ignored)

Input file command: cell_size <arg>

Command line options: -cs <arg>

Argument Type: floating point value

Command Description:
Defines a target edge size for the cells of the base Cartesian grid. Both interval and
cell_size can not be specified simultaneously. If cell_size is used without a range

Mesh Generation

568

specification, a bounding box of the geometry will be computed and used as the default
range

Align

Command: align Automatically align geometry to grid

Input file command: align

Command line options: -a

Command Description:
The align option will attempt to orient the Cartesian grid with the main dimensions of the
geometry. This is done by defining a tight bounding box around the geometry using an
optimization procedure where the objective is to minimize the difference in volume
between an enclosing box and the geometry. Using the align command will override any
bounding box parameters previously entered and will build an "aligned" bounding box
around the full geometry. It is currently only implemented for STL geometry and will ignore
any other diatom definitions. Note that this option will also write temporary stl and diatom
files to the working directory.

Bounding Box Expansion Factor

Command: bbox_expand Expand tight bbox by percent

Input file command: bbox_expand <arg>

Command line options: -be <arg>

Argument Type: floating point value

Command Description:
Sculpt will measure a tight bounding box of the input model and expand the box by the
specified percentage in x, y and z. Input value can be any positive or negative floating
point value where 1.0 represents 100 percent expansion. If not specified, the default will
add about 2.5 cell widths to the bounding box on each side. This option should be used
with the cell_size option. It will be ignored if a specific bounding box has been defined (ie.
xmin, ymin, etc...).

Input Base Exodus Mesh

Command: input_mesh Input Base Exodus mesh

Input file command: input_mesh <arg>

Command line options: -im <arg>

Argument Type: file name with path

Command Description:
Option to import an Exodus file to use as the base mesh for Sculpt. Sculpt's meshing
procedure requires a base mesh from which geometry is recovered and captured. The

Cubit_15.5_User_Documentation

569

default base mesh is a Cartesian grid that is defined by specifying a bounding box and
intervals. The input_mesh option permits a general hexahedral mesh to be used as the
base mesh instead of a Cartesian grid. This option currently supports a serial and parallel
Exodus files containing HEX8 elements with any number of blocks.

An exodus file is used as the base mesh for Sculpt and STL files describe the geometry
to be sculpted.

The input_mesh option can also be used in parallel. Sculpt currently requires the mesh
to be decomposed prior to running sculpt. The SEACAS decomp tool can be used to pre-
process any exodus mesh to break it into multiple meshes ready for use in sculpt.
SEACAS is an open source library available on github. For example, when using four
processors with sculpt, you would use the following command:

 decomp -p 4 simple-mesh.g

The result would be the four meshes:

 simple-mesh.g.4.0

 simple-mesh.g.4.1

 simple-mesh.g.4.2

 simple-mesh.g.4.3

Once the base mesh has been decomposed, Sculpt can be run. In this case, the
input_mesh option would use the root simple-mesh.g as the argument.

 input_mesh = simple-mesh.g

If the -j 4 option is used, sculpt will look for 4 meshes in the current working directory with
the appropriate root and extension.
Four different options are supported for describing the geometry when using the
input_mesh option:

• stl_file: A single file containing a water-tight faceted description of the geometry.
Note that only the portion of the STL file completely contained within the base
mesh will be represented in the final mesh.

• diatom_file: May contain analytic descriptions of geometric primitives and/or
references to multiple STL files.

• input_spn: The materials of the cells in the spn file are mapped onto the
elements of the input mesh using inverse distance-weighted interpolation. As

Mesh Generation

570

with the stl and diatom files, only the portion of the spn file completely contained
within the base mesh will be represented in the final mesh. The
input_mesh_blocks option can be used in conjunction with the spn_file option
to limit the scope of the mapping of material from the spn file to the mesh file. If
this options is used, only elements in the specified blocks will get mapped to. For
more details, see the input_mesh_blocks option.

• Element Variables: The geometry may also be described by element variables
in the Exodus file. Element variables should represent material volume fractions
where the sum of element variables for any one cell should be between 0.0 and
1.0. Any number of element variables may be used where each unique variable
defined will describe an element block in the final Exodus mesh produced. if the
sum of element variables is less than 1.0 for any one element, a void material will
be assumed and removed from the base mesh unless the mesh_void option is
used.

Limitations:

• An STL file and element variables cannot be used in the same input. If element
variables are present in the Exodus file and an STL or Diatom file is used, the
element variables will be ignored.

• If an input mesh is used, any Cartesian grid specifications will be ignored (ie.
nelx, xmin, xmax).

• The adapt_type option will work only for an exodus input mesh that defines a
mapped mesh. Adapt types vfrac_average (4) and vfrac_difference (6) are
currently the only criteria supported with the input_mesh option.

Blocks of Input Base Exodus Mesh

Command: input_mesh_blocks Block ids of Input Base Exodus mesh

Input file command: input_mesh_blocks <arg>

Command line options: -imb <arg>

Argument Type: integers > 0

Command Description:
This option is valid when specifying both input_mesh and spn_file. Using this option,
the materials of the cells in the spn file are mapped onto only the elements of the specified
blocks in the input_mesh file. The remaining blocks are treated as void. The behavior
without this option maps the materials of the cells in the spn file onto elements of all blocks
in the input_mesh file.

Material definition with input mesh

Command: input_mesh_material Material definition with input mesh

Cubit_15.5_User_Documentation

571

Input file command: input_mesh_material <arg>

Command line options: -imm <arg>

Argument Type: integers > 0

Input arguments: geometry (0)

 blocks (1)

Command Description:
This option is valid when specifying an 'input_mesh' . Using this option, the material
definition in the final mesh may be defined based on the material definitions on the
geometry, or based on the block ids of the input mesh. For example, a diatom file defining
geometry would have materials defined which are used to define the materials in the final
mesh. The default is to use material definitions on the geometry. Possible options are:

• geometry (0): Material defined by geometry

• blocks (1): Material defined by blocks in input mesh

Behavior of interior faces differs when using the blocks option. For instance, interior faces
are defined by block interfaces rather than STL or diatom geometry. Exterior faces, on
the other hand, are still defined by STL or diatom geometry. When combined with the
capture option, only exterior faces are captured.

Input Base mesh defined by Pamgen

Command: input_mesh_pamgen Input Base mesh defined by Pamgen

Input file command: input_mesh_pamgen <arg>

Command line options: -imp <arg>

Argument Type: file name with path

Command Description:
Option to use Pamgen to create a base mesh for Sculpt. Pamgen is an open source
meshing tool developed at Sandia for generating hexahedral meshes from geometric
primitives. In addition to being a stand-alone meshing solution, it is a parallel tool that is
integrated as an inline meshing tool for Sandia's shock physics simulation tool, Alegra.
Pamgen has also been integrated in Sculpt as a solution for automatically defining a base
mesh.
The input_mesh_pamgen option permits a mesh defined my Pamgen input parameters
to define the base mesh. A limited set of brick and cylinder primitives are supported by
Pamgen. The name of an ascii file containing the pamgen mesh definition is used as the
argument for this option. The following is a simple example of a pamgen mesh description.
It generates a partial cylinder with a span of 90 degrees and height of 1.0. Other
parameters allow for specific interval and sizing specifications as well as block/material
identification.

 mesh

 radial trisection

 trisection blocks, 2

 zmin -0.00075

 numz 1

Mesh Generation

572

 zblock 1 1. interval 8

 numr 3

 rblock 1 2.0 interval 8

 rblock 2 3.0 interval 8

 rblock 3 4.0 interval 8

 numa 1

 ablock 1 90. interval 24

 end

 set assign

 nodeset, ilo, 100

 block sideset, ihi, 45, 2

 end

 end

For a full description of Pamgen and input parameters see the following document:
David M. Hensinger, Richard R. Drake, James G. Foucar, Thomas A. Gardiner, "Pamgen,
a Library for Parallel Generation of Simple Finite Element Meshes", Sandia Report
SAND2008-1933 (2008)

Base mesh generated by pamgen using the above input parameters. Colors represent 4
different processors when used in parallel mode.

Similar to the input_mesh option, the same geometry input options are available. They
include stl_file, diatom_file and input_spn. See the input_mesh option for additional
details and limitations.

Sculpt Smoothing

Sculpt options for specifying how the mesh will be smoothed following mesh generation.
Sculpt includes a tiered approach to smoothing to improve element quality. It starts by
applying smoothing to all nodes in the mesh and progressively restricts the smoothing
operations to only those nodes that fall below a user-defined scaled Jacobian threshold.
Default numbers of iterations and thresholds for each smoothing phase have been tuned
for general use, however it may be worthwhile to adjust these parameters. The three
smoothing phases include:

Cubit_15.5_User_Documentation

573

• Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach
to improve quality, but can result in degraded element quality if applied to
excess. A fixed default of 2 iterations is applied to all hexes. Increasing the
num_laplace parameter can improve some cases, especially convex shapes.

• Optimization Smoothing: Applied only to elements who's scaled Jacobian falls
below the opt_threshold parameter (default 0.6) and their surrounding elements.
This approach uses a more expensive optimization technique to improve regions
of elements simultaneously. The max_opt_iters parameter can control the
maximum number of iterations applied (default is 5). Iterations will terminate,
however, if no further improvement is detected. Because this method optimizes
node locations simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

• Spot Optimization: Also known as parallel coloring, is applied only to elements
who's element quality falls below the pcol_threshold parameter (default 0.2). This
technique is the most expensive of the techniques, but focusses only on nodes
that are immediately adjacent to poor quality hexes. Each node is smoothed
independently of its neighbors, and may require a high number of iterations using
the max_pcol_iters to achieve desired results. Increasing the pcol_threshold and
max_pcol_iters may yield improved results.

Smoothing --smoothing -smo

 --smooth -S <arg> Smoothing method

 --csmooth -CS <arg> Curve smoothing method

 --laplacian_iters -LI <arg> Number of Laplacian smoothing

iterations

 --max_opt_iters -OI <arg> Max. number of parallel Jacobi opt.

iters.

 --opt_threshold -OT <arg> Stopping criteria for Jacobi opt.

smoothing

 --curve_opt_thresh -COT <arg> Min metric at which curves won't be

honored

 --max_pcol_iters -CI <arg> Max. number of parallel coloring

smooth iters.

 --pcol_threshold -CT <arg> Stopping criteria for parallel color

smooth

 --max_gq_iters -GQI <arg> Max. number of guaranteed quality

smooth iters.

 --gq_threshold -GQT <arg> Guaranteed quality minimum SJ

threshold

 --geo_smooth_max_deviation -GSM <arg> Geo Smoothing Maximum Deviation

Sculpt Command Summary

Smooth

Command: smooth Smoothing method

Input file command: smooth <arg>

Mesh Generation

574

Command line options: -S <arg>

Argument Type: integer (0, 1, 2, 3)

Input arguments: off (0)

 default (1)

 on (1)

 fixed_bbox (2)

 no_surface_projections (3)

 to_geometry (4)

 to_geom (4)

 geo_smooth (5)

 geometry_smoothing (5)

 geo_smoothing (5)

Command Description:
Automatic adjustment of node locations following meshing to improve element quality.
Controls the combined Laplacian and optimization smoothing procedures applied to
volume and surface nodes (see csmooth for curve smoothing options) Uses the
laplacian_iters, max_opt_iters, opt_threshold, max_pcol_iters, pcol_threshold,
mqx_gq_iters and gq_threshold arguments to control the sensitivity and
aggressiveness of the smoothing operations. In most cases, the default options for these
parameters are sufficient, however increasing iterations or threshold values, while
potentially causing longer run times, may result in improved mesh quality.
Smoothing will adjust the location of nodes on surfaces, projecting them to an
approximated surface representation defined by interface reconstruction from volume
fractions. In addition to turning smoothing on and off, the surface projection
characteristics can be adjusted using the bbox_fixed and no_surface_projections
options.

• off (0): No volume and surface smoothing is performed.
• on/default (1): (Default) Combined Laplacian/Optimization (Hybrid) smoothing

both surface and volumes. Automatic boundary buffer layer improvement is
performed at interior surfaces intersecting the domain boundary.

• fixed_bbox (2): Uses standard hybrid smoothing procedure, however nodes at
the the domain boundaries will be projected to one of the six planes of the
bounding box. This option turns off the automatic boundary buffer improvement.

• no_surface_projections (3): Uses the fixed_bbox method, however interior
surfaces are not projected. This can result in smoother interior surface
representations for microstructures models. This is effective in smoothing noisy
surface data, but can potentially reduce overall volume. The laplacian_iters
option will control the amount of smoothing that will occur, with higher numbers of
iterations resulting in a smoother surface representation, but also resulting in
more reduction in geometric volume. This method is default for microstructures
file formats.

• to_geometry (4): This option is currently under development. When used with
the capture option, smoothing will also move nodes to the closest geometry
entity. It must currently be used with capture to ensure that curves and surfaces
are first identified and associated with boundary mesh entities. This option will
only work with STL or diatom input that contains STL geometry.

• geo_smooth (5): This option is currently under development. Similar to the
smooth = to_geometry option, it is also intended to be used with the capture

Cubit_15.5_User_Documentation

575

option. With the geo_smooth option, nodes are initially projected to the closest
geometry entity. However, following the initial projection, Sculpt will utilize the
Laplacian smoothing operation, similar to the smooth =
no_surface_projections option, to effectively remove noise and local deviations
in the geometry definition. The laplacian_iters option will control the amount of
geometric smoothing that will occur. The optional command
geo_smooth_max_deviation can also be used to control the maximum distance
any individual node location can deviate from its original geometry definition.

Boundary Buffer Improvement: Sculpt's smoothing procedures will use an automatic
boundary buffer improvement method. It will attempt to improve the quality of hexes
where interior surfaces are close to tangent with the bounding box. This can result in
nodes that may not lie precisely on the planes of the domain boundary. The fixed_bbox
(2) and no_surface_projections (3) options will turn off the automatic boundary buffer
improvement.

Curve Smoothing

Command: csmooth Curve smoothing method

Input file command: csmooth <arg>

Command line options: -CS <arg>

Argument Type: integer (0, 1, 2, ...6)

Input arguments: off (0)

 circle (1)

 hermite (2)

 average_tangent (3)

 neighbor_surface_normal (4)

 vfrac (5)

 linear (6)

Command Description:
The csmooth option controls the smoothing method used on curves. In most cases the
default should be sufficient, however it may be useful to experiment with different options.
The default curve smoothing option is vfrac (5). The following curve smoothing options
are available:

• off (0): No curve smoothing will be performed.
• circle (1): Nodes projected to a fitted circle defined current node and its two

neighbors.
• hermite (2): Nodes projected based on Hermite interpolation. Note that this

method can only be used in serial (-j 1)
• average_tangent (3): Nodes projected based on average tangent of neighbors.

Note that this method may not be parallel serial consistent.
• neighbor_surface_normal (4): Nodes projected based on neighboring surface

normals and the resulting intersecting planes.
• vfrac (5): (Default) Nodes projected to initial curve interface defined from the

original volume fraction data.

Mesh Generation

576

• linear (6): Nodes projected to the linear segment defined by the node and its two
immediate neighbors.

Laplacian Iterations

Command: laplacian_iters Number of Laplacian smoothing iterations

Input file command: laplacian_iters <arg>

Command line options: -LI <arg>

Argument Type: integer >= 0

Command Description:
Number of Laplacian smoothing iterations performed when Hybrid smoothing option is
used. Default value is 2.

Maximum Optimization Iterations

Command: max_opt_iters Max. number of parallel Jacobi opt. iters.

Input file command: max_opt_iters <arg>

Command line options: -OI <arg>

Argument Type: integer >= 0

Command Description:
Indicates the maximum number of iterations of optimization-based smoothing to perform.
May complete sooner if no further improvement can be made. Default is 5

Optimization Threshold

Command: opt_threshold Stopping criteria for Jacobi opt. smoothing

Input file command: opt_threshold <arg>

Command line options: -OT <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:
Indicates the value for scaled Jacobian where Optimization smoothing will be performed.
Elements with scaled Jacobian less than opt_threshold and their neighbors will be
smoothed. Default value is 0.6

Curve Optimization Threshold

Command: curve_opt_thresh Min metric at which curves won't be honored

Input file command: curve_opt_thresh <arg>

Cubit_15.5_User_Documentation

577

Command line options: -COT <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:
Indicates the value for scaled Jacobian where if a node that falls on a curve has
neighboring quads less than this value, then the smoothing will no longer honor the curve
definition. Instead the optimization smoother will attempt to place the node to optimize the
neighboring mesh quality, without regard for its placement on its owning curve.
Normally this value should be set close to zero to avoid too many nodes from floating off
of their owning curves, however, if mesh quality is constrained by curve geometry, setting
this value higher can help to avoid bad or poor quality elements. Default for this value is
0.1.

Maximum Parallel Coloring Iterations

Command: max_pcol_iters Max. number of parallel coloring smooth iters.

Input file command: max_pcol_iters <arg>

Command line options: -CI <arg>

Argument Type: integer >= 0

Command Description:
Maximum number of spot smoothing (also known as parallel coloring) iterations to
perform. May complete sooner if no further improvement can be made. Default is 100.
See also pcol_threshold.

Parallel Coloring Threshold

Command: pcol_threshold Stopping criteria for parallel color smooth

Input file command: pcol_threshold <arg>

Command line options: -CT <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:
Indicates scaled Jacobian threshold for spot smoothing (also known as parallel coloring).
A parallel coloring algorithm is used to uniquely identify and isolate nodes to be improved
using optimization. Default is 0.2.

Maximum Guaranteed Quality Iterations

Command: max_gq_iters Max. number of guaranteed quality smooth iters.

Input file command: max_gq_iters <arg>

Command line options: -GQI <arg>

Argument Type: integer >= 0

Command Description:

Mesh Generation

578

Maximum number of guaranteed quality smoothing iterations to perform. Guaranteed
quality smoothing performs a constrained Laplacian smoothing algorithm to adjust node
locations. If the result of a smoothing operation results in adjacent element quality falling
below the specified gq_threshold value, then move distance is cut until minimum
threshold is achieved or the metric is improved. To achieve parallel consistency, a parallel
coloring methodology is employed. The max_gq_iters defines the maximum number of
parallel color iterations employed. Default is 0 (off). Note that guaranteed quality can be
utilized in conjunction with other smoothing methods (Laplacian, Optimization and Parallel
Coloring), however to be effective it is normally used independent from other smoothing.
For example, to use guaranteed quality the following is suggested:

 laplacian_iters = 0

 max_opt_iters = 0

 max_pcol_iters = 0

 max_gq_iters = 100

Guaranteed Quality Threshold

Command: gq_threshold Guaranteed quality minimum SJ threshold

Input file command: gq_threshold <arg>

Command line options: -GQT <arg>

Argument Type: floating point value (-1.0 -> 1.0)

Command Description:
Indicates scaled Jacobian threshold for guaranteed quality smoothing. Default is 0.2. see
also max_gq_iters

Geo Smooth Max Deviation

Command: geo_smooth_max_deviation Geo Smoothing Maximum Deviation

Input file command: geo_smooth_max_deviation <arg>

Command line options: -GSM <arg>

Argument Type: floating point value (>= 0.0

Command Description: Used only in conjunction with the smooth = geo_smooth option.
It controls the maximum distance any individual node can deviate from the geometry
definition. If a smoothing operation computes a location that will move a node further than
the prescribed geo_smooth_max_deviation value from the geometry, the node
movement will be artificially limited by this value. If not specificied, no limitations will be
placed on node movement due to smoothing operations when the smooth =
geo_smooth is used. A value of zero (0) will constrain all nodes at interfaces to lie on the
geometry, similar to the smooth = to_geometry option. When using this option, the
maximum deviation from the geometry for any individual node will be reported in the
MESH SUMMARY in the Sculpt ouput.

Automatic Scheme Selection

Cubit_15.5_User_Documentation

579

• Default Scheme Selection
• Automatic Scheme Selection General Notes
• Surface Auto Scheme Selection
• Volume Auto Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the
meshing scheme. Automatic scheme selection is based on several constraints, some of
which are controllable by the user. The algorithms to select meshing schemes will use
topological and geometric data to select the best quad or hex meshing tool. Auto scheme
selection will not select tet or tri meshing algorithms. The command to invoke automatic
scheme selection is:

{geom_list} Scheme Auto

Specifically for surface meshing, interval specifications will affect the scheme designation.
For this reason it is recommended that the user specify intervals before calling automatic
scheme selection. If the user later chooses to change the interval assignment, it may be
necessary to call scheme selection again. For example, if the user assigns a square
surface to have 4 intervals along each curve, scheme selection will choose the surface
mapping algorithm. However if the user designates opposite curves to have different
intervals, scheme selection will choose paving, since this surface and its assigned
intervals will not satisfy the mapping algorithm's interval constraints. In cases where a
general interval size for a surface or volume is specified and then changed, scheme
selection will not change. For example, if the user specified an interval size of 1.0 a square
10X10 surface, scheme selection will choose mapping. If the user changes the interval
size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection.
If a mesh density is not specified for a surface, a size based on the smallest curve on the
surface will be selected automatically.

Default Scheme Selection

If the user does not set a scheme for a particular entity and chooses to mesh the entity,
CUBIT will automatically run the auto scheme selection algorithm and attempt to set a
scheme. In cases where the auto scheme selection fails to choose a scheme, the meshing
operation will fail. In this case explicit specification of the meshing scheme and/or further
geometry decomposition may be necessary.
The default scheme selection in CUBIT, unless otherwise set, will attempt to set a
quadrilateral or hexahedral meshing scheme on the entity. If tet or tri meshing will always
be the desired element shape, the following command can be used:

Set Default Element [Tet|Tri|HEX|QUAD|None]

Setting the default element to tet or tri will bypass the auto scheme selection and always
use either the triadvance or tetmesh schemes if the scheme has not otherwise been set
by the user. The default settings of quad or hex will use the automatic scheme selection.

Mesh Generation

580

Previous functionality of CUBIT used a default scheme of map and interval of 1 for all
surface and volume entities. For backwards compatibility and if this behavior is still
desired, the none option may be used on the set default element command.

Auto Scheme Selection General Notes

In general, automatic scheme selection reduces the amount of user input. If the user
knows the model consists of 2.5D meshable volumes, three commands to generate a
mesh after importing or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The model shown in the following figure was meshed using these three commands (part
of the model is not shown to reveal the internal structure of the model).

Figure 1. Non-trivial model meshed using automatic scheme selection

Scheme Firmness

Cubit_15.5_User_Documentation

581

Meshing schemes may be selected through three different approaches. They are: default
settings, automatic scheme selection, and user specification. These methods also affect
the scheme firmness settings for surfaces and volumes. Scheme firmness is completely
analogous to interval firmness.
Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}

Scheme firmness settings can only be applied to surfaces and volumes.
This may be useful if the user is working on several different areas in the model. Once
she/he is satisfied with an area's scheme selection and doesn't want it to change, the
firmness command can be given to hard set the schemes in that area. Or, if some
surfaces were hard set by the user, and the user now wants to set them through automatic
scheme selection then she/he may change the surface's scheme firmness to soft or
default.

Surface Auto Scheme Selection

Surface auto scheme selection (White, 99) will choose between Pave, Submap,
Triprimitive, and Map meshing schemes, and will always result in selecting a meshing
scheme due to the existence of the paving algorithm, a general surface meshing tool
(assuming the surface passes the even interval constraint).
Surface auto scheme selection uses an angle metric to determine the vertex type to
assign to each vertex on a surface; these vertex types are then analyzed to determine
whether the surface can be mapped or submapped. Often, a surface's meshing scheme
will be selected as Pave or Triprimitive when the user would prefer the surface to be
mapped or submapped. The user can overcome this by several methods. First, the user
can manually set the surface scheme for the "fuzzy" surface. Second, the user can
manually set the "vertex types" for the surface. Third, the user can increase the angle
tolerance for determining "fuzziness." The command to change scheme selection's angle
tolerances is:

[Set] Scheme Auto Fuzzy [Tolerance] {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360
degrees as the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in
general mapping and submapping will be chosen more often. If the user enters 0 degrees,
only surfaces that are "blocky" will be selected to be mapped or submapped, and in
general paving will be chosen more often.

Volume Auto Scheme Selection

When automatic scheme selection is called for a volume, surface scheme selection is
invoked on the surfaces of the given volume. Mesh density selections should also be
specified before automatic volume scheme selection is invoked due to the relationship of
surface and volume scheme assignment.

Mesh Generation

582

Volume scheme selection chooses between Map, Submap and Sweep meshing
schemes. Other schemes can be assigned manually, either before or after the automatic
scheme selection.
Volume scheme selection is limited to selecting schemes for 2.5D geometries, with
additional tool limitations (e.g. Sweep can currently only sweep from several sources to
a single target, not multiple targets); this is due to the lack of a completely automatic 3D
hexahedral meshing algorithm. If volume scheme selection is unable to select a meshing
scheme, the mesh scheme will remain as the default and a warning will be reported to
the user.
Volume scheme selection can fail to select a meshing scheme for several reasons. First,
the volume may not be mappable and not 2.5D; in this case, further decomposition of the
model may be necessary. Second, volume scheme selection may fail due to improper
surface scheme selection. Volume schemes such as Map, Submap, and Sweep require
certain surface meshing schemes, as mentioned previously.

free

Radialmesh

Summary: Creates a free cylindrical mesh with precise node locations based on input
radii, angles, and offsets, then creates mesh-based geometry to fit the mesh.
Syntax:

Create Radialmesh \

 NumZ <val> [Span <val>] \

 Zblock 1 [<offset val>] \

 {Interval|Bias|Fraction|First Size} <val> \

 [{Interval|Bias|Fraction|Last Size} <val>] \

 Zblock 2 [<offset val>] \

 {Interval|Bias|Fraction|First Size} <val> \

 [{Interval|Bias|Fraction|Last Size} <val>] \

 ... NumZ \

 NumR <val> {Trisection|Initial Radius<val>} \

 Rblock 1 <offset radius val> \

 {Interval|Bias|Fraction|First Size} <val> \

 [{Interval|Bias|Fraction|Last Size} <val>] \

 Rblock 2 <offset radius val> \

 {Interval|Bias|Fraction|First Size} <val> \

 [{Interval|Bias|Fraction|Last Size} <val>] \

 ... NumR \

 NumA <val> [Full360] [Span <val>] \

 Ablock 1 [<offset angle val>] \

 {Interval|Bias|Fraction|First Angle} <val> \

Cubit_15.5_User_Documentation

583

 [{Interval|Bias|Fraction|Last Angle} <val>] \

 Ablock 2 [<offset angle val>] \

 {Interval|Bias|Fraction|First Angle} <val> \

 [{Interval|Bias|Fraction|Last Angle} <val>] \

 ... NumA

Discussion:
The purpose of the radialmesh command is to create a cylindrical mesh with precise
node locations. Unlike all other meshing commands which place nodes using smoothing
algorithms to optimize element quality, node locations for the radialmesh command are
calculated based on the input radii, angles, and offsets. In addition, the radialmesh
command does not mesh existing geometry. Rather, it creates a mesh based on the input
parameters, after which a mesh-based geometry is created to fit the free mesh.
The radialmesh command requires input for the 3 coordinate directions (Z, radial,
angular). The number of blocks in each direction is specified with the numZ, numR, and
numA values in the command. Each block forms a new volume in the final mesh. All
bodies in the mesh are merged to form a conformal mesh between blocks.
The Radialmesh command can create meshes which span any angle greater than 0.0 up
to 360 degrees. In addition, meshes can model either a tri-section (see Figure 1), or a
non-trisection mesh (see Figure 2).

Figure 1. Tri-section Radialmesh

Mesh Generation

584

Figure 2. Non-tri-section Radialmesh

The command to generate the mesh in Figure 1 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 2 interval 5 \
 rblock 2 3 interval 5 \
 rblock 3 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

The command to generate the mesh in Figure 2 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \
 numR 1 initial radius 3 rblock 1 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

A mesh can span an entire 360 degrees by using the “full360” keyword. For example, the
mesh in Figure 3 was generated with the following command:

create radialmesh numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 interval 5 \
 rblock 3 3 interval 5 \
 numA 5 full360 span ablock 1 interval 5 \
 ablock 2 interval 5 \
 ablock 3 interval 5 \
 ablock 4 interval 5

Cubit_15.5_User_Documentation

585

Figure 4. Radialmesh using full360 option

After the mesh is generated, the radialmesh command fits the mesh with mesh based
geometry. The surfaces created to fit the mesh are given special names according to their
location on the geometry. To see the names of the surfaces, issue the command label
surface name after creating a radialmesh. Also, if you create a tri-section mesh, the
edges on the center axis are given names. To see these names issue the command label
curve name after creating a trisection Radialmesh.
The user can control the number of intervals and the spacing of these intervals using the
optional parameters in each rblock, zblock and ablock. There are 11 combinations that
these can be combined as listed below:

• Interval Only- Example: "interval 5." The block will be meshed with 5 equally
spaced intervals.

• First Size Only- Example: “first size 2.5.” The block will be meshed with intervals
of approximately 2.5 in length. The total number of intervals is internally calculated
and depends on the overall block length.

• Fraction Only- Example: “fraction 0.3333.” The block will be meshed with intervals
approximately 0.3333*overall block length.

• Interval and Bias- Example: “interval 5 bias 1.5.” There will be 5 intervals on the
block, which each interval being 1.5 times the previous one. The length of each
interval is calculated internally.

• Interval and Fraction- Example: “interval 5 fraction 0.25.” There will be 5 intervals
on the block, the first being .25 of the length of the block with the remaining
decreasing in size.

Mesh Generation

586

• Interval and First Size- Example: “interval 5 first size 0.2.” There will be 5 intervals
on the block, the first being 0.2 in length. The remaining intervals will increase or
decrease to fill the blocks length.

• First Size and Last Size- Example: “first size 0.2 last size 0.4.” The first interval
will be 0.2 in length. The last interval will be 0.4 in length. The total number of
intervals is internally calculated to allow for transition between the 2 specified
sizes.

• First Size and Bias- Example “first size 0.2 bias 0.85.” The first interval will be 0.2
in length and the remaining intervals will scale by a factor of 0.85 from one to the
next until the block is filled. The total number of intervals is internally calculated
and depends on the overall block length.

• Fraction and Bias- Example “fraction 0.25 bias 1.25.” The first interval will be
0.25 of the overall block length and the remaining intervals will scale by a factor of
1.25 from one to the next until the block is filled. The total number of intervals is
internally calculated and depends on the overall block length.

• Interval and Last Size- Example: “last size 1.5 interval 5.” The last interval will
be 1.5 in length. The remaining intervals will scale up or down to fit 5 intervals in
the block.

• Last Size and Bias- Example: “last size 2.0 bias 1.1.” The last interval will be 2.0
in length. The remaining intervals will scale by 1.1 until the block is filled. The total
number of intervals is internally calculated and depends on the overall block length.

Figure 5 shows an example of a bias spaced mesh with the following command:

create radialmesh numZ 2 zblock 1 1 first size 0.2 \
 zblock 2 10 first size 0.2 last size 1.0 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 first size .25 \
 rblock 3 5 first size .25 bias 2.0 \
 numA 1 span 90 ablock 1 interval 5

Cubit_15.5_User_Documentation

587

Figure 5. Radialmesh created with biased spacing

mesh quality assessment
Automatic Mesh Quality Assessment

Mesh Generation

588

CUBIT performs an automatic calculation of mesh quality which warns users when a
particular meshing scheme or other meshing operation has created a mesh whose quality
may be inadequate. These warnings are supplied in case the user forgets to manually
check the mesh quality.
CUBIT automatically calculates the SHEAR quality of hexahedral and quadrilateral
elements and the SHAPE quality of tetrahedral and triangular elements. The SHEAR
metric measures element skew and ranges between zero and one with a value of zero
signifying a non-convex element, and a value of one being a perfect, right-angled
element. The SHAPE metric also ranges between zero and one with a value of zero
signifying a degenerate or inverted element and a value of one signifying a perfect,
equilateral element. The quality of the mesh is then defined to be the minimum value of
the shear metric for hexahedral and quadrilateral elements and the shape metric for
tetrahedral and triangular elements, with the minimum taken over the elements in the
mesh.
If the quality of the mesh is zero, the code reports "ERROR: Negative Jacobian Element
Generated" to the command window. By default, if the quality of the mesh is positive but
less than a certain threshold, the code reports "WARNING: Poorly-Shaped Element
Generated" to the command window. Also reported in this case is the ID of the offending
element, the value of its shear (or shape) metric, and the value of the threshold to which
it was compared. The default value of the threshold parameter is 0.2. Users may change
the threshold value by issuing the command

Set Quality Threshold <double=0.2>

The user may also change what type of message is printed in the case of a poor quality,
but positive Jacobian mesh. This message can be printed as a warning (the default) or
an error or can be turned off completely using the command

Set Print Quality { WARNING|Error|Off }

The above commands only affect the message generated for meshes with a quality
greater than zero and less than the given threshold value; an error will always be
generated for meshes with a quality of zero (that is, for meshes containing negative
Jacobian elements).

Coincident Node Check
The ability to check for coincident nodes in the model is available in CUBIT. It uses an
efficient octal hash tree to make the comparisons. The command is:

Quality Check Coincident Node [In]

[Group|Body|Volume|Surface|Curve|Vertex <id_range>] [Merge [Delete]] [

HIGHLIGHT|Draw [color <number>]] [List] [Into Group [names|id]]

If no entity list is given, the command works on all the nodes in the model. If an entity list
is given, then it compares the nodes on those entities with the rest of the nodes in the
model. By default the command highlights the coincident nodes in the graphics window

Cubit_15.5_User_Documentation

589

and lists the total number of coincident nodes found. You can also have it clear the
graphics and draw the nodes, and/or list the coincident node ids. Optionally, the
coincident nodes found can be placed in a group.
If the model being operated on is from an imported universal file (i.e., no geometry exists
in the model), you can merge the coincident nodes with the merge option. In this case
delete allows you to delete the extra nodes (recommended). If you do not delete them
they are placed into an output group.
You can control the tolerance used to check between nodes with the following setting
(default = 1e-8):

set Node Coincident Tolerance [<value>]

Controlling Mesh Quality
If the quality of a model after meshing isn't acceptable, there are two options available to
improve that quality. The user can ask for more smoothing, or delete the mesh and start
over. There are some commands that the user can invoke before meshing the model
which can help to improve mesh quality. Some of them are discussed here.

Skew Control

The philosophy behind the skew control algorithm is one of subdividing surfaces into
blocky, four-sided areas which can be easily mapped. The goal of this subdivide-and-
conquer routine is to lessen the skew that a mesh exhibits on submapped regions. By
controlling the skew on these surfaces, the mesh of the underlying volume will also
demonstrate less skew.
The commands for skew control are:

Control Skew Surface <surface_id_range> [Individual]

Delete Skew Control Surface {surface_list} [Propagate]

The keyword Individual is deprecated. Its purpose is to specify that surfaces should be
processed without regards to the other surfaces in the given list. This is not necessary,
and could lead to problems with the final mesh. When the command is entered, the
algorithm immediately processes the surfaces, inserting vertices and setting interval
constraints on the resulting subdivided curves. In this way, the mesh is more constrained
in its generation, and the resulting skew on the model can be lessened. The only surfaces
that can utilize this algorithm are those that lend themselves to a structured meshing
scheme, although future releases might lessen this restriction.
The user also has the ability to delete the changes that the skew control algorithm has
made. This is done by using the delete skew control command.
When the user requests the deletion of the skew control changes on a given surface,
every curve on that surface will have the skew control changes deleted, even if a given
curve is shared with another surface on which skew control was performed. If the user

Mesh Generation

590

wishes to propagate the deletion of skew control to all surfaces which are affected by one
(or more) particular surfaces, the keyword propagate should be used.

Propagate Curve Bias

When a bias mesh scheme is applied to a curve, this sometimes creates skewing of the
surface mesh that is attached. Sometimes the user will want to ensure that the same bias
is applied to curves on attached surfaces so that this skewing is minimized. The command
for doing this is:

Propagate Curve Bias [Surface|Volume|Body|Group <id_list>]

This command will search out all simply mappable surfaces in the input list, find which
curves of those have a bias scheme set, and will propagate that bias across the mappable
surfaces.

Adjust Boundary

Adjust Boundary {Surface|Group} <id_range> [Angle <double>]

This command can be used to improve element quality for mapped or submapped surface
meshes. Often, due to vertex positions, the curve meshing for a surface will lead to a poor
quality surface mesh. This command can be used to adjust the curve meshes in an
attempt to generate a better quality surface mesh. The command works by looking at the
angle the mesh edges leave the boundary. In a perfect mapped or submapped mesh, the
mesh edges will be orthogonal to the boundary, or will go off at 90 degree angles. The
adjust boundary command looks at the deviation of the mesh edges, and if it is greater
than the prescribed angle deviation, it will move the node location such that it is 90
degrees, if possible. The deviation angle by default is 5 degrees and can be changed by
the user through the [Angle <double>] option in the command. In order to modify the
curve meshes, the surface meshes are first deleted then later remeshed after the curve
meshes have been repositioned and fixed. This command assumes that the volumes
attached to the surface have not been meshed, if they have been, the command will return
an error message. It should be noted that this command, while useful, may not always
work due to interval constraints (i.e., you may need to change the intervals on the
surface), or if the surfaces are not very blocky.

Metrics for Edge Elements
The metrics used for edge elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range

Length L^0 0 to inf None

Quality Metric Definitions:

Length: Distance between beginning and ending nodes of an edge

Cubit_15.5_User_Documentation

591

Comments on Algebraic Quality Measures

1. The quality command for edge length only accepts edge elements as input; it
does not accept geometry as input.

2. The length metric is currently only available for edge elements. Edge elements
are created by default when curves and surfaces are meshed. Edge elements
are not created for interior volume elements.

Metrics for Hexahedral Elements
The metrics used for hexahedral elements in CUBIT are summarized in the following
table:

Function
Name

Dimension
Full

Range
Acceptable

Range
Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.4 1

Element
Volume

L^3 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Diagonal Ratio L^0 0 to 1 0.65 to 1 3

Dimension L^1 0 to inf None 1

Condition No. L^0 1 to inf 1 to 8 5

Jacobian L^3 -inf to inf None 5

Scaled
Jacobian

L^0 -1 to +1 0.5 to 1 5

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.5 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

Shape & Size L^0 0 to 1 0.2 to 1 5

Timestep Seconds 0 to inf None 6

Distortion L^0 0 to 1 0.6 to 1 7

Hexahedral Quality Definitions

With a few exceptions, as noted below, Cubit supports quality metric calculations for linear
hexahedral elements only. When calculating quality metrics, that only support linear
elements, for a higher order hexahedral element, Cubit will only use the corner nodes of
the element.

Mesh Generation

592

Aspect Ratio: Maximum edge length ratios at hex center.
Skew: Maximum |cos A| where A is the angle between edges at hex center.
Taper: Maximum ratio of lengths derived from opposite edges.
Element Volume: Jacobian at hex center.
Stretch: Sqrt(3) * minimum edge length / maximum diagonal length.
Diagonal Ratio: Minimum diagonal length / maximum diagonal length.
Dimension: Pronto-specific characteristic length for stable timestep calculation.
Char_length = Volume / 2 grad Volume.
Condition No. Maximum condition number of the Jacobian matrix at 8 corners.
Jacobian: Minimum pointwise volume of local map at 8 corners at center of hex. Cubit
also supports Jacobian calculations for hex27 elements.
Scaled Jacobian: For linear elements the minimum Jacobian divided by the lengths of
the 3 edge vectors.
Shear: 3/Mean Ratio of Jacobian Skew Matrix
Shape: 3/Mean Ratio of weighted Jacobian Matrix
Relative Size: Min(J, 1/J), where J is the determinant of weighted Jacobian matrix
Shear & Size: Product of Shear and Size Metrics
Shape & Size: Product of Shape and Size Metrics
Timestep: The approximate maximum timestep that can be used with this element in
explicit transient dynamics analysis. This critical timestep is a function of both element
geometry and material properties. To compute this metric on hexes, the hexes must be
contained in a element block that has a material associated to it, where the material has
poisson's ratio, elastic modulus, and density defined.
Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 8 for hex. Cubit also
supports Distortion calculations for hex20 elements.

References for Hexahedral Quality Measures

1. (Taylor, 89)
2. FIMESH code
3. Unknown
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured

Initial Meshes, to appear in Finite Elements for Design
and Analysis.

6. Flanagan, D.P. and Belytschko, T., 1984, “Eigenvalues and Stable Time Steps
for the Uniform Hexahedron and Quadrilateral,” Journal of Applied Mechanics,
Vol. 51, pp.35-40.

7. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

Mesh Quality Assessment

• Metrics for Edge Elements
• Metrics for Triangular Elements
• Metrics for Quadrilateral Elements

Cubit_15.5_User_Documentation

593

• Metrics for Tetrahedral Elements
• Metrics for Hexahedral Elements
• Metrics for Wedge Elements
• Mesh Quality Command Syntax
• Mesh Quality Example Output
• Automatic Mesh Quality Assessment
• Controlling Mesh Quality
• Coincident Node Check
• Mesh Topology Check
• Find Intersecting Mesh
• Measuring Number of Tets Through the Thickness

The `quality' of a mesh can be assessed using several element quality metrics available
in CUBIT. Information about the CUBIT quality metrics can be obtained from the
command

Quality Describe {Hex | Hexahedral | Tet | Tetrahedral | Face | Quad |

Quadrilateral | Tri | Triangular}

which gives data on the quality metrics for each of the above element types. The following
pages discuss the mesh quality assessment capabilities in CUBIT.

Mesh Quality Example Output
The typical summary output from the command quality surface 24 is shown in Figure 1.
Figure 2 shows the corresponding histogram. The colored element display resulting from
the command quality surface 1 draw `Skew' is shown Figure 3. A color legend is also
printed to the console as shown in Figure 4.

Figure 1. Typical Summary for a Quality Command

Mesh Generation

594

Figure 2. Histogram output from command "Quality Surface 24 Draw Histogram"

Cubit_15.5_User_Documentation

595

Figure 3. Graphical output of quality metric for command "Quality Surface 24 Skew Draw

Mesh"

Figure 4. Legend for command "Quality Surface 1 Skew Draw Mesh"

Mesh Quality Command Syntax
The base command to view the quality of a mesh is the following:

Quality {geom_and_mesh_list} [metric name] [quality options] [filter

options]

Mesh Generation

596

Where the list contains surfaces and volumes and groups that have been meshed with
faces, triangles, hexes, and tetrahedra; the list can also specify individual mesh entities
or ranges of mesh entities.
If a specific metric name is given, only that metric or metrics are computed for the
specified entities. Note that the metric given must be one which applies to the given
entities. To see a list of quality metrics for individual entities see the Mesh Quality
Assessment section and select the desired entity type: hexahedral, tetrahedral,
quadrilateral, triangle. or edge
The metric name can also be more general than a specific metric. Four generalized
options for metric name can be used:
Allmetrics: All of the metrics corresponding to the element type of the
geom_and_mesh_list will be computed and reported.
Algebraic: All algebraic metrics corresponding to the element type of the
geom_and_mesh_list will be computed and reported (e.g., Shape, Shear, Relative Size).
Robinson: All Robinson metrics corresponding to the element type of the
geom_and_mesh_list will be computed and reported (e.g., Aspect Ratio, Skew, Taper).
Traditional: All the traditional Cubit metrics corresponding to the element type of the
geom_and_mesh_list will be computed and reported (e.g., area, volume, angle, stretch,
dimension).
If no metric name is supplied, the default metric is "Shape".

Quality Options

The quality options are:

Scope

[Global | Individual]

If the user specifies individual, one quality summary is generated for each entity
specified on the command line. If the user specifies global, or specifies neither, then one
quality summary is generated for each mesh element type.

Draw

[Draw [Histogram] [Mesh] [Monochrome] [Add]]

If the user specifies draw histogram, then histograms are drawn in a separate graphics
window. The window contains one histogram for each quality metric. If the user specifies
draw mesh, then the mesh elements are drawn in the default graphics window. A color-
coded scale will appear in the graphics window. The histogram and mesh graphics are
color coded by quality: a small metric value corresponds to red, a large metric value to
blue and in-between values according to the rainbow. You can grab the side of color bar
and resize it. The text gets smaller as the color bar width decreases. You can also grab
in the middle of the color bar and move it around. It can be repositioned to the bottom
or top and it will automatically change orientations. See Figure 1.

Cubit_15.5_User_Documentation

597

Figure 1. Quality Scale

If monochrome is specified, then the graphics are not color-coded. If add is specified,
then the current display is not cleared before drawing the mesh elements.

List

[List [Detail] [Id] [Verbose Errors]] [Geometry]

If the user specifies List, then the quality data is summarized in text form. List Detail lists
the mesh elements by ascending quality metric. List Id lists the ids of the mesh elements.
If Verbose Errors is specified, then details about unacceptable quality elements are
printed out above the summaries. If Geometry is specified, then a list of the geometric
entities that own the elements will be printed.

Filter

There are several options available to filter the output of the quality command, using the
following filter options :

Mesh Generation

598

[High <value>] [Low <value>]

Discards elements with metric values above or below value; either or both can be used
to get elements above or below a specified value or in a specified range.

[Top <number>] [Bottom <number>]

Keeps only number elements with the highest or lowest metric values. For example, "
Quality hex all aspect ratio top 10 " would request the elements with the 10 highest
values of the aspect ratio metric.

Metrics for Quadrilateral Elements
The metrics used for quadrilateral elements in CUBIT are summarized in the following
table:

Function
Name

Dimension
Full

Range
Acceptable

Range
Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.7 1

Warpage L^0 0 to 1 0.9 to 1.0 NEW

Element Area L^2 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Minimum
Angle

degrees 0 to 90 45 to 90 3

Maximum
Angle

degrees 90 to 360 90 to 135 3

Condition No. L^0 1 to inf 1 to 4 4

Jacobian L^2 -inf to inf None 4

Scaled
Jacobian

L^0 -1 to +1 0.5 to 1 4

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.3 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

Shape & Size L^0 0 to 1 0.2 to 1 5

Distortion L^2 -1 to 1 0.6 to 1 6

Deviation L^2 0 to inf None

Quadrilateral Quality Definitions

Cubit_15.5_User_Documentation

599

Aspect Ratio: Maximum edge length ratios at quad center
Skew: Maximum |cos A| where A is the angle between edges at quad center
Taper: Maximum ratio of lengths derived from opposite edges
Warpage: Cosine of Minimum Dihedral Angle formed by Planes Intersecting in Diagonals
Element Area: Jacobian at quad center
Stretch: Sqrt(2) * minimum edge length / maximum diagonal length
Minimum Angle: Smallest included quad angle (degrees).
Maximum Angle: Largest included quad angle (degrees).
Condition No. Maximum condition number of the Jacobian matrix at 4 corners
Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad
Scaled Jacobian: For linear elements the minimum Jacobian divided by the lengths of
the 2 edge vectors
Shear: 2/Condition number of Jacobian Skew matrix
Shape: 2/Condition number of weighted Jacobian matrix
Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix
Shear and Size: Product of Shear and Relative Size
Shape and Size: Product of Shape and Relative Size
Distortion: {min(|J|)/actual area}*parent area, parent area = 4 for quad
Deviation: Absolute distance from quad centroid to its associated surface

Comments on Algebraic Quality Measures

Shape, Relative Size, Shape & Size, and Shear are algebraic quality metrics that apply
to quadrilateral elements. Cubit encourages the use of these metrics since they have
certain nice properties (see reference 5 below). The metrics are referenced to a square-
shaped quadrilateral element, thus deviations from a square are measured in various
ways.
Shape measures how far skew and aspect ratio in the element deviates from the
reference element.
Relative size measures the size of the element vs. the size of reference element. If the
element is twice or one-half the size of the reference element, the relative size is one-
half. The reference element for the Relative Size metric is a square whose area is
determined by the average area of all the quadrilaterals on the surface mesh under
assessment
Shape and size metric measures how both the shape and relative size of the element
deviate from that of the reference element.
The SHEAR metric is based on the condition number of the skew matrix. SHEAR is really
just an algebraic skew metric but, since the word skew is already used in the list of quad
quality metrics, Cubit has chosen to use the word 'shear.'
Shear = 1 if and only if quadrilateral is a rectangle.
The Robinson 'skew' metric equals the ideal (zero) if the quad is a rectangle. It also attains
the ideal if the quad is a trapezoid, a kite, or even triangular!

References for Quadrilateral Quality Measures

1. (Robinson, 87)

Mesh Generation

600

2. FIMESH code.
3. Unknown.
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes,

submitted for publication.
6. 6. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Details on Robinson Metrics for Quadrilaterals

The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper,
element area, and stretch. The calculations are based on metrics described in (Robinson,
87). An illustration of the shape parameters is shown in Figure 1, below. The stretch metric
is calculated by dividing the length of the shortest element edge divided by the length of
the longest element diagonal.

Figure 1. Illustration of Quadrilateral Shape Parameters (Quality Metrics)

Metrics for Tetrahedral Elements
The metrics used for tetrahedral elements in CUBIT are summarized in the following
table:

Function Name Dimension
Full

Range
Acceptable

Range
Reference

Aspect Ratio
Beta

L^0 1 to inf 1 to 3 1

Aspect Ratio
Gamma

L^0 1 to inf 1 to 3 1

Element Volume L^3 -inf to inf None 1

Condition No L^0 1 to inf 1 to 3 2

Inradius L^1 -inf to inf None None

Jacobian L^3 -inf to inf None 2

Scaled Jacobian L^0 -1 to 1 0.2 to 1 2

Cubit_15.5_User_Documentation

601

Shape L^0 0 to 1 0.2 to 1 3

Relative Size L^0 0 to 1 0.2 to 1 3

Shape and Size L^0 0 to 1 0.2 to 1 3

Timestep Seconds 0 to inf None 4

Distortion L^0 -1 to 1 0.6 to 1 5

Tetrahedral Quality Definitions

With a few exceptions, as noted below, Cubit supports quality metric calculations for linear
tetrahedral elements only. When calculating quality metrics, that only support linear
elements, for a higher order tetrahedral element, Cubit will only use the corner nodes of
the element.
Aspect Ratio Beta: CR / (3.0 * IR) where CR = circumsphere radius, IR = inscribed
sphere radius
Aspect Ratio Gamma: Srms**3 / (8.479670*V) where Srms = sqrt(Sum(Si**2)/6), Si =
edge length
Element Volume: (1/6) * Jacobian at corner node
Condition No.: Condition number of the Jacobian matrix at any corner
Inradius: For all tets but tetra10s, the radius of the smallest, fully contained sphere of the
linear tet. For tetra10s, the mid-edge nodes are used to subdivide the tet into 12 linear
sub-tets. The inradius is the smallest inradius of the 12 linear sub-tets * 2.3.
Jacobian: Minimum pointwise volume at any corner. Cubit also supports Jacobian
calculations for tetra15 elements.
For tetra15 elements, all 15 nodes are included for the Jacobian calculation. For all other
tet types, only the corner nodes are considered.
Scaled Jacobian: For linear elements the minimum Jacobian divided by the lengths of 3
edge vectors
Shape: 3/Mean Ratio of weighted Jacobian Matrix
Relative Size: Min(J, 1/J), where J is the determinant of the weighted Jacobian matrix
Shape & Size: Product of Shape and Relative Size Metrics
Timestep: The approximate maximum timestep that can be used with this element in
explicit transient dynamics analysis. This critical time step is a function of both element
geometry and material properties. To compute this metric on tets, the tets must be
contained in an element block that has a material associated to it, where the material has
poisson's ratio, elastic modulus, and density defined.
Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 1/6 for tet. Cubit
also supports Distortion calculations for tetra10 elements.
For tetra10 elements, the distortion metric can be used in conjunction with the shape
metric to determine whether the mid-edge nodes have caused negative Jacobians in the
element. The shape metric only considers the linear (parent) element. If a tetra10 has a
non-positive shape value then the element has areas of negative Jacobians. However,
for elements with a positive shape metric value, if the distortion value is non-positive then
the element contains negative Jacobians due to the mid-side node positions.

Mesh Generation

602

Note that, for tetrahedral elements, there are several definitions of the term "aspect ratio"
used in literature and in software packages. Please be aware that the various definitions
will not necessarily give the same or even comparable results.

References for Tetrahedral Quality Measures

1. (Parthasarathy, 93)
2. (Knupp, 00)
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, to

appear in Finite Elements for Design
and Analysis.

4. Flanagan, D.P. and Belytschko, T., 1984, “Eigenvalues and Stable Time Steps
for the Uniform Hexahedron and Quadrilateral,” Journal of Applied Mechanics,
Vol. 51, pp.35-40.

5. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

Mesh Topology Check
The ability to check for non-manifold topology among mesh entities is given with the
following command.

Quality Check Topology [[Hex <range>] [Tet <range>] [Face <range>] [Tri

<range>]]

If no entity list is given, it will check the entire model. Multiple element types are also
allowed. The command checks for non-manifold boundaries (edges) in the element set
entered. For quads and tris the command lists and highlights all edges that have more
than two tris or faces connected.

Figure 1. Topology check for quads and tris

For hexes and tets it looks for edges with two or more elements connected that do not
share common faces.

Cubit_15.5_User_Documentation

603

Figure 2. Topology check for hexes and tets

Additional topology checks fall into three categories:

• - model edges

• - coincident nodes
• - coincident quadrilateral(faces) or triangles

Model Edge Check
The model edge check will find edges with adjoining quadrilaterals or triangles whose
angles between the surface normals exceed a specified value. The default angle is 40
degrees.
The following commands check for model edges:

Topology check model edge {group|volume|surface|curve} <id_range> [angle

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check model edge {block|sideset|nodeset} <id_range> [angle <value>]

DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check model edge {hex|tet|face|tri|edge} <id_range> [angle <value>]

DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

The optional angle parameter allows the user to specify a custom angle value against
which the check will be performed. The default angle is 40 degrees.
By default, the command will draw the model edges.
By default, very little information is output to the command line. The optional verbose
parameter will output a list of the flagged model edges.

Mesh Generation

604

By default, the model edges will be written to the group ‘model_edges’. Optionally, the
user may specify no grouping, or the user may specify the name or id of an existing group
into which the model edges will be written. The contents of the existing group will be
replaced by the model edges.
Interface Checks
Cubit will verify the interfaces between sections of a model. The existence of coincident
nodes, for example, may not necessarily be an error in the model if the nodes are in
sliding contact or are constrained by some type of multi-point constraint. The existence
of coincident quadrilaterals or triangles may indicate that the model is not correctly joined.
The following commands check for coincident nodes.

Topology check coincident node {group|volume|surface|curve|vertex} <id_range>

[tolerance <value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident node {block|sideset|nodeset} <id_range> [tolerance

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident node {hex|tet|face|tri|edge|node} <id_range> [tolerance

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

The optional tolerance parameter allows the user to specify a custom tolerance value
against which the check will be performed. The default tolerance is 1.0 e-6.
The default group name is ‘coincident_nodes.’
All other options behave similarly to those described above under Model Edge Check.
The following commands check for coincident quadrilaterals.

Topology check coincident quad {group|volume|surface} <id_range> [tolerance

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident quad {block|sideset|nodeset} <id_range> [tolerance

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident quad {hex|tet|face} <id_range> [tolerance <value>]

DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_quads.’
All other optional parameters behave similarly to those described above.
The following commands check for coincident triangles.

Cubit_15.5_User_Documentation

605

Topology check coincident tri {group|volume|surface} <id_range> [tolerance

<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident tri {block|sideset|nodeset} <id_range> [tolerance <value>]

DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

Topology check coincident tri {hex|tet|face|tri} <id_range> [tolerance <value>]

DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT

GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_tris.’
All other optional parameters behave similarly to those described above.

Metrics for Triangular Elements
The metrics used for triangular elements in CUBIT are summarized in the following table:

Function
Name

Dimension
Full

Range
Acceptable

Range
Reference

Element Area L^2 0 to inf None 1

Maximum
Angle

degrees 60 to 180 60 to 90 1

Minimum
Angle

degrees 0 to 60 30 to 60 1

Condition No L^0 1 to inf 1 to 1.3 2

Scaled
Jacobian

L^0 -1 to 1 0.2 to 1 2

Relative Size L^0 0 to 1 0.25 to 1 3

Shape L^0 0 to 1 0.25 to 1 3

Shape and
Size

L^0 0 to 1 0.25 to 1 3

Distortion L^2 -1 to 1 0.6 to 1 4

Deviation L^2 0 to inf None

Approximate Triangular Quality Definitions:

Element Area: (1/2) * Jacobian at corner node
Maximum Angle: Maximum included angle in triangle
Minimum Angle: Minimum included angle in triangle
Condition No. Condition number of the Jacobian matrix
Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors
Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix

Mesh Generation

606

Shape: 2/Condition number of weighted Jacobian matrix
Shape & Size: Product of Shape and Relative Size
Distortion: {min(|J|)/actual area}*parent area, parent area = 1/2 for triangular element
Deviation: Absolute distance from triangle centroid to associated surface

Comments on Algebraic Quality Measures

Relative Size, Shape, and Shape & Size are algebraic metrics, which have well behaved
properties. Cubit encourages the use of these metrics over other metrics. These metrics
are referenced to an ideal element which, in the case of triangular elements, is an
equilateral triangle. Thus deviations from an equilateral triangle are measured in various
ways by the algebraic metrics.
Relative size measures the size of the element vs. the size of reference element. If the
element is twice or one-half the size of the reference element, the relative size is one-
half. By default, the size of the reference element is the average size of all the elements
that the quality command is currently evaluating.
The shape and size metric measures how both the shape and relative size of the element
deviate from that of the reference element.

References for Triangular Quality Measures

1. Traditional.
2. Knupp, 2000.
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes,

submitted for publication.
4. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Metrics for Wedge Elements
The metrics used for wedge elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range

Aspect Ratio L^0 1 to inf 1 to 3

Element Volume L^3 -inf to inf None

Condition No L^0 1 to inf 1 to 3

Jacobian L^3 -inf to inf None

Scaled Jacobian L^0 -1 to 1 0.2 to 1

Shape L^0 0 to 1 0.2 to 1

Distortion L^0 -1 to 1 0.6 to 1

Wedge Quality Definitions

With a few exceptions, as noted below, Cubit supports quality metric calculations for linear
wedge elements only. When calculating quality metrics, that only support linear

Cubit_15.5_User_Documentation

607

elements, for a higher order wedge element, Cubit will only use the corner nodes of the
element.
Aspect Ratio: Maximum edge length ratios at the wedge center
Element Volume: Calculated by dividing the wedge into 11 tetrahedron and summing the
volume of each.
Condition No.: Condition number of the Jacobian matrix at any corner
Jacobian: Minimum pointwise volume at any corner. Cubit also supports Jacobian
calculations for Wedge21elements.
Scaled Jacobian: For linear elements the minimum Jacobian divided by the lengths of 3
edge vectors
Shape: 3/Mean Ratio of weighted Jacobian Matrix
Distortion: {min(|J|)/actual volume}*parent volume

Measuring Number of Tets Through the Thickness
The ability to check the number of tets through the thickness is given with the following
command.

Quality Surface <surf1_id> <surf2_id> num_thru_thickness

Finding Intersecting Mesh
The find mesh intersection capability finds intersecting mesh between blocks, bodies,
volumes, or surfaces. This command is useful for identifying cases where the geometry
does not intersect but the mesh does. The command can find intersecting 2-dimensional
mesh by specifying a list of surfaces, or 3-dimensional mesh by specifying blocks, bodies,
or volumes. Surfaces that have mesh between them that intersects within a tolerance of
1e-6 are located. Finding surfaces with intersecting mesh is done using the command:

Find Mesh Intersection {Block|Body|Surface|Volume} <id_list> [with

{Block|Body|Surface|Volume} <id_list>] [low <value=0.0001>] [high <value>]

[exhaustive] [worst <num_worst>] [draw] [log]

Finding Intersecting 2D Mesh

To find intersections between 2-dimensional mesh surfaces must be specified. If
intersections are found, the surfaces containing the intersecting mesh are drawn (Figure
1) and the put into a group named 'surf_intersect'. Also, the ids of the intersecting surface
pairs are printed to the terminal,

Mesh Generation

608

Figure 1. "Find mesh intersection surface all"

The draw option will draw the surfaces and intersecting mesh in wire frame mode,
allowing the user to see exactly where on the surface the mesh intersection is (Figure 2).

Figure 2. "Find mesh intersection surface all draw"

Facetted Representation

Detecting mesh intersections between surfaces works entirely off of the mesh, converting
the mesh into triangular facets. (The facetted representation is what you see in a shaded
view in the graphics). For example, a quad is split into two triangles. Higher order 2D
elements are split into multiple triangles.

Cubit_15.5_User_Documentation

609

Drawing Mesh Intersection

The command below will draw the mesh intersection for only a pair of surfaces. The
surfaces and intersecting mesh are drawn in wire frame mode, allowing the user to see
exactly where on the surface the mesh intersection is.

Draw Surface <id> <id> mesh intersection [add] [include_volume]

Figure 3. Draw Mesh Intersection

Finding Intersecting 3D Mesh

With 3-dimensional entities mesh element intersections can be located by specifying
entities: blocks, bodies, or volumes. If intersections are found the intersecting elements
are put into a group named 'mesh_intersect' and data is printed to the terminal detailing
the intersections. The largest intersection value is reported for each pair of intersecting
entities (blocks, volumes, or bodies). This value is the fraction of an element's volume
(which element belongs to the entity in the first column) that intersects elements belonging
to the entity in the second column. See Figure 5 below. The information printed in columns
from left to right is:

• the entities that have intersecting mesh

• the other entities with which that entity's mesh intersects
• the highest intersection value of an element belonging to the entity in column one
• the id of that element
• the number of elements of the entity in column one intersecting other elements of

the entity in column two

Mesh Generation

610

Figure 5. "Find mesh intersection block all draw"

If the with option is used, the user specifies additional entities. The additional entities will
not be reported in the first column of the output. This allows the user to focus on entities
of interest without outputting too much data to the terminal. See Figure 6 below.

Figure 6. "Find mesh intersection block 1 with block all"

The low and high options set how much cumulative intersection should be detected. A
low value of 0.1 would ignore elements that do not intersect more than 10% of their
volume. Similarly, a high value of 0.5 would discard elements that intersect more than

Cubit_15.5_User_Documentation

611

50% of their volume. Both low and high can be used simultaneously. The default for the
low value is 0.0001
The exhaustive option examines all elements for intersection. The default is to only
examine elements with nodes on the boundary of the specified entities, anticipating that
the intersections will occur mostly at boundaries.
The worst parameter limits the printout to the 'n' worst entities with elements of the
highest intersections. The intersection fraction reported here is the cumulative
intersection an element has with elements of all other entities in the check.
The draw option draws the intersecting elements using a color spectrum, red
corresponding to high intersection and green to low. The color is according to cumulative
intersection, as described in the worst option.
If the log option is specified, the output from the command will also be sent to a file named
"mesh_intersection01.txt", with the number used in the file name incremented as needed.
This becomes useful when you have hundreds of volumes with intersections.
Note:

• The shape of higher-order mesh elements is considered when computing intersection.

• 3D mesh intersection detection works on free mesh, as long as it has been placed into
blocks.

• An intersection fraction greater than 100% is possible, when multiple elements in
different entities intersect an element by more than its volume

mesh modification
Mesh Modification

• Mesh Smoothing
• Mesh Refinement
• Mesh Scaling
• Mesh Pillowing
• Mesh Coarsening
• Mesh Cleanup
• Node and Nodeset Repositioning
• Collapsing Mesh Edges
• Align Mesh
• Creating and Merging Mesh Elements
• Matching Tetrahedral Meshes
• Remeshing

After meshing is completed, it may be desirable to change features of the mesh without
remeshing the whole volume. Mesh modification methods include tools for improving
mesh quality, repositioning mesh elements, or changing mesh density. These methods
can be applied on the whole model, or on small sections of the model without requiring
remeshing the geometry, and without modifying the underlying geometry.

mesh smoothing

Mesh Generation

612

Adjust Boundary Orthogonal

Applies to: Surface Meshes
Summary: This smoother creates a near orthogonal grid and optionally will make an
orthogonal grid if the geometry permits.
Syntax:

Adjust Boundary [Orthogonal] {Surface|Group} <id_range> [Iterations

<val>] [snap_to_normal [curve <id>] [fixed curve <id>]]

Discussion:
Adjust Boundary Orthogonal iteratively applies the centroidal area pull algorithm with free
boundary nodes. This approximates the affects of an elliptical smoothing algorithm. This
algorithm works best with mapped meshes which have an element aspect ratio close to
1. The snap_to_normal option is not allowed for non-mapped meshes.

Cubit_15.5_User_Documentation

613

Figure 1. The affect of the "adjust boundary orthogonal surface 1" on a chevron shape.

Note that the nodes are pulled into the acute angles and the edges at the boundary are

pulled into a position that is closer to perpendicular at the boundary.

With some geometries with a mapped mesh it is possible to draw a line that is orthogonal
to a boundary curve along the entire u or v direction of the mesh. In these cases, this
command optionally allows the user to specify the option snap_to_normal. Nodal lines
will be created normal to the first curve this is found that will allow perpendicular element
edges to span the mesh. The user may optionally specify a curve that is used as the
perpendicular basis for projecting the edges.
An edge may also be set as fixed so that a subsequent adjust boundary orthogonal will
not affect that edge. If both snap_to_normal and fixed are set, the curve ids MUST be
identical.

Mesh Generation

614

Figure 2. The affect of adjust boundary orthogonal with the snap to normal curve option is

shown. The resulting mesh is orthogonal to the given boundary and projects straight

through the mesh.

The following is an example of how to use this command to create the desired grid in
Cubit. Note that to get the desired orthogonal grid the user must adjust the surfaces one
at a time.
reset
create surface ellipse major radius 2 minor radius 1 zplane
imprint volume 1 with position 0 1 0
create curve offset curve 2 distance 1 extended
create curve offset curve 4 distance 2 extended
create surface skin curve 2 4
create surface skin curve 4 5
delete surface 1
merge all
surface all scheme map
mesh surf all
adjust boundary orthogonal surface 2 snap_to_normal curve 6
adjust boundary orthogonal surface 3 snap_to_normal curve 4 fixed curve 4

Centroid Area Pull

Applies to: Surface Meshes
Summary: Attempts to create elements of equal area
Syntax:

Surface <range> Smooth Scheme Centroid Area Pull [Free]

Discussion:
This smooth scheme attempts to create elements of equal area. Each node is pulled
toward the centroids of adjacent elements by forces proportional to the respective
element areas (Jones, 74).

Condition Number

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral
Volume Meshes. Does not apply to Mixed Element Meshes.
Summary: Optimizes the mesh condition number to produce well-shaped elements.
Syntax:

Surface <surface_id_range> Smooth Scheme Condition Number [beta

<double=2.0>] [cpu <double=10>]

Related Commands:

Cubit_15.5_User_Documentation

615

Untangle

Discussion:
The condition number smoother is designed to be the most robust smoother in Cubit
because it guarantees that if the initial mesh is non-inverted then the smoothed mesh will
also be non-inverted. The price exacted for this capability is that this smoother is not as
fast as some of the other smoothers.
Condition Number measures the distance of an element from the set of degenerate (non-
convex or inverted) elements. Optimization of the condition number increases this
distance and improves the shape quality of the elements. Condition number optimization
requires that the given mesh contain no negative Jacobians. If the mesh contains
negative Jacobians and this command is issued, Cubit automatically calls the Untangle
smoother and attempts to remove the negative Jacobians. If successful, condition number
smoothing occurs next; the resulting mesh should have no negative Jacobians. If
untangling is unsuccessful, condition number smoothing is not performed.
There is no "fixed/free" option with this command; boundary nodes are always held fixed.
The command above only sets the smoothing scheme; to actually smooth the mesh one
must subsequently issue the command "smooth surface <surface_id_range>" or "smooth
volume <volume_id_range>".
Stopping Criteria: Smoothing will proceed until the objective function has been minimized
or until one of two user input stopping criteria are satisfied. To input your own stopping
criterion use the optional parameters 'beta' and 'cpu' in the command above. The value
of beta is compared at each iteration to the maximum condition number in the mesh. If
the maximum condition number is less than the value of beta, the iteration halts. In Cubit
condition number ranges from 1.0 to infinity, with 1.0 being a perfectly shaped element.
Thus the smaller the maximum condition number, the better the mesh shape quality. The
default value of the beta parameter is 2.0. The value supplied for the "cpu" stopping
criterion tells the code how many minutes to spend trying to optimize the mesh. The
default value is 10 minutes. Optimization may also be halted by using "control-C" on your
keyboard.
To view a detailed report of the smoothing in progress issue the command "set debug 91
on" prior to smoothing the surfaces or volumes. You will get a synopsis of whether or not
untangling is needed first and whether the stopping criteria have been satisfied. In
addition the following printout information is given for each iteration of the conjugate
gradient numerical optimization:

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3
ave_cond=value4, max_cond=value5, min_jsc=value6

n is the iteration count, m is the number of objective function evaluations performed per
iteration, value1 is the value of the objective function (this usually decreases
monotonically), value2 is the norm of the gradient (does not always decrease
monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current
iteration. The minimum possible value of the objective function is zero but this is attained
only for a perfect mesh. ave_cond, max_cond, and min_jsc are the average and
maximum condition number, and the minimum scaled jacobian. ave_cond generally
decreases monotonically because it is directly related to value1.

Mesh Generation

616

Edge Length

Applies to: Surfaces
Summary: This smoother tries to make all edge lengths equal
Syntax:

Surface <range> Smooth Scheme Edge Length

Discussion:
Edge Length smoothing in Cubit is provided by MESQUITE, a mesh optimization toolkit
by Argonne National Laboratory and Sandia National Laboratories. (See Brewer, et al.
2003 for more details on the MESQUITE toolkit.) This smooth scheme may be useful for
lengthening the shortest edge length in paved meshes.
Interior node positions are adjusted in an optimization loop where the optimal element
has an ideal shape (square) and has an area equal to the average element area of the
input mesh.
NOTE: This smoother should be avoided when the mesh contains high aspect-ratio
elements that the user wants to keep.
Because this smoother essentially tries to make all the edge lengths equal, it is designed
to work well on meshes whose elements have aspect ratios close to 1. The farther from
1 the aspect ratio is, the less applicable this smoother will be.

Equipotential

Applies to: Volume Meshes
Summary: Attempts to equalize the volume of elements attached to each node
Syntax:

Volume <range> Smooth Scheme Equipotential [Free]

Discussion:
This smoother is a variation of the Equipotential (Jones, 74) algorithm that has been
extended to manage non-regular grids (Tipton, 90). This method tends to equalize
element volumes as it adjusts nodal locations. The advantage of the equipotential method
is its tendency to "pull in" badly shaped meshes. This capability is not without cost: the
equipotential method may take longer to converge or may be divergent. To impose an
equipotential smooth on a volume, each element must be smoothed in every iteration--a
typically expensive computation. While a Laplacian method can complete smoothing
operations with only local nodal calculations, the equipotential method requires complete
domain information to operate.

Laplacian

Applies to: Curve, Surface, and Volume meshes

Cubit_15.5_User_Documentation

617

Summary: Tries to make equal edge lengths
Syntax:

{Surface|Volume} <range> Smooth Scheme Laplacian [Free] [Global]

Discussion:
The length-weighted Laplacian smoothing approach calculates an average element edge
length around the mesh node being smoothed to weight the magnitude of the allowed
node movement (Jones, 74). Therefore this smoother is highly sensitive to element edge
lengths and tends to average these lengths to form better shaped elements. However,
similar to the mapping transformations, the length-weighted Laplacian formulation has
difficulty with highly concave regions.
Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer
moved when smoothing moves the node less than 0.005 * the minimum edge length. The
maximum number of smoothing iterations is the maximum of 100 and the number of
nodes in the curve mesh. Neither of these parameters can currently be set by the user.
Using the global keyword when smoothing a group of surfaces will allow smoothing of
mesh on shared curves to improve the quality of elements on both surfaces sharing that
curve.

Mean Ratio

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral
Volume Meshes. Does not apply to Mixed Element Meshes.
Summary: Moves interior mesh nodes to optimize the average mean ratio metric value
of the mesh.
Syntax:

Surface <surface_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]

Volume <volume_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]

Discussion:
CUBIT includes a mean ratio smoother provided by MESQUITE, a mesh optimization
toolkit by Argonne National Laboratory and Sandia National Laboratories. (See Brewer,
et al. 2003 for more details on the MESQUITE toolkit.) This smoother is similar in purpose
to the Condition Number smoother. However, the Mean Ratio smoother uses a second
order optimization method, and therefore it will often reach a near-optimal mesh more
quickly than the Condition Number smoother. The Mean Ratio smoother requires the
initial mesh to be untangled, but the smoother is guaranteed to not tangle the mesh. If the
user attempts to call the Mean Ratio smoother on a tangled mesh, an untangler will first
attempt to untangle the mesh before calling the Mean Ratio smoother.
The Mean Ratio smoother's optimization process terminates when one of the following
three criteria is met:

Mesh Generation

618

1. The mesh is "close" to an optimal mesh configuration.
2. The maximum allotted time has been exceeded.
3. The user interrupts the smoothing process.

The user has control over the second and the third criteria only. For criterion 2, the default
is for the smoother to terminate after ten minutes even if a near-optimal mesh has not
been reached. The user can change this time bound by specifying the optional "cpu"
argument in the command listed above. This argument takes a single, positive number
that represents the time (in minutes) that will be used as a time bound. If the user wishes
to terminate the process early, criteria three allows the user to "interrupt" (for example,
on some platforms, by pressing CTRL-C) the process. If the process is terminated early,
the mesh will not revert to the original node positions; CUBIT will instead keep the partially
optimized mesh.

Mesh Smoothing

• Centroid Area Pull
• Equipotential
• Laplacian
• Smart Laplacian
• Condition Number
• Mean Ratio
• Winslow
• Untangle
• Edge Length

Related Topics

• Smoothing mesh-based geometry

• Smoothing free meshes

After generating the mesh, it is sometimes necessary to modify that mesh, either by
changing the positions of the nodes or by removing the mesh altogether. CUBIT contains
a variety of mesh smoothing algorithms for this purpose. Node positions can also be fixed,
either by specific node or by geometry entity, to restrict the application of smoothing to
non-fixed nodes.
Mesh smoothing in CUBIT operates in a similar fashion to mesh generation, i.e. it is a
two-step process whereby a smooth scheme is chosen and set, then a smooth command
performs the actual smoothing. Like meshing algorithms, there is a variety of smoothing
algorithms available, some of which apply to multiple geometry entity types and some
which only apply to one specific type (these algorithms are described below.) To smooth
the mesh on a geometry entity, the user must perform the following steps:

1. Set the smooth scheme for the object using the following command:

Cubit_15.5_User_Documentation

619

{Curve|Surface|Volume} <range> Smooth Scheme <scheme>

where <scheme> is any acceptable smooth scheme described in this
section. Also set any scheme-specific information, using the smooth
scheme setting commands described below.

2. Smooth the object, using the command:

Smooth Curve <range>

Smooth Surface <range> [Global]

Smooth {Body|Volume|Group} <range>

Groups of entities may be smoothed, by smoothing a group or a body.
If a Body is specified, the volumes in that Body are smoothed. If a Group is specified, only
the volume meshes within these groups are smoothed - no smoothing of the surface
meshes is performed.

Global Smoothing

When smoothing a set of surfaces, the keyword global can be added to the smooth
command such as

Smooth Surface <range> [Global]

If the smoothing algorithm for two neighboring surfaces are both allowed to move
boundary nodes, then appending the "global" keyword will often result in a higher quality
mesh near the curve(s) shared by those two surfaces.

Focused Smoothing on Groups of Mesh Entities

Meshed entities such as hexes or tris can be smoothed individually or in groups by
specifying the entities in a list.

Smooth {Hex|Tet} <range>[Scheme {Equipotential|Laplacian|Random}]

Smooth {Face|Tri} <range>[Scheme {Laplacian|Centroid|Winslow}] [Target

Surface <id>]

Smooth Edge <id_range> [Scheme Laplacian] [Target Surface <id>]

The Smooth Edge command allows the user to smooth individual edges owned by a
curve. Specifying a target curve allows the user to move the edges on a meshed curve to
a different curve. The target curve or surface does not necessarily need to be the owning
curve or surface of the nodes. For example, if given two curves (A and B) and curve A
was meshed, the target smoothing could be used to move all of the edges of curve A onto

Mesh Generation

620

curve B. The smooth scheme option for the edge smoothing is currently limited only to
the laplacian scheme.
The Smooth Face|Tri command is used to smooth individual faces or triangles. The
target option is similar to the curve target option above. Faces or Tris can be smoothed
to a surface that is not necessarily the owning surface; in fact, the faces or tris do not
even have to be attached to any surface. This makes this option especially helpful for
smoothing free meshes. Specifying a smooth scheme allows for relaxation based surface
smoothers (i.e. centroid area pull, laplacian, winslow) to be utilized during targeted
smoothing. It is not currently enabled for optimization based smoothing schemes.

Smooth Tolerance

Smoothing algorithms move nodes in an attempt to improve the quality of the mesh
elements. Most of these algorithms are iterative, and the algorithm terminates when some
criterion is met. Specifically, for the Laplacian and Equipotential style smoothers,
smoothing is terminated either by satisfying a smoothing tolerance or by performing the
maximum number of smoothing iterations. For these smoothers, the smooth tolerance
may be set by the user:

[Set] Smooth Tolerance <tol>

The value <tol> tells the smoother to stop when node movement is less than tol *
local_minimum_edge_length.
The default value for tol is 0.05. The maximum number of iterations may be set by the
user. For volumes, the smooth tolerance and iterations may also be set by
(Note: The above command affects all smoother that respect tolerance.)

Volume Smooth Tolerance <tol>

Volume Smooth Iterations <iters>

(Note: The above two commands only affect the volume smoothers.)

Boundary Mesh Smoothing

Where used in the smooth schemes below, the Free keyword permits the nodes lying on
the bounding entities to "float" along those entities; without this keyword, boundary nodes
remain fixed.
Nodal positions may be fixed so that no smoothing scheme, either implicit or explicit, will
move them, with the following command:

{Curve|Surface|Volume} <range> Node Position {Fixed|Free}

Node <range> Position {Fixed|Free}

The following command does not fix nodal positions, but does fix the connectivity of the
mesh, preventing certain volume schemes from changing the bounding mesh:

Cubit_15.5_User_Documentation

621

{Curve|Surface|Volume} Mesh {Fixed|Free}

The additional following scheme is available for research purposes and can be used only
after issuing a 'set developer on' command.

• Randomize

Smart Laplacian

Applies to: Surface and Volume meshes
Summary: Tries to make equal edge lengths while ensuring no degradation in element
shape
Syntax:

{Surface|Volume} <range> Smooth Scheme Smart Laplacian

Discussion:
The Smart Laplacian smoothing approach is a variation on the standard Laplacian
algorithm. The algorithm iteratively loops over the mesh and updates nodes based on the
location of their neighbors. First, a patch of elements is formed around a given node. The
quality of this patch is assessed to determine the quality of the worst shaped element.
Then a new candidate node position is calculated as the average of the neighboring
nodes. The quality of the patch is assessed again using the candidate node position. If
there has been no degradation in the quality of the elements in the patch, the candidate
node position is accepted; otherwise, the candidate node position is rejected and the node
is returned to its previous position.
The Smart Laplacian smoother is intended to provide a reliable smoother that is nearly
as fast as the Length-Weighted Laplacian smoother. Due to the dual goals of this
smoother, making equal edge length and improving element shape, it will not always be
able to make progress. However, it is often useful as a quick alternative to the more time-
consuming optimization methods like Mean Ratio or Condition Number. When this
smoother fails to make significant progress, the optimization methods can be tried.
The Smart Laplacian Smoother uses the Mean Ratio quality measure to assess element
shape. This smoother is ensuring no degradation in the minimum Mean Ratio. The Mean
Ratio smoother is optimizing the same metric, but it is attempting to improve the average
Mean Ratio quality.

Untangle

Applies to: Triangular or Quadrilateral Surface Meshes Tetrahedral or Hexahedral
Volume Meshes. Does not apply to Mixed Element Meshes.
Summary: Removes as many negative Jacobians from the mesh as possible by
minimizing a certain objective function.

Mesh Generation

622

Syntax:

Surface <surface_id_range> Smooth Scheme Untangle [beta <double=0.02>]

[cpu <double=10>]

Volume <volume_id_range> Smooth Scheme Untangle [beta <double=0.02>]

[cpu <double=10>]

Related Commands:

Condition Number

Discussion:
The Untangle 'smoother' is designed to eliminate negative Jacobians from a given mesh
by moving nodes to appropriate locations. If a mesh node is not involved in causing a
negative Jacobian it will not be moved. If a mesh has no negative Jacobians, the
Untangler will not move any of the nodes. This smoother is not magic: if an untangled
mesh does not exist for the given mesh topology, the untangler will not untangle the mesh.
Instead, it will do the best it can and exit gracefully. An untangled mesh produced by this
smoother will often have poor shape quality; in that case it is recommended that
untangling be followed by condition number smoothing. The untangle smoother is
automatically called by the condition number smoother.
There is no "fixed/free" option with this command; boundary nodes are always held fixed.
As a result, users should be aware that the volume untangler cannot succeed if the
volume contains a surface mesh which contains a negative Jacobian. In that case, one
must first remove the surface mesh negative Jacobians by invoking the surface Untangler
and then invoke the volume Untangler.
The command above only sets the smoothing scheme; to actually smooth the mesh one
must subsequently issue the command "smooth surface <surface_id_range>" or "smooth
volume <volume_id_range>".
Stopping Criteria: Untangling will proceed until the objective function has been
minimized or the optional user input "cpu" has been satisfied. The latter stopping criterion
tells the code how many minutes to spend trying to untangle the mesh. The default value
is 10 minutes. Optimization may also be halted by using "control-C" on your keyboard.
Beta Parameter: An optional user input parameter "beta" plays a role in determining the
optimal mesh. Optimization proceeds until the minimum scaled Jacobian of the mesh is
(roughly) greater than beta. To remove negative Jacobians one would need beta=0
(however, as a safety margin, we choose beta=0.02 as the default). To further improve
the scaled Jacobian of the mesh, input a larger value of "beta". If a mesh with all scaled
Jacobians greater than "beta" does not exist, optimization will continue until the cpu time
stopping criterion has been met. Therefore, it is best not to use "beta" values too large
(say, greater than 0.2) without also decreasing the cpu time limit.
To view a detailed report of the smoothing in progress issue the command "set debug 91
on" prior to smoothing the surfaces or volumes. You will get a synopsis of whether or not
untangling is needed and whether the stopping criteria are satisfied. In addition the
following printout information is given for each iteration of the conjugate gradient
numerical optimization:

Cubit_15.5_User_Documentation

623

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3

min_jsc=value4

n is the iteration count, m is the number of objective function evaluations performed per
iteration, value1 is the value of the objective function (this usually decreases
monotonically), value2 is the norm of the gradient (does not always decrease
monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current
iteration. The minimum possible value of the objective function is zero; this value is
attained only when the minimum scaled Jacobian of the mesh exceeds "beta". The
minimum scaled jacobian is also reported.

Winslow

Applies to: Surface meshes
Summary: Elliptic smoothing technique for structured and unstructured surface meshes
Syntax:

Surface <range> Smooth Scheme Winslow [Free]

Discussion:
Winslow elliptic smoothing (Knupp, 98) is based on solving Laplaces equation with the
independent and dependent variables interchanged. The method is widely used in
conjunction with the mapping and submapping methods to give smooth meshes with
positive Jacobians, even on non-convex two-dimensional regions. The method has been
extended in CUBIT to work on unstructured meshes.

Align Mesh
At times it is desirable to have identical meshes on two different surfaces or curves. The
align mesh command will attempt to assign correspondence between nodes on surfaces
or curves and move the nodes on one surface or curve to match the configuration on the
other. The command syntax is:

Align Mesh Surface <id> [CloseTo] Surface <id> [Tolerance <tol>]

Align Mesh Curve <id> [CloseTo] Curve <id> [Tolerance <tol>]

These two commands align the mesh on the first entity with that of the second entity. This
means that nodes on the first entity will be moved to the closest location possible to their
corresponding nodes on the second entity. This is done without regard to mesh quality,
so it is possible to invert elements with this command.

Align Mesh Node <id> [CloseTo] Node <id> [Tolerance <tol>]

This command aligns the first node with the second node, within the limits of the geometric
entities that own the nodes. This is also done without respect for element quality.

Mesh Generation

624

And example of this is given as follows:
brick x 10
volume 1 copy move 11
surface all except 10 6 vis off
transparent
graphics perspective off
at 5.552503 3.832384 0.134127
from 34.651051 3.640138 -0.193121
up 0.006514 0.999945 -0.008172 mesh surface all
surface 6 smooth scheme randomize free
smooth surface 6
node 432 move 0 0 -0.2
align mesh node 944 node 432
node 432 move 0 0 0.4
align mesh curve 23 closeto curve 12
align mesh surf 10 closeto surf 6

Collapsing Mesh Edges
CUBIT currently offers several options for modifying an existing finite element mesh. In
addition to providing for coarsening and refining of hexahedral and triangle meshes,
CUBIT can also reposition nodes by smoothing or by moving individual nodes.
The collapse edge command is also provided for making small modifications to an
existing triangle mesh.

Meshedit Collapse Edge <id>

This command will collapse the two triangles associated with the given edge, effectively
removing the triangles from the mesh. This command only works on surface meshes, and
only with triangles. If volumetric elements, or quads, are attached to the edge, the
command does nothing to the mesh.

Creating and Merging Mesh Elements
The following forms of the create and merge commands operate on meshed entities only.
They allow low-level editing of meshes to make minor corrections to a mostly correct
mesh. They are not designed for major modifications to existing meshes. Because Cubit's
display routines were not designed with these type of operations in mind, these
commands may cause the current display of the affected entities to take an unexpected
form. An appropriate drawing command can be used to return the display to the desired
view.
The delete commands for deleting individual elements are still under development, but
they may be used after setting a developer flag.

Creating Mesh Elements

The create command uses existing mesh nodes to create new mesh entities.

Cubit_15.5_User_Documentation

625

Creating Hex and Tet Elements

Create {Hex|Tet} Node <range> [Owner Volume <id>]

Using the nodes specified, this form of the command creates a new hex or tet that will be
owned by the specified volume. For a hex, 8 nodes are required. The order in which the
nodes are specified is very important. They should describe two opposing faces of the
hex; the normal of the first face should point into the hex and the normal of the second
face should point out of the hex. For example, to create the hex shown in Figure 1 below,
the following command would be entered:

create hex node 1,2,3,4,5,6,7,8 owner volume 1

Figure 1. Node Numbering for the Create Hex command

To create a tet, 4 nodes are specified. The base is specified as a tri with the normal point
toward the fourth node using the right hand rule. To create the tet shown in Figure 2, the
following command would be entered:

create tet node 1,2,3,4 owner volume 1

Mesh Generation

626

Figure 2. Node ordering for Create Tet Command

Creating Wedge Elements

Create Wedge Node <range> [Owner Volume <id>]

To create a wedge, 6 nodes are specified. The base is specified as a tri with the normal
pointing inward using the right hand rule. To create the wedge shown in Figure 3, the
following command would be entered:

create wedge node 1,2,3,4,5,6 owner volume 1

Cubit_15.5_User_Documentation

627

Figure 3. Node ordering for Create Wedge Command

Creating Face and Tri Elements

Create {Face|Tri} Node <range> [Owner {Volume|Surface} <id>]

The next form of the command creates a face or tri that will be owned by the specified
volume or surface. Four nodes are specified for a face, three nodes for a tri. The nodes
should be specified in the order needed to produce a face or tri with the normal in the
desired direction using the right hand rule.

Creating Edge Elements

Create Edge Node <range> [Owner {Volume|Surface|Curve} <id>]

This form of the command creates an edge that will be owned by the specified volume,
surface, or curve. Two nodes must be specified; order is unimportant.

Creating Nodes

Create Node Location <x> <y> <z> Owner {Volume|Surface|Curve|Vertex}

<id>

Mesh Generation

628

The last form of the command creates a node at the specified location that will be owned
by the specified volume, surface, curve, or vertex. The location is specified by three
absolute values that represent the position of the node in 3D space.

Merging Nodes

The merge node command is used to join two mesh entities one node at a time. It should
be used with care because merging nodes of different meshed entities may have
unpredictable results. The syntax is:

Merge Node <id1> <id2>

The merge node command replaces the node specified as id1 with the node id2. The
command is equivalent to deleting node id1 and creating node id2 in the same location.
The resultant merged node takes on the characteristics of the replaced node such as
position and owner. This may include some or all of the higher level mesh entities related
to the merged node.
Caution should be taken when using the merge node command because other
commands involving the related meshed entities may not work properly following the
merge.

Mesh Cleanup

• Tetrahedral Mesh Cleanup
• Hexahedral Mesh Cleanup

Once a mesh has been created or imported, Cubit has tools to both manually and
automatically improve the quality of a mesh. Mesh Cleanup is the name for the automatic
tools which automatically find bad elements and fixing them by both recomputing node
locations (i.e. smoothing) AND redefining the local element connectivity. To automatically
cleanup a mesh, use the following command:

Cleanup {Volume|Block} <id_range> [angle <value=150>]

This command will cleanup either a tet or a hex mesh as described below.

Cleaning Up a Tetrahedral Mesh

An alternative to the remesh command for tetrahedral meshes is the cleanup command.
For this command the existing mesh is validated and "optimized" by the tetmesher,
instead of being deleted and replaced with a different mesh.
To cleanup a tetrahedral volume mesh use the following command:

Cleanup {Volume|Block} <id_range>

Cubit_15.5_User_Documentation

629

A second variation of the Cleanup command allows remeshing of tetrahedra that are
either part of a free mesh (not owned by a volume) or are a subset of the tetrahedra in
the volume. The command is:

Cleanup Tet <id_range> [Free]

For example, the command

cleanup tet all free

will gather all tetrahedra in a free mesh or single volume, generate a triangle boundary
surface, and "optimize" the mesh, ignoring any volume or blocks. Without the optional
free keyword, the tets will be processed volume by volume or block by block retaining the
boundary between adjacent volumes or blocks.
Also, the command

cleanup tet 200 to 300

will gather the tetrahedra in the range [200, 300], generate a triangle boundary surface,
and "optimize" the mesh. If the tetrahedra in the range are disjointed, i.e., multiple,
independent sets, this operation may fail. It is best to specify a contiguous set of elements.
Note: Cubit will issue an error if the tetrahedra are owned by more than one volume or
mesh container.

Cleaning Up a Hexahedral Mesh

The command to cleanup a hex mesh is:

Cleanup Volume <id_range> [angle <value=150>]

Hexahedral mesh cleanup is newer to Cubit and currently only a single type of bad
element is found and fixed. The hex mesh quality configuration that is currently
implemented is when a column of hex elements is on the boundary of a volume, the hexes
in the column each have 2 adjacent quad faces on the boundary, and the dihedral angle
between those 2 faces is greater than the specified angle tolerance. This situation is
illustrated in Figure 1 where the red column of hexahedra has a good angle on the source
surface, which flattens out to 180 degree angle on the target creating inverted hex
elements. The angle parameter determines how large the angle can get before being
cleaned up.

Mesh Generation

630

Figure 1. Example of hexahedral mesh with case handled by hex mesh cleanup.

Figure 2 illustrates the result of hex mesh cleanup. Internally, Cubit finds the column of
hexahedra with the bad elements, as well as an adjacent column of hexahedra, and then
automatically performs some hex column operations followed by smoothing to improve
the quality of the elements locally.

Figure 2. The mesh from Figure 1 after hex mesh cleanup.

Remeshing

Cubit_15.5_User_Documentation

631

Mesh generation is frequently an iterative process of meshing, deleting the mesh, and
remeshing. The remesh command is a convenient tool to bypass the mesh deletion
process when used to remesh a volume. You may also use the remesh command to
replace a localized set of deformed tetrahedra after analysis. Thus, remeshing can
become part of an optimization loop.
Use the following command to remesh hexahedra:

Remesh Volume <range>

Use the following command to remesh tetrahedra:

Remesh {Volume|Block|Tet} <range> [FIXED|free]

or to remesh a range of tets based upon quality criteria:

Remesh Tet <id_range> | [quality <tet_metric> [less than|greater than]

<value> ...] [inflate <value>][FIXED|free][preview]

Remeshing a Swept Volume Mesh

The remesh command can be useful when using the sweep scheme. When a sweep
scheme is applied to the volume, it will delete the target surface mesh on a volume with
one of the sweeping schemes and then remesh the volume. It is useful when changing
between sweep smooth options as in the following example below.

volume 1 scheme sweep
mesh volume 1

At this stage, the user may discover that poor quality elements may have been generated.
The user could then do the following:

volume 1 sweep smooth winslow
remesh volume 1

At this point, the volume is remeshed using the sweep smooth winslow option.

Remeshing Tetrahedra

When used for tetrahedra, the Remesh command generates a new tetrahedral mesh
after deleting the existing mesh described by the list of tetrahedra, volumes, or blocks.
When remeshing a list of tetrahedra, the smallest set of tets possible is replaced, which
often means a partial remeshing of volumes, surfaces and/or curves. This set will always
include the input list of tetrahedra but may include more.
Each tetrahedron may only be in one volume or block, but the list of tetrahedra may span
volumes or blocks. Each block is treated individually if multiple blocks are specified.
The default FIXED option will ensure that any triangle or edge in the tetrahedron list to be
remeshed that lie on geometric surfaces or curves will not be affected by the remesh
operation. In contrast, the free option allows edges and triangles on curves and surfaces
to be removed and remeshed. Use the FIXED option when it is important to maintain the

Mesh Generation

632

boundary mesh configuration fixed, otherwise the free option will remesh the portions of
curves and surfaces in the remesh region.
The Remesh command can be used to selectively remove and remesh a small portion of
tetrahedron in the mesh that have been identified as poor quality. This can be an effective
tool for improving mesh quality on a deformed mesh following an analysis without the
need to regenerate the full mesh.
The quality option will identify those tetrahedra from the full model and apply the
remeshing opertaion only to those tetrahedra. Any of the standard quality metrics for
tetrahedra may be used as the <tet_metric>. These include: Aspect Ratio Bet, Aspect
Ratio Gam, Element Volume, Condition No., Jacobian, Scaled Jacobian, Shape,
Relative Size, Shape And Size, Distortion, Allmetrics, Algebraic and Traditional. The
metric specification is used in conjunction with a less than or greater than specification
and a threshold value. For example, the syntax below would remesh all tetrahedra in the
mesh who's scaled jacobian metric was less than 0.2.

remesh tet quality Scaled Jacobian less than 0.2 inflate 1 free

The inflate option can be used to expand the set of tets selected by the quality metric
criteria. The <value> input following the inflate option is the number of tet layers
surrounding the poor quality tets that will be included in the remesh region. Usually a
value of 1 is sufficient to allow the tet mesher to generate better quality elements, however
2 or greater will remesh a larger portion of the mesh. A value of 0 is generally not
recommended as it usually does not provide enough space for the tet mesher to improve
element quality. The inflate option can also be used independently from the remesh
command. See the Inflate command described below.
This command also allows for multiple quality criteria. For example, the following
command would use both aspect ratio and scaled jacobian as criteria for remeshing. Any
number of quality criteria may be included in the command syntax:

remesh tet quality Scaled Jacobian less than 0.2 Aspect Ratio Bet
greater than 4 inflate 1 free

The preview option will display the tetrahedra selected by the quality criteria and inflate
options without actually performing the remeshing operation.
Sizing functions may be used with tet remeshing. See Mesh Adaptivity and Sizing
Functions and Exodus II-based Field Function for more information.

Inflating a set of Tets

In cases where a set of tets are to be remeshed, it is useful to be able to expand the set
to include additional surrounding tets. This is to allow the mesher more freedom to place
good quality elements, but also to ensure a valid shape in which the mesher has to work.
The Inflate command starts with a given set of tetrahedra and will expand the set based
on the number of user defined layers as well as manifold criteria. The result will be added
to the curent group, or a new group can be created. The following describes the syntax
and arguments to this command:

Inflate [group <id>|tet <range>][manifold][layer <value>][add|create

<"name">][draw]

Cubit_15.5_User_Documentation

633

group<id>|tet<range>: input to this command can be with a group name, group id, or a
range of tets. The group must contain at least 1 tet. The tets need not be contiguous.
manifold: This option will add tets to the set where the boundary or skin of the tets meet
at a single edge or node. This ensures that a complete valid manifold definition of the
boundary of the set of tetrahedra can be defined. This is important for the tetrahedral
mesh generator which requires a manifold boundary definition. both layer and manifold
can be used in the same command.
layer <value>: This option will add the number of layers of tets indicated by value to the
set. A layer is defined by all tets connected by at least a node to the skin of the existing
set. This option alone does not guarantee a valid manifold definition. Use both the layer
and manifold in the same command options to ensure a manifold definition.
add|create<"name">: The add option will add tets in the inflated region to the input
group. An input group must be specified for this to be a valid option. The create option
will create a new group and add all tets (including the input), to a new group specified by
<"name">. If neither add nor create are specified, a new default group named
"inflated_tets" will be created. If a group of that name already exists, it will be added to.
draw: The draw option will display both the input set of tets and the inflated tets in the
graphics window. The input tets will be displayed in green and the inflated tets will be
displayed in red.
Examples:
Generate a simple tet mesh. For tets with ids 1 to 10, define a 1 layer buffer and ensure
it maintains a manifold boundary. The result will be placed in a new group called
"inflated_tets" and displayed in the graphics window.

brick x 10
vol 1 scheme tetmesh
mesh vol 1
inflate tet 1 to 10 layer 1 manifold draw

Create a group called "bad_tets"containing all tets in volume 1with quality metric (scaled
Jacobian) less than 0.2. Expand that group by one layer and remesh it.

group 'bad_tets' equals qual vol 1 scaled high 0.2
inflate bad_tets layer 1 manifold add
remesh tet in bad_tets

Edge Swapping
The edge swap command allows a user to target a specific edge between two triangles
(similar functionality for quads and tets has not been included) and change the
connectivity of the triangles. Multiple edges can be swapped simultaneously. The input
order of the edges is the order in which the swaps will be performed.

Typically, the edge swap command is used to specifically repair local mesh connectivity.

Swap Edge <id_list>

The following images show the before and after views of a model where the highlighted
edge is swapped. The edge in each image is the same edge.

Mesh Generation

634

Image 1 - Before edge swapping

Image 2 - After edge swapping

Matching Tetrahedral Meshes
The intended use of this function is for importing two exodus or genesis files that have
non-conforming mesh where they touch and modifying the meshes locally to make them
conforming. The result is a single mesh that is stitched together at the locally modified
region. This functionality is currently only available for tetrahedral meshes.

Tetrahedral mesh matching will work on free mesh only. The interface where the two
meshes will be matched need not be planar. A single target sideset and one or more
source sidesets should be provided. The source sideset should be completely enclosed

Cubit_15.5_User_Documentation

635

in the target sideset so that the boundaries of the two sidesets do not intersect. The two
meshes need not touch exactly at the sidesets but the closer the meshes are to touching
the better the results will be. Small gaps or overlaps will generally be allowed. Both of
the meshes involved in the matching should be contained in defined blocks prior to issuing
the command.

The syntax for the command is:

Meshmatch tet sideset <id_list> onto sideset <id>

The one or more sidesets specified before the 'onto' keyword are the source sideset(s).
The sideset after the 'onto' keyword is the target sideset.

Mesh Coarsening

Hexahedral Coarsening

CUBIT provides a limited number of options for coarsening hexahedral meshes. The
options currently available for hex coarsening rely on the hex sheet extraction process
described in Mesh Refinement page. Removing a sheet from a hexahedral mesh
essentially means that a complete layer of hexes will be removed and the adjacent layers
expanded to take its place.

Extracting a Single Hex Sheet

The following command can be used to extract a single hex sheet.

Extract sheet { Edge <id> | Node <id_1> <id_2> }

The edge or node pair are used to define the sheet that will be extracted. Figure 3 below
shows an example of extracting a hex sheet. In this example the hex sheet is specified
by the node pair highlighted in the images. Note that the entire layer of hexes between
the highlighted nodes has been removed and the neighboring layers have been expanded
to take its place.

Mesh Generation

636

Figure 3. Example of Hex Sheet Extraction

Note: Also see the Mesh Refinement section for a description of hex sheet drawing.

Extracting multiple sheets along a curve

Another option for extracting hex sheets can be done by specifying a curve at which to
perform the sheet extraction operations. In this case, multiple layers of hexes can be
removed by specifying a curve perpendicular to the hex layers. The command for
coarsening perpendicular to a curve is as follows:

Coarsen Mesh Curve <id> Factor <value> [NO_SMOOTH|smooth]

Coarsen Mesh Curve <id> Remove {<num_edges>|edge <id_ranges>}

[NO_SMOOTH|smooth]

Figure 4. Coarsening a mesh by extracting sheets perpendicular to a curve

Cubit_15.5_User_Documentation

637

The first option uses the Factor argument. The factor argument controls how much larger
the edges will be on the curve. For example, Figure 4 shows the coarsen mesh curve
command used with a factor of 2. In this case, the command attempts to make the mesh
edges approximately twice the length relative to their original length along the curve.
The second option uses the Remove argument. With this option, a specified number of
layers may be removed from the mesh. This may be accomplished by indicating an exact
number, or by providing a list of edge IDs that correspond to the layers that will be
removed.
The NO_SMOOTH|smooth option allows the user to improve the element quality after
the sheet extraction process by smoothing the remaining nodes. The default for both of
these commands is to not smooth. Smoothing may also be accomplished after sheet
extraction by using the smooth volume command.

Uniform hex coarsening

By applying the coarsen mesh curve command multiple times to curves that are
orthogonal in the model, the effect of uniform coarsening of the mesh may be achieved.

Mesh Refinement

• Global Mesh Refinement
• Refining at a Geometric or Mesh Feature
• Hexahedral Refinement Using Sheet Insertion
• Local Refinement of Tets, Triangles, and Edges
• Parallel Refinement

CUBIT provides several methods for conformally refining an existing mesh. Conformal
mesh refinement does not leave hanging nodes in the mesh after refinement operations,
rather conformal mesh refinement provides transition elements to the existing mesh. Both
local and global mesh refinement operations are provided.

Global Mesh Refinement

The Refine Surface and Refine Volume commands provide capability for globally refining
an entire surface or volume mesh. Global refinement will only be used if the entire body
is included in the command. Otherwise, the command will be interpreted as local
refinement (see below.) This distinction can be important because the global refinement
algorithm divides each element into fewer sub-elements than local refinement. The
command syntax is:

Refine Volume <range>numsplit<int>

Refine Surface <range>numsplit<int>

The numsplit option specifies how many times to subdivide an element. A value of 1 will
split every triangle and quadrilateral into four pieces, and every tetrahedron and

Mesh Generation

638

hexahedron into eight pieces. Examples of global refinement on each element are shown
below.

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

Figure 1. Example of uniform refinement for each of the mesh entities

Refining at a Geometric or Mesh Feature

Cubit_15.5_User_Documentation

639

CUBIT also provides methods for local refinement around geometric or mesh features.
Individual elements or groups of elements can be refined in this manner using the
following syntax.

Refine {Node|Edge|Tri|Face|Tet|Hex} <range>

[NumSplit<int = 1>|Size <double> [Bias <double>]]

[Depth <int>|Radius <double>] [Sizing_Function]

[Smooth]

Refine {Vertex|Curve|Surface} <range>

[NumSplit<int = 1>|Size <double> [Bias <double>]]

[Depth <int>|Radius <double>] [Sizing_Function]

[Smooth]

To use these commands, first select mesh or geometric entities at which you would like
to perform refinement. Refinement will be applied to all mesh entities associated with or
within proximity of the entities. The all keyword may be used to uniformly refine all
elements in the model
The following is a description of refinement options.
NumSplit
Defines the number of times the refinement operation will be applied to the elements in
the refinement region. For uniform or global refinement, where all elements in the model
are to be refined, A NumSplit value of 1 will split each triangle and quadrilateral into four
elements, and each tetrahedron and hexahedraon into eight elements. A numsplit of 2
would result in 16 and 64 elements respectively. For uniform refinement, the total number
of elements obeys the following:

1. NE = NI * E^NumSplit

where NE is the final number of elements, NI is the initial number of elements and E is 4
or 8 for 2D and 3D elements respectively.
In cases where only a portion of the elements are selected for refinement, the elements
at the boundary between the refined and non-refined elements will be split to
accommodate a transition in element size. The transition pattern will vary depending on
the local features and surrounding elements. For non-uniform refinement of hexahedron,
for a numsplit of 1, each element in the uniform refinement zone will be subdivided into
27 (E=27) elements rather than 8. This affords greater flexibility in transitioning between
the refined and unrefined elements.
Size, Bias
The Size and Bias options are useful when a specific element size is desired at a known
location. This might be used for locally refining around a vertex or curve. The Bias
argument can be used with the Size option to define the rate at which the element sizes
will change to meet the existing element sizes on the model. Figure 2 shows an example
of using the Size and Bias options around a vertex. Valid input values for Bias are greater
than 1.0 and represent the maximum change in element size from one element to the
next. Since refinement is a discrete operation, the Size and Bias options can only

Mesh Generation

640

approximate the desired input values. This may cause apparent discontinuities in the
element sizes. Using the default smooth option can lessen this effect. It should also be
noted that the Size option is exclusive of the NumSplit option. Either NumSplit or Size can
be specified, but not both.

original mesh

Bias=2.0

Bias=1.5

Figure 2. Example of using the Size and Bias options at a Vertex.

Depth
The Depth option permits the user to specify how many elements away from the specified
entity will also be refined. Default Depth is 1. Figure 3 shows an example of using the
depth option when refining at a node.

original mesh

Depth=0

Depth=1

Figure 3. Example of using the Depth option at a node to control how far from the node to

propagate the refinement.

Radius
Instead of specifying the number of elements to describe how far to propagate the
refinement, a real Radius may be entered. The effects of the Radius are similar to that
shown in Figure 3, except that the elements whose centroid fall within the specified
Radius will be refined. Transition elements are inserted outside of this region to transition
to the existing elements.
Sizing Function
Refinement may also be controlled by a sizing function. CUBIT uses sizing functions to
control the local density of a mesh. Various options for setting up a sizing function are
provided, including importing scalar field data from an exodus file. In order to use this
option, a sizing function must first be specified on the surface or volume on which the

Cubit_15.5_User_Documentation

641

refinement will be applied. See Adaptive Meshing for a description of how to define a
sizing function.
Smooth
The default mode for refinement operations is to NOT perform smoothing after splitting
the elements. In many cases, it may be necessary to perform smoothing on the model to
improve quality. The smooth option provides this capability.
Controlling Regularity of Triangle Refinement
The default behavior of triangle refinement is to attempt to maximize element quality using
the basic one->four template. This can sometimes result in an irregular pattern, where
one or more edges are swapped. To enforce regularity of the triangle refinement pattern,
regardless of quality, the folowing setting may be used.

1. Set Triangle Refine Regular {on|OFF}

Hexahedral Refinement Using Sheet Insertion

Several tools for refining a hexahedral mesh using sheet insertion and deletion are
available in CUBIT.

• Refining at a Geometric Feature

• Refining along a Path
• Refining a Hex Sheet
• Directional Refinement
• Hex Sheet Drawing

Refining at a Geometric Feature

The following commands offer additional controls on refinement with respect to one or
more geometric features of the model.
An existing hexahedral mesh can be refined at a geometric feature using the following
command:

Refine Mesh Volume <id> Feature {Surface | Curve | Vertex | Node}

<id_range> Interval <integer>

This command refines the mesh around a given feature by adding sheets of hexes. These
sheets can be generalized as planes for surfaces, cylinders for curves, and spheres for
vertices. The interval keyword specifies the number of intervals away from the feature to
insert the new sheet of hexes. For this command a single sheet of hexes is inserted into
the hexahedral mesh.
Figure 4 shows an example of this command where the feature at which refinement is to
be performed is a curve. In this case the interval chosen was, 2. This indicated that the
elements 2 intervals away from the curve would be refined.

Mesh Generation

642

Figure 4. Example of Refinement at a curve

Refining along a path

Hexahedral meshes can be refined from a specific node and along a propagated path
using the following command

Refine Mesh Start Node <id> Direction Edge <id> End Node <id> [Smooth]

Figure 5 shows a swept mesh and its cross section. The cross section view on the left
shows a path that has been propagated through the mesh between the start node and
end node. This path is then projected along a chain of edges in the direction given by the
direction edge as shown in Figure 5. The start node and end node must be on the same
sweep layer. This refinement procedure also requires the volume's meshing scheme to
be set to sweep. If the smooth keyword is given the mesh will be smoothed after the
refinement step is complete.

Figure 5. Refining a Mesh Along a Path

Refining a Hex Sheet

Cubit_15.5_User_Documentation

643

The following command can be used to refine the elements in one or more hex sheets:

Refine Mesh Sheet [Intersect] { Node <id_1> <id_2> | Edge <id_range> } {

Factor <double> | Greater_than <size> } [Smooth] [in volume <id_range>

[depth <num_layers]]

The node and edge keywords are used to define the hex sheet(s) to be refined. If the
node option is chosen, only one node pair can be entered (see Figure 6). If the edge
option is chosen, one or more edges can be entered (see Figure 7).

Figure 6. Refine mesh sheet node 796 782 greater_than 6

Figure 7. Refine mesh sheet edge 1584 1564 1533 1502 1471 greater_than 6

The factor and greater_than keywords are used to specify the refinement criteria for the
selected hex sheet(s). If the factor keyword is used, the length of the smallest edge in the
hex sheet is determined and any edge in the hex sheet with a length greater than the
smallest length multiplied by the factor is refined. If the greater_than keyword is used, any
edge in the hex sheet with a length greater than the specified size is refined.
The intersect keyword is optional. It is used to more easily define multiple hex sheets to
be refined. If the intersect keyword is entered, the node and edge keywords are used to
define a chord rather than a sheet (a chord is the two-dimensional equivalent of the three-
dimensional sheet). The chord will be limited to the surface(s) associated with the nodes
or edge entered, and all sheets intersecting the chord will be selected for refinement (see
Figure 8). When the node keyword is used with the intersect option, the nodes must define
an edge on the surface of the mesh.

Mesh Generation

644

Figure 8. Refine mesh sheet intersect edge 1499 greater_than 6

The smooth keyword is also optional. When the smooth keyword is entered, the elements
that have been refined are smoothed in an attempt to improve element quality. Figure 9
shows the same command as Figure 8 with the addition of the smooth keyword.
Smoothing may or may not be beneficial, depending on the situation.

Figure 9. Refine mesh sheet intersect edge 1499 greater_than 6 smooth

Directional Refinement

Mesh sheet refinement can also be used to refine a mesh in a particular direction. This
can help control anisotropy. The following command can be used as a short cut for
specifying what sheets should be used in refinement.

Refine Volumes <id_range> using {Plane <options> | Surface <id_range> | Curve

<id_range> } [Depth <num_layers>] [Smooth]

The volumes specified indicate which hexes can be refined. A transition layer will be made
out of hexes surrounding the indicated volumes. If the depth option is used, additional
layers of hexes around the specified volumes will be included in the refinement region.
Behind the using option, if the plane option is employed, all the edges in the volume
which are parallel to the plane (to a small tolerance) are used to specify the sheets to
refine. If the surface or curve option is employed instead, all the edges in the surfaces
or curves will be used.
For example, Figure 10 and 11 shows directional refinement using the plane option. The
command used to convert the mesh in Figure 10 to Figure 11 is:

Cubit_15.5_User_Documentation

645

refine vol 2 using plane xplane depth 1

Figure 10. Starting mesh

Mesh Generation

646

Figure 11. Directional result of refinement resulting from using the plane option on the

refinement command.

Directional refinement can be used iteratively to reduce or create anisotropy of any level.
This is done by applying the direction refinement command iteratively. A second iteration
of directional refinement can be applied by issuing the same command again. To improve
element quality, however, it is often recommended to perform refinement parallel to the
plane before subsequent iterations. For example, taking the mesh in Figure 11 as input,
the following commands will generate the mesh in Figure 12.

refine mesh sheet edge (at 4.5 5 5 ordinal 1) factor 0

refine vol 2 using plane xplane depth 1

Figure 12. A 2nd iteration of direction refinement is applied.

Hex Sheet Drawing

Since refinement of hex meshes generally occurs by inserting hex sheets, tools have
been provided to draw a specified sheet or group of sheets.
This command draws a sheet of hexes that is defined by the edge or node pair.

Draw Sheet {Edge <id> |Node <id_1> <id_2>}[Mesh [List]] [Color

<color_name>] [Gradient]

Cubit_15.5_User_Documentation

647

The following command draws the three sheets that intersect to define the given hex.
These sheets are drawn green, yellow, and red. To draw a specific sheet, list its color in
the command.

Draw Sheet Hex <id> [Green][Yellow][Red][Mesh [List]] [Gradient]

The 'gradient' keyword for both commands draws the sheet in gradient shading according
to the distance between opposite hex faces that are parallel to the sheet.
The 'mesh' keyword will draw the hexes in the hex sheet. If the 'list' keyword is also given,
the ids of the hexes in the sheet will be listed.

Local Refinement of Tets, Triangles, and Edges

Local refinement of tets, triangles, and edges is available by refining individual entities or
by refining to guarantee a user-specified number of tests through the thickness:

• Single Entity Refinement
• 'N' Tets Through the Thickness Refinement

Single Entity Refinement

Local refinement of tets, triangles, and edges is available. When refining triangles a node
is inserted at the enter of the triangle and three new triangles are connected to this node.
The original triangle is deleted. The command to refine triangles is:

Refine Local Tri <tri_id_list>

When refining an edge, a node splits the original edge between two triangles and four
new triangles are created and connected to the new node. The command to refine an
edge is:

Refine Local Edge <edge_id>

When refining a tet edge, the tet edge is split by a node and then all tets attached to the
original edge are split into two through a triangle that goes through the new node. All other
adjacent nodes and edges are unmodified by the operation. Note that on the interior of
the mesh tet edges are not represented explicitly so the command takes two nodes as
input to define the edge. The command to refine a tet edge is:

Refine Tet_edge Node <node1_id> <node2_id>

'N' Tets Through the Thickness Refinement

Cubit provides a capability to guarantee a user-specified number of tets through the
thickness. This functionality is intended to work on an existing tet mesh using mesh
refinement. The user specifies the geometry or mesh defining the thin region and also the

Mesh Generation

648

number of desired tets through the thickness and the refinement algorithm will run until it
meets this criteria. The number of tets through the thickness in this context is interpreted
as the number of mesh edges through the thickness and the algorithm will continue to do
refinement until there are no mesh edge paths through the thin region that contain fewer
mesh edges than the number specified by the user. The command for doing this is:

Refine min_through_thickness <val> source {surface|node|tri|nodeset|sideset|block}

<id_range> target {surface|node|tri|nodeset|sideset|block} <id_range> [anisotropic]

[single_iteration] [dont_fill_in_gaps]

The various options are described below.
anisotropic: When this option is specified in the command the algorithm will only attempt
to refine the edges that go roughly normal to the source and target entities. This will give
an anisotropic result. The meshes on the source and target will generally not be affected
when this option is used. When this option is not specified the refinement algorithm will
be isotropic in nature and will propagate much more. However, it will tend to have better
transitioning from the refined region to the non-refined regions.
dont_fill_in_gaps: When this option is specified in the command the algorithm will NOT
try to grow the regions that will be refined. When the regions are grown it helps to avoid
leaving small pockets of mesh that are not refined (splotchiness). This has effect only on
isotropic refinement (when the "anisotropic" option is NOT used).
single_iteration: When this option is specified in the command the algorithm will only run
for one iteration even if the min_through_thickness criteria is not met.
A quality command for querying the minimum number of tets through the thickness is
found here.
Below is an example using the following commands:
refine min_through_thickness 4 source surf 1 target surf 2 anisotropic
refine min_through_thickness 4 source surf 7 target surf 13 3 14 anisotropic
Surfaces 1 and 2 are the two surfaces on opposite sides of the thin region in the green
volume and surfaces 7 13 3 14 are the surfaces on opposite sides of the thin region in
the yellow volume.

Cubit_15.5_User_Documentation

649

Figure 13. Before N through the thickness refinement.

Mesh Generation

650

Figure 14. After N through the thickness refinement.

Parallel Refinement

Global mesh refinement can be used to increase global mesh density with a single
command. If an extremely large mesh is desired, one approach is to generate a coarse
mesh with the desired relative mesh gradations, and then perform global mesh refinement
to scale the number of elements up across the model. Depending on the amount of
refinement requested, this can exceed the memory limits of Cubit running on a single
processor. Global parallel mesh refinement allows refinement to go beyond the memory
limits of a single processor. The resulting mesh size is only limited by the number of
processors you have available to perform the refinement. The command syntax is:

Refine Parallel [Fileroot <'root filename'>] [Overwrite] [No_geom] [No_execute]

[Processors <int>] [Numsplit <int>] [Version <'Sierra version'>]

This command causes Cubit to write two files to disk. First, Cubit writes an Exodus file
named <root filename>.in.e which contains the mesh elements in the current Cubit
session. Second, Cubit writes an OpenNURBS 3dm file http://www.opennurbs.org.
named .3dm, which contains a definition of the geometry from the current Cubit Session.
The Fileroot argument specifies the full path and root of the files that will be written.
Additional blocks are written to the Exodus file to correspond to the geometry entities in

http://www.opennurbs.org/

Cubit_15.5_User_Documentation

651

the 3dm file. The Overwrite argument specifies if existing files on disk with the same
names should be overwritten or not.
When the mesh is refined in STK_Adapt, the new nodes created during refinement will
be projected to the geometry definitions from the OpenNURBS file. If the No_geom
argument is specified, only the Exodus file is written, and new nodes will be placed by
evaluating the shape functions of the elements being evaluated.
The exported Exodus and OpenNURBS files are prepared specifically for input into the
Sierra STK_Adapt program. By default, Cubit spawns STK_Adapt in the background after
exporting the files. If the No_execute argument is specified, the Cubit command exports
the files, but does not spawn STK_Adapt. The user can then move those files to a large
parallel machine to perform the STK_Adapt refinement.
If No_execute is not specified, then Cubit will spawn Sierra STK_Adapt in the background
to perform the refinement. The Processors argument specifies the number of processors
to use for the STK_Adapt run. The Numsplit argument specifies how many times the
global refinement should be performed. If Numsplit = 1, then each element edge is split
into 2 sub-edges. If Numsplit = 2, then each element is split into 4 sub-edges, etc. The
optional Version argument allows the user to specify which version of STK_Adapt should
be run. Possible values for Version include "head", "4.22.0", etc.
Refine parallel command creates groups to visualize the association between mesh
entities (edge, tri, and quads) and geometric entities (curves & surfaces). There are three
types of groups that exist for each mesh entity type edge, tri, and quad. First group
contains unique 1-1 map between mesh entity and geometric entity. Note that issuing
"Debug 212" command before calling the refine parallel command, will create separate
group for each geometric entity containing unique mesh entities. Next group contains
mesh entities that point to multiple geometric entities. And the final group contains mesh
entities not associated with any geometric entity.
After the Refine Parallel command finishes, the mesh in Cubit does not change, normally
because the resulting mesh would be too big to store in Cubit on a single processor.
Instead, the refined mesh is written to disk in a series of Exodus files, one per processor,
using the Fileroot argument as the root of the Exodus file names. For example, if Fileroot
is "somemesh" and Processors is 8, STK_Adapt will write out eight Exodus files named
somemesh.e.8.0, somemesh.e.8.1, â€¦, somemesh.e.8.7. These files can be kept
distributed for an analysis run, or united using the Sierra EPU command. In this example,
Cubit would have written out a file called somemesh.in.e, which contains all of the sideset,
nodeset, and block definitions defined in the Cubit session. All of these sidesets, nodesets
and blocks are transferred to the refined exodus files (somemesh.e.8.0, etc.) for use in
the subsequent analysis. The somemesh.e.* files will also contain several other blocks
which correspond to geometric entities defined in somemesh.3dm to enable the mesh to
be refined to the CAD geometry, and should be ignored by downstream applications.
Sierra STK_Adapt must be in the PATH on the computer Cubit is running on. If Sierra
STK_Adapt cannot be found, Cubit returns an error and no refinement is performed.
Information on how to download and build Sierra STK_Adapt can be found at
http://trilinos.sandia.gov/packages/stk/.

Mesh Scaling

http://trilinos.sandia.gov/packages/stk/

Mesh Generation

652

Cubit supports the scaling of hexahedra and tetrahedra meshes. Mesh Scaling allows a
series of meshes to be built [typically] for solution convergence studies or other purposes.
Each mesh has progressively larger or smaller elements. For example, if the input mesh
has 10,000 hexahedra, scaling with a multiplier of 2.0 will result in a mesh of about 20,000
hexahedra, with approximately the same element orientation and size gradations as the
original, as seen in Figure 1. Additional meshes can be built by scaling the original mesh
with multipliers of 4, 6, 8, etc. Scaling by a value less than 1.0 will produce a mesh with
fewer elements. Scaling by a negative value is not allowed. Convergence studies can be
performed with much less computational cost than if traditional global refinement is used,
because the element increase at each step of the series can be smaller.

Figure 1.

Command Syntax

scale mesh [volume <ids>]

[multiplier <value, default=2.0>]

[minimum <value, default=1>]

[{SWEPT_BLOCKS | legacy | maintain_structure}]

[feature_angle <value>]

[force_structured in {[volume <ids>] [surface <ids>]}]

[thin_gap_intervals <value, default=2>] [fix_all_gaps]

[max_aspect_ratio <value> in volume <ids>]

[max_feature_length <value, default=30>]

[smooth_volume {ON|off}]

Command Options

scale mesh [volume <ids>]

Specifying a list of volumes is optional. By default, all volumes will be scaled. For Hex
Mesh Scaling, the specified volumes, together with any volumes merged with them, will
be scaled. Tet Mesh Scaling only scales the specified volumes, preserving the shared

Cubit_15.5_User_Documentation

653

mesh boundary with any non-participating volumes. This approach allows individual
assembly components to be scaled, without scaling the entire model.

[multiplier <value, default=2.0>]

The target number of output elements is the number of input elements times the
multiplier parameter. The default value is 2.0. For example: the mesh in Figure 2a has
3025 hex elements. After scaling by 2.0, the mesh in Figure 2b has 6804 hexes. Note the
locations of new nodes are projected to lie on the associated CAD geometry, if any.

Figure 2a. Input mesh of 3025 hex elements.

Mesh Generation

654

Figure 2b. Output mesh of 6804 hexes,

after scaling with a multiplier of 2.0.

Tet Mesh Scaling

Tetmesh scaling woks by using the original tet mesh as a background sizing mesh, with
a size on each node to achieve the desired scale factor. The only command parameter
relevant to tet mesh scaling is the multiplier parameter. All others are used for Hex Mesh
Scaling.

Hex Mesh Scaling

Hex Mesh Scaling is more flexible than template-based global refinement methods,
because it does not require that every element is refined, or refined in the same way.
Instead, Hex Mesh Scaling decomposes the entire mesh into larger "blocks" of hexes,
and then refines the blocks. In this way, Mesh Scaling supports increasing the element
count by small multiplicative factors, e.g. 1.5, that are impossible with template based
refinement. However, like template refinement, it can ensure that every location of the
mesh is refined. These features can be useful for solution verification.

Cubit_15.5_User_Documentation

655

A traditional template-based refinement replaces each hexahedron with a 2x2x2
structured grid of hexahedra, increasing the element count by a factor of 8X. In contrast,
Hex Mesh Scaling refines "blocks" of elements (not to be confused with Exodus element
blocks). The block decomposition subdivides the entire mesh into structured (mapped)
and swept blocks. A block may contain many elements, but is not allowed to cross
geometric boundaries, boundary conditions, and loading constraints. For example, a
block cannot have a curve or nodeset in its interior, nor hexes from multiple Exodus
blocks. Blocks may be structured or logical sweeps. A structured block is restricted to be
a grid of MxNxO hexes, so, its extent is limited by any surface nodes that do not have
exactly four edges, etc. Hex Mesh Scaling remeshes the entire model conforming to the
block decomposition, using the original mesh as a sizing function, multiplied by the scale
factor.

Hex Scale Mesh Command Options

[minimum <value, default=1>]

The minimum parameter provides further control over the level of refinement. It is the
minimum number of intervals added to each block-curve. Specifying minimum 1, which
is the default, will guarantee that at least one interval is added to every element block in
all 3 directions, which guarantees every part of the domain is scaled by at least a little bit.
This can be "turned off" by specifying minimum 0.
Refinement and Coarsening Levels
The multiplier determines the target number of output hexes. There is no guarantee it will
be achieved exactly. For minimum 0 and small multipliers, there is no guarantee that
every block will be refined in all 3 directions. This is because the target number of
elements may be reached first. This may lead to unevenly distributed refinement, with
jumps in adjacent element sizes.
An uneven distribution may also result if adjacent blocks have significantly different
MxNxO intervals; this is common with the legacy option. For example, for a 1x10x12
block adjacent to a 6x10x12 block, Mesh Scaling could output 2x11x13 and 7x11x13
blocks. The M value of the first block has doubled, 2/1, while the M value of the second
block has only increased by 7/6. Thus, the user may observe a jump in the lengths of
adjacent edges.
To coarsen a mesh, specify a multiplier less than one. For example, a multiplier of 0.9 will
attempt to decrease the element count by 10%. Each block side will have its intervals
decreased by the minimum value. A block must have at least one interval, so how far the
mesh can be coarsened is limited by the distance between mesh irregularities, geometry,
boundary condition and loading constraints.
Solution Verification
Mesh Scaling is useful for solution verification, as it can easily generate a series of similar
meshes of increasing mesh density. For best results, generate each mesh in the series
by scaling the original mesh, rather than scaling the previous mesh of the series. It is
suggested that each mesh uses a multiplier at least 2X larger, and a minimum at least
one more, than the prior mesh. Small multipliers alone are unlikely to produce sufficient
changes for solution verification. The minimum is especially useful for ensuring changes

Mesh Generation

656

in regions that are initially coarse. A good set of (multiplier, minimum) parameters
follows:

(2X, 1) (4X, 2) (8X, 3) (16X, 4), (prior *2, prior +1), etc.

A large minimum can cause quality problems and generate too many elements. For
example, the minimum in the parameter series (2X, 1) (3X, 2) (4X, 3) (5X, 4) (6X, 5) (7X,
6) (8X, 7) etc. would likely be too aggressive. It would produce many more elements than
the specified multiplier, potentially causing poor element quality or even mesh scaling
failure. For a slowly increasing set of multipliers, a less aggressive minimum series is
recommended, such as

(2X, 1) (3X, 1) (4X, 2) (5X, 2) (6X, 2) (7X, 2) (8X, 3) etc..

[{SWEPT_BLOCKS | legacy | maintain_structure}]

There are three major block decomposition variations to choose from. To understand their
differences, one must first understand the two types of blocks: "structured" and "swept"
blocks. A structured block is a MxNxO structured grid. A swept block is a single-source
to single-target sweep of some subset of a single volume. That is, it is composed of a
single surface of quad elements, projected some number of layers to form hexes.
The block decomposition options are swept_blocks (default), maintain_structure and
legacy. For legacy, only structured blocks are used. For swept_blocks and
maintain_structure, the decomposition constructs large swept blocks wherever logical
sweeps can be identified, and structured blocks otherwise. The main difference is that
swept_blocks remeshes the source surfaces of swept blocks from scratch. In contrast,
maintain_structure partition each swept block into structured sub-blocks, and remeshes
by selectively refining those sub-blocks. Thus swept_blocks may change the number
and relative location of irregular nodes, whereas maintain_structure keeps them the
same.
Typically, swept_blocks and maintain_structure provide smoother, more evenly
distributed refinements compared to legacy. This is because with swept blocks, there are
typically significantly fewer blocks in the decomposition. Having fewer blocks increases
the likelihood that each block will receive at least some refinement before the multiplier is
reached.
However, legacy and maintain_structure provide element orientations and structure
closer to the original mesh than swept_blocks. This is because structured blocks
maintain the irregular nodes.
Often maintain_structure provides both element orientations closer to the original mesh
and a smoother, more evenly distributed refinement. Its structured blocks preserve
orientations and structure. Its swept blocks provide the freedom to distribute changes,
and smooth the mesh, across its structured sub-blocks.

[force_structured in {[volume <ids>] [surface <ids>]}]

In some cases, the user may want to use swept blocks in only some parts of the model.
The original mesh may have small regions with carefully constructed meshes. Using

Cubit_15.5_User_Documentation

657

swept_blocks can destroy these constructions, replacing them with pave-and-sweep
meshes. These constructions can be preserved by specifying force_structured for the
surfaces and volumes containing them.
For example, see Figures 3, 4 and 5. In Figure 3 surface 108 was meshed with great care
to ensure a structured mesh around the holes, while surface 34 was meshed with paving.
Since surface 108 has irregular nodes, it appears to Mesh Scaling as the source surface
of a swept block. Figure 4 illustrates the resulting mesh from the command "scale mesh
multi 2". Notice the structured meshes around the holes have been replaced with a
standard paved mesh. Figure 5 illustrates preserving the structured holes of surface 108
while allowing surface 34 to be repaved. The command was "scale mesh multi 2
force_structured in surface 108". A different mesh would result from the command
scale mesh multi 2 force_structured in volume 1 , because this would also preserve
the irregular nodes in surface 34, resulting in more blocks and a less smooth mesh.

Figure 3. Input mesh. Surface 108's mesh has desired structure and irregular nodes.

Surface 34 contains a paved mesh.

Mesh Generation

658

Figure 4. Output mesh from the command "Scale Mesh Multi 2". The mesh on surface 108

is replaced with a paved mesh.

Cubit_15.5_User_Documentation

659

Figure 5. Output mesh from the command "Scale Mesh Multi 2 force_structured in

Surface 108". The desired features are maintained, while swept blocks are used in

unimportant regions.

[thin_gap_intervals <value, default=2>] [fix_all_gaps] [max_feature_length]

For the maintain_structure option, the thin_gap_intervals parameter determines how
thin gaps are defined. If two disjoint curves of a surface come close together, the space
between them is considered a "thin gap" if the number of intervals across that space is at
most thin_gap_intervals. Mesh scaling gives high priority to adding intervals within thin
gaps. By default, the position of some nodes within thin gaps are fixed to help reduce
skew. The fix_all_gaps option fixes all nodes in thin gaps. Features, e.g. curves and
gaps, longer than max_feature_length intervals will be split into multiple features. This
results in fixing additional nodes along the feature to help reduce skew.
In general, maintain_structure should result in a smoother scaled mesh than the other
algorithms, however, sometimes it can introduce some skew in the scaled elements. If
skew is introduced by scaling using maintain_structure, try either increasing the
thin_gap_intervals parameters, specifying fix_all_gaps, decreasing the
max_feature_length parameter, or all three.

[feature_angle <value>] [max_aspect_ratio <value> in volume <ids>]

The feature_angle and max_aspect_ratio options affect the formation of swept blocks.
These are alpha, experimental commands.

[smooth_volume {ON|off}]

If smooth_volume is on, then the volume mesh is smoothed as a post-process if it has
poor quality elements, and smaller minimum quality than the original mesh. By default,
smooth_volume is on.

Block Repositioning
A capability to reposition blocks is provided. This capability will retain all the current
connectivity of the nodes involved. Unlike the Nodeset Move command, this command
works for blocks containing free mesh (mesh not owned by geometry.)

Block <id_range> Move <delta_x><delta_y><delta_z>

Node and Nodeset Repositioning
A capability to reposition nodesets and individual nodes is provided. This capability will
retain all the current connectivity of the nodes involved, but it cannot guarantee that the
new locations of the moved nodes do not form intersections with previously existing mesh
or geometry. This capability is provided to allow the user maximum control over the mesh
model being constructed, and by giving this control the user can possible create mesh
that is self-intersecting. The user should be careful that the nodes being relocated will not
form such intersections.

Mesh Generation

660

The user can reposition nodes appearing in the same nodeset using the NodeSet Move
command. Moves can be specified using either a relative displacement or an absolute
position. The command to reposition nodes in a nodeset is:

Nodeset <nodeset_list> Move <delta_x> <delta_y> <delta_z>

Nodeset <nodeset_list> Move To <x_pos> <y_pos> <z_pos>

The first form of the command specifies a relative movement of the nodes by the specified
distances and the second form of the command specifies absolute movement to the
specified position. The third form of the command specifies a displacement with respect
to a specified surface normal.
Individual nodes can be repositioned using the Node Move command. Moves are
specified as relative displacements. The command syntax is:

Node <range> Move <delta_x> <delta_y> <delta_z>

Node <range> Move {[X <val>] [Y <val>] [Z <val>]}

Node <range> Move Normal to Surface <id> distance <val>

Node <range> Move Closest Surface <id> distance <val>

Nodes can also be repositioned using a location or direction specification. See Location,
Direction, and Axis Specification for details on the location and direction specification.
The command syntax is:

Node <range> Move Location <options>

Node <range> Move Direction <options>

See also Transforming Mesh Coordinates.

Mesh Pillowing
Mesh pillowing is a mesh refinement technique that inserts a layer or 'pillow' of elements around

the boundary of an enclosed mesh. It can be used to improve mesh quality while preserving the

outer boundary of the selected element set. Mesh Pillowing can be used to quickly perform a

number of meshing tasks, such as inserting a uniform boundary layer a specified distance from

an outer boundary, or inserting a ring of elements around a hole.

Cubit_15.5_User_Documentation

661

Figure 1: A single hex before (a) and after (b) a pillow operation. The far right (c) depicts a

pillow operation with the front surface designated as a 'through' surface.

During a typical pillow operation, the user selects a set of elements, called a 'shrink set',
to define what elements will be operated on. All elements on the outer boundary of the
shrink set are then shrunk towards the center of the set. New elements are then created
to fill the gap between the original boundary and the shrunk boundary. The newly created
elements form the pillow around the selected shrink set. Figure 1a and 1b show an
example of a pillow operation performed on a single hex. Geometry surfaces, or mesh
element faces can be specified as through surfaces for the pillowing operation. This
means that the pillow will extend through the selected surfaces, and no new elements will
be created along them. Figure 1c shows the effect of pillowing a single hex with one
surface selected as a through surface.
In some cases a shrink set may not be valid due to the geometry of a specific region. As
the exterior nodes of the shrink set move towards the middle they must be able to maintain
appropriate geometric associations. Nodes on vertices must move along curves, nodes
on curves must move along surfaces. If there are multiple curves or surfaces along which
an exterior node might travel, then the ownership is ambiguous and the pillowing will fail.
Using the optional distance keyword with a specified value allows manual control of the
distance that each boundary element is shrunk towards the center of the shrink set. If no
distance value is specified, an appropriate value is calculated for each element. If a
distance value is specified, all newly created nodes will have their position fixed by default.
This allows the user to smooth the mesh without altering the node positions of the newly
created hexes. If the optional unfix_nodes keyword is used, this default behavior is
changed, and any smooth operations will alter the newly created node locations. By
default, a smooth operation is automatically performed following any pillow operation
unless the optional no_smooth keyword is used.
Similar analogous commands are available for creating a pillow around a set of two
dimensional faces.
Syntax:

Pillow Hex <ids> [Through { [Surface <ids>][Face <ids>][Tri <ids>] }] [

Distance <value>] [Unfix_nodes] [No_smooth]

Mesh Generation

662

Pillow Face <ids> [Through Curve <ids>] [Distance <value>] [

Unfix_nodes] [No_smooth]

Figure 2: Example model using pillow operations to create ordered nodes a specified

distance around the boundary of a mesh.

Mesh Column Operations
Column operations allow users direct control over the mesh connectivity while maintaining full-

geometric associativity. Often, hex meshing schemes such as sweeping and mapping result in

mesh topology forced into unnatural shapes, such as a square shaped source surface mesh getting

swept into a circular target surface. Often forcing meshes into shapes like this results in poor

element quality because of non-optimal element angles. The Column commands allow users to

directly modify mesh topology to make minor tweaks to a mesh improving element

quality. Column operations are almost always followed by smoothing to enable element quality

improvement.

Cubit provides tools to perform insertion, deletion, swapping, grouping, and drawing of hex

columns.

Cubit_15.5_User_Documentation

663

• Column Insertion

• Column Deletion
• Column Swapping
• Column Groups
• Drawing Columns

Column Insertion

A single column can be inserted into the mesh by using the following command:

column open node <center node id> <orientation node ids>

For example, given the following meshed brick:

we issue the command, column open node 89 88 90 , to get this result:

Mesh Generation

664

Column Deletion

Columns can be removed with neighboring columns being joined together using collapse
commands. Collapse commands are of two types: interior and boundary.
For interior node collapse, the two nodes which are opposite on a face are combined
together. The column associated with the face is removed. Use the following command:

column collapse node <opposite node ids>

For example, given the following meshed brick:

we issue the command, column collapse node 51 59, to get this result:

The column collapse command can be used with boundary nodes. For example, we issue
the command, column collapse boundary node 13 2 11, to get this result:

Cubit_15.5_User_Documentation

665

Column Swapping

Faces between two hex columns can be swapped using the following command:

column swap node <old edge node ids> <new edge node ids>

For example, given the following meshed brick:

we issue the command, column swap node 103 94 102 18, to get this result:

Mesh Generation

666

Column Groups

A group consisting of hexes that comprise a column can be created using the following
command:

column { face <id> | edge <id1> <id2> | hex <id1> <id2> } group

Drawing Columns

Columns can be drawn using the following command:

draw column { face <id> | edge <id1> <id2> | hex <id1> <id2>}

mesh import
Importing a Mesh

• Importing 2D Exodus II Files
• Importing Exodus II Files
• Importing Patran Files
• Importing I-DEAS Files
• Importing Abaqus Files
• Importing Nastran Files
• Importing Fluent Files

ExodusII finite element data files can be imported into CUBIT. Several options for
importing the mesh are available, (including mesh transformations):

• Importing a free mesh without geometry.

Cubit_15.5_User_Documentation

667

• Importing a free mesh and associating the mesh with ACIS-based geometry
currently residing in CUBIT.

• Importing a 2D mesh and constructing ACIS-based Geometry
• Importing a mesh and constructing Mesh-Based Geometry from dihedral angles

and boundary conditions.
• Importing a preview mesh.

Importing Fluent Files
The command to import a mesh from a fluent format file is:

Import Fluent [Mesh Geometry] '<input_filename>' [Feature Angle <angle>]

[nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based
geometry. This will provide the user with the ability to remesh geometric entities. If the
user does not import with the Mesh Geometry flag, he will have to tell CUBIT to draw the
mesh after the import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split
a surface into two surfaces. If the angle between two neighboring element normals is less
than Feature Angle, then the two elements will be placed on separate surfaces. If the
keyword Feature Angle is not supplied, the default 135 degrees is used. For a description
of importing mesh geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based
geometry for complex models. If this occurs, import the mesh without the Mesh Geometry
flag, and draw the mesh to view it.

Importing 2D Exodus Files
CUBIT has a limited capability to create ACIS Geometry from 2D ExodusII finite element
mesh files. (For a more general capability, see the Import Mesh Geometry command,
which will create Mesh-Based Geometry).
To import a 2D Exodus II file and create ACIS geometry, the following command can be
used:

Import Free Mesh '<filename>' {Time <t> | Step <step#> | Last}

CUBIT can create ACIS geometry from 2D Exodus II data files (4, 8, or 9 node QUAD or
SHELL element types) that do not have enclosed voids (holes surrounded by mesh) and
which were originally generated with CUBIT and exported to ExodusII with the Nodeset
Associativity option set to on. The Nodeset Associativity command records the topology
of the geometry into special nodesets which allow CUBIT to reconstruct a new solid model
from the mesh even after it has been deformed. The new solid model of the deformed
geometry can be remeshed with standard techniques or meshed with a sizing function
that can also be imported into CUBIT from the same ExodusII file. CUBIT's
implementation of the paving and triadvance algorithms can generate a mesh following a

Mesh Generation

668

sizing function to capture a gradient of any variable (element or nodal) present in the
ExodusII file.
In order for this feature to be effective, the following commands must be issued when the
mesh is exported and later imported:

nodeset associativity on

set associativity complete on

The first command ensures that the geometry will be correctly recovered from the mesh,
while the second ensures that boundary condition and material IDs will be recovered.

Importing Abaqus Files
The command to import a mesh from an Abaqus format file is:

Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle

<angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based
geometry. This will provide the user with the ability to remesh geometric entities. If the
user does not import with the Mesh Geometry flag, he will have to tell CUBIT to draw the
mesh after the import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split
a surface into two surfaces. If the angle between two neighboring element normals is less
than Feature Angle, then the two elements will be placed on separate surfaces. If the
keyword Feature Angle is not supplied, the default 135 degrees is used. For a description
of importing mesh geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
The Abaqus importer can import the following Abaqus file formats: flat file, part-
independent, and part-dependent.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based
geometry for complex models. If this occurs, import the mesh without the Mesh Geometry
flag, and draw the mesh to view it.
To list Abaqus cards supported by Cubit:

List Abaqus Import Cards

This command will list out all supported Abaqus cards that CUBIT can interpret.
Table 1. Supported Element Types

 1st Order 2nd Order

Triangle
S3

CAX3
CPE3

STRI65
CAX6
CPE6

Cubit_15.5_User_Documentation

669

Quadrilateral
S4

CAX4
CPE4

S8
CAX8
CPE8

Tetrahedron C3D4 C3D10

Hexahedron C3D8 C3D20

Line Element

B21
B31

T2D2
T3D2

SPRINGA
SPRING1
SPRING2

B22
B32

T2D3
T3D3

See http://www.simulia.com/ for more information on the ABAQUS file format.

Importing Exodus II Files

• Importing a Free Mesh without Geometry
• Importing a Free Mesh onto Existing Geometry
• Creating Mesh-based Geometry on Import
• Importing a Lite Mesh

The commands to import meshes from an Exodus II format file are:

Import Mesh '<exodusII_filename>' No_Geom

[Block <block_ids>]

[{genesis_collision_fail|COMBINE_GENESIS_IDS|combine_genesis_names|

unique_genesis_ids}] [block_offset <value>] [sideset_offset <value>]

[nodeset_offset <value>] [{node_id_collision_fail|UNIQUE_NODE_IDS}]

[{element_id_collision_fail|UNIQUE_ELEMENT_IDS}] [node_offset

<value>] [element_offset <value>]] [group_name '<free_elements>'] [[Time

<time>|Step <step>|Last] [Scale <value>]]

Import Mesh '<exodusII_filename>'

[Block <block_ids>]

[{genesis_collision_fail|COMBINE_GENESIS_IDS|combine_genesis_names|

unique_genesis_ids}] [block_offset <value>] [sideset_offset <value>]

[nodeset_offset <value>] [{node_id_collision_fail|UNIQUE_NODE_IDS}]

[{element_id_collision_fail|UNIQUE_ELEMENT_IDS}] [node_offset

<value>] [element_offset <value>]]

[{Group|Body|Volume|Surface|Curve|Vertex} <id_range> | Preview]

Import Mesh Geometry '<exodusII_filename>'

[Block <id_range>|ALL]

[{genesis_collision_fail|COMBINE_GENESIS_IDS|combine_genesis_names|

http://www.simulia.com/

Mesh Generation

670

unique_genesis_ids}] [block_offset <value>] [sideset_offset <value>]

[nodeset_offset <value>] [{node_id_collision_fail|UNIQUE_NODE_IDS}]

[{element_id_collision_fail|UNIQUE_ELEMENT_IDS}] [node_offset

<value>] [element_offset <value>]] [Use [NODESET|no_nodeset]

[SIDESET|no_sideset] [Feature_Angle <angle>]

[LINEAR|Gradient|Quadratic|Spline|Acis] [Deformed {Time <time>|Step

<step>|Last} [Scale <value>]] [MERGE|No_Merge] [Merge_nodes

<tolerance>]

Import Mesh '<exodusII_filename>' Lite

[{genesis_collision_fail|COMBINE_GENESIS_IDS|combine_genesis_names|

unique_genesis_ids}] [block_offset <value>] [sideset_offset <value>]

[nodeset_offset <value>] [{node_id_collision_fail|UNIQUE_NODE_IDS}]

[{element_id_collision_fail|UNIQUE_ELEMENT_IDS}] [node_offset

<value>] [element_offset <value>]]

Related Commands:

Import Mesh Geometry (options)

Import Free Mesh (2D)

Delete Mesh Preview

Export [Genesis | Mesh] '<filename>'

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

[Set] Import Mesh NodeSet Associativity [ON|off]

[Set] [Export Mesh] NodeSet Associativity [on|OFF]

Transforming Mesh Coordinates

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Set Import Mesh NodeSet Order [On|Off]

List Import Mesh NodeSet Order

Common Options

Specifying a Portion of the Mesh to be Imported

Cubit_15.5_User_Documentation

671

The Block option in the Import Mesh command indicates that only the specified element
block should be imported from the Exodus II file. If the block option is not specified, then
the entire mesh file is read. The Block is not yet supported for lite imports, which currently
imports the entire mesh.

Combine Genesis IDs Option

The combine_genesis_ids option, is used to combine blocks where the IDs in the
session and the file being imported are identical. This can occur when importing into an
active session where Cubit IDs have already been assigned. The default behavior is to
combine genesis entities based on IDs. If two entities have differnet IDs, but the same
names, they will not be combined, and the import will fail.

Combine Genesis Names Option

The combine_genesis_names option, is used to combine blocks where the names in
the session and the file being imported are identical. This can occur when importing into
an active session where names have already been assigned. If two entities have different
names, but identical IDs, they will not be combined, and the import will fail.

Unique Genesis IDs Option

The unique_genesis_ids option is used to renumber genesis entities from the genesis
file in the case that ID overlap exists when importing into Cubit. The incoming genesis
entities are kept unique and are not combined with genesis entities already in the session.
In case of colliding IDs, a report displayed in the command window showing the original
and new IDs. This renumbering can occur when importing into an active session where
Cubit IDs have already been assigned. If an entity being imported has the same name as
one already in the session, the entity being imported will be renamed with a number suffix
'_N'.

Genesis Collision Fail Option

The genesis_collision_fail option allows the user to prevent the genesis file import if
any incoming genesis entity IDs or names are already used by genesis entities in the
session. This can occur when importing into an active session where Cubit IDs have
already been assigned.

Block_Offset, Sideset_Offset, Nodeset_Offset Options

The block_offset, sideset_offset, and nodeset_offset options may be used to modify
the IDs of genesis entities being imported. The provided value will be added to the ID in
the file.

Unique Node and Element IDs Option

Mesh Generation

672

The unique_node_ids, and unique_element_ids options are used to automatically
renumber nodes and elements from the genesis file in the case that ID overlap exists
when importing into Cubit. If there are no overlaps, the IDs in the file will be preserved.
This can occur when importing into an active session where Cubit IDs have already been
assigned.

Element and Node ID Collision Fail Option

The node_id_collision_fail, and element_id_collision_fail options allows one to
prevent the genesis file import if any incoming node or element IDs are already used by
mesh entities in the session. This can occur when importing into an active session where
Cubit IDs have already been assigned.

Node_Offset and Element_Offset Options

The node_offset, and element_offset options may be used to modify the IDs of nodes
and elements being imported. The provided value will be added to the ID in the file.

Importing a Free Mesh Without Geometry

The command to import a free mesh from an Exodus II format file without mesh-based
geometry is:

Import Mesh '<exodusII_filename>' No_Geom [group_name

'<free_elements>'] [[Time <time>|Step <step>|Last] [Scale <value>]]

When a free Exodus II mesh is imported into Cubit, it contains no geometric or topological
information. Previously, the user could either associate that mesh with existing geometry,
or build mesh-based geometry to fit the mesh. A third option, as of Cubit 11.1, allows the
user to retain the disassociated mesh as a free mesh inside Cubit.
A free mesh may be modified as described in the Free Mesh section of the
documentation. This includes limited access to smoothing, renumbering, transformations,
refinement, mesh quality, and other mesh centric operations.
When an Exodus II File is imported as a free mesh, Cubit will automatically create a group
called "free_elements" to contain the free mesh elements. The 'group_name' option can
be used to give the group a different name.
Deformation information can be read in via the Time/Step/Last and Scale parameters.
Note: The Import Mesh <filename> No_Geom command is not to be confused with the
Import Free Mesh command which applies only to 2D Exodus II Files.The term "Free
Mesh" in both places of the documentation refers to the same thing - a mesh without
geometry. However, in the case of all other import mesh commands, the imported free
mesh ends up associated with geometry. The Import Mesh <filename> No_Geom is the
only way to import a free mesh that remains disassociated from geometry.

Importing a Mesh Onto Existing Geometry

file:///D:/CubitDocs/help/source%20files/mesh_generation/mesh_import/mesh-based

Cubit_15.5_User_Documentation

673

The command to import a free mesh from an Exodus II format file and associate it with
existing geometry is:

Import Mesh '<exodusII_filename>'

[{Group|Body|Volume|Surface|Curve|Vertex} <id_range> | Preview]

The user can import a mesh from an Exodus II file and associate the mesh with matching
geometry. The resulting mesh may then be manipulated normally. For example, the mesh
may be smoothed or portions of it deleted and remeshed. The user can save their work
by exporting the geometry and mesh, and then restore the geometry and mesh later. In
some cases, saving and restoring can be faster or more reliable than replaying journal
files.
Saving and importing a mesh may be useful for teams working on creating a conforming
mesh of a large assembly so that they can pass information to one another. For example,
a team member can export the mesh on the surfaces between two parts, and another
team member import the mesh for use on an adjoining part of the assembly.
As of cubit version 7.0, any higher order elements, block definitions, nodesets, and
sidesets are retained on import.

Importing a Mesh with Nodeset Associativity

Meshes can be imported into Cubit that contain nodeset associativity data used for
defining finite element boundary conditions. If an exported Cubit mesh is going to be
imported back onto the same geometry, then before exporting the user should issue the
following command:

set export mesh nodeset associativity on

This causes extra nodeset data to be written, which associates every node to a geometric
entity, resulting in an import which is more reliable. When importing, if the user does not
want to use the nodeset associativity data that exists in a file, then before importing the
following command should be used:

set import mesh nodeset associativity off

The user may wish to turn geometry associativity off if, for example, the geometry is no
longer identical as a result of curves being composited, or Cubit names changed due to
a ACIS version changes.

Importing a Mesh onto Modified Geometry

Although there are some exceptions, Cubit requires that the mesh be imported onto the
same geometry from which it was exported.
Since merge information is not stored with the ACIS representation, care should be taken
that the geometry is merged the same way on export and import of the mesh. If not,
importing the mesh one block at a time in successive commands may increase the chance
of a successful import, at the cost of more memory and time.

Mesh Generation

674

Between exporting and importing a mesh, the geometry may be modified slightly by
compositing entities. Mesh import will, however not be successful if entities are partitioned
or a body is webcut. In some cases mesh import may be successful on modified geometry
if the new vertices match up exactly with nodes of the mesh, and the new curves match
up exactly with edge chains of the mesh. Unless this criteria is met, associating the mesh
with the geometry will be unsuccessful.

Mesh Import Tolerance

To change the tolerance with which imported mesh must line up with geometry issue the
command:

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Specifying a Portion of the Mesh to be Imported

The Block option in the Import Mesh command indicates that only the specified element
block should be imported from the Exodus II file. In the same manner, the Volume and
other geometry options provide a way to import the nodes and element on the indicated
geometry. If neither a block nor a geometry entity is specified, then the entire mesh file
is read.
If a block is specified without specifying a geometry entity, associativity or proximity is
used to determine which volume the block elements should be associated with. If a block
and a volume are specified, the block elements are associated with the specified volume,
provided they actually match. If a volume is specified without a block, associativity data
is used to find a block corresponding to the given volume.

Nodeset Ordering

If the Import mesh NodeSet Order flag is on, the nodesets will be read in a manner which
allows them to be associated with existing geometry. This means the nodesets are
assumed to be in ascending order. If the flag is set to false, the goemetry nodesets in
imported mesh files are assumed to be in random order. This value is on by default, and
should not need to be changed by the user.

Creating Mesh-Based Geometry on Import

Cubit's mesh generation tools require an underlying geometry representation. In most
cases, the ACIS solid modeling engine, compiled with Cubit, is used to represent the
geometry. However, in some cases, an ACIS representation is not available, and a
previously developed finite element mesh is the only available representation of the
model. In order to utilize Cubit's mesh generation tools, the import mesh geometry
command provides an option for creating geometry directly from the finite element mesh.
The import mesh geometry command will create a new volume for every block defined
in the Exodus II file. It will also create curves, surfaces and vertices at appropriate
locations on the model based on dihedral angles (also called feature angles) and
assigned nodesets and/or sidesets. The mesh used to construct the geometry will be

Cubit_15.5_User_Documentation

675

owned by the new geometric entities. This means that the mesh can be deleted,
remeshed, or smoothed using any of Cubit's meshing tools by simply using the new
geometry definition. Cubit will assign appropriate intervals to the new curves as well as
determine an acceptable meshing scheme for surfaces and volumes.
The command to import a finite element mesh from an ExodusII format file and generate
geometry from the mesh is:

Import Mesh Geometry '<exodusII_filename>'

[Block |ALL] [Use [NODESET|no_nodeset] [SIDESET|no_sideset]

[Feature_Angle <angle>] [LINEAR|Gradient|Quadratic|Spline|Acis]

[Deformed {Time <time>|Step <step>|Last} [Scale <value>]]

[MERGE|No_Merge] [Merge_nodes <tolerance>]

File Name

Type the name of file to import in single quotation marks. The file must reside in the
current directory. For information on changing the current directory, see Cubit
environment commands. To list all the files in the current directory, type ls at the
command prompt.

Blocks

Use this option to select the specific blocks to be imported from the Exodus II file. If no
blocks are entered, then all blocks will be read and imported from the file. Standard ID
parsing can also be used in this argument to select a range of blocks. For example "1 to
5" or "1, 5 to 10 except 6".
Each unique block selected to be imported will define a new body in the geometric model.
Figure 1 shows a simple example of the geometry generated from the 3D finite element
mesh.

Figure 1. Example of mesh based geometry (right) created from a finite element mesh (left)

Mesh Generation

676

Blocks may be composed of 1D, 2D or 3D elements. For blocks composed of 2D elements
(i.e. QUAD4, SHELL etc.), a sheet body will be created. One dimensional elements (i.e..
BEAM, TRUSS, etc.) will define curves. Where a block may be composed of more than
one disconnected sets of elements, one body will be created for each continuous region
of elements assigned to the same block. Where possible, the ID of the new body will be
the same as the block ID. Since IDs must be unique, if a body ID is already in use, the
next available ID will automatically assigned by the program.

Nodesets/Sidesets

Use the nodeset and sideset options to use any nodeset and sideset information in the
Exodus II file in constructing geometry. Recall that nodesets and sidesets are generic
boundary condition data assigned to nodes, edges or faces of the finite elements. It is
useful to group mesh entities belonging to unique boundary conditions into geometric
entities. This permits the user to remesh a particular region of the model without having
to reassign boundary conditions.
If the nodeset and sideset arguments are given, geometric entities will be generated for
each unique set of nodes, edges or element faces assigned to a nodeset or sideset. The
default is to use any nodeset and sideset information available in the file. Figure 2 shows
an example of how nodeset and sideset information might be used to generate geometry.

Figure 2. Example of geometry created from mesh entities assigned to nodesets (3) and

sidesets (1 and 2).

Upon import, nodesets and sidesets are automatically created with the appropriate
geometric entities assigned to them. The IDs of the new geometric entities, if generated
from boundary condition data, will be the same as the nodeset and sideset IDs. Where
doing so would conflict with existing geometric IDs, the program will automatically select
the next available ID.

Feature Angle

Use this option to specify the angle at which surfaces will be split by a curve or where
curves will be split by a vertex. 180 degrees will generate a surface for every element

Cubit_15.5_User_Documentation

677

face, while 0 degrees will define a single, unbroken surface from the shell of the mesh.
The default angle is 135 degrees.

Figure 3. Example use of Feature Angle

Figure 3 shows an example of the use of different feature angles. On the left is a simple
two-element hex mesh. Specifying a feature angle greater than 120 degrees would create
the geometry in the center image. Using a feature angle less than 120 degrees and
greater than 90 degrees would define the geometry on the right.

Smooth Curves and Surfaces

This argument allows the option of using a higher-order approximation of the surface
when remeshing/refining the resulting geometry. Default is to use the original mesh faces
themselves as the curve and surface geometry representation. If the finite element model
to be imported is to represent geometry with curved surfaces, it may be useful to select
this option. If selected, it will use a 4th order B-Spline approximation to the surface
[Walton,96]. Figure 4 shows the effect of the smooth curve and surface option.

Figure 4. Effect of Smooth Curve and Surface Option for remeshing of mesh-based

geometry

Mesh Generation

678

In this figure the top image is the original finite element mesh imported into Cubit. In this
example both models have been remeshed with the same element size. The difference
is that the figure on the right uses the smooth curve and surface option. While this option
can improve the surface representation, it should be noted that memory requirements
and meshing times can sometimes be affected.
If importing the Exodus II file using the command line, other options for surface
representations are also available.

[LINEAR|Gradient|Quadratic|Spline|Acis]

The method used from the GUI is either Linear or Spline. The Gradient and Quadratic
methods are still somewhat experimental and may not be as general purpose as the
Spline representation. The Acis option will attempt to create ACIS geometry from the
mesh. This option is an alpha feature and can only be used if developer commands have
been turned on. For more detail see: Acis Geometry From Mesh

Apply Deformations

This option permits the user to import time-dependant deformation information from the
Exodus file. For this option, any vector data in the Exodus II file is assumed to be
deformation information. If selected, deformations will be applied to the nodes upon
import. Enter a specific time step value, integer step, or the last time available in the file.
If time-dependant data is available in the Exodus II file, selecting the down arrow in the
edit field will display the available time steps in the file. Default time is the last time step.

Figure 5. Example of remeshing of a deformed finite element mesh

Figure 5 shows an example of using Mesh-Based Geometry for a large deformation
analysis. In this case, the analysis [Attaway et. al.,98] began and continued until mesh
quality became unacceptable. At that point, the mesh was imported into Cubit and
geometry re-created from the computed deformations. The finite element mesh could
then be removed, remeshed or improved and written back to an Exodus II file. After
remapping [Wellman,99] the appropriate analysis variables back to the mesh, the analysis
could then be restarted. This process was repeated multiple times until the desired results
were achieved.

Cubit_15.5_User_Documentation

679

Note: Care should be taken when using large deformations, as inverted elements
(negative Jacobians) may produce unpredictable results with the resulting geometric
representation.
Also available is an optional scale factor. This applies the indicated scale to all
deformations. Default is 1.0.

Merge

This option allows the user to either merge or not merge the resulting volumes. The
default option is to merge adjacent volumes. This results in non-manifold topology, where
neighboring volumes share common surfaces. Using the no_merge option, adjacent
volumes will generate distinct/separate surfaces.

Merge Nodes

The merge_nodes option will allow the user to specify a different tolerance for merging
nodes on import. The default value is 1e-6.
Note: Care should be taken when setting import merge tolerances. Setting a tolerance
too low will not merge adjacent nodes. Setting the tolerance too high can produce
undesirable results, and severely tangle the mesh.

Importing a Lite Mesh

The command to import a lite mesh from an Exodus II format file is:

Import Mesh '<exodusII_filename>' lite

When an Exodus II mesh is imported into Cubit using the lite option, it contains no
geometric or topological information.
The lite mesh import may be an option for users wanting to quickly view the mesh without
gaining all the abilities to modify the mesh.
More information on how a lite mesh may be viewed or modified is described in the Lite
Mesh section of the documentation.

Importing I-DEAS Files
The command to import a mesh from an I-DEAS format file is:

Import Ideas [Mesh Geometry] '<input_filename>' [Feature Angle <angle>]

[Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based
geometry. This will provide the user with the ability to remesh geometric entities. If the
user does not import with the Mesh Geometry flag, he will have to tell CUBIT to draw the
mesh after the import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split
a surface into two surfaces. If the angle between two neighboring element normals is less
than Feature Angle, then the two elements will be placed on separate surfaces. If the

Mesh Generation

680

keyword Feature Angle is not supplied, the default 135 degrees is used. For a description
of importing mesh geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based
geometry for complex models. If this occurs, import the mesh without the Mesh Geometry
flag, and draw the mesh to view it.
To see more information on the I-DEAS file format, visit their website at
www.siemens.com.

Importing Nastran Files
The command to import a mesh from an Nastran format file is:

Import Nastran [Mesh Geometry] '<input_filename>' [Feature Angle

<angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based
geometry. This will provide the user with the ability to remesh geometric entities. If the
user does not import with the Mesh Geometry flag, he will have to tell CUBIT to draw the
mesh after the import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split
a surface into two surfaces. If the angle between two neighboring element normals is less
than Feature Angle, then the two elements will be placed on separate surfaces. If the
keyword Feature Angle is not supplied, the default 135 degrees is used. For a description
of importing mesh geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based
geometry for complex models. If this occurs, import the mesh without the Mesh Geometry
flag, and draw the mesh to view it.
See http://en.wikipedia.org/wiki/Nastran for more information on the NASTRAN file
format.

Importing Patran Files
The command to import a mesh from an Patran format file is:

Import Patran '<neutral_filename>'

Import Patran Mesh Geometry '<neutral_filename>' [Use [Feature_Angle

<angle>] [Linear|Gradient|Quadratic|Spline]]

See Importing Exodus II Files for a description of the import options.
For more information on the Patran file format, see their website at
www.mscsoftware.com.

http://www.siemens.com/
http://en.wikipedia.org/wiki/Nastran
http://www.mscsoftware.com/

Cubit_15.5_User_Documentation

681

adaptivity and sizing functions
Geometry Adaptive Sizing for TriMesh and TetMesh Schemes
The TriMesh and TetMesh schemes in Cubit are based upon third party libraries known
as MeshGems that are developed and distributed by Distene. They are robust and fast
triangle and tet meshing algorithms that have built in capabilities for adaptively controlling
the mesh size based upon feature sizes. In most cases the sizing controls provided as
part of the scheme command are sufficient to control mesh sizes. As such, the sizing
functions described in this section cannot be used with the the MeshGems triangle and
tet meshing algorithms. If a sizing function is assigned to a volume or surface, and the
TriMesh or TetMesh scheme is selected, rather than using the MeshGems algorithm for
meshing the surfaces, it will automatically revert to using the TriAdvance scheme. Any
settings defined with the TriMesh or TetMesh scheme will be ignored and the sizing
function will be used to determine local mesh sizes.
When using the TriMesh and TetMesh schemes, recommended practice is to mesh all
surfaces and volumes simultaneously. This provides the greatest flexibility to the
algorithms to determine feature sizes and their effect on neighboring surfaces and
volumes. The default settings for TriMesh and TetMesh schemes will automatically
provide geometry adaptive mesh sizing. These default settings can however be adjusted
by using the settings on the scheme command. The scheme settings are described in
the TetMesh and TriMesh sections of the documentation.

Mesh Adaptivity and Sizing Functions
CUBIT provides several options for controlling the density of a mesh by adapting to
various geometric, analysis, or user-defined properties. Interval sizes are defined
automatically, explicitly, or through sizing functions. The sizing functions can be based on
the physical features of the model, a previous analysis solution, or a user-specified bias.
Adaptivity can apply to meshing either curves or surfaces.

Adaptive Curve Meshing

CUBIT provides several ways to adaptively mesh curves. Three curve meshing schemes
are provided for this purpose. They include the following schemes:

• Curvature

• FeatureSize

The first two schemes use characteristics of the geometric model to define element sizes.
The third scheme uses a field function typically defined from a previous analysis solution.
FeatureSize is an alpha feature and should be used with caution.

Adaptive Surface Meshing

Adaptive surface meshing in CUBIT produces a function following mesh which sizes
elements based on the value of the driving function at the spatial location at which the
element is to be placed. Adaptive surface meshing is performed using the paving,

Mesh Generation

682

triadvance or tridelaunay algorithms in combination with an appropriate sizing function.
The types of sizing functions that can be used are

• Bias Sizing

• Constant Sizing
• Curvature Sizing
• Linear Sizing
• Interval Sizing
• Inverse Sizing
• Super Sizing
• Test Sizing
• Exodus-based field function
• Geometry Adaptive (Skeleton Sizing)
• Geometry Adaptive for TriMesh and TetMesh Schemes

Super sizing and test sizing functions are alpha features and should be used with caution.
The procedure for adaptively meshing a surface is to designate paving, triadvance or
tridelaunay as the mesh scheme for that surface, assign sizing function types, and mesh
the surface.
The command syntax of these commands is:

Surface < id > Scheme {Pave|TriAdvance|TriDelaunay}

then

Import Sizing Function '<exodusII_filename>' Block <block_id> Variable

'<variable_name>' Time <time> [Deformed]

Surface <id> Sizing Function [Type] Exodus [Min <min_value> Max

<max_value>]

or

Surface <id> Sizing Function [Type]

{Constant|Curvature|Interval|Inverse|Linear|Super|Test|None}] [Neighbor

[<max_neighbors>]]

(See note below regarding 'Neighbor' parameter)
or

Surface <id> Sizing Function [Type] Bias Start Curve <id_range> {Finish

Curve <id_range>| Factor <val>}

then

Mesh Surface <id>

Cubit_15.5_User_Documentation

683

Adaptive Volume Meshing

Adaptive volume meshing in CUBIT produces a function following mesh that sizes
elements based on the value of the driving function at the spatial location at which the
element is to be placed. Adaptive volume meshing is performed using the tetmesh
scheme in combination with an appropriate sizing function. The types of sizing functions
that can be used are constant, test, geometry adaptive and geometry adaptive (skeleton
sizing). Test sizing is an alpha feature and should be used with caution. Other sizing
functions will be added in future versions of Cubit.
The procedure for adaptively meshing a volume is to designate tetmesh as the mesh
scheme for that volume, assign sizing function types, and mesh the volume.
The command syntax of these commands is:

Volume <id> scheme tetmesh

Volume <id> Sizing Function [Type] {Constant|Test|None}

Mesh Surface <id>

The following sections describe details of the various volume sizing methods.

• Constant Sizing

• Test Sizing
• Geometry Adaptive (Skeleton Sizing)
• Geometry Adaptive for TriMesh and TetMesh Schemes

Note regarding 'Neighbor' parameter:
The maximum neighbors is the number of points used by the sizing function to compute
the size at the requested point. If the number of neighbors is zero, all of the points on the
boundary are used in the size calculation. If the number of neighbors is some other
number, only that number of closest points are used in the calculation.

Bias Sizing Function
Syntax:

Surface <id> Sizing Function Type Bias Start Curve <id_range>

{Finish Curve <id_range>| Factor <val>}

Synopsis:
The Bias sizing function for surfaces is similar to biasing curves. Indeed, setting a bias
sizing function for a surface will bias the boundary curves, as well as control paving to
follow the bias inside the surface. You first specify the size of a couple of bounding curves
(the start curves), then specify the bias sizing function for the surface.
Discussion:
Recall that for biasing curves, you specify the start and end vertex. For the bias sizing
function, you specify the start curves, from which to bias away. The sizes of these curves
should already be set before setting the surface sizing function since their average size
is taken to be the starting size (almost). If the start curve sizes change, then you should
set the surface sizing function again.

Mesh Generation

684

You can either supply a geometric factor, or the set of finish curves whose sizes you want
to match at that distance. A geometric factor. It automatically sizes and biases or
dualbiases the non-start curves, including any finish curves. These curves need not be
perpendicular to the starting curves. The interval count and scheme are soft-set, so they
won't be changed if they are already hard-set. If the size of the start curves or finish curves
are changed, then the sizing function command should be re-issued.
The sizing function value at a point is defined in terms of the straight-line distance from
the point to the closest starting curve. So, it works best if all the starting curves have the
same size, and the surface is relatively flat. But, starting curves need not be parallel to
one another. Similarly, the non-start curves need not have any particular orientation wrt
the start curves.
The bias sizing function was designed to easily set the sizes of a sequence of adjoining
surfaces: assign a size to the curve you want to bias away from, then set the bias sizing
function of the first surface, with its finish curves being the start curve of the second
surface, etc. See the last example below.
Examples:
Here are some example journal files and resulting pictures:

bias_sz_fn_demo.jou
brick x 100 y 10 z 10
color vol 1 red
surface 1 scheme pave
surface all except 1 visibility off
label curve interval
graph text 2
display
mesh 1
curve 4 size 2
surface 1 sizing function type bias start curve 4 factor 1.3
mesh surface 1
see figure 1

Figure 1. Surface with bias sizing function factor > 1.

mesh 2
delete mesh
surface 1 sizing function type bias start curve 4 factor {1/1.1}
mesh surface 1
see figure 2

Cubit_15.5_User_Documentation

685

Figure 2. Surface with bias sizing function factor < 1

mesh 3
reset
cyl rad 6 z 1
cyl rad 4 z 1
sub 2 from 1
section body 1 yplane
section body 1 xplane
surf all except 19 vis off
color vol 1 red
display
finish curve mesh
surf 19 scheme qtri base scheme pave
surface 19 size 0.7
curve 26 size 0.07
surface 19 sizing function type bias start curve 26 finish curve 25
mesh surface 19
pause
see figure 3

Mesh Generation

686

Figure 3. Surface with bias sizing function start and finish curve. Scheme qtri, base scheme

pave.

dual bias mesh
delete mesh
curve 25 26 size 0.02
curve 25 26 scheme equal
surface 19 sizing function type bias start curve 26 25 factor 1.3
mesh surface 19
zoom curve 12
pause
see figure 4

Cubit_15.5_User_Documentation

687

Figure 4. Close up of surface with dual bias sizing function start and finish curve. Scheme

qtri, base scheme pave.

funny face
reset
prism sides 5 z 1 radius 1
cylinder radius 0.1 z 1
body 2 move -0.4 0 0
subtract 2 from 1
cylinder radius 0.1 z 1
body 3 move 0.2 0 0
subtract 3 from 1
prism sides 6 radius 0.2 z 1
body 4 move 0 -0.4 0
subtract 4 from 1
surface all except 34 visibility off
color vol 1 red
display
surface 34 scheme pave
curve 23 19 size 0.01
surface 34 sizing function type bias start curve 19 23 factor 1.3
mesh surface 34
see figure 5

Mesh Generation

688

Figure 5. Bias away from two round holes.

bias surface chain
reset
cylinder radius 1 z 1
cylinder radius 0.2 z 1
cylinder radius 0.4 z 1
cylinder radius 0.8 z 1
imprint body all
delete body 2 3 4
section body 1 xplane
section body 1 yplane
surface all except 42 43 44 45 vis off
color volume 1 red
surface all scheme pave
curve 55 interval 36
surface 43 sizing function type bias start curve 55 factor 1.3
surface 44 sizing function type bias start curve 57 factor 1.3

Cubit_15.5_User_Documentation

689

curve 57 had its size determined by a prior bias sizing function
surface 45 sizing function type bias start curve 58 factor 1.3
surface 42 sizing function type bias start curve 55 factor 1.3
mesh surface 42 43 44 45
display
highlight curve in surface 42 43 44 45
see figure 6

Figure 6. A chain of biased surfaces. Only one curve's intervals were explicitly set.

Constant Sizing Function
Syntax:

Surface <id> Sizing Function [Type] Constant

Volume <id> Sizing Function [Type] Constant

Synopsis:

Mesh Generation

690

The Constant sizing function specifies that a constant element size be used over the
interior of the surface or volume. The value used as the constant size is the interval size
that has been set for the entity. For example, the following commands will cause the mesh
size to be smaller on the interior than on the surface's bounding curves.

reset
brick x 10
surface 1 scheme pave
curve in surface 1 interval 5
surface 1 size 0.5
surface 1 sizing function constant
mesh surface 1

Figure 1. Constant Sizing Function

Curvature Sizing Function
The Curvature sizing function determines element size based on the curvature
evaluation of a surface at the current location. Two surface curvature values (taken
perpendicular to each other) are compared at the location of interest, and the largest is
used as the sizing function for the mesh. Figure 1 shows a solid with a highly deformed
surface which displays rapid change of surface curvature at several locations.

Cubit_15.5_User_Documentation

691

Figure 1. NURB solid with high surface curvature change

Figure 2 depicts a normal paved mesh of this surface using a common size on all
bounding curves and no sizing function in the interior. The total number of quadrilateral
shell elements for this case is 1988. Figure 3 shows a mesh which was generated with
the curvature sizing function option. The mesh is graded denser in the regions of quickly
changing curvature, such as at the tops of the hills and at the bottom of the valley. Due
to the intense interrogation of the underlying geometric modeler which the curvature
method relies on, this option can be very computationally expensive.

Figure 2. NURB mesh with no interior sizing function

Figure 3. NURB mesh with curvature sizing function

Exodus II-based Field Function
The ability to specify the size of elements based on a general field function is also
available in CUBIT. With this capability, the desired element size can be determined using

Mesh Generation

692

a field variable read from a time-dependent variable in an Exodus II file. Both quadrilateral
and triangle elements are supported for surfaces, and both tetrahedral and hexahedral
elements are supported for volumes.
A field function is a time-dependent variable in an Exodus II file. Either node-based or
element-based variables may be used. Currently, field functions are imported from
element and node-based Exodus II data. The mesh block containing the corresponding
elements must be imported along with the field function data.
Exodus variable-based adaptive meshing is accomplished in CUBIT in several steps:

1. Surface mesh scheme set to Pave or TriMesh, and/or volume mesh scheme set
to Tetmesh.

2. An Exodus mesh and variable for that mesh is read into CUBIT.
3. The surface or volume sizing function type is designated and the Exodus variable

is mapped to give normalized and localized size measures.
4. The geometry is meshed

Importing a field function, and normalizing that function are done in two separate steps to
allow renormalization. The following command is used to read in a mesh for the field
function:

Import Sizing Function '<exodusII_filename>' Block <block_id> Variable

`<variable_name>' [Time <time_val> | Step <step> | Last] [Deformed]

The block_id is the element block to be read, which can be a single block id or the word
all. The variable_name is an Exodus time-dependent variable name (either element-
based or nodal-based) which values are used to drive the mesh size. The timestep for
the time-dependent variable can be specified as a time with a value, as a step with an
index or Last to use the last timestep in the file. The Deformed keyword indicates whether
to read the deformed field function mesh, which should align with the geometry being
meshed and needs to be accounted for in the field function data. (For information on
creating deformed geometry from EXODUSII data, see Importing 2D EXODUSII Files and
Importing EXODUSII Files) .
Note that when a field function is read in, the mesh is stored in the background, and
therefore the geometry is not considered meshed. Also note that if deformation is not
being modeled, the geometry should be in the same state as it was when that mesh was
written (see Importing a Mesh for more details on importing meshes).
Once the field function has been read in, it can be normalized before being used to
generate a mesh. The normalization parameters (Min_size and Max_size) are specified
in the same command that is used to specify the sizing function type for the surface or
volume. The syntax of these commands are:

Surface <id> Sizing Function Type Exodus [Min_size <min_val> Max_size

<max_val> Log_Map Inverse_Map Scale_Mesh_Multiplier <value>]

Volume <id> Sizing Function Type Exodus [Min_size <min_val> Max_size

<max_val> Log_Map Inverse_Map Scale_Mesh_Multiplier <value>]

Cubit_15.5_User_Documentation

693

If normalization parameters are specified, the field function is normalized so that its range
falls between the minimum and maximum values input. If an element-based variable is
used for the sizing function each node is assigned a value that is the average of variables
on all connected elements. Nodal variables are used directly.
The Log_Map option maps the range so that it is logarithmic, base 10.
Inverse_Map flips the mapping so that smaller and larger values in the mapping generate
larger and smaller elements respectively. See figure 1 below.

Figure 1. Effect of 'inverse_map' option

Scale_Mesh_Multiplier scales the size that the field data ultimately yields.
After the sizing function normalization, the geometry may be meshed using the normal
meshing command.
For example, the left image in Figure 2 depicts a plastic strain metric which was generated
by PRONTO-3D [Taylor, 89] a transient solid dynamics solver, and recorded into an
ExodusII data file. When the file is read back into CUBIT, the paving algorithm is driven
by the function values at the original node locations, resulting in an adaptively generated
mesh [Attaway, 93]. The right image in Figure 1 depicts the resulting mesh from this
plastic strain objective function.

Mesh Generation

694

Figure 2. Plastic strain metric and the adaptively generated mesh

Surface/Curve Meshing with Exodus II - based Field Functions

While adaptively meshing a surface using a field function, the curves will be meshed using
the Exodus II information. To override this, curves may have their meshing scheme set
to equal or some other desired scheme. While adaptively meshing a volume using a field
function, the surfaces and curves will be meshed using the Exodus II information. To
override this for a surface, one can set the sizing function to "none" for that surface.

Geometry Adaptive Sizing Function (Skeleton Sizing)
The Geometry Adaptive Sizing Function, also referred to as the Skeleton Sizing
Function (Quadros 2005; Quadros 2004; Quadros 2004(2)), automatically generates a
mesh sizing function based upon geometric properties of the model. This sizing scheme
attempts to create a sizing function that allows unstructured meshing schemes to
generate a mesh with the following properties:

• The sizes of the mesh elements vary smoothly throughout the mesh

• The mesh elements resolve the geometry to a sufficient degree
• The mesh elements do not over-resolve the geometry.

The geometry adaptive sizing function can be used to create sizing information for
surfaces, solids, and assemblies.
This sizing function uses geometric properties to influence mesh size. The scheme
calculates or estimates:

• 3D-proximity (thickness though the volume)
• 2D-proximity (thickness across a surface)
• 1D-proximity (curve length)
• Surface curvature
• Curve curvature.

These properties are then used to calculate a sizing function throughout the geometric
entity (or entities). Regions of relatively high complexity will have a fine mesh size, while
regions of relatively low complexity will have a coarse mesh size. For example, generally,

Cubit_15.5_User_Documentation

695

a high-curvature region on a surface will have a finer mesh size than a low-curvature
region on that surface

Figure 1: Overview of Computational Framework

Mesh Generation

696

Figure 2: Skeleton Sizing Function example in the GUI

Skeleton Sizing Behaviors

Skeleton sizing can be specified on single or multiple surface(s)/volume(s) at a time from
the GUI (Meshing Control Panel) or the command-line. The following describes how
specifying sizing on entities can change skeleton sizing’s behavior:
Single surfaces/volumes – If skeleton sizing is applied to surfaces/volumes one at a time,
each entity’s sizing is not influenced by the others. On the command-line, issue a separate
command for each entity. In the GUI, specify only one surface or volume before selecting
“Apply Size”.
Multiple surfaces – If skeleton sizing is applied on multiple surfaces together, then
geometric features of a particular surface may affect its neighboring surfaces.
Multiple volumes (assembly sizing) – Skeleton sizing can be applied to assembly models
so that geometric features of a volume may influence its neighbors. Volumes should first
be imprinted and merged before they are specified together for skeleton sizing.

Command Line Syntax

Skeleton sizing on surfaces:

Surface <surface_id_range> Sizing Function Skeleton

{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]

[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>] [facet_extract_ang <1 to

30 = 10>]

[min_num_layers_2d < 1 to N = 1>] [min_num_layers_1d < 1 to N = 1>]

[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]

[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]

[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

Cubit_15.5_User_Documentation

697

Skeleton sizing on volumes:

Volume <range> Sizing Function Skeleton

{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]

[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>] [facet_extract_ang <1 to 30 = 10>]

[min_num_layers_3d < 1 to N = 1>] [min_num_layers_2d < 1 to N = 1>]

[min_num_layers_1d < 1 to N = 1>]

[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]

[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]

[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

The options are explained below:

Basic Arguments

• max_size (default=auto): The value for max_size is calculated automatically by
default. Users can specify any positive real number based on the dimensions of
the model to control the max size of the elements. If the skeleton sizing function
creates large elements, than this argument can be used to control the maximum
element size.

• min_size(default=auto): The value for min_size is calculated automatically by
default. Users can specify any positive real number based on dimension of the
model to specify the minimum size of the elements.

• max_gradient (1.0 to 3.0, default 1.5): The transition in element size is
controlled using this parameter. Larger values of max_gradient result in fewer
elements, but also lead to more abrupt transitions in size and possibly poorer
quality elements.

Scaling and Accuracy Arguments:

• scale (1 to 10, default 7): The overall size of the elements is controlled by this
argument. A coarser mesh can be generated by increasing the value of scale up
to 10.0. To get a finer mesh, decrease the value of the scale (minimum value =
1).

• time_accuracy_level (1 to 3, default 2): This controls the computational time
and accuracy level by adjusting various internal parameters of the skeleton sizing
function. Users should try levels in increasing order. Level 1 takes the shortest
time to compute the skeleton sizing function and Level 3 takes the longest time to
compute the skeleton sizing function. However, Level 1 is less accurate than
Level 2 and Level 3.

Advanced Arguments

Lattice Arguments:

The skeleton sizing function is generated and stored on a background octree grid whose
cells are subdivided based on the graphics facets of the model. The level of subdivision

Mesh Generation

698

of the background grid affects how well the sizing function captures the geometric
complexity of features. Reasonable defaults have been selected for the following two
refinement (subdivision) parameters, but these may be overridden for use with simple
(decrease parameters) or more complex (increase parameters) models.

• min_depth (default auto): min_depth controls the maximum cell dimension of the
background octree grid. The higher the value of min_depth, the smaller the
dimension of the maximum-sized cell. Computational time increases with
increasing min_depth. By default the min_depth is calculated based on the
geometric complexity of the input model and mesh size specified on sub-entities.

• max_depth (default auto): max_depth controls the minimum cell dimension. If
the object contains very fine features then increasing the value of max_depth is
suggested. The maximum depth has been limited to 9. By default the max_depth
is calculated based on the geometric complexity of the input model and mesh
size specified on sub-entities.

• facet_extract_ang (default 10 degree): facet_extract_ang is used to control the
faceted representation of NURBS model. This option gives control of the
accuracy of a faceted approximation of the model used to compute the adaptive
sizing. For models with high curvature regions, decreasing the tolerance will give
a better approximation of the geometry and avoid the creation of random dense
meshes. Note that increasing this angle too much can generate invalid facets
over curved regions, while decreasing the angle too much can cause signficant
slowdowns in sizing calculations.

Source Entity Arguments

• min_num_layers_3d (Any value greater than 1, default 1): This parameter
ensures that a minimum specified number of layers exist across the thickness of
the volume. This parameter could be useful in generating meshes for mold flow
simulation.

• min_num_layers_2d (Any value greater than 1, default 1): This parameter
ensures that a minimum specified number of layers exist across the thickness of
a surface.

• min_num_layers_1d (Any positive integer value, default 1): This ensures that
any curve contains a minimum specified number of intervals.

• max_span_ang_curve (Range 5.0 to 75.0, default 45.0): Maximum spanning
angle is a parameter that controls the mesh size at curved regions of curves. It is
defined as the angle subtended by the normals at the end nodes of the mesh
edge in the curved region of a curve. When a finer mesh is needed at curved
regions of curves, then max_span_ang_curve should be decreased.

• max_span_ang_surf (Range 5.0 to 75.0, default 45.0 deg): Maximum spanning
angle is a parameter that controls the mesh size at curved regions of surfaces. It
is the angle subtended by the normals at the end nodes of the mesh edge in a
curved region of a surface. When a finer mesh is needed at curved regions of
surfaces, then max_span_ang_surf should be decreased.

Cubit_15.5_User_Documentation

699

Note: These arguments override the basic arguments. For example, time accuracy level
1 internally sets min_depth = 4 and max_depth = 6, and when min_depth is set to 4 and
max_depth is set to 7 in the advanced options (recommended for models with fine
features), then advanced options override the basic options. In the command-line, to
override the depths set by a time_accuracy_level, specify min_depth and max_depth after
it.

Adding User Specified Sizing Sources

Skeleton sizing function gives an option to manually add sizing sources on geometric
entiies such as vertices, curves, and surfaces. These sizing sources control the size and
scope (region of influence via num_layers) at geometric entities. The below command
gives the syntax for adding sizing sources. Please note that the below command for
adding sizing sources should be called after issuing the above given skeleton sizing
command. First, the skeleton sizing command automatically generates sizing sources
based on the geometric factors such as proximity, surface curvature, curve length, etc.
Issuing the below command creates sizing sources in addition to the automatically
generated sizing sources. Finally, when the meshing command is called, the mesh sizing
function is calculated using all the sizing sources.

Volume <vol_id_range> Sizing Function Skeleton add size_source

{vertex|curve|surface} <id_range> size <double> num_layers <int>

Skeleton with Other Sizing Controls

Skeleton sizing function produces a smooth sizing function when called with other
sizing controls available in Cubit. Skeleton sizing function behaves as SOFT
firmness level. Skeleton sizing function always respects interval count specified
on the curves. Skeleton sizing function respects interval size on curves and
surfaces only if it is specified after calling the skeleton sizing function.

Mesh Generation

700

Figure 3: Skeleton sizing function with other sizing controls

Limitations

• Currently, the skeleton sizing function is primarily intended for use with
ACIS models. Skeleton sizing may be used on facet-based models (STL,
facet, and MBG format) models, but results are not guaranteed. Sizing
function generation with other geometry engines in Cubit is not guaranteed
or supported in Cubit 10.1.

• The skeleton sizing function has mainly been tested with trimesh and
tetmesh schemes. In general, structured or semi-structured meshing
schemes do not have enough flexibility to utilize the skeleton sizing
function. It is recommended that the skeleton sizing be used only with
unstructured meshing schemes. However, if using skeleton sizing in
conjunction with the pave scheme for surfaces, decreasing the
max_gradient and scale arguments is suggested.

• For sizing function generation of assemblies in Cubit 10.1, at least
time_accuracy_level 2 is generally recommended. This helps ensure that
the geometric complexity of small features is captured. For example,
“volume all sizing function skeleton time_accuracy_level 2”

Interval Sizing Function
The Interval sizing function is similar to the Linear function, but bases edge length at a
location on the squared lengths of edges bounding the surface weighted by their inverse
distance from the current location. An example is shown below.

Cubit_15.5_User_Documentation

701

Figure 1. NURB mesh with interval sizing function, 34 by 16 density

Inverse Sizing Function
The Inverse sizing function is also similar to the Linear function, but this method bases
edge length at a location on the inverse lengths of edges bounding the surface weighted
by their inverse distance from the current location (see Figure 1). The difference between
the three linear sizing functions (Linear, Interval, Inverse) is sometimes subtle, but is
driven by the geometry being meshed since the influence of these functions is strongly
controlled by the number, positioning, and mesh density of the bounding curves relative
to the interior surface area.

Mesh Generation

702

Figure 1. NURB mesh with inverse sizing function, 34 by 16 density

Linear Sizing Function
The Linear class of sizing functions determines element size based on a weighted
average of edge lengths for mesh edges bounding the surface being meshed. There are
several variants of this class of sizing function. The Linear function bases edge length at
a location on the lengths of edges bounding the surface weighted by their inverse distance
from the current location. The result of this weighting is a more gradual change in mesh
density during a transition between dense and coarse mesh. Figure 1 shows the same
NURB surface mesh but with intervals of 34 on two curves and intervals of 16 on the
remaining two bounding curves and no sizing function. It can be observed that the mesh
progresses more rapidly inward from the coarser meshed curves, which locates the
transition region much closer to the finer meshed curves. To combat this, the Linear
function weights the sizing of new elements such that these transitions occur slower.
Figure 2 displays two views of the same NURB geometry with the same bounding curve
mesh density using the linear sizing function.

Figure 1. NURB mesh with no sizing function, 34 by 16 density

Cubit_15.5_User_Documentation

703

Figure 2. NURB mesh with linear sizing function, 34 by 16 density

Free Meshes
A free mesh is a mesh that is not associated with any underlying geometric entities. A
free mesh contains only mesh elements (hexahedra, triangles, edges, nodes, etc), and
not volumes, surfaces, etc. Since there is no underlying geometry, operations on free
meshes are limited. The following operations can be performed on free meshes in some
capacity:

• Creating a free mesh

• Creating mesh-based geometry to fit a free mesh
• Mesh merging
• Mesh transformations
• Mesh smoothing
• Mesh quality operations
• Mesh refinement
• Cleaning up a free mesh

Mesh Generation

704

• Assigning boundary conditions
• Skinning a free mesh
• Mesh deletion
• Bottom-up element creation
• Exporting a free mesh

Creating a free mesh
A free mesh can be created in three ways.

1. Importing a mesh into Cubit using the Import Mesh [No_Geom] command. This
option is discussed in detail in Importing Exodus II Files.

2. Disassociating an existing mesh from its geometry
3. Creating a mesh with the geometry-tolerant mesh scheme

Disassociating a mesh from its geometry

The command to disassociate a mesh from existing geometry is:

Disassociate Mesh [From] {Volume|Surface|Curve|Vertex} <id_range>

For example:
brick x 10
mesh volume all
disassociate mesh from volume 1
delete volume 1
When a mesh is disassociated from its geometry, a group called 'disassociate elements'
is created to contain the free mesh.

Creating Mesh-Based Geometry to fit a Free Mesh
It is possible to create underlying mesh-based geometry to own a free mesh. It is similar
in functionality to the Import Mesh Geometry command, but it does not require the extra
import/export step. For example, a user would be able to read in a free mesh, fix any
mesh problems, and then create the mesh-based geometry without having to write the
mesh to a file first. The command syntax is:

Create Mesh Geometry {Hex|Tet|Face|Tri|Block} <range> [no_nodeset]

[no_sideset] [exclude block <range>] [Feature_Angle <angle=135>] [Acis]

[Keep]

The command also applies to any subset of the mesh. For example, you can create mesh
geometry for a group of hexes or element blocks.
If the keep option is specified, the mesh will be duplicated so you will have two copies of
the mesh: The original mesh and the new mesh that is owned by the new MBG geometry.
If the keep option is not specified, the existing mesh will be reused, and duplicate
elements will not be created. Elements will now be owned by the new MBG geometry.
The command will check for mesh ownership and will issue a warning. Use the keep
option if the mesh is already owned. The keep option is not specified by default.

Cubit_15.5_User_Documentation

705

By default, genesis entities will be used as criteria for building the new MBG geometry.
The no_nodeset and no_sideset options can be specified to prevent this. Any genesis
entities defined on the free mesh are transferred to the new MBG geometry. When the
keep option is used copies of genesis entities are made on the new MBG geometry.
The exclude block option excludes specified blocks from feature angle detection. Any
volumes created from these excluded blocks will have only one surface.
The Acis option will attempt to create ACIS geometry from the mesh. This option is an
alpha feature and can only be used if developer commands have been turned on. For
more detail see: Acis Geometry From Mesh

Merging a free mesh
To merge two free meshes, the equivalence command may be used. The command
syntax is:

Equivalence Node <range> [Tolerance <value>] [Preview]

All nodes in the given range that are within the specified tolerance will be merged. The
merged and unchanged (unmerged) nodes are put into groups. The maximum distance
between merged nodes, and the minimum distance between unmerged nodes, are listed
for the user because if these values are close together it can indicate a problem with the
Tolerance. With the Preview option, the nodes aren't actually merged, but the ones that
would have merged are drawn and grouped. For example:
br x 10
volume 1 copy move x 10
mesh volume all
disassociate mesh from volume 1 2
delete volume 1 2
equivalence node all tolerance 0.05
merges all nodes that are within 0.05 of each other

Free Mesh Transformation Operations
Mesh transformations for free meshes are achieved through the use of the group
transformation commands, given in Basic Group Operations. All members of a free mesh
are automatically assigned to a group. These groups can then be modified using group
operations. The following command sequence illustrates how transformations might be
applied to a free mesh.
brick x 10
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group disassociated_elements move x 10
group disassociated_elements rotate 15 about x
group disassociated_elements scale 0.25
group disassociated_elements reflect 1 1 0
group 'node_group' add node 1 to 121
group node_group move z 5
##The moved nodes do not also move the attached geometry, as one might expect.

Mesh Generation

706

If a group is composed of mesh entities, these commands will only operate on the nodes
in the group. All nodes of the group will be moved, scaled, rotated, or reflected as
specified. If there are no nodes in the group, Cubit will return an error. Including all nodes
in the group will transform the whole model. Including only a subset of nodes will transform
those nodes and their enclosed elements, but it will not transform the whole mesh.
Disassociated mesh elements cannot be copied using the Group copy commands. To
create a copy they must be exported and reimported. Alternatively, they can be
associated with mesh-based geometry, and then copied using the typical copy
commands.

Extruding Mesh Elements

Mesh elements can be extruded to create new elements from existing nodes, edges,
faces or triangles. There are two forms of the extrude command as follows:

 Create Element Extrude {Node|Edge|Face|Tri} <element_list> Direction

<options> [Distance <value>] {Layers <num_layers | {bias_first_size <value>

factor <value>}} [Twist <angle> Axis <axis_options>] [flatten]

[group_target]

 Create Element Extrude {Node|Edge|Face|Tri} <element_list> Along Curve

<curve_list> [Layers <num_layers]

In the first form of the command, a direction and distance are specified to define the
extrusion. To define node spacing along the extrusion, the command takes either the
layers or bias_first_size and factor parameters, but not both. Specifying a value for the
layers option determines how many evenly sized elements will be created in the given
distance. The bias_first_size and factor parameters define a bias that will be used along
the extrusion distance. When specifying entities to be extruded which are either non-
planar, or not orthogonal to the extrusion direction, the flatten parameter results in the
extrusion terminating on a single plane orthogonal to the extrusion direction. The optional
group_target parameter places all of the faces, tris, edges, or nodes at the end of the
extrusion into a group named "extruded_target" which can be conveniently used to define
a subsequent extrusion with a different set of extrusion parameters. Twist can also be
specified and requires an angle of twist and a twist axis.

The figure below illustrates the new flatten, bias_first_size, factor, and group_target
keywords. At the top is a set of non-planar faces to offset. On the bottom-left, each node
on all of the faces are extruded the same amout resulting in a target of the extrusion with
identical curvatuve to the input faces. In the bottom-middle, the flatten keyword is used,
resulting in the extrusion terminating on a single plane. In the bottom-right, the
bias_first_size, factor, and group_target keywords are used, resulting in a biased
extrusion, and the creation of a group named "extruded_target", which contains the faces
on the end of the extrusion.

Cubit_15.5_User_Documentation

707

In the second form, a curve is specified, along with the input entities will be extruded.
Extruding along a curve supports the layers parameter, but does not currently support
the distance, bias_first_size, factor, flatten, twist or group_target parameters.
#Extrude a face in a given direction:
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create element extrude face 1 direction 0 0 1 distance 3 layers 3
create element extrude face 1 direction 0 0 1 distance 3 layers 3 twist 90 axis
direction 0 0 1 origin 0 0 0
#Sweep face along curve
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create vertex location position 0 0 0
create vertex location position 0 .2 1
create vertex location position 0 1 2
create vertex location position 0 3 2
create vertex location position 0 4 1
create vertex location position 0 5 0

Mesh Generation

708

create curve spline vertex 1 2 3 4 5
create element extrude face 1 layers 5 along curve 1

Figure 1. Extruding mesh elements along a spline

Offsetting Mesh Elements

Faces and triangle elements can be used to create hexahedral and wedge elements from
an offset command. The default offest direction is normal to the selected face. The
Oppposite_normal option will use the reverse direction. The layers parameter
determines how many elements will be created in the given direction.

Create Element Offset {Face|Tri} <element_list>

[Normal_to|Opposite_normal] {Distance <value>] [Layers <num_layers>]

#Create wedge and hex elements from face and tri elements via offset
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 1
create node location 2 1 1
create node location 1 2 0
create face node 1 to 4 create face node 3 2 5 6
create tri node 7 4 3
create tri node 7 3 6
create element offset face all tri all distance 3 layers 3 opposite_normal

Cubit_15.5_User_Documentation

709

Revolving Mesh Elements

Elements can be created by revolving an existing element around a given axis. The
Attempt_fix parameter will try to fix any poorly formed hex elements by collapsing them
into wedge elements. Angle determines the amount of rotation around the axis. The
Layers option determines how many elements will be created in the given rotation. The
quadratic option will result in the creation of quadratic elements. For example, it can
result in HEX20 or TET10 elements being created. To further specify the element type,
for the created elements, one may put them into a block.

Create Element Revolve {Edge|Face|Tri} <element_list> Axis <axis_options>

Angle <angle> [Layers <num_layers>] [Attemp_fix] [quadratic]

#Revolve 2 faces around the Y-axis and collapse inner hexes to wedges
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 0
create node location 2 1 0
create face node 1 2 3 4
create face node 2 5 6 3
create element revolve face 1 2 axis 0 1 0 angle 180 layers 4 block 1 element type
HEX27 attempt_fix

Figure 2. Revolving free mesh elements to create hex and wedge elements

Mesh Generation

710

Smoothing a free mesh
Interior nodes can be smoothed using commands such as smooth hex all, or smooth tet
all in block 100. These commands will smooth only the interior node on the elements used
in the command. The nodes on the boundary will remain unchanged. To smooth nodes
on a boundary, the target smoothing option can be used. Targeted smoothing allows the
user to smooth a group of mesh elements to a surface or curve that is not their owner.
Targeted smoothing is discussed under Mesh Smoothing. The following sequence of
commands illustrate the capability of smoothing a free mesh to a target surface.
sphere rad 25
webcut vol 1 plane xplane offset 18
delete vol 2
webcut volume 1 plane yplane offset 8
webcut volume 1 plane yplane offset -8
delete vol 1 3
surf 16 copy
delete vol 4
surf 18 scheme pave
surf 18 size 2
mesh surf 18
disassociate mesh surf 18 ##Mesh and geometry overlap
refine face 1 radius 3
set developer on ## Smoothing free mesh is a developer command
smooth face all scheme laplacian
##Smoothed mesh is away from surface
smooth face all scheme laplacian target surface 18
##Smoothed mesh is aligned with surface

Figure 3. Smoothing without a target (above) and smoothing to a target surface (below).

Cubit_15.5_User_Documentation

711

Mesh quality on a free mesh
The mesh quality checks for a free mesh are the same as for other geometry-based
meshes. The difference is in how you specify elements in the command. Instead of
specifying volumes or surfaces you would specify groups of hexes, faces, tris, or tets.
Examples are given below:
quality hex all
quality face all scaled jacobian
quality tet 1 to 100 draw mesh

Mesh refinement on a free mesh
Refinement for a free mesh is limited to refinement of mesh elements. Refinement may
be accomplished by specifying groups of mesh elements which to refine using the regular
refinement options. For boundary elements, the refinement scheme will use averaging
methods to determine node placement, in the absence of a boundary geometry to define
node placement.

Cleaning up a free mesh
A free tet mesh may be cleaned up using the Cleanup Tet command. For example
cleanup tet all
#cleans up all tets
cleanup tet 1 to 1000
#cleans up all tets in the range [1,1000]
It is best to specify contiguous sets of elements for this command.

Assigning boundary conditions
Assigning boundary conditions on free meshes can be accomplished by explicitly
specifying mesh elements, by creating a sideset or block from the skin of a group of
elements, or by creating groups based on feature angle using the seed method. Once the
group is created it is easy to assign it to a nodeset or sideset.
Cubit will respect block, nodeset, and sideset data that is associated with an imported
free mesh, or disassociated mesh. The following command sequence illustrates how the
group seed operation could be used for assigning boundary conditions on free meshes.
##Creating blocks, nodesets and sidesets on free meshes
cylinder radius 3 z 12
volume 1 size 0.5
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group 'mygroup1' add seed face 752 feature_angle 45
##Groups all faces on the cylindrical surface
group 'mygroup2' add seed face 752 feature_angle 45 divergence
##Groups only faces within 45 degrees of seed face
sideset 1 group mygroup1
sideset 2 group mygroup2
block 1 hex all
draw sideset 1
draw sideset 2
draw block 1

Mesh Generation

712

Figure 4. Grouping faces on free meshes using the seed method. The feature angle method

is used on the left with a feature angle of 45 degrees. On the right is the result if using the

divergence method.

Even though boundary conditions can be defined directly only on geometry entities, these
geometry-based BCs will be maintained on the free mesh following the disassociate
command. The following command line sequence illustrates this capability.
##Respecting blocks, nodesets and sidesets in mesh elements after disassociation
brick x 10
mesh vol 1
sideset 1 surface 1
nodeset 1 curve 1
block 1 volume 1
disassociate mesh from volume 1
draw sideset 1
draw nodeset 1
draw block 1

Skinning a free mesh
The skin command takes a list of mesh elements and returns the triangles and faces on
the boundary of that group. The group of elements returned from the command can be
assigned to either a group, sideset, or block. Free meshes can be skinned by specifying
either a list of hexahedra, a list of tetrahedra, or a list of blocks.

Deleting free mesh elements

Cubit_15.5_User_Documentation

713

Typically meshes are deleted by specifying owning geometry. For free meshes, the
meshes cannot be deleted in this fashion. Instead, the mesh may be deleted using the
Delete mesh command. The syntax is:

Delete Mesh

This command will delete all mesh entities in the entire model. To specify groups of
elements for deletion, you can use the individual deletion commands. The command to
delete a group of free mesh elements is:

Delete {Node|Hex|Tet|Face|Tri} <id_range> [No_propagate]

When deleting elements, the default behavior will be that the child mesh entities will be
deleted when they become orphaned. For example, when a hex is deleted, if its faces,
edges and vertices are no longer used by adjacent hex elements, then they will also be
deleted. The no_propagate option will leave any child mesh entities regardless if they
become orphaned.

Bottom-up element creation
Bottom-up mesh element creation methods are available for free meshes. The difference
between element creation methods for free meshes versus associated meshes is that the
free meshes commands do not have a command option to associate the elements with
an owning body. Otherwise the commands are identical to mesh element creation
commands for associated meshes. The command syntax for free meshes is:

Create Node <x> <y> <z>

Create {Hex|Tet|Tri|Face|Edge} Node <id_range>

Exporting free meshes
Free meshes can be exported as ExodusII files. All elements belonging to any block are
exported. Any elements not belonging to a block will not be exported (i.e. Cubit will not
assign default blocks).

Mesh Deletion
Meshing a complex model often involves iteration between setting mesh parameters,
meshing, and checking mesh quality. This often requires removing mesh, for only an
entity or for an entity and all its lower order geometry, or sometimes for the entire model.
The command to remove all existing mesh entities from the model is:

Delete Mesh

The command for deleting mesh on a specific entity is:

Delete Mesh {geom_list} [Propagate]

Mesh Generation

714

These commands automatically cause deletion of mesh on higher dimensional entities
owning the target geometry.
If the Propagate keyword is used, mesh on lower order entities is deleted as well, but only
if that mesh is not used by another higher order entity. For example, if two surfaces
(surfaces 1 and 2) sharing a single curve are meshed, and the command "delete mesh
surface 1 propagate" is entered, the mesh on surface 1 is deleted, as well as the mesh
on all the curves bounding surface 1 except the curve shared by surface 2. In some cases,
the capability to delete individual mesh faces on a surface is needed. Deleting a mesh
face involves closing a face by merging two mesh nodes indicated in the input. The syntax
for this command is:

Delete Face <face_id> Node <node_id> [Node <diagonal_node_id>]

This command is provided primarily for developers' use, but also provides the user fine
control over surface meshes. At the present time, this command works only with faces
appearing on geometric surfaces and should be used before any hex meshing is
performed on any volume containing the face to be deleted.

Automatic Mesh Deletion
Cubit will automatically delete the mesh from a geometry that is about to be modified by
a geometry modification command. To change this behavior, so that Cubit will issue an
error instead of automatically deleting the mesh, use the following command.

Set Mesh Autodelete [ON|Off]

Mesh Validity
After a mesh is generated, it is checked to ensure that the mesh has valid connectivity. If
an invalid mesh is formed, then CUBIT automatically deletes it. This default behavior can
be changed with the following command:

Set Keep Invalid Mesh [on|off]

The current behavior can be viewed with the following command:

List Keep Invalid Mesh

The Jacobian quality metric is also computed automatically to check quality after a mesh
is generated. If the quality is poor, a warning is printed to the terminal.

Skinning a Mesh
The Skin command takes a range of hexahedra, tetrahedra, blocks, or volumes and
generates a collection of triangles or quadrilaterals on the exterior of the volumetric
elements. This is the skin mesh.

Skin {Block|Volume} <range> [Individual] [Nomake]

Cubit_15.5_User_Documentation

715

Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range>

[Nomake]

Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range>

[Make {Block|Sideset [<id>] |Group [<name>|<id>]}

Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range>

{Add|Replace} {Block|Sideset [<id>] |Group [<name>|<id>]}

The Individual keyword tells Cubit to skin Blocks or Volumes, one by one independently
of each other, even if they share merged surfaces.
The Nomake keyword tells Cubit to not create any kind of grouping of the mesh faces
resulting from the skinning operation.
If the Make option and its arguments are present, then the specified object (block, sideset
or group) receives the skin mesh. The command fails if an object with the optional
identifier already exists. If the object identifier is omitted, the identifier is set to the next
object of that type. The skin mesh is stored in the next available sideset if the Make option
is missing.
Another command form has two options, Add and Replace. Each option has a required,
associated identifier. If the identifier is missing or invalid, the command fails. The Add
option appends the skin mesh to the object. The Replace option removes any existing
mesh from the object before adding the skin mesh.
The skin mesh will respect the merged volumes. If two adjacent volumes are merged, the
skin mesh will not include the merged surface. If the volumes are not merged, each
volume will generate a separate skin surface. If volumes are not merged, they are treated
separately. The skin command will also respect any number of interior voids. All surface
elements will be oriented forward with respect to the originating volumes.
The primary use for the skin command is to generate surface meshes of quads or tris for
sidesets and remeshing.
For Face and Tri elements (2d elements), the skin is a set of edges (1d elements.) The
skin for 3d elements is a set of 2d elements.

Lite Meshes
Cubit has the ability to represent mesh using either a lightweight or heavy representation.
The lightweight representation option is new for Cubit 15.3, and can be referred to as lite.
The heavy representation is useful for supporting all the various mesh manipulation
operations available in Cubit. While still under development, the lite representation option
is intended to be a quick way to display larger meshes while supporting a smaller subset
of mesh manipulation operations.
The following are supported operations with lite mesh:

• Creating a lite mesh
• Graphics
• Information
• Modifications to lite mesh

Mesh Generation

716

• Exporting a lite mesh

The following items are not yet supported:

• Information and listing of individual hexes, tets, wedges, pyramids, faces, tris and
edges

• Modifying the content of blocks, sidesets and nodesets
• Modifying the element type of a block
• Renumbering blocks, sidesets and nodesets
• Topology checks on blocks
• Cleanup on blocks
• Skinning on blocks
• Quality calculations on elements
• Moving blocks or nodesets
• Deleting individual blocks, nodesets and sidesets
• Creating rebar elements
• Smoothing elements
• Refining the mesh
• Merging or equivalence of nodes

Creating a lite mesh
To use the lite mesh representation, one may import a mesh file using the 'lite' option.
There is not currently another way to create lite mesh other than importing from a file. The
command to import a lite mesh is:

 Import mesh "<filename>" lite

Additional options for lite import can be found under the Import Mesh Lite command.

Graphics
Generally, the graphical features for lite meshes is supported at the same level as for
heavy meshes, including the ability to draw, pick, select, highlight, zoom among other
operations. The coloring of the mesh is based on blocks, and may be adjusted by the
user. Toggling visibility of all sidesets and nodesets can be done by clicking the Display
Boundary Conditions toolbar button or with the bc visibility {on|off} command. Toggling
visibilty of all blocks can be done by clicking the Display Mesh toolbar button or with the
mesh visibility {on|off} command.

Cubit_15.5_User_Documentation

717

The draw, zoom and select commands work on blocks, sidesets and nodesets. Also,
selecting those genesis entities in the graphics window will result in them being
highlighted in both the graphics window and in the tree. Selecting of nodes and elements
has not yet been implemented for meshes imported in lite mode.

Information
There are several ways to view information about the lite mesh. The tree and the property
page can show information about the blocks, sidesets and nodesets. Also, the list
command can print information about individual blocks, sidesets, and nodesets. The list
element command will print out the ID space used by elements. The list node command
will show the ID space used by nodes. Listing of individual elements and nodes is not yet
supported.

Mesh Generation

718

Modification to lite mesh
Some modifications to genesis entities are supported. Blocks, sidesets and nodesets may
have names assigned to them. Blocks may have their attributes modified, and materials
may be assigned to blocks. Not supported is the ability to modify the contents of blocks,
nodesets and sidesets.

Exporting a lite mesh
Exporting a lightweight mesh to an Exodus file is supported. This includes writing out
blocks, nodesets, sidesets, element ids, node ids, etc... Not all Exodus data is read in,
and if there is some data not recognized by Cubit, it will not be exported. Field data is an
example of Exodus data not recognized by Cubit, nor exported. Importing multiple Exodus
files and exporting a single file is supported. Importing a single Exodus file and exporting
a portion of it is supported. Distribution factors are preserved when reading/writing in lite
mode.

719

Finite Element Model

Finite Element Model

• Global Element IDs
• Exodus Boundary Conditions
• Non-Exodus Boundary Conditions
• Exporting the Finite Element Model

This chapter describes the techniques used to complete the definition of the finite element
model. The definitions of the basic items in an Exodus database are briefly presented,
followed by a description of the commands a user would typically enter to produce a
customized finite element problem description, and how to export the finite element
model.

Global Element IDs
Cubit Mesh Entity ID Spaces
All mesh entities have an ID associated with them which is unique within the
corresponding mesh entity ID space. For example, a hex will have an id which can be
used in commands such as "list hex 17". However, this ID is only unique amoungst the
hexahedra in the Cubit session. There could also be a tet, quad, tri, edge, node, etc. with
ID 17.

Global Element IDs
Whenever a hex, tet, quad, tri, etc. gets put into an element block, it is assigned another
ID which is called the Global Element ID. The Global Element ID is unique amoungst all
element which have been put into any block. Starting in Cubit 14.0, it is exported to the
Exodus file format so that downstream analysis applications can map elements back to
the corresponding Cubit hex, quad, etc. In Cubit 14.0, Global Element are not supported
by the other exporters, but will be in future releases.

Interacting with GlobalElement IDs

After a hex, quad, etc. is placed into an element block, you can see which ID was assigned
to it with the list command. For example:
reset

bri x 10

mesh vol all

block 1 hex all

list hex 1

The resulting output will contain the following:
CUBIT> list hex 1

Hex 1

Global Element ID = 1

In this simple example, the Hex ID is the same as the Global Element ID, but this will not
always be true.

Finite Element Model

720

These Global Element IDs are exported as the global id in the Exodus file. If during an
analysis run, a particular element needs to be identified back in the Cubit session, they
can be found with any of the following commands:

List element <id_range>

Draw element <id_range>

Highlight element <id_range>

List element <id_range>

Users can control the assigned Global Element ID with the renumber command.

export

Export Mesh and Its Geometry Association
Cubit offers the option to export a complete finite element mesh, along with its association
to an ACIS geometry model. This is useful if a 3rd party application is going to be used to
modify the mesh after exporting from Cubit, and you want the geometry available to
project to during the modification operations. The command is:

Export m2g '<fileroot>' [{opennurbs|ACIS}] [overwrite]

The fileroot argument to this command is not a complete filename, rather, it is a full path
and filename without the file extension. The export m2g command will write out:

• fileroot.XYZ: A geometry file containing the geometric model, where XYZ is the
3 letter file extension of the requested geometry output.

• fileroot.exo: The full mesh in the exodus format.
• fileroot.m2g: An ascii file defining how the mesh in fileroot.exo is associated to

fileroot.sat.

The export m2g command can export either an ACIS (*.sat) file or an OpenNurbs (*.3dm)
file depending on the supported geometry types of the downstream 3rd party application
in use. The default is to export an ACIS file.
An example usage of the export m2g command is the Sierra mesh_scale command.
Sierra mesh_scale is a batch program which performs the same mesh scaling as can be
performed in Cubit with the scale mesh command. When generating new nodes on the
boundary of the mesh, Sierra mesh_scale projects the locations of the new nodes to the
ACIS geometry model by leveraging the information exported by the export m2g
command.

Exporting Sierra Files

Sierra input decks can be exported from Cubit. This capability was added in response to
a need to translate Abaqus input decks to Sierra input decks by importing the Abaqus
deck into CUBIT and then immediately exporting the Sierra deck. Therefore, it is

Cubit_15.5_User_Documentation

721

assumed that most of the input deck information has been created outside of CUBIT and
that the user will not interact with it in CUBIT .

The Sierra input deck writer is simply another export format and as a result it can be used
for any currently defined mesh and input deck info defined in Cubit.

The Sierra input deck exporter relies on some of the mesh-specific information that is
generated when exporting the Genesis mesh. Therefore, you should export the
Genesis mesh before exporting the Sierra input deck.

Defining PARAMS for NASTRAN

List Nastran Exporter Params

Set Nastran Exporter Params Add '<param_string>'

Set Nastran Exporter Params Remove '<param_string>'

Set Nastran Exporter Params Clear

Nastran uses “PARAMS” to define additional instructions and settings in its Bulk Data
file. Any string can be defined as a Nastran Exporter Param, and it will be exported to
the Nastran file as “PARAM, <string>”.

Instancing Parts with ABAQUS
The ABAQUS file format allows users to instance a mesh multiple times. An example of
this would be to create a mesh of a single bolt, but instance the bolt mesh several times
in the ABAQUS model file to generate multiple bolts.
To create an ABAQUS file with instanced parts, use the following syntax:

Export Abaqus <’filename’> [Block <id_list>] [Sideset <id_list>] [Nodeset

<id_list>] [BCSet <id_list>] [Instance Block <id_list> [Source_csys <id>]

[Target_csys <id_list>] [Overwrite] [Everything]

Any block defined in Cubit can be instanced n number of times in the ABAQUS file. To
instance a block, a source coordinate system and a target coordinate system (where the
mesh will be translated and rotated to) need to be defined. If no source coordinate system
is given in the command, the default (global) coordinate system is used. The instance
keyword can be used as many times as needed.
Note: By default, the Abaqus exporter writes 6 decimal places. The command "set
Abaqus precision <n>" can be used to change the number of decimal places written.

Exporting an Exodus II File
After defining the element blocks, nodesets and sidesets for a model, the model can be
written to the Exodus II file using the command:

Finite Element Model

722

Export [Genesis|Mesh] '<filename>' [dimension {2|3}] [Block <id_list>]

[Qualityfile] [XML '<filename>'] [Overwrite]

The Genesis or Mesh arguments are optional and both indicate that an Exodus II format
will be written. The filename can be any valid filename. Where a full path is not specified,
the file will be written in the current working directory.
The dimension argument is also optional. Most element types have an inherent
dimensionality associated with them. For example, a truss or beam element is inherently
2D while a hex or tetra element is 3D. Without this argument, only the x-y location of the
nodal coordinates of 2D elements are written to the Exodus II file. Using the argument
dimension 3 in this example permits the full 3D coordinates to be written.
The optional Block argument may also be added to the Export command. Without this
argument all blocks defined in the current model will be exported to the Exodus II file. This
argument permits the user to specify only a subset of all the blocks in the model. The
<id_list> may be any valid set of integers corresponding to the block ids in the current
model.
The Qualityfile option exports, in addition to the mesh, a text file containing a printout of
the element quality using the 'Allmetrics' option. The name of this file is the base name of
the mesh file (file extension removed) and "_quality.txt" added.
The XML optional argument may also be added to the Export command. When this
argument is included and assembly data exists in the model, an XML file is written which
describes the relationship between block IDs in the Exodus II file and parts in the
assembly. See the Parts, Assemblies and Metadata section for details.

Element and Node ID Maps

Element ID map and node ID map are always written to the Exodus II file. The IDs written
to the node ID map are the node IDs used to refer to nodes at the Cubit command line.
The IDs written to the element ID map are the Global Element IDs which are assigned to
the hex, tet, quad, etc. when they are added to an element block. The node and element
ID maps can be used when a particular element or node is refered to in a downstream
application and the corresponding node or element in Cubit must be found. Some analysis
and post-processing applications consider these maps to be optional, while others ignore
the maps even if they are present. See the Exodus manual for more information on
element and node ID maps.

Exporting a Parallel Mesh for pCAMAL

Export Parallel "<filename>" [Block <id_list>] [Overwrite] [Processor

<number>]

The Export Parallel command is used to output an ExodusII file with the boundary mesh
or shell for sweepable volumes that were meshed with set parallel meshing enabled. The
options are the same as those for the "export genesis" command except for the addition
of the processor option.

http://gsjaardema.github.io/seacas/exodusII-new.pdf

Cubit_15.5_User_Documentation

723

The processor option allows the user to specify the number of processors that will be
used to mesh the volume with the pCAMAL option. This same option exists in the
pCAMAL application and is more often used there since the number of available
processors is known then rather than when the output file is created in Cubit.
If the processor option is given, Cubit attempts to balance the number of sweepable
volumes to run on n processors by converting many-to-one sweeps to one-to-one
sweeps, subdividing the sweep volume along its sweep direction, or partitioning the
source surface of a one-to-one sweep if the number of source quads is much larger than
the number of layers.

Converting an Exodus II file to ASCII

The Exodus II file format is binary. It is frequently necessary to view the contents of the
Exodus II file as plain text. A publicly available tool known as ncdump can be used to
view the contents of an Exodus II file. ncdump is part of the netCDF library and is
currently available from Unidata at the following URL:
http://www.unidata.ucar.edu/
On a UNIX platform, typical use of the ncdump utility is:

ncdump filename.e > filename.txt

In this format, the ncdump utility will take the Exodus II file, filename.e, and dump the
contents to an ASCII file filename.txt
Another option for converting between binary and ASCII formats of Exodus II files is a
utility known as exotxt. Exotxt is part of the SEACAS tool suite. Contact the Sandia
CUBIT development team for a copy of this utility.
Note that the 'stock' ncdump utility should work for most meshes; however, Sandia
increases some of the dimensions in order to handle larger meshes (more element
blocks, boundary conditions, variables). The dimensions we increase in netcdf.h are:
NC_MAX_DIMS (max dimensions per file) from 100 to 65536
NC_MAX_VARS (max variables per file) from 2000 to 524288

Controlling Exodus II Output Precision

By default, exodus files are written with double precision numbers. It may be useful to
change this for large meshes to decrease output file size. This can be done using the
following command:

Set Exodus Single Precision [On|Off]

This command toggles the Exodus output file between single precision (floats) and double
precision.

Large Exodus Format

http://www.unidata.ucar.edu/
http://gsjaardema.github.io/seacas/

Finite Element Model

724

The Set Large Exodus command enables the large exodus file setting to create a model
that can store individual datasets larger than 2 gigabytes. This modifies the internal
storage used by ExodusII and also puts the underlying netcdf file into the "64-bit offset"
mode.

Set Large Exodus [ON|Off]

Exodus NetCDF4/HDF5 Format

The Set Exodus NetCDF command enables the exodus NetCDF4/HDF5 file setting to
create a model that can store even larger files with unlimited dimensions. This modifies
the internal storage used by ExodusII to an HDF5 based file. This setting overrides the
Set Large Exodus setting.

Set Exodus NetCDF4 [On|OFF]

Exporting Geometry Association with the Exodus Mesh

Optionally, you can also export the associated ACIS geometry and the correspondence
between the mesh and the geometry by using the export m2g command.

Exporting the Finite Element Model
For information on exporting an Exodus File, see Exporting Exodus II Files. Custom
translators are available to translate between the Exodus II format and a limited number
of other analysis code formats. Contact the cubit development team for a current list of
supported translator formats. The general syntax for the various exporters is as follows.
The specific exporter commands are listed below.

Export {Abaqus [Explicit]* [Partial]* | CGNS | Nastran | Ideas | Patran |

LSDyna | Fluent} <’filename’> [Block <id_list>] [Sideset <id_list>] [Nodeset

<id_list>] [BCSet <id_list>] [dimension {2|3}***] [Overwrite] [Everything]

[NX]**

Export {Sierra | VRML} <'filename'> [Overwrite]

* Explicit and Partial keywords only available with Abaqus Exporter
** NX keyword only available with I-DEAS Exporter
***The dimension argument is also optional. Most element types have an
inherent dimensionality associated with them. For example, a truss or beam
element is inherently 2D while a hex or tetra element is 3D. Without this
argument, only the x-y location of the nodal coordinates of 2D elements are
written to the Exodus II file. Using the argument dimension 3, in this
example, permits the full 3D coordinates to be written.

The Abaqus Exporter has a few additional keywords available. See the last paragraph
below for an explanation of those keywords:

Cubit_15.5_User_Documentation

725

Export Abaqus <'filename'> [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [dimension {2|3}] [nodefile <'filename'>] [elementfile <'filename'>]

[flat] [overwrite] [everything]

If no blocks are exported, Cubit will export all nodes and elements in the model. If one or
more blocks are entered in the command, only those blocks will be exported. Similarly, if
no BCSets are entered in the command, Cubit will export all boundary conditions as a
single BCSet. If one or more BCSets are entered into the command, only those BCSets
will be exported. Use the overwrite flag to overwrite an existing file.
By default, Cubit will reassign node and element IDs based on which block they are in. If
the everything keyword is present, Cubit will export all nodes and elements in the model,
whether they are in a block or not.
The I-DEAS Universal file can be read into Siemen’s NX application if the file is generated
using the NX keyword. This is because extra information must be written to an I-DEAS
Universal file in order for NX to be able to read it.
There are a few keywords specifically for the Abaqus exporter. Flat can be used if the
user desires Cubit to write out the model as a "flat file." Abaqus refers to files a "flat files"
when they do not use the *PART/*INSTANCE structure. All nodes and elements will be
defined at the global level. The keywords elementfile and nodefile can be used to
instruct Cubit to export the nodes and/or elements to a separate file.
If the Explicit keyword is used with Abaqus, Cubit will write an Abaqus Explicit deck. The
one Explicit-only feature that Cubit supports is Fixed Mass Scaling.
If the Partial keyword is used with Abaqus, Cubit will write a partial Abaqus deck. Cubit
will output the mesh as defined by the Abaqus keywords PART, NODE, ELEMENT,
NSET, ELSET, and SURFACE. Everything else is ignored. Use the Abaqus keyword
INCLUDE to include this file in a master Abaqus deck for analysis.
Specific Exporter Commands:

Export Abaqus [explicit] '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset

<id_list>] [BCSet <id_list>] [group <id_list>] [instance block <id_list> [source_csys

<id_list>] target_csys <id_list> [preview]] [dimension {2|3}] [overwrite] [everything]

[partial]

Set Abaqus Precision <n=6>

Note: This command can be used to control the number of decimal places written
to the Abaqus file.

Export CGNS '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [dimension {2|3}] [overwrite] [everything]

Export Nastran '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [dimension {2|3}] [overwrite] [everything]

Export Ideas '<filename>' [NX] [Block <id_list>] [Sideset <id_list>] [Nodeset

<id_list>] [BCSet <id_list>] [dimension {2|3}] [overwrite] [everything]

Finite Element Model

726

Export Patran '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [overwrite] [everything][dimension {2|3}]

Export Lsdyna '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [overwrite]

Export Fluent '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]

[BCSet <id_list>] [dimension {2|3}] [overwrite] [everything]

Note: The following command is for exporting mesh geometry, (.msh format.)

Export Fluent '<filename>' [Surface <id_list>|Volume <id_list>] [Overwrite]

Export Sierra <'filename'> [Overwrite]

Export VRML <'filename'> [Overwrite]

Additional Information on building Cubit models for CFD
Instancing parts with ABAQUS
Defining PARAMS for NASTRAN

Supported element types

Cubit
Element

Type
ExodusII CGNS Abaqus Nastran

I-
DEAS
UNV

Patran LS-DYNA Fluent

Sphere SPHERE ELEMENT_SPH

Spring SPRING SPRINGA/SPRING1/SPRING2 CBUSH1D**

Bar BAR B21** CROD** 121** Bar2

Bar2 BAR2 B21** CROD** 121** Bar2

Bar3 BAR3 B22** CROD** 121**

Beam BEAM B31 CROD** 21** Bar2 ELEMENT_BEAM

Beam2 BEAM2 B31 CROD** 21** Bar2 ELEMENT_BEAM

Beam3 BEAM3 B32 CROD** 24**

Truss TRUSS T3D2/T3D2T*,** CROD** 121** Bar2 ELEMENT_BEAM

Truss2 TRUSS2 T3D2/T3D2T*,** CROD** 121** Bar2 ELEMENT_BEAM

Truss3 TRUSS3 T3D2/T3D2T*,** CROD** 121**

Quad QUAD QUAD_4 CPE4R/CPE4RT* CQUAD4 54 Quad4 ELEMENT_SHELL 3

Quad4 QUAD4 QUAD_4 CPE4R/CPE4RT* CQUAD4 54 Quad4 ELEMENT_SHELL 3

Quad5 QUAD5 Quad5

Quad8 QUAD8 CPE8R/CPE8RT* CQUAD8 55 Quad8

Cubit_15.5_User_Documentation

727

Quad9 QUAD9 S9R5 CQUAD 55 Quad9

Shell SHELL S4R/S4RT* CQUAD4 94*** Quad4 ELEMENT_SHELL

Shell4 SHELL4 S4R/S4RT* CQUAD4 94*** Quad4 ELEMENT_SHELL

Shell8 SHELL8 S8R/S8RT* CQUAD8 95*** Quad8

Shell9 SHELL9 S9R5 95*** Quad9

Tri TRI TRI_3 CPS3/CPS3T* CTRIA3 51 Tri3 ELEMENT_SHELL 1

Tri3 TRI3 TRI_3 CPS3/CPS3T* CTRIA3 51 Tri3 ELEMENT_SHELL 1

Tri6 TRI6 CPS6/CPS6T* CTRIA6 52 Tri6

Tri7 TRI7 52 Tri7

Trishell TRISHELL STRI3 CTRIA3 91 Tri3 ELEMENT_SHELL

Trishell3 TRISHELL3 STRI3 CTRIA3 91 Tri3 ELEMENT_SHELL

Trishell6 TRISHELL6 STRI65 CTRI6 92 Tri6

Trishell7 TRISHELL7 92 Tri7

Hex HEX HEXA_8 C3D8R/C3D8RT* CHEXA 115 Hex8 ELEMENT_SOLID 4

Hex8 HEX8 HEXA_8 C3D8R/C3D8RT* CHEXA 115 Hex8 ELEMENT_SOLID 4

Hex9 HEX9

Hex20 HEX20 C3D20R/C3D20RT* CHEXA 116 Hex20

Hex27 HEX27 CHEXA 116

Tetra TETRA TETRA_4 C3D4/C3D4T* CTETRA 111 Tet4 ELEMENT_SOLID 2

Tetra4 TETRA4 TETRA_4 C3D4/C3D4T* CTETRA 111 Tet4 ELEMENT_SOLID 2

Tetra8 TETRA8

Tetra10 TETRA10 C3D10/C3D10MT* CTETRA 118 Tet10 ELEMENT_SOLID

Tetra14 TETRA14

Wedge WEDGE C3D6/C3D6T* CPENTA 112 ELEMENT_SOLID 6

Hexshell HEXSHELL

Pyramid PYRAMID CPYRAM 115†

Pyramid5 PYRAMID5 CPYRAM 115†

Pyramid8 PYRAMID8 CPYRAM 116†

Pyramid13 PYRAMID13 CPYRAM 116†

Pyramid18 PYRAMID18 CPYRAM 116†

*Thermal element
**Check to make sure the element's properties are correct after exporting
***Also exports lofting factor for shell elements (IDEAS)
† The element type will be HEX but the number of nodes will be the number of nodes in
the pyramid.

Finite Element Model

728

Supported boundary conditions types

Cubit
Element

Type
ExodusII CGNS Abaqus Nastran

I-
DEAS
UNV

Patran
LS-

DYNA
Fluent

BC Set *STEP SUBCASE 2428

Displacement

 SPC 791 08

Temperature *BOUNDARY TEMP 791 10

Force *CLOAD FORCE/MOMENT 790 07

Pressure *DSLOAD PLOAD4 790 6

Convection *SFILM *** CONV 790 17

Heat Flux *DSFLUX QHBDY 790 16

Contact *CONTACT 2471

Materials *MATERIAL MAT1_, MAT4_ 1716 03

CFD
Boundary
Conditions

Interior 2

Wall 3

Inlet
Pressure

 4

Inlet
Massflow

 20

Inlet Velocity 10

Outlet
Pressure

 5

Far-field
Pressure

 9

Symmetry 7

*** Does not allow separate temperatures for top and bottom of shell elements. Values
will be averaged.

Exporting Fluent Grid Files
Geometry can be exported from Cubit to the Fluent .msh format. This format can be used to

exchange grid information between .msh compatible programs including Fluent, GAMBIT, and

TGrid. The command used to export the mesh geometry is:

Export Fluent '<filename>' [Surface <id_list>|Volume <id_list>] [Overwrite]

Cubit_15.5_User_Documentation

729

The filename should be enclosed in either single or double quotes. By convention, the file
extension .msh is applied to grid files. The extension should be included in the filename
section. Other file extensions such as .cas may be used, but they cannot be guaranteed
to be compatible with either GAMBIT or TGrid.
In order to guarantee that the grid file will be compatible with Fluent, all bodies must be
merged (See Geometry Merging). Several types of Fluent boundary condition zones are
now implemented in Cubit. They are:

• axis
• exhaust fan
• fan
• inlet vent
• intake fan
• interface
• interior
• mass flow inlet
• outflow
• outlet vent
• periodic
• periodic shadow
• porous jump
• pressure far field
• pressure inlet
• pressure outlet
• radiator
• symmetry
• velocity inlet
• wall

Boundary condition zones created in two different ways. The first way involves user-
defined mesh groups consisting only of quads (3D), triangles (3D), or element edges (2D)
(See Geometry Groups). The second way involves sidesets. Specifying a boundary
condition consists of selecting a user-defined mesh group or a sideset, or a surface.
Selecting a surface automatically assigns the boundary condition to the sideset
associated with that surface. The boundary condition type is specified and is either given
a name or an id (See Using CFD Boundary Conditions). Groups or sidesets of mixed type
(e.g. hexes and faces) will not be exported. All surfaces not set to one of the first seven
boundary condition types are automatically set to type ‘wall’. The various parameters for
each of the boundary condition types must be set within either Fluent or GAMBIT.
Cell zones are automatically created for 3D meshes containing blocks. Blocks must
contain entire and continuous volumes in order to create a valid grid. In 2D models, the
cell zones are created from sidesets containing only quads or tris. In order to create a
valid grid, these sidesets must contain whole, continuous surfaces. All cell zones are by
default set to type ‘fluid.’

Finite Element Model

730

If no entities are specified, the entire model is exported. In order to export selected
entities, the types ‘volume’ and ‘surface’ can be specified. In 2D cases, use ‘surface’ while
in the 3D case use ‘volume.’

Transforming Mesh Coordinates
A mesh can be scaled and transformed to a new location as it is written to or read from
an Exodus file. To transform a mesh during import or export use the following command:

Transform Mesh {Input|Output}

[Scale <xyz_factor>]

[Scale <x_factor> <y_factor> <z_factor>]]

[Scale {X|Y|Z} <factor>]

[Translate <dx> [<dy> [<dz>]]]

[Translate {X|Y|Z} <distance>]

[Rotate <degrees> about {X|Y|Z}]

[Reset]

This command may be repeated any number of times using any number of options.
Transform commands are cumulative, added to the effect of previous transforms. If more
than one transformation is entered in the same command, transformations are applied in
the order they appear in the command.
To clear a transformation matrix, use the Reset option:

Transform Mesh {Input|Output} Reset

Mesh input and output transformations are also cleared when you reset the entire model
using the Reset command.
Transforming a mesh during output does not change the position of the mesh within
CUBIT. It only changes the nodal positions written to the Exodus file. Nodal positions may
be changed within CUBIT by transforming the body that contains the mesh. See
Geometry Transforms for information on how to apply transformations to a Body.
Transforming a mesh during input does change the position of the mesh with CUBIT. The
file being read is not modified.
Transformations applied during mesh input are independent of transformations applied
during mesh output.
The following example generates a simple mesh, writes the mesh with its coordinates
scaled by a factor of 2, and then re-imports that mesh, restoring the scaling to what it
originally was in CUBIT.

brick x 10
volume 1 interval 4
mesh vol 1
transform mesh output scale 2
export mesh 'temp.exo'
delete mesh
transform mesh input scale .5
import mesh 'temp.exo'

Cubit_15.5_User_Documentation

731

See Geometry Transforms for information on how to apply transformations to a Body.
See Nodeset and Nodeset Repositioning
See Importing a Mesh
See Mesh Based Geometry

exodus
Element Block Specification

• Creating Blocks
• Assigning a Name or Description to an Element Block
• Defining the Element Type
• Default Element Blocks
• Duplicate Block Elements
• Assigning Attributes
• Displaying Blocks
• Deleting Blocks
• Renumbering Element Blocks
• Automatically Assigning Mesh Edges to a Block (Rebar)
• Creating Spider Blocks
• Creating Beam Blocks
• Creating Spring Blocks
• Creating Sphere Blocks
• 2d Elements
• Mixed Element Output
• Adding Materials to a Block
• SUPERELEMENT_TOPOLOGY_XX Support

Element blocks are the method CUBIT uses to group related sets of elements into a single
entity. Each element in an element block must have the same basic and specific element
type.
The preferred method for defining blocks is to use geometric entities such as volumes,
surfaces or curves. Blocks can also be defined using mesh entities. If a block is defined
at a geometric entity, each of the elements owned by the geometry are automatically
assigned to the block. Deleting or remeshing the geometry automatically changes the set
of elements grouped into the block. If mesh entities are used to specify a block, deleting
the mesh will also delete the elements from the block.
Some important notes regarding Element Blocks are as follows:

• Multiple volumes, surfaces, and curves can be contained in a single element
block

• A volume, surface, or curve can only be in one element block
• Element Block id's are arbitrary and user-defined. They do not need to be in any

contiguous sequence of integers.
• Element Blocks can be assigned a single floating point number, referred to as the

block Attribute; this number is used to represent the length or thickness of Bar
and Shell elements, respectively. The attribute defaults to 1.0 if not specified.

Finite Element Model

732

Creating Element Blocks

Element blocks are defined with the following Block commands.

Block <block_id> [ADD|Remove] {Vertex | Node} <range>

Block <block_id> [ADD|Remove] {Curve | Edge} <range>

Block <block_id> [ADD|Remove] {Surface | Face | Tri} <range>

Block <block_id> [ADD|Remove] {Volume | Hex | Tet | Pyramid | Wedge}

<range>

Block <block_id> [ADD|Remove] Group <range>

These commands define blocks based on a list of geometric or mesh entities. A block can
only hold entities of the same dimensionality. For example, a block defined to hold vertices
and nodes cannot also hold hexes. The above commands reflect this restriction. This
restriction also applies when adding entities using groups. When creating a block using a
group containing entities of different dimensionality the behavior is undefined.
Adding geometric entities to a block effectivily adds all mesh entities of the same
dimensionality contained in the geometric entity to the block. For example, adding a
volume to a block adds all hexes, tets, pyramids and wedges contained in the volume to
the block. Removing geometry entities works in the same manner. Thus the following
commands:

Block 1 add volume 1

Block 1 remove hex 1

Creates block 1 containing all of the hexes, tets, pyramids and wedges in volume 1 except
for hex 1.
When a mesh entity, or a meshed geometric entity is put into a block, it is assigned a
Global Element ID which is exported to the exodus file for tracking during analysis.

Assigning a Name or Description to an Element Block

The following commands can be used to assign a name or description to an element
block. Assigning a name to a block can be more intuitive than using traditional integer
IDs, and the name and description are preserved in DART metadata-enabled applications
(like SIMBA). This command is also available for nodesets and sidesets.

Block<ids> Name "<new_name>"

Block<ids> Description "<description>"

Cubit_15.5_User_Documentation

733

Defining the Element Type

Each block must have a specific element type associated with it. To assign an element
type to a block, use the following command:

Block <block_id_range> Element Type <type>

Available element types are defined by the Exodus II file format specification (Schoof,
95). CUBIT supports the following element types:

Nodes: SPHERE SPRING
Curves: BAR BAR2 BAR3 BEAM BEAM2 BEAM3 TRUSS TRUSS2
TRUSS3 SPRING
Surfaces: QUAD QUAD4 QUAD5 QUAD8 QUAD9 SHELL SHELL4
SHELL8 SHELL9 HEXSHELL TRI TRI3 TRI6 TRI7 TRISHELL TRISHELL3
TRISHELL6 TRISHELL7
Volumes: HEX HEX8 HEX9 HEX20 HEX27 TETRA TETRA4 TETRA8
TETRA10 TETRA14 TETRA15 PYRAMID PYRAMID5 PYRAMID13
PYRAMID18 WEDGE WEDGE6 WEDGE15 WEDGE16 WEDGE20
WEDGE21

If the element type is not assigned for an element block, it will be assigned a default type
depending on which type of geometry entity is contained in the block. The default values
used for element type are:

Volume: 8-node hexahedral elements (HEX8) will be generated for hex
meshes. TETRA4 will be generated for tet meshes.
Surface: 4-node shell elements (SHELL4) will be generated for quad
meshes and TRISHELL3 for tri meshes.
Curve: 2-node bar elements (BAR2) will be generated.
Node: 1-node elements (SPHERE) will be generated.

Higher order nodes are moved to curved geometry by default. To change this, use the
following command:

set Node Constraint [on|off|SMART]

On means higher order nodes snap to curved geometry. Off means the nodes retain their
positions. “smart” means higher order nodes will only snap to geometry if they do not
cause quality problems after being moved. Nodes that cannot be moved without causing
quality problems are placed at the average location of the element nodes: for edges, this
means on the line containing the edge; for 2d elements, this usually means on the plane
containing the element. Several examples of specifying various types of element blocks
are given in the Appendix.

Default Element Blocks

When exporting an ExodusII file, if the user has not specified any Element Blocks, by
default element blocks will be written for any meshed volumes. This default behavior can

Finite Element Model

734

be changed, to write surface, volume, or no meshes by default. This option can be set
using the command

Set Default Block [ON|off|Volume|Surface|Curve]

Default behavior, ON, is for the blocks to automatically be written based on their owning
geometry. When the OFF setting is used, only the mesh contained in blocks created by
the user will be exported. Mesh not in an element block at export time, will not be
exported. The export will still succeed and no error will be thrown. If Volume is specified,
only elements contained in volumes will have default blocks specified. Similarly, the
Surface or Curve argument indicates that only surfaces or curves containing elements
will use default blocks, respectively.
When default blocks are used, the IDs for the resulting blocks will be the ID of the owning
geometry.

Duplicate Block Elements

By default, any given element cannot be included in more than one block. However, when
using the following command, an element may be included in more than one block. Please
note, since material properties are assigned to blocks, using this command to allow
duplicate block elements may result in an element being assigned to multiple materials.

Set Duplicate Block Elements {on|OFF}

Cubit stores only a single Global Element ID (GID) for each element. If an element is
placed into more than one block, when the model is exported to Exodus, new additional
GIDs will be assigned to the element for each additional block that an element is in. These
additional GIDs are exported to the exodus file, but Cubit currently only stores and tracks
the first GID assigned.

Assigning Attributes to Blocks

It may be necessary to associate attributes with a specific element block. Attributes are
generally integer or floating point values that represent some physical property in the
region occupied by the block, such as material properties or shell thickness. To assign
the number of attributes for an element block, use the following command:

Block <id_range> Attribute Count <0-20>

CUBIT will store up to 20 attributes per block. Specify the maximum number of attributes
to be stored on the block with this command. Once this command has been executed,
individual attributes may be set using the following command:

Block <id_range> Attribute Index <index> <value>

Cubit_15.5_User_Documentation

735

The index is an integer from 1 to the maximum count specified in the Block Attribute Count
command. The value may be any valid floating point number.
To assign a value to all attributes of an element block, use the command:

Block <block_id_range> Attribute <value>

Displaying Element Blocks

Blocks can be viewed individually with CUBIT by employing the following command:

Draw Block <block_id_range> [Color <color_spec>] [add] [thickness [offset

[scale <val>] | include_normal]]

For blocks that are of type SHELL and TRISHELL or one of its variants including the
[thickness] keyword and parameters will result in the blocks being color-coded by shell
thickness with a corresponding color bar. Blocks can be drawn with their specified
thickness, so they visually have a thickness. This thickness can also be scaled in the draw
command. Arrows defining the shell normal direction will be displayed as well as a legend
showing the thickness values.
Block colors can also be changed using the following command:

Color Block <block_id_range> {color|Default}

Deleting Element Blocks

All Nodesets, Sidesets and Blocks may be deleted from the model using the following
command:

Reset Genesis

To remove only Blocks, the following may be used:

Reset Block

To remove a specific block, use:

Delete Block <block_id_range>

Renumbering Element Blocks

The block renumber command gives the user the ability to renumber blocks to fit the
user's needs. The command is:

Block <id_range> renumber start_id <id> [uniqueids]

The id_range must include existing entities or the command will fail.

Finite Element Model

736

The start_id plus the number of entities must specify a new id space that does not overlap
with the existing block ids. In other words, if the current block numbers are 100, 105, 106,
and 109, a start_id of 102 would suggest new block numbers of 102, 103, 104, and 105.
This would cause an id space conflict and the command will fail.
If the user specifies the uniqueids option, then the new entity id space must not conflict
with the existing id space of all blocks, nodesets, and sidesets.
Example:
Assume:

block ids: 100, 105, 106, 109

block all renumber start 20

block 20 renumber start 24

After commands:

block ids: 21, 22, 23, 24

To renumber the elements within a block, see the renumber command

Automatically Assigning Mesh Edges to a Block (Rebar)

After a mesh has been defined within a volume, it may be useful to use the existing mesh
edges as the basis for an element block. Such an element block might be composed of
bars or truss type elements that might propagate through a solid medium such as rebar
placed in reinforced concrete. Although the Block <id> Edge <range> command could
be used for this task, it would prove extremely tedious defining the individual edges to
add to the block. To make this process easier, the following command can be used:

Rebar Start <x> <y> <z> Direction <x> <y> <z> [Length <value>] Block

<id> [Element Type

{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The Rebar command allows the user to specify a starting location for a set of edges and
an initial direction. The program will find the closest existing node in the mesh to Start
<x> <y> <z> and begin propagating through the mesh in the specified Direction <x> <y>
<z>, adding edges to the block as it propagates through the mesh. The edge that is
attached to the last node and is within a fixed 30 degrees of the specified direction is
added to the block. The Propagation of the edges continues until either the optional
Length value is reached or an edge does not meet the Direction criteria. Also required
with this command is a block ID. An Element Type can also be specified.
Similarly, you can use the following command which will use the 30 degree cone
described above to gather edges from a surface into a single block using the Cartesian
x, y, and/or z vectors.

Rebar Surface <range> [x] [y] [z] Block <id> [Element Type

{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}] [Propagate]

Diagonal and Orthogonal Rebar Blocks

Cubit_15.5_User_Documentation

737

Another method for generating rebar blocks include the Diagonal/Orthogonal option. This
command can only be used on surfaces that have been meshed with the mapping
scheme. This command will create a block of edges from the mapped mesh by starting
in one corner and gathering edges orthogonally, or creating new edges diagonally based
on the option specified, using the parametric coordinate system dictated by the mapping
scheme on the surface. The spacing option dictates how many edges are skipped over
before starting the next set of rebar edges.

Rebar Surface <range> {Diagonal|Orthogonal} [Spacing <int>] [Block <id>

[Element Type {bar|bar2|bar3|BEAM|beam2|beam3|truss}]

CUBIT> rebar surf 1 diagonal spacing 2 block 2

Finite Element Model

738

CUBIT> rebar surf 1 orthogonal spacing 3 block 3

Specifying a set of nodes

A final rebar option allows the user to create or group rebar edges into a specified block
using nodes. Edges are created, or gathered, using the ordered list of nodes specified in
the command.

Rebar Node <range> [Target Block <id>] [Element Type

{bar|bar2|bar3|BEAM|beam2|beam3|truss}]

CUBIT> rebar node 113 105 97 89 81 73 65 57 49 target block 1

A related command for creating curve geometry directly from mesh edges is the Create
Curve from Mesh command. See Curve creation for more details.

Creating Spider Blocks

The block creation tool also allows the user to create a special block of bar elements that
can be used as part of the boundary specification. This command creates beam type
elements directly without creating any underlying geometry.
The command for creating this type of block is:

Block <id> Joint [Vertex <id> | Node <id>] Spider

{Surface|Curve|VertexFace|Tri|Node} <range> [preview] [Element Type

{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The joint node is the starting location of the bar elements and the spider location is the
terminating location of the bar elements. You can specify the joint node as either a node
or a vertex. Optionally, if no joint node is specified, a joint node will automatically be

Cubit_15.5_User_Documentation

739

created at the centroid of the nodes on the specified terminating location. You can specify
the terminating location as either a node, vertex, geometric surface or the face of a mesh
entity.
Some analysis codes refer to these bar elements as tied contacts or rigid bar
elements. They can be used to tie models together or to enforce specific kinds of
boundary conditions. For example, in the figure below a block of beam elements is used
to tie a node at the center of the circle to every node on the edge of the circle. This
arrangement can be used to enforce circularity but still allow for displacement of the entire
circle. This may occur if there are additional structures above the cylinder that are being
excluded from the current finite element model. The beam elements were created by a
series of commands of the form

block 10 joint node 1 spider node 2

The preview option can be included to draw the location of the beam blocks on the screen
without actually executing the command.
When specifying vertex ids, please know the bar elements will be tied to the nodes
associated with the vertex, not the vertex itself.

Figure 1. Beam elements created with the Spider command

Creating Beam Blocks

Properties for blocks that are beam types (beam, beam2, beam3) have additional
commands to define a cross-sectional area. The following command can be used to
change the type of cross-sectional area of a beam block:

Block <id> beam_type {CIRCLE|box|rectangle|pipe|ibeam|general}

Finite Element Model

740

The dimensions are set by listing them after the keyword beam_dimensions:

Block <id> beam_dimensions <values>

The order in which the values need to be specified are described in the chart below.
If the solver used is to integrate over the section during the simulation, turn
section_integration on using the following command:

Block <id> section_integration {ON|off}
The beam normal vector is a vector normal to the plane of motion and tangent to the first
bending axis. This vector can be set using the following command:

Block <id> beam_normal <x><y><z>

Section Profile Order to Specify Dimensions

Circle Radius

Pipe Outer radius, wall thickness

Rectangle Width, height

Box
Total width, total height, thickness (right), thickness (top),
thickness (left), thickness (bottom)

I-Beam
Distance to bending axis (from bottom), total height, bottom
width, top width, thickness (bottom), thickness (top), thickness
(web)

General Area, Ixx, Ixy, Iyy, Polar moment of inertia (J)

Creating Spring Blocks

Spring blocks that will be exported to Abaqus can contain additional properties related to
Abaqus springs. Users can specify the spring type, stiffness, and DOFs associated with
Abaqus springs. The spring type mapping to Abaqus elements is in the following table.

CUBIT Block Spring Type Abaqus Element Type

Node_to_node SPRINGA

Node_to_node SPRING1

Node_to_ground_fixed SPRING2

The spring type is set using the spring_type keyword. In order to use this command, the
block must already have an element type of “SPRING.” If a DOF is associated with a
spring, the spring_dof_1 keyword is used to specify the DOF on the first node and
spring_dof_2 is used to specify the DOF on the second node (SPRING2 only).

Block <id> [spring_type {NODE_TO_NODE | node_to_node_fixed_axis |

node_to_ground}] [stiffness <k>] [spring_dof_1 <n>] [spring_dof_2 <n>]

Creating Sphere Blocks

Sphere elements are created in CUBIT by inserting either nodes or vertices into a block.

Cubit_15.5_User_Documentation

741

Block <id> {node|vertex} <id_range>

The command above causes CUBIT to internally create a sphere element and associate
it to the inserted node, or to the node associated to the inserted vertex.

Example:
brick x 10
vol all size 5
mesh vol all
create vertex 0 0 10
#{sph_vtx_id=Id("vertex")}
mesh vertex {sph_vtx_id}
#{sph_nd=Id("node")}
block 1 volume 1
block 2 vertex {sph_vtx_id}
block 3 joint node {sph_nd} spider surf 1
locate sphere all

The example commands above will generate the model illustrated in the figure below.

Figure 2. A sphere element created and connected to a solid mesh with 2d elements.

You can interact with sphere elements in Cubit with the commands below:

locate sphere <id_range>

draw sphere <id_range>

Finite Element Model

742

highlight sphere <id_range>

list sphere ids

list sphere <id_range>

2D Elements

CUBIT is a 3d mesh generator by default. Element types, by default, are respectively
TRISHELL and SHELL for triangle and quad elements. If a 2d mesh is desired, blocks
types must be explicitly set to TRI or QUAD.

Example:
create brick x 10
surface 1 scheme trimesh
mesh surface 1
block 1 surface 1
block 1 element type tri
export mesh "mymesh.exo"

Sideset 1 will be based on the TRI and QUAD elements in blocks 1 and 2, with the side
numbering referring to the edges of the triangles and quads.

Mixed Element Output

The Set Block Mixed Output command controls the behavior of blocks containing
different element types when exporting in a file format that doesn't support blocks with
mixed element types. If DEGENERATE, all elements will be exported in one block, but
tets and pyramids will be written as degenerate hexes, and triangles will be written as
degenerate quads. If OFFSET (set by default), then new element blocks will be created
separating the types. Hex and Quad blocks retain the block id, whereas tets, triangle,
pyramids and wedges get put into other blocks. The ids of the other blocks are based on
the block id plus the offset for that type. Those values are set using the offset commands.

Set Block Mixed Element Output { OFFSET | Degenerate }

Set Block Triangle Offset <value>

Set Block Tetrahedron Offset <value>

Set Block Pyramid Offset <value>

Adding Materials to a Block

Block <id> Material <id|'name'>

Cubit_15.5_User_Documentation

743

If a material is assigned to an element block, the material properties will be associated
with the block's elements when the mesh is exported. If no material is assigned to a block,
a default material will be used during export.

SUPERELEMENT_TOPOLOGY_XX Support

Lite import of Exodus files with elements of SUPERELEMENT_TOPOLOGY_XX.
What's currently supported:

• Element type information displayed in property page and when listing blocks.
• Export to Exodus file with type SUPERELEMENT_TOPOLOGY_XX

What's currently NOT supported:

• Visualization
• Import Mesh Geometry '<exodusII_filename> ...'
• Import Mesh '<exodusII_filename> no_geom ...'

Exodus II File Specification

Exodus II Manual

The full Exodus II manual is available from the web.

Element Block Definition Examples

Multiple Element Blocks

Multiple element blocks are often used when generating a finite element mesh. For
example, if the finite element model consists of a block which has a thin shell encasing
the volume mesh, the following block commands would be used:

Block 100 Volume 1
Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01
Mesh Volume 1
Export Genesis `block.g'

This sequence of commands defines two element blocks (100 and 200). Element block
100 is composed of 8-node hexahedral elements and element block 200 is composed of
4-node shell elements on the surface of the block. The "thickness" of the shell elements
is 0.01. The finite element code which reads the Genesis file (block.g) would refer to these
blocks using the element block IDs 100 and 200. Note that the second line and the fourth

http://gsjaardema.github.io/seacas/exodusII-new.pdf

Finite Element Model

744

line of the example are not required since both commands represent the default element
type for the respective element blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the
example would be omitted and the Mesh Volume 1 line would be changed to, for example

Mesh Surface 1 To 6.

Two-dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar
to FASTQ. The user must first assign the appropriate surfaces in the model to an element
block. Then a Quad* type element may be specified for the element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will
result. In writing a two-dimensional Genesis database, CUBIT ignores all z-coordinate
data. Therefore, the user must ensure that the Element Block is assigned to a planar
surface lying in a plane parallel to the x-y plane. Currently, the Quad* element types are
the only supported two-dimensional elements. Two-dimensional shell elements will be
added in the near future if required.

Exodus II Model Title
CUBIT will automatically generate a default title for the Genesis database. The default
title has the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title '<title_string>'

Exodus Coordinate Frames
CUBIT allows the user to define coordinate systems (frames) that are written to an Exodus
II file. These coordinate frames are generally used as reference coordinate systems
during analysis. In CUBIT, the user may define multiple exodus coordinate frames. When
created, a coordinate frame is assigned an id. Exodus coordinate frames can be created
using x-y-z coordinates, nodes or vertices with the following commands:

Exodus Create Coordinate Frame

<xval> <yval> <zval>//origin

<xval> <yval> <zval> //z-axis

Cubit_15.5_User_Documentation

745

<xval> <yval> <zval> //xz-plane

[tag { 'R' | 'C' | 'S' }]

Exodus Create Coordinate Frame Node

<node_origin_id>

<node_zaxis_id>

<node_xzplane_id>

[tag { 'R' | 'C' | 'S' }]

Exodus Create Coordinate Frame Vertex

<vertex_origin_id>

<vertex_zaxis_id>

<vertex_xzplane_id>

[tag { 'R' | 'C' | 'S' }]

Using the 'tag' option specifies the type of coordinate frame, i.e., rectangular (R),
cylindrical (C) or spherical (S). The default coordinate frame type is rectangular. Exodus
coordinate frames may also be listed and deleted using the commands below:

List Exodus Coordinate Frame [ids] [<frame_id>]

Delete Exodus Coordinate Frame [ids] [<frame_id>| all]

Any exodus coordinate frames that exist at the time the exodus file is exported will be
written out in the exodus file.

Defining Materials and Media Types
Materials can be defined in CUBIT and assigned to element blocks. If an element block
is exported without a material assigned to it, a default material (with properties for
common steel) will be exported for it.

Create Material [id] [Name <'name'>] [Elastic_modulus <value>]

[Poisson_ratio <value>] [Shear_modulus <value>] [Density <value>]

[Specific_heat <value>] [Conductivity <value>] [User constants <value ...>]

[DepVar <value>]

Modify Material <id_list|'name'|all> [Name <'name'>] [Elastic_modulus

<value>] [Poisson_ratio <value>] [Shear_modulus <value>] [Density

<value>] [Specific_heat <value>] [Conductivity <value>] [User constants

<value ...>] [DepVar <value>]

Create Media [id] [Name <'name'>] [Fluid|Porous|Solid]

Modify Media <id_list|'name'|all> [Name <'name'>] [Fluid|Porous|Solid]

Materials can be created with any number of the following material properties:

Finite Element Model

746

• Elastic modulus

• Poisson Ratio
• Density
• Specific Heat
• Conductivity
• Shear Modulus (must satisfy E = 2G(1+v))
• User Constants
• DepVar (Only written to Abaqus file)

Media types include:

• Fluid

• Porous
• Solid

Any properties that are not initialized by the user will have a default value of 0.
Materials and media types can be listed and deleted using the following commands:

List Material <id_list|'name'|all>

Delete material <id_list|'name'|all>

List Media <id_list|'name'|all>

Delete Media <id_list|'name'|all>

Materials and media can be added to an existing block using the following command:

Block <id> Material <id|'name'>

Block <id> Media <id|'name'>

Custom Material Commands

The Cubit SDK allows custom material properties to be defined using the
MaterialInterface. The following versions of the material commands allow users to create
materials with custom properties that have already been defined using the SDK.

Create {material|media} 'material_name' property_group 'group_name' [id

<requested_id>] [description 'string']

Modify {material|media} 'material_name' [property_group 'group_name'] [id

<requested_id>] [description 'string'] [rename 'new_name']

[scalar_properties ('property_name' <property_value>)...]

Cubit_15.5_User_Documentation

747

[vector_property 'property_name' <val1> <val2>...]

[matrix_property 'property_name' <val1> <val2>...]

[clear properties 'property_name1' 'property_name2'...]

A scalar property has a single value associated with it. The scalar properties defined by
Cubit are:

• "MODULUS" (The modulus of elasticity)
• "SHEAR_MODULUS"
• "POISSON" (Poisson's ratio)
• "DENSITY"
• "SPECIFIC_HEAT"
• "CONDUCTIVITY" (Thermal conductivity, not electrical)
• "THERMAL_EXPANSION"
• "YIELD_STRENGTH"
• "ULTIMATE_STRENGTH"
• "ULTIMATE_STRAIN"
• "DEPVAR" (Property required for Abaqus export)
• "CFD_MEDIA_TYPE" (0 = fluid; 1 = porous; 2 = solid)

Vector properties are given in the command as a list of values. The vector properties
defined in Cubit are:

• "USER_CONSTANTS" (User-defined material constants)

Matrix properties are also given as a list of values. The number of columns in the matrix
is defined by the specific property, and Cubit automatically divides the given values into
rows and columns based on the column count. For example, if a matrix property has 2
columns, the value list "2 33.1 3 18.9" is interpreted as the matrix:

2 33.1

3 18.9

Cubit defines the following matrix properties:

• "ELASTIC_MODULUS_VS_TEMPERATURE" (2 columns)
• "POISSONS_RATIO_VS_TEMPERATURE" (2 columns)
• "DENSITY_VS_TEMPERATURE" (2 columns)
• "YIELD_STRESS_VS_STRAIN_VS_TEMPERATURE" (3 columns)
• "SPECIFIC_HEAT_VS_TEMPERATURE" (2 columns)
• "CONDUCTIVITY_VS_TEMPERATURE" (2 columns)

A property group is a collection of material properties. Its main purpose is to help define
what properties a material should have, even if a value is not given for the property. Cubit
defines the following property groups:

• "CUBIT-FEA" (generic FEA material)

Finite Element Model

748

• "CUBIT-ABAQUS" (material specific to Abaqus export)
• "CUBIT-CFD" (generic CFD media)

Table 1. Property groups defined in CUBIT

Property
"CUBIT-

FEA"
"CUBIT-

ABAQUS"
"CUBIT-

CFD"

"CFD_MEDIA_TYPE" x

"MODULUS" x x

"SHEAR_MODULUS" x x

"POISSON" x x

"DENSITY" x x

"SPECIFIC_HEAT" x x

"CONDUCTIVITY" x x

"THERMAL_EXPANSION" x x

"YIELD_STRENGTH" x x

"ULTIMATE_STRENGTH" x x

"ULTIMATE_STRAIN" x x

"DEPVAR" x

"USER_CONSTANTS" x x

"ELASTIC_MODULUS_VS_TEMPERATURE" x

"POISSONS_RATIO_VS_TEMPERATURE" x

"DENSITY_VS_TEMPERATURE" x

"YIELD_STRESS_VS_STRAIN_VS_TEMPERATURE" x

"SPECIFIC_HEAT_VS_TEMPERATURE" x

"CONDUCTIVITY_VS_TEMPERATURE" x

Exodus Boundary Conditions
Sandia's finite element analysis codes have been written to transfer mesh definition data
in the ExodusII file format (citation Schoof, 95). The ExodusII database exported during
a CUBIT session is sometimes referred to as a Genesis database file; this term is used
to refer to a subset of an Exodus file containing the problem definition only, i.e., no
analysis results are included in the database.
The ExodusII database contains mechanisms for grouping elements into Element Blocks,
which are used to define material types of elements. ExodusII also allows the definition
of groups of nodes and element sides in Nodesets and Sidesets, respectively; these are
useful for defining boundary and initial conditions. Using Element Blocks, Nodesets and
Sidesets allows the grouping of elements, nodes and sides for use in defining boundary
conditions, without storing analysis code-specific boundary condition types. This allows
CUBIT to generate meshes for many different types of finite element codes.

Cubit_15.5_User_Documentation

749

Element Blocks

Element Blocks (also referred to as simply, Blocks) are a logical grouping of elements all
having the same basic geometry and number of nodes. All elements within an Element
Block are required to have the same element type. Access to an Element Block is
accomplished through a user-specified integer Block ID. Typically, Element Blocks can
also be assigned material properties to associate material properties with a group of
elements.

Nodesets

Nodesets are a logical grouping of nodes accessed through a user-specified Nodeset ID.
Nodesets provide a means to reference a group of nodes with a single ID. They are
typically used to specify load or boundary conditions on portions of the CUBIT model or
to identify a group of nodes for a special output request in the finite element analysis
code.

Sidesets

Sidesets are another mechanism by which constraints may be applied to the model.
Sidesets represent a grouping of element sides and are also referenced using an integer
Sideset ID. They are typically used in situations where a constraint must be associated
with element sides to satisfactorily represent the physics (for example, a contact surface
or a pressure.

Element Types

The basic elements used to discretize geometry were described in the mesh generation
chapter. Within each basic element type, several specific element types are available.
These specific element types vary by the number of nodes used to define the element,
and result in different orders of accuracy of the element. The element types available for
each basic element type defined in CUBIT are summarized in the following table.
Table 1. Element Types Defined in CUBIT

Basic
Element

Type
Specific Element Type Notes

Node SPHERE

Edge

BAR, BAR2, BAR3,
BEAM, BEAM2, BEAM3,
TRUSS, TRUSS2,
TRUSS3, SPRING

By default, Bars have 2 DOF's
per node; Beams, trusses and
springs have 3

Triangle

TRI, TRI3, TRI6, TRI7,
TRISHELL, TRISHELL3,
TRISHELL6,
TRISHELL7

Tri element nodal coordinates
are always 3D.

Finite Element Model

750

Quadrilateral

QUAD, QUAD4,
QUAD8, QUAD9;
SHELL, SHELL4,
SHELL8, SHELL9,
HEXSHELL

By default, quad element
nodal coordinates are 2D, i.e.,
only x and y coordinates.
Shell element nodal
coordinates are 3D.

Tetrahedron
TETRA, TETRA4,
TETRA8, TETRA10,
TETRA14, TETRA15

TETRA8 contains vertex
nodes and mid-face nodes.

Hexahedron
HEX, HEX8, HEX9,
HEX20, HEX27

Pyramid

PYRAMID, PYRAMID5,
PYRAMID8,
PYRAMID13,
PYRAMID18

A PYRAMID8 is output as a
degenerate HEX.

Wedge
WEDGE, WEDGE6,
WEDGE15, WEDGE16,
WEDGE20, WEDGE21

For a description of the node and side numbering conventions for each specific element
type, see the Appendix. Element types can be set for individual Element Blocks, either
before or after meshing has been performed.

Nodeset and Sideset Specification

• Creating Nodesets and Sidesets
• Assigning Names and Descriptions to Nodesets and Sidesets
• Grouping Faces on a Surface into a Sideset
• Deleting Nodesets and Sidesets
• Renumbering Nodesets and Sidesets
• Displaying Nodesets and Sidesets
• Nodeset Associativity Data
• Equation-Controlled Distribution Factors
• Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

Boundary conditions such as constraints and loads are applied to the finite element model
using nodesets or sidesets, also known as Genesis entities. Rather than attempting to
maintain specific boundary condition information, such as load, temperature, constraint,
etc., Genesis entities are the generic vehicle for the user to set up boundary conditions
on the model. Nodes, elements and element faces are instead grouped together and
assigned unique IDs. Node, element and face IDs assigned to Genesis entities can then
be written to the Exodus II mesh file. Once imported to the intended analysis application,
the nodeset and sideset IDs can be appropriately interpreted as specific physical
boundary conditions.
The preferred method for creating Genesis entities is to assign vertices, curves, surfaces
or volumes to a specific nodeset or sideset ID. Any mesh entity owned by the geometric
entity in a nodeset or sideset is automatically assigned to the same nodeset or sideset.

Cubit_15.5_User_Documentation

751

This allows greatest flexibility in generating and updating the finite element mesh. For
example, if a surface belongs to a specific sideset, remeshing the surface will
automatically delete any old faces from the sideset and add the faces of the new mesh.
In some cases, the geometric model does not provide enough resolution to define the
desired boundary conditions. In this case, the model may be partitioned using CUBIT's
virtual geometry features. Where this may not be feasible, mesh entities can also be
added directly to the desired nodeset or sideset. Where individual mesh entities have
been added to nodesets or sidesets, deleting the mesh will also remove these elements
from the Genesis entity. If the geometry is remeshed, the new mesh entities must also be
added once again to the nodesets or sidesets.
Nodesets can be created from groups of nodes categorized by their owning volumes,
surfaces, curves or vertex. Individual nodes may also be added to a nodeset. Nodes can
belong to more than one nodeset.
Sidesets can be created from groups of element sides or faces categorized by their
owning surfaces or curves or by their individual face IDs. Element sides and faces can
also belong to more than one sideset.

Creating Nodesets and Sidesets

Nodesets and Sidesets are created in CUBIT by assigning the appropriate geometry or
mesh entities in the model to a nodeset or sideset ID. The following commands can be
used:

Nodeset <nodeset_id> [ADD|Remove] {Curve | Surface | Volume | Vertex |

Node} <range>

Sideset <sideset_id> [ADD|Remove] Group <id_range>

Sideset <sideset_id> [ADD|Remove] {Curve|Surface|Edge|Face|Tri}

<id_range>

Sideset <sideset_id> [Add] Edge <id_range> [wrt {{Tri|Face} <id_range> | all

}]

Sideset <sideset_id> [Add] Face <id_range> [wrt {Hex <id_range> | all}]

Sideset <sideset_id> [Add] Tri <id_range> [wrt {Tet <id_range> | all}]

Sideset <sideset_id> [Add] Surface <id_range> [wrt {{Volume|Surface}

<id_range> | all}] [FORWARD|Reverse|Both]

Sideset <sideset_id> [Add] Curve <id_range> [wrt {Surface <id_range> | all}

]

Finite Element Model

752

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID
numbers. If there are no user-defined Nodesets or Sidesets, none are written to the
Exodus II file.
With Sidesets, direction is often important. For surfaces, the direction may be specified
using the Forward, Reverse, or Both options. The Forward option will write a sideset in
relation to hexes in the surface's forward volume, which is the volume that the surface's
normal points away from. The Reverse option will write a sideset in relation to hexes in
the surface's reverse volume, which is the volume that the surface's normal points into.
The Both option will allow sidesets to be written in relation to the hexes that lie in volumes
on both sides of the surface. The default is Forward. The user can additionally specify
the volume from which the hexes should be taken in relation to by using the wrt Volume
option.
Direction is equally important for curves in Sidesets. The wrt Surface option allows the
user to indicate which surface's faces will be included in the Sideset. The wrt All option
will include all faces attached to the curve. The default is wrt All.

Useful hint:

When creating nodesets and sidesets it is often userful to use the Extended Command
Line Entity Specification. Here is an example that creates a nodeset which includes all
the nodes on the exterior of the geometry:

Create the geometry

Create brick x 10

Create cylinder height 10 radius 2

Move volume 2 z 10

Merge the geometry

Merge volume all

Mesh the geometry

Mesh volume all

Create a nodeset that includes only those nodes

located on the exterior of the geometry

Nodeset 1 add surface in volume all with not is_merged

The following commands remove nodes from the nodeset that belong to a surface.
Continuing from the previous example:

Remove surface 2 from the nodeset

Nodeset 1 remove surface 2

Remove nodes from the nodeset

that belong to the curves that bound surface 2

Nodeset 1 remove node in curve in surface 2

Nodes can also be added or removed based upon their coordinates. Here is an example
that removes all the nodes with a z coordinate equal to 15. Continuing from the previous
example:

Cubit_15.5_User_Documentation

753

Remove the nodes with a z coordinate equal to 15

Nodeset 1 remove node in surface all with z_coord = 15

Assigning Names and Descriptions to Nodesets and Sidesets

Nodesets and sidesets can be assigned names and descriptions. Using names and
descriptions is often more intuitive than using traditional integer IDs. When exporting a
mesh as a DART artifact, names and descriptions are included in the metadata, making
them available to DART metadata-enabled applications such as SIMBA. To give a name
or description to nodeset or sideset, use one of the following commands:

{Nodeset|Sideset} <ids> Name "<new_name>"

{Nodeset|Sideset} <ids> Description "<description>"

This command can also be used to define names and descriptions for Element Blocks.

Grouping Faces on a Surface into a Sideset

A sideset can be created from a subset of the faces on a given surface by using one of
the following commands:

SideSet <sideset_id> Surface <id_range> Patch Maximum <x> <y> <z>

Minimum <x> <y> <z>

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Radius

<value> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z>

Outer_radius <value> Inner_radius <value> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder

<axis_specification> Radius <rad> [Filter] [Partition]

SideSet <sideset_id> Surface <id_range> Patch Cylinder

<axis_specification> Outer_radius <rad> Inner_radius <rad> [Filter]

[Partition]

These commands place only the faces meeting the specified criteria into the sideset.

• Using the maximum and minimum options will include all faces on the surface
whose centroid falls within the axis-aligned box defined by the maximum and
minimum points.

Finite Element Model

754

• Using the center and radius options will include all faces on the surface whose
centroid falls within the sphere defined by center and radius.

• Using the center, outer_radius, and inner_radius options will include all faces
on the surface whose centroid falls within the sphere defined by center and
outer_radius, but excluding those faces whose centroid falls within the sphere
defined by center and inner_radius. In other words, a face will be included if the
distance between the face and the center point is between inner_radius and
outer_radius.

• Using the cylinder option will include all faces whose centroid falls within a
cylinder of infinite length with the given axis and radius. The axis is specified as
described in Specifying an Axis.

• Using the optional inner_radius will exclude those faces whose centroid is closer
to the axis than the specified inner_radius.

Normally, these commands place the individual elements into the sideset. If the mesh on
the surface is deleted, the elements will be removed from the sideset. If the surface is
then remeshed, new elements will NOT automatically be added to the sideset. This is
usually the intended behavior.
If the filter option is included, only a single connected set of elements is added to the
sideset. If the shape of the surface is such that multiple disconnected sets of elements
fall within the specified spherical or cylindrical region, the filter option will limit the faces
added to the sideset to the one set closest to center.
Using the partition option changes this behavior. The partition option causes the surface
to be split, based on the faces included in the patch. The newly created patch surface will
be added to the sideset instead of the individual elements. If the mesh is deleted and a
new mesh is generated, the new mesh on the patch surface will automatically be included
in the sideset, just as occurs with other geometric entities assigned to sidesets.
Note that the sideset patch commands work with both triangular and quadrilateral faces.

Grouping elements in voids and enclosures

The sideset start enclosure command creates sidesets of monotonically increasing ID
numbers containing the elements comprising the watertight skin of the input elements.
When there's a 'void' in the middle of the elements, a region devoid of elements, though
still enclosed by elements, this enclosed region will also have a sideset defined on the
skin of the enclosed region.

Sideset Start <id> Enclosure {Volume|Hex|Tet} <range>

The start id is the id of the sideset at which to start. The ID numbers will increase
monotonically unless there is a conflicting ID number. The command will add as many
sidesets as there are fully continuous regions or tris or faces in the input group. This
function can be particularly helpful for calculations for radiation enclosures.

Deleting Nodesets and Sidesets

Cubit_15.5_User_Documentation

755

All Nodesets, Sidesets and Blocks may be deleted from the model using the following
command:

Reset Genesis

To remove only nodesets or sidesets, the following may be used:

Reset Nodeset

Reset Sideset

To remove a specific nodeset or sideset, use:

Delete Nodeset <nodeset_id_range>

Delete Sideset <sideset_id_range>

Renumbering Nodesets and Sidesets

The nodeset and sideset renumber commands give the user the ability to renumber these
entities to fit the user's needs. The command is:

{Nodeset|Sideset} <id_range> renumber start_id <id> [uniqueids]

Example:
Assume:

sideset ids: 1, 2, 4, 6, 10

sideset all renumber start 30

After renumbering:

sideset ids: 30, 31, 32, 33, 34

The id_range must specify existing nodesets or sidesets, respectively, or the command
will fail.
The new ids to be assigned cannot contain the id of an existing nodeset (when
renumbering nodesets), or an existing sideset (when renumbering sidesets).
For example, given sidesets with ids 100, 105, 106, and 109, the command

sideset all renumber start_id 102

would attempt to renumber the sideset ids to 102, 103, 104, and 105. Since sideset 105
already exists, the command will fail.
When the uniqueids option is specified, the new ids to be assigned cannot contain the
id of an existing nodeset OR an existing sideset OR an existing block. For example, given

Finite Element Model

756

sidesets with ids 100, 105, 106, and 109, and given blocks with ids 201, 202, and 203,
the command

sideset all renumber start_id 200 uniqueids

would attempt to renumber the sideset ids to 200, 201, 202, and 203. While this does not
conflict with existing sideset ids, it does conflict with the existing block ids and so the
command will fail.

Displaying Nodesets and Sidesets

Nodesets and Sidesets can be viewed individually through CUBIT by employing the
following commands:

Draw NodeSet <nodeset_id_range> [Color <color_spec>] [add]

Draw SideSet <sideset_id_range> [Color <color_spec>] [add]

Nodeset and Sideset colors can also be changed using the following commands:

Color NodeSet <nodeset_id_range> {color|Default}

Color SideSet <sideset_id_range> {color|Default}

Nodeset Associativity Data

Nodesets can be used to store geometry associativity data in the Exodus II file. This data
can be used to associate the corresponding mesh to an existing geometry in a
subsequent CUBIT session. This functionality can be used either to associate a
previously-generated mesh with a geometry (See Importing an Exodus II File), or to
associate a field function with a geometry for adaptive surface meshing (See Adaptive
Meshing).
The commands to control and list whether associativity data is written or read from an
Exodus II files are the following:

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

set Import Mesh NodeSet Associativity [ON|off]

[set] [Export Mesh] NodeSet Associativity [on|OFF]

Cubit_15.5_User_Documentation

757

[set] [Export Mesh] NodeSet Associativity Complete [On|OFF]

Associativity data is stored in the Exodus II file in two locations. First, a nodeset is written
for each piece of geometry (vertices, curves, etc) containing the nodes owned for that
geometry. Then, the name of each geometry entity is associated with the corresponding
nodeset by writing a property name and designating the corresponding nodeset as having
that property. Nodeset numbers used for associativity nodesets are determined by adding
a fixed base number (depending on the order of the geometric entity) to the geometric
entity id number. The base numbers for various orders of geometric entities are shown in
the following table. For example, nodes owned by curve number 26 would be stored in
associativity nodeset 40026.
Table 1. Nodeset ID base numbers for geometric entities

Geometric Entity Base Nodeset ID

Vertex 50000

Curve 40000

Surface 30000

Volume 20000

Instead of storing just the nodes owned by a particular entity, nodes for lower order
entities are also stored. For example, the associativity nodeset for a surface would contain
all nodes owned by that surface as well as the nodes on the bounding curves and vertices.

Equation-Controlled Distribution Factors

By default, distribution factors on nodesets or sidesets are written with a constant value
of "1" at each node. It is also possible to vary the distribution factor for each node in a
nodeset or sideset, using an equation to control the value of the distribution factor at each
node. To do so, an equation must first be defined using the command:

Create Equation "<expression>" name "<name>"

where expression is any mathematical expression which evaluates to a single number,
and name is the name by which this equation will be known. The expression is written
using aprepro syntax, with a few differences from the use of APREPRO in its usual
context.

1. The expression as a whole is not wrapped in curly braces "{" and"}".
2. The expression may include any of the following pre-defined variables:

{x} - The x-coordinate of the current node
{y} - The y-coordinate of the current node
{z} - The z-coordinate of the current node
{n} - The CUBIT ID of the current node. This is the ID of the node in CUBIT,
which may not be the same as the node's ID in the Exodus II file.

Finite Element Model

758

For example, to define an equation which varies from -10 to 10 based on the sine of the
node's x_coordinate:

Create Equation "10*sin({x})" Name "my_equation"

Once an equation has been defined, it can be applied to a nodeset or sideset:

{Nodeset|Sideset} <id> Distribution Equation "<equation_name>"

For example, to apply the equation created earlier to nodeset 10:

Nodeset 10 Distribution Equation "my_equation"

When nodeset 10 is written to an Exodus II file, "my_equation" will be evaluated once for
each node in the nodeset, with the values of {x}, {y}, {z}, and {n} set to appropriate values
for the node. The result is used as the distribution factor for that node.
Here is a complete example that writes out the distribution factors 0.0, 0.5, and 1.0 for the
3 nodes on the curve:

Create a straight line from (0,0,0) to (1,0,0)
create vertex 0 0 0
create vertex 1 0 0
create curve vertex 1 2
Mesh with 3 nodes
curve 1 interval 2
mesh curve 1
Create a block and a nodeset
block 1 curve 1
nodeset 1 curve 1
Define an equation and apply it to the nodeset
create equation "{x}" name "simple_eq"
nodeset 1 distribution equation "simple_eq"
Write the mesh
export mesh "temp.g" overwrite

Here is another complete example that varies the distribution factors for sideset 20 from
zero to 1, depending on the node's x-coordinate. The sideset is applied to sides of HEX20
elements, so each element side has 8 different distribution factors.

Mesh a cube
brick x 10
mesh volume 1
Create a block of 20-noded hexes
block 1 volume 1
block 1 element type hex20
Apply a sideset to be used for a variable pressure
sideset 20 surface 1
Define an equation and apply it to the sideset
create equation "({x}+5)/10" name "zero_to_one"
sideset 20 distribution equation "zero_to_one"
Write the mesh
export mesh "temp.g" overwrite

Cubit_15.5_User_Documentation

759

Note that distribution equations only affect Exodus II output. Equations are currently
ignored for other mesh file types.
See APREPRO in the appendix.

Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

The below commands can be used to set the behavior of nodesets/sidesets/blocks when
a copy command is applied on geometric entities. The default OFF option specifies that
any nodesets/sideset/blocks on the original geometry will not be copied to the new
geometry. The "on" option implies that for each nodeset/sideset/block present in the
original geometric entity a corresponding nodeset/sideset/block with be present on the
new geometric entity. The use_original option indicates that instead of creating new
nodesets/sidesets/blocks on the new geometry, the new sideset/nodeset/block
information will instead be added to the original nodesets/sidesets/blocks present in the
original geometric entities.

set copy_nodeset_on_geometry_copy [on | OFF| use_original]
set copy_sideset_on_geometry_copy [on | OFF| use_original]
set copy_block_on_geometry_copy [on | OFF| use_original]

non exodus
CUBIT Initial Conditions

In CUBIT, initial conditions can be applied to

nodesets. CUBIT supports the following types

of initial conditions: displacement, velocity,

acceleration, temperature, and generic field. For

now, initial conditions are only supported by

CUBIT's Abaqus exporter. The commands to

create an initial condition are:

Create initialcondition [id] type temperature [name <'name'>] [{add|on} nodeset

<entity_list>] [value <val>]

Create initialcondition [id] type displacement [name <'name'>] [{add|on} nodeset

<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]

Create initialcondition [id] type velocity [name <'name'>] [{add|on} nodeset

<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]

Finite Element Model

760

Create initialcondition [id] type acceleration [name <'name'>] [{add|on} nodeset

<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]

Create initialcondition [id] type field [name <'name'>] [{add|on} nodeset

<entity_list>] [variable <n> value <val>

For most of the initial conditions, only two pieces of data are required: a list of nodesets
this IC is applied to, and an initial value. Optionally, a name can be specified for the initial
condition. To modify an initial condition, replace the word “create” with the word
“modify.” If modifying an IC, the IC’s ID must be passed in so CUBIT knows which IC you
are modifying. Example:

Modify initialcondition 3 value 1.23
Use this command to list the information about a set of initial conditions:

List initialcondition <id_list>
Use this command to delete a set of initial conditions:

Delete initialcondition <id_list>

Using Constraints

Constraints couple the motion of a set of nodes to the motion of a reference node. Rigid

bodies and kinematic constraints do exactly this for blocks and sidesets, respectively. A
distributing constraint allows users to average the constrained motion of a sideset by
using weight factors to control force transmission (to be specified outside of CUBIT). A tie
constraint can be used to tie the elements of one sideset to the elements of another.
Currently, only the Abaqus Exporter supports this type of constraint.
Note that as of CUBIT 13.0, constraints are supported by the Abaqus Importer/Exporter
only. Contact the CUBIT support team if support in additional file formats is needed.
To create a constraint, use one of the following commands:

Create Constraint {Kinematic|Distributing} [name '<name>'] [vertex|node] <id>

sideset <id>

Create Constraint Rigidbody [name '<name>'] [vertex|node] <id> block <id>

Create Constraint Tie [name '<name>'] master sideset <id> slave sideset <id>

A constraint’s name, dependent object, and independent object can be changed using
the following commands:

Modify Constraint <id|name> [name '<name>'] [vertex|node] <id> sideset <id>

Modify Constraint <id|name> [name '<name>'] [vertex|node] <id> block <id>

Modify Constraint <id|name> [master sideset <id>] [slave sideset <id>]

Constraints can be listed or deleted using the following commands:

Cubit_15.5_User_Documentation

761

List Constraint <id_range>

Delete Constraint <id_range>

Cubit Boundary Conditions

• Sets
• Restraints
• Loads
• Contacts
• CFD Boundary Conditions
• Miscellaneous commands
• CUBIT Initial Conditions

In CUBIT, boundary conditions are applied to sidesets or nodesets. Sidesets and
nodesets can contain geometry or mesh. This means that models can be remeshed
without worrying about losing boundary condition data if the boundary condition is applied
to a geometry-based sideset/nodeset.
The sideset/nodeset used by a boundary condition will be visible to the user, and the user
can modify the sideset/nodeset separately from the boundary
condition. Sidesets/nodesets can be assigned to (or removed from) a boundary condition
at any time.
Boundary conditions are broken into four groups: Restraints, loads, contact, and cfd. Each
restraint that is created will belong to a restraint set, each load will belong to a load set,
and each contact definition will belong to a contact set. A boundary condition set consists
of any number of restraints, contact pairs, and loads. CFD boundary conditions do not
belong to boundary condition sets.
Table 1: Overview of boundary condition entities available in Cubit

Entity Description and scope

Acceleration
Creates an acceleration boundary condition (acts on a
body, volume, surface, curve, or vertex)

Velocity
Creates a velocity boundary condition (acts on a body,
volume, surface, curve, or vertex)

Boundary
Condition Set

Creates a BC set (contains restraint, load and contact
sets)

Contact Region
Creates a contact region between two surfaces or two
curves

Contact Pair
Creates a contact pair between two previously defined
contact regions

Displacement
Creates a displacement boundary condition (acts on a
body, volume, surface, curve or vertex)

Temperature
Create a temperature boundary condition (acts on a
surface, curve or vertex)

Finite Element Model

762

Force
Creates a force boundary condition (acts on a surface,
curve or vertex)

Pressure
Creates a pressure boundary condition (acts on a surface
or curve)

Heat flux
Creates a heat flux boundary condition (acts on a surface
or curve)

Inlet Velocity
Creates an inlet velocity boundary condition (acts on a
surface)

Inlet Pressure
Creates an inlet pressure boundary condition (acts on a
surface)

Inlet Massflow
Creates an inlet massflow boundary condition (acts on a
surface)

Outlet Pressure
Creates an outlet pressure boundary condition (acts on a
surface)

Farfield Pressure
Creates a farfield pressure boundary condition (acts on a
surface)

Symmetry
Creates a symmetry boundary condition (acts on a
surface)

Using CFD Boundary Conditions

• Inlet Velocity
• Inlet Pressure
• Inlet Massflow
• Outlet Pressure
• Farfield Pressure
• Symmetry

CUBIT can export models to the Fluent mesh format and supports defining the above
CFD boundary conditions. Only the region on which the BC acts can be defined in CUBIT.
The data associated with each boundary condition (pressure, velocity, mass values) is
not defined within CUBIT and must be assigned using a CFD model editor, such as
Fluent.
The following shows the commands for creating and modifying CFD boundary conditions.
To delete them, use the delete command (see Miscellaneous Commands).

Inlet Velocity

Create Inletvelocity [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Inletvelocity [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Cubit_15.5_User_Documentation

763

Inlet Pressure

Create Inletpressure [id] [name <'name'>] [{Add|On} {Surface}

<entity_list>]

Modify Inletpressure [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Inlet Massflow

Create Inletmassflow [id] [name <'name'>] [{Add|On} {Surface}

<entity_list>]

Modify Inletmassflow [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Outlet Pressure

Create Outletpressure [id] [name <'name'>] [{Add|On} {Surface}

<entity_list>]

Modify Outletpressure [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Farfield Pressure

Create Farfieldpressure [id] [name <'name'>] [{Add|On} {Surface}

<entity_list>]

Modify Farfieldpressure [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Symmetry

Create Symmetry [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]

Modify Symmetry [id] [name <'name'>] [{Add|Remove} {Surface}

<entity_list>]

Using Contact Surfaces

• Contact Region
• Contact Pair
• Auto-Contact Tool

Finite Element Model

764

The Contact Region

To define contact between two entities, Cubit requires each entity to be defined as a
separate contact region. Each region can be made up of multiple 1D or 2D entities.

Create Contact Region [id] [Name <'name'>] [{Add|On}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

Modify Contact Region {id_list|'name'|All} [Name <'name'>] [{Add|Remove}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

The Contact Pair

create contact pair [id] [name <'name'>] [master contact region <id|'name'>] [slave

contact region <id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}]

[General <on|OFF> [Exterior <on|OFF>]]

modify contact pair {id_list|'name'|all} [name <'name'>] [master contact region

<id|'name'>] [slave contact region <id|'name'>] [friction <value>] [tolerance <value>]

[tied {on|OFF}] [General <on|OFF> [Exterior <on|OFF>]]

A contact pair is composed of two contact regions. One region will be the ‘master’
surface, and the other will be the ‘slave.’ 2D contact regions can not be mixed with 1D
contact regions. The friction coefficient can also be included. The tolerance keyword is
currently unused. Use the tied keyword to specify that the contact is to define tied contact
between the two contact regions, essentially “gluing” the parts together. Currently, this
option is only available when using the Abaqus Exporter.
The General keyword can be used to specify general (i.e. global) contact without
specifying surfaces/curves to use as contact pairs. Currently, this keyword is only valid
when exporting to Abaqus. If the Exterior keyword is used with the General keyword,
then Abaqus will consider all exterior surfaces when determining contact regions. If the
Exterior keyword is omitted, then the user must provide a master contact region and/or a
slave contact region.

Auto-Contact Tool

With the auto-contact tool, Cubit can search for contact pairs and automatically set up all
of the necessary contact regions and contact pairs.

Create Contact Autoselect [{Volume|Surface|Curve} <ids>] [Master Volume

<id>] [Maxgap <value>] [Curve_Contact]

The optional geometry list can be used to limit Cubit’s search to only a subset of entities.
If this list is omitted, all bodies in the model will be searched. The optional master volume

Cubit_15.5_User_Documentation

765

keyword can be used to tell Cubit which volume should be used as the master contact
region. If this keyword is omitted, the user will not have control over which volume is the
master region. The maxgap keyword can be used to control how Cubit searches for
contact regions. This value is used as the maximum amount of gap that can exist between
two surfaces and be identified as a contact region. If this keyword is omitted, the geometry
tolerance is used. The curve_contact keyword can be used to indicate the model
requires curve contact as opposed to surface contact.

Using Loads

• Force
• Pressure
• Heat Flux
• Convection

Forces

Create Force [id] [Name <'name'>] [{Add|On}

{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Force

Value <val>] [Moment Value <val>] [Direction { direction_options}]

Create Force [id] [Name <'name'>] [{Add|On}

{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Vector

<val> <val> <val> <val> <val> <val>]

Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}

{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Force

Value <val>] [Moment Value <val>] [Direction { direction_options}]

Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}

{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Vector

<val> <val> <val> <val> <val> <val>]

A CUBIT user has the ability to create forces on 0D, 1D, and 2D entities. A force can be
created using the direction syntax (see Specifying Direction). If the vector keyword is
used, the first three values are the force components, and the last three values are the
moment components.
The use of the force and moment keywords specify the type of load. If both a force and
a moment are to be applied, first create one of them, then modify it to add the other. Note
that every instance of a force or moment keyword must have an accompanying value
keyword.
Regarding force and moment keywords, the following detail may be helpful:
A user may create a force and moment at the same time, but can only specify a direction
once. If the force and moment have the same unit vector, it will be successful. If a users

Finite Element Model

766

wants to create a force in the direction 1,2,3 and a moment in the direction 1,0,0, the user
will have to create one, then add the other by modifying it.

Using Pressure

Create Pressure [id] [Name <'name'>] [{Add|On}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Magnitude <value>]

[TOP|Bottom] [PRESSURE|Totalforce]

Modify Pressure {id_list|'name'|all} [Name <'name'>] [{Add|Remove}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Magnitude <value>]

[TOP|Bottom] [PRESSURE|Totalforce]

Cubit users can create pressure boundary conditions on 1D and 2D entities. Positive
surface pressures acting on solid elements are defined as pointing into the face of the
elements. Pressures are always normal to the face. For shells and independent surfaces,
a ‘left-hand-rule’ is employed. Point your left thumb at the surface in question. If the
direction your fingers curl matches the direction of ascending vertex numbering, the
direction of the pressure vectors will match the direction of your thumb.

Value

The value variable is the magnitude of the pressure boundary condition. If the user leaves
this value blank, CUBIT will assign the pressure magnitude to zero (possibly a trivial case)
and issue a warning. Typing a negative value will not flip the direction of the pressure
arrows on the display; instead, the pressure magnitude will be negative.

Pressure and Total Force

The pressure and totalforce keywords are used to modify the pressure boundary
condition. The pressure keyword is the default. All pressures applied with this keyword
present (or with both of these keywords absent from the command string) are pure
pressures. If the user enters the totalforce keyword, the pressure magnitude is divided by
the area of the surface the pressure is acting on (or the length of the curve, for a curve
pressure). In effect, the user is entering a force that is treated and exported as a pressure.

Top and Bottom

The top keyword (default) indicates the pressure will occur on the top of a shell element.
Specifying bottom will cause the pressure to be applied to the bottom of the element.

Using Heat Flux

Create Heatflux [id] [Name <'name'>] [{Add|On}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Value <value>]

Cubit_15.5_User_Documentation

767

Create Heatflux [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Face|Tri}

<entity_list>] [Top <value> Bottom <value>]

Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Value <value>]

Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove}

{Sideset|Surface|Face|Tri} <entity_list>] [Top <value> Bottom <value>]

A CUBIT user may apply heat flux boundary conditions to 1D and 2D entities, including
thin-shell elements.

Top and Bottom Values

Heat fluxes can be applied to thin-shell elements as well. The same rules apply to thin-
shell heat fluxes as to thin-shell temperatures: thin-shell heat fluxes can only be applied
to surfaces and heat flux boundary conditions cannot contain regular and thin-shell heat
flux values (see journal below). However, thin-shell heat flux commands do not contain
gradient or middle keyword options. Only top and bottom keywords are supported.

Using Convection

Create Convection [id] [Name <'name'>] [{Add|On}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Surrounding {<value>|

Top <value> Bottom <value>} Coefficient {<value>| Top <value> Bottom

<value>}]

Modify Convection [id] [Name <'name'>] [{Add|On}

{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Surrounding {<value>|

Top <value> Bottom <value>} Coefficient {<value>| Top <value> Bottom

<value>}]

A Cubit user can apply convection boundary conditions to 1D and 2D entities. Convection
is a transport of thermal energy that is proportional to the difference between the surface
temperature and the temperature of the surroundings.

Surrounding

The surrounding keyword specifies the temperature surrounding the entity with the
convection boundary condition.

Coefficient

The coefficient keyword is a convection coefficient, in units of energy per length times
time times temperature (i.e., [energy]/([length]*[time]*[temperature])).

Finite Element Model

768

Miscellaneous Boundary Condition Commands

• Delete
• List
• Draw
• Highlight

Delete

The BC delete keyword combination is used to delete boundary conditions. The current
list of all entities that can be deleted using this command were shown in Table 1. Cubit
currently has no ‘undo’ command to ‘undelete’ a boundary condition deletion.

Delete {bc_type} [<id-range>|All]

Delete Boundary Conditions

Every set (and boundary condition within them) can be deleted at once by typing delete
boundary conditions. This command will delete all boundary conditions from your
model.

List

The List keyword combination is used to list boundary conditions. The current list of all
entities that can be listed using this command was shown in Table 1. Cubit’s parser can
evaluate boundary conditions given the entities they act on. For example, "List pressure
in surface 1" will list all pressures that act on Surface 1.

List {bc_type} [<id-range>]

List Boundary Conditions

Every set (and boundary condition within them) may be listed at once by typing list
boundary conditions. CUBIT will list the number of sets and individual boundary
conditions in your model. This command will list the total number of each type of set and
boundary condition, including boundary conditions that are not a part of a BC set.

Draw

Draw {bc_type} {<id-range>|all}[Add]

The draw keyphrase allows a CUBIT user to draw any type of boundary condition. This
command will clear the graphics window of every part of the model except for the selected
boundary condition. Using the add keyword will permit multiple boundary conditions to be
drawn at the same time. Any combination of boundary conditions and entities that were
valid for delete and list are also valid for draw.

Cubit_15.5_User_Documentation

769

Highlight

Highlight {bc_type} {<id-range>|All}

The highlight keyphrase allows a CUBIT user to highlight any boundary condition.
Highlighting a boundary condition will turn it bright orange and the vectors defining it will
thicken. The highlight command is similar to the draw command.

Using Restraints

• Displacement
• Acceleration
• Velocity
• Temperature

Displacements/Accelerations/Velocities

A CUBIT user has the ability to create displacement boundary conditions on most
geometric entities found within Cubit.

Create Displacement [id] [Name <'name'>] [{Add|On}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

<entity_list>] [DOF {All|{[1][2][3][4][5][6]}} Fix <value>]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Displacement {id_list|'name'|all} [name <'name'>] [{Add|Remove}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

<entity_list>] [DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

Create Acceleration [id] [Name <'name'>] [{Add|On}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]

[DOF {All|{[1][2][3][4][5][6]}} Fix <value>]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Acceleration {id_list|'name'|all} [name <'name'>] [{Add|Remove}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]

[DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

Create Velocity [id] [Name <'name'>] [{Add|On}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]

[DOF {All|{[1][2][3][4][5][6]}} Fix <value>]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

Modify Velocity {id_list|'name'|all} [name <'name'>] [{Add|Remove}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]

Finite Element Model

770

[DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]

[SmallestCombine|Average|LargestCombine|OVERWRITE]

A number of required and optional keywords make the BC create displacement command
one of the more complicated of the boundary condition commands. These keywords will
be examined individually in detail.
Degrees of Freedom
The dof keyword is the heart of this command. It specifies how to constrain the entity in
question. The keyword is an abbreviation for ‘degree of freedom’. Typing the optional
keyword all tells CUBIT that the entered command will encompass all six degrees of
freedom. The degrees of freedom (1 - 6) are defined below in Table 2.

Table 2: CUBIT definitions of the six degrees of freedom.

DOF Physical analog

1 x-translation

2 y-translation

3 z-translation

4 x-rotation

5 y-rotation

6 z-rotation

CUBIT will allow displacement commands to be applied upon between one and all six of
the degrees of freedom. The degrees of freedom do not need to be entered in any order.
The command strings ‘ 1 2 3 4 5 6 ‘ ‘2 6 1 4 3 5’ and ‘all’ will end with the same result.

Fixed or Free

The fix and free keywords tell CUBIT whether an entity’s displacement defined by the dof
keyword is to be enforced with a finite value or not. If the displacement is fixed, the entity
will be constrained in the pre-specified degrees of freedom. A decimal number entered
after the fix keyword will be the value of the enforced degree(s) of freedom. CUBIT allows
the user to leave this value blank if the enforced displacement is to be zero, for
convenience. However, entering ‘0’ is still permitted. If a user wishes to remove a
displacement from an entity, he or she should just delete it rather than trying to set all of
the degrees of freedom to free.

Displacement Combinations

The SmallestCombine, Average and LargestCombine keywords deal with
displacement combinations. These keywords only apply when a user is modifying an
existing displacement boundary condition.
The SmallestCombine keyword will compare the existing displacement values with the
current (residing on the command line) displacement values. The keyword will modify the
displacement to the match the displacements dictated by the boundary condition that has

Cubit_15.5_User_Documentation

771

the smallest absolute value. If the boundary condition with the smallest absolute value is
the existing value, the displacement boundary condition will be unchanged. If the current
boundary condition has a smaller absolute value than the existing displacement, the
displacement boundary condition will be changed to incorporate the new values.
The Average keyword will average the existing displacement values with the current
(residing on the command line) displacement values. Note that these averages are not
continually updated (i.e., they are not weighted). If a user created a displacement
boundary condition and constrained a degree of freedom to 10.0 and then constrained
the same degree of freedom to 20.0 with the Average keyword, the new displacement
value would be 15.0. But if a user constrained the same degree of freedom to 30.0, while
using the Average keyword, the new displacement value would be 22.5 ([15+30]/2), not
20.0 ([10+20+30]/3).
The LargestCombine keyword will compare the existing displacement values with the
current (residing on the command line) displacement values. The keyword will modify the
displacement to the match the displacements dictated by the boundary condition that has
the largest absolute value. If the boundary condition with the largest absolute value is the
existing value, the displacement boundary condition will be unchanged. If the current
boundary condition has a larger absolute value than the existing displacement, the
displacement boundary condition will be changed to incorporate the new values.
When none of these keywords are specified, CUBIT will combine displacements in its
default mode, Overwrite. The Overwrite keyword overwrites the entity’s previous
displacement boundary condition(s) with the displacement values specified in the
command.

Temperature

CUBIT can create temperature boundary conditions on most geometric and mesh entities.
The temperature boundary condition can also be applied to thin-shell elements.

Create Temperature [id] [Name <'name'>] [{Add|On}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

<entity_list>] [Value <val>]

Create Temperature [id] [Name <'name'>] [{Add|On}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

<entity_list>] [{ Top <val> Bottom <val> | [Middle <val>] [Gradient <val>] }

]

Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

<entity_list>] [Value <val>]

Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}

{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}

Finite Element Model

772

<entity_list>] [{ Top <val> Bottom <val> | [Middle <val>] [Gradient <val>] }

]

The value keyword defines the amplitude (temperature). The other command options are
discussed below

Top, Gradient, Middle, Bottom

The above keywords are only used for thin-shell elements (i.e., 2D entities). The valid
combinations are limited to: top and bottom, middle and gradient, only gradient or only
middle. It should be noted that temperature boundary conditions cannot contain regular
and thin-shell temperature values.

Boundary Condition Sets

Create bcset [id] [name <'name'>] [After bcset <id>] [{Add|Remove} {bc_type} <id-

range | <with name 'name'> >] [analysistype {STATIC|heat|dynamic|modal}]

[modal_max_frequency <value>]

Modify bcset {id_list|'name'|all} [name <'name'>] [After bcset <id>] [{Add|Remove}

{bc_type} <id-range | <with name 'name'> >] [analysistype

{STATIC|heat|dynamic|modal}]

*** ABAQUS Parameters ***

Modify bcset {id_list|'name'|all} [max_step_increments

<value>] [nonlinear_geometry <on|OFF>][perturbation <on|OFF>][stabilize

<on|OFF>] [steadystate <on|OFF>][modal_max_frequency <value>]

Modify bcset {id_list|'name'|all} [initial_step_size <value>] [step_period

<value>][min_step_size <value>] [max_step_size

<value>][min_step_temperature_change <value>]

Modify bcset {id_list|'name'|all} [mass_scaling <on|OFF>] [mass_scaling_dt

<value>][mass_scaling_factor <value>] [mass_scaling_type

<'uniform'|'BELOW_MIN'|'set_equal_dt'>]

Modify bcset {id_list|'name'|all} [restart <on|OFF>][restart_overlay

<on|OFF>] [{restart_frequency|restart_num_intervals} <value>]

Modify bcset {id_list|'name'|all} [output_field <on|OFF>] [output_field_frequency

<value>] [output_history <on|OFF>] [output_history_frequency <value>]

Modify bcset {id_list|'name'|all} [el_file <on|OFF>][el_file_frequency

<value>] [node_file <on|OFF>][node_file_frequency <value>]

Cubit_15.5_User_Documentation

773

Modify bcset {id_list|'name'|all} [el_print <on|OFF>][el_print_frequency

<value>] [node_print <on|OFF>][node_print_frequency <value>]

*** NASTRAN Parameters ***

Modify bcset {id_list|'name'|all} {displacement_output <on|OFF>

{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {oload <on|OFF> {PLOT|print|punch|punchprint}

{group <ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {mpcforces <on|OFF>

{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {spcforces <on|OFF>

{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}

Modify bcset {id_list|'name'|all} {stress <on|OFF> {PLOT|print|punch|punchprint}

{group <ALL|none|<id>> } {CENTER|cubic|sgage|corner} {VONMISES|maxs}}

Modify bcset {id_list|'name'|all} {element_strain_energy <on|OFF>

{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }

{AVERAGE|amplitude|peak}}

CUBIT can create BC sets, which is a group of previously defined loads, restraints and
contact pairs. A BCSet is used to define a load case (analysis step) when writing out 3rd
party analysis decks. A BCSet can be a static analysis set, a thermal analysis set, a
modal analysis set, or a dynamic analysis set by specifying the analysistype. The After
keyword can be used to define the order that the BCSets will be written when the model
is exported.
Several solver-specific parameters can be set for a BCSet. For ABAQUS, parameters
associated with *STEP, *STATIC, *DYNAMIC, *FREQUENCY, *HEAT TRANSFER,
*MASS SCALING, *RESTART, *OUTPUT, *EL FILE, *NODE FILE, *EL PRINT, and
*NODE PRINT can be modified. For Nastran, output requests can be defined for
Displacement, Reaction Loads, MPC Forces, SPC Forces, Stress, and Element Strain
Energy.

775

Boundary Layer Meshing

Boundary Layer Meshing
Boundary layer meshing is best accessed via the GUI.
To create a boundary layer:

1. On the Command Panel, click on Mesh and then Boundary Layer.
2. Click on the Create action button.
3. Select System Assigned ID or manually enter an ID.
4. On the Settings tab, enter the appropriate size for the first row in the boundary

layer.
5. Enter a value for the Growth Factor.
6. Specify the Number of Layer.
7. Optionally select Internal Continuity.

Boundary Layer Meshing

776

Figure 1 - Settings Panel

Cubit_15.5_User_Documentation

777

First row(a) -- the height of the first layer in the boundary layer
Growth Factor(b/a) -- the factor by which each layer grows
Number of Layers -- the number of layers that make up a boundary layer
Internal Continuity -- continuity flag for boundary layers. If on, all intersections
are a side type.

8. On the Association tab, select Curve for 2D boundary layers or Surface for 3D
boundary layers.

For 2D boundary layers:

1. In the Curve ID(s) field, enter the curve ID(s) where the boundary layer(s)
begins.

2. In the Surface ID field, enter the surface ID that contains the boundary
layer(s).

3. Click Add to add the curves to the boundary layer(s).
4. Click Create to create the boundary layer(s).

For 3D boundary layers:

5. In the Surface ID(s) field, enter the surface ID(s) where the boundary
layer(s) begins.

6. In the Volume ID field, enter the volume ID that contains the boundary
layer(s).

7. Click Add to add the curves to the boundary layer(s).
8. Click Create to create the boundary layer(s).

Boundary Layer Meshing

778

Figure 2 - Association Panel

Cubit_15.5_User_Documentation

779

For 2d boundary layers, a curve/surface pair is given to create a boundary layer starting
from a curve and growing out on the given surface.
For 3d boundary layers, a surface/volume pair is given to create a boundary layer starting
from a surface and growing out on the given volume.

Intersection Types

In some cases, the user may want to adjust the intersection types. This could be because
the automatic intersection type is not desired, or because it is not workable due to
ambiguity.
The four intersection types are:

• end - suitable for angles between 0 and 135 degrees.
• side - suitable for angles between 135 and 225
• corner - suitable for angles between 225 and 315
• reversal - suitable for angles 315 to 360

These intersection types may be set on a vertex/surface basis and on a curve/volume
basis.

Boundary Layer Meshing

780

Figure 3 - Intersections Type Panel

Current Limitations

Not all combinations of intersection types and topology are supported for 3d cases. An
end, corner, or reversal may not span multiple curves in a single volume. A possible
workaround is to composite the curves to make a single curve.

Cubit_15.5_User_Documentation

781

Not all meshing schemes may be used in combination with boundary layers. In cases
where it is not supported, the boundary layer will be ignored in mesh generation. It is
supported with the following schemes:

• trimesh

• pave
• map
• submap
• sweep
• tetmesh.

Underlying Trelis Commands

Create Boundary_layer <id>

Delete Boundary_layer <id>

Modify Boundary_layer <id> add Curve <id_range> Surface <id>

Modify Boundary_layer <id> remove Curve <id_range> Surface <id>

Modify Boundary_layer <id> add Surface <id_range> Volume <id>

Modify Boundary_layer <id> remove Surface <id_range> Volume <id>

"*** Only three of the four parameters should be specified ***

"*** (Height, Growth, Layer, or Depth) ***

Modify Boundary_layer <id> uniform Height <double> Growth

<double> Layers <double> Depth <double>

Modify Boundary_layer <id> continuity {yes | no}

set boundary_layer intersection volume <id> curve <ids> type {end,

side, corner, reversal, default}

set boundary_layer intersection surface <id> vertex <ids> type {end,

side, corner, reversal, default}

Sample Journal Files

Example 1

reset
create surface rectangle width 10 height 3

Boundary Layer Meshing

782

create surface circle radius 5 zplane
surf 2 move z -10
create volume loft surface 1 2
delete surf 1 2
create boundary_layer 1
modify boundary_layer 1 uniform height 0.1 growth 1.2 layers 4
modify boundary_layer 1 add surface 4 volume 3 surface 5 volume 3 surface 6 volume 3
surface 7 volume 3
set boundary_layer intersection volume 3 curve 10 type side
set boundary_layer intersection volume 3 curve 12 type side
set boundary_layer intersection volume 3 curve 14 type side
set boundary_layer intersection volume 3 curve 16 type side
mesh vol 3

Example 2

reset
create surf rectangle wid 2
cylinder rad .1 z .1
cylinder rad .02 z .1
section volume 2 xplane reverse
section volume 3 xplane
volume 3 move x .5
create volume loft surface 12 8
unite volume 2 3 4
vol 2 copy
vol 5 scale .3 .3 1
vol 5 rotate -10 about z
vol 5 move x .55 y -.1
vol 2 5 move x -.25
imprint all
delete vol 2 5
surf all scheme trimesh
group 'profile' add curve 69 67 68 70 71 72 73 74
create boundary_layer 1
modify boundary_layer 1 uniform height 0.002 growth 1.2 layers 6
modify boundary_layer 1 add curve in group with name 'profile' surface 36
curve in group with name 'profile' size 0.02
surf 36 size .3
surface 36 sizing function linear neighbor 2
mesh surf 36

783

Step-by-Step Tutorials

Step-By-Step Tutorials
The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite element mesh

generation as well as provide a brief tutorial on the use of the software package. This chapter is

designed to demonstrate step-by-step instructions for generating a simple mesh on a perforated

brick.

The following activity demonstrates the basics of using CUBIT to generate and mesh a
geometry. By following these steps, you will become familiar with the basics of the
command-line and GUI interfaces without stopping for detailed explanations. All the
commands introduced in this tutorial are documented in subsequent chapters on this
manual.
Here are a few tips for the examples in the tutorial:

• Focus on the instructions preceded with "Step" numbers. These walk you
through a series of explicit activities that describe how to complete the task.

• Refer to the screen shots and other pictures that show what you should see on
your own monitor as you progress through the tutorial.

• In this tutorial, command line options will look like this:

cubit> <Your commands go here>

If you do not have the Graphical User Interface (GUI) version of CUBIT, follow the steps
in the right column below, otherwise, proceed through the steps on the left:

GUI CL

Overview Overview

Step 1 Step 1 Beginning Execution

Step 2 Step 2 Creating the Brick

Step 3 Step 3 Creating the Cylinder

Step 4 Step 4 Adjusting the Graphics Display

Step 5 Step 5 Forming the Hole

Step 6 Step 6 Setting Interval Sizes

Step 7 Step 7 Surface Meshing

Step 8 Step 8 Volume Meshing

Step 9 Step 9 Inspecting the Model

Step 10 Step 10 Defining Boundary Conditions

Step 11 Step 11 Exporting the Mesh

Additional Tutorials
ITEM Tutorial - A tutorial on the new ITEM wizard.
Power Tools GUI Tutorial - A tutorial on geometry decomposition and cleanup using the
Power Tools on the new CUBIT GUI.

Step-by-Step Tutorials

784

Decomposition Tutorial - A series of webcutting hints and suggestions for creating
sweepable volumes on various models.
Geometry Cleanup Process Flow - A flowchart on geometry cleanup and defeaturing.

item
ITEM Tutorial

Overview

This tutorial will demonstrate the use of the Immersive Topology Environment for Meshing
(ITEM) to create a finite element mesh. ITEM is a wizard-like environment that guides a
user through a typical mesh generation process from import to export. Each page in the
ITEM workflow is linked to other pages, and one can easily move around in the
environment by clicking on links on each page. Most of the pages contain diagnostic tools
that search the model for specific geometry or mesh-related issues. Clicking on a entity
in the ITEM output window will then generate specific command suggestions to resolve
the problem. The following topics are included in this tutorial:

• Importing a geometry

• Creating the finite element model
• Removing small features
• Using merge tolerance to find and fix small misalignments
• Decomposing a model
• Generating a mesh
• Validating the mesh
• Creating boundary conditions
• Exporting the mesh

The model that will be used is shown below.

Cubit_15.5_User_Documentation

785

ITEM Tutorial Step 1

Step 1: Import Geometry

• Click on ITEM tab on the power tools panel on the left hand side of the screen.
• Click on Import or create geometry

Step-by-Step Tutorials

786

• Click on Import a CAD model
• Click on Acis
• Browse for the "item_tutorial.sat" file and import. The file may be in the Cubit

directory/folder under 'tutorials.'
• Leave the default options selected on the import dialog box.
• Click Done
• Click Done

In most cases, clicking the Done button also acts like a "Back" button. Clicking Done will
return the user to the previous page while preserving any changes made on that page.

ITEM Tutorial Step 2

Step 2: Setup The FEA Model

• Click on Setup the FEA model
• Click on Set Defaults (this determines a default mesh size and populates the

fields accordingly-it also previews the mesh if the Auto Preview Mesh checkbox
is checked)

Cubit_15.5_User_Documentation

787

• Examine the preview mesh

Step-by-Step Tutorials

788

• Click Done to return to the previous page.
• Click Done again to return to the main ITEM task page

ITEM Tutorial Step 3

Step 3: Remove Small Features

• Click Prepare Geometry
• Click Run Checked Diagnostics: The red exclamation point indicates a problem

area that may need to be addressed

Cubit_15.5_User_Documentation

789

• Click on Remove small features

• Click on the button with three dots (...) next to the small curve length input box.
This will open the small feature size panel. The small feature size panel is a tool
to help the user find an appropriate small feature size. The smallest feature size
is the smallest detail in the model that needs to be resolved in the mesh. It is also
used for several calculations and diagnostic tools in the geometry ITEM panels.
Any feature that is smaller than the smallest feature size will be flagged as a
small curve or surface, and will need to be removed.

Step-by-Step Tutorials

790

• Click on Find small features

• Change the Number to 20
• Click on Find Small features again. One important thing to note is that the

smallest features will only include vertex-vertex and vertex-curve pairs on the
same volume. The small gaps and misalignments between volumes will be
addressed during the imprinting and merging step.

In addition to setting the small feature size, the smallest feature size panel of itself is a
useful tool for visualizing and grouping small features. Sometimes it is useful just to have
a list of the smallest features and a means of quickly visualizing and grouping them.

• Scan through the vertex-vertex pairs on the list. Right-click on any of the entities
on the list and select Zoom to Pair or Fly-in to zoom in on the small feature.

• Locate pair Vertex 75 and 74
• Clicking on the pair should populated the small feature size input box and the

bottom of the window.
• Click Done

Cubit_15.5_User_Documentation

791

• You should now be on the Remove Small Features page. Click Detect small
features. There should be 4 small surfaces on the list.

• Click on the plus sign to open the Small Surfaces group. The first four surfaces
are small filleted surfaces that are easily removed.

• Click on Surface 10
• Click on Remove Surface from the Solutions window
• Click Execute

Step-by-Step Tutorials

792

• Repeat for Surface 18, Surface 16, Surface 35

Cubit_15.5_User_Documentation

793

• On the 4th small surface execute the Rebuild Topology solution. The rebuild
topology option will remove curves or surfaces from a model and reconstruct the
geometry using real geometry operations. In this case, it replaces the sharp lip
surface with a gradual surface, as shown in the following image.

Step-by-Step Tutorials

794

• The rest of the small curves in the model are at the small feature size limit of
0.25. To remove these from the list, either change small feature size to a smaller
value like 0.24, Or click Mark ALL as Okay

• Click Done to return to the main Prepare Geometry page

ITEM Tutorial Step 4

Step 4: Connect Volumes

The next step in the mesh generation process is to merge all shared curves and surfaces.
This is necessary so that adjacent volumes can shared boundary meshes. For most
geometries, this step presents no major complications. But in many cases,
misalignments, tolerance problems, or other cleanup operations can prevent proper
merging. The ITEM panel is designed to guide users through imprint/merge problems.

• Click Connect Volumes
• Click Imprint and merge
• Click on the button with three small dots (...) next to the Merge Tolerance field
• Click Estimate Merge Tolerance. The merge tolerance panel is used to help the

user find an appropriate merge tolerance. In addition to determining a proper
tolerance for merging, the merge tolerance can also be used as a diagnostic tool
to find small misalignments, as will be demonstrated below. Many of these can
be resolved prior to imprinting and merging.

Cubit_15.5_User_Documentation

795

• Check vertex-curve and vertex-surface pairs

• Look in the ouput of the command line workspace. A proximity is nearly
coincident entities that would be merged at the given tolerance. From the given
list, you can tell that there are 4 entities that would be merged at a merge
tolerance of 0.025 which would not be merged if the merge tolerance were 0.
This means that those entities are less than 0.025 apart.

• Change the search parameter to very small number like Min=0.001 and search
again.

• Four Vertex-Vertex Pairs appear
• Open Vertex/Vertex pairs group
• Right click on first pair and choose Label Pair to view
• Click on the first solution (tweak surface 46 to surface 7) and click Execute

Step-by-Step Tutorials

796

• Click Done

• Click Imprint/Merge button
• Click Detect Potential Problems
• .

No problems should appear on the list, signifying that imprinting and merging has most
likely been successful. There are several diagnostic tools on this page that help to
determine if imprint/merging has been successful. These include:

• Overlapping Surfaces- Surfaces that overlap, but are not merged.
• Non-manifold curves- Two curves that are merged but that don't have any

merged surfaces.
• Non-manifold vertices- Two vertices that are merged, but do not share any

merged curves.

Cubit_15.5_User_Documentation

797

• Floating volumes- Volumes that are not connected to any other volumes
(meaning they are not merged)

All of these diagnostics could be run at any time but the results are most meaningful after
an imprint/merge operation.

• Click Done

• Click Done

ITEM Tutorial Step 5

Step 5: Build a Meshable Topology

The next step in the mesh generation process can be one of the most challenging.
Building a meshable topology involves decomposing an assembly into meshable parts.
For sweeping, this means decomposing it into volumes composed of many-to-one and
one-to-one sweepable parts. Each decomposed volume is further constrained because it
needs to be able to share boundary meshes on merged surfaces. Since the number of
possible decomposition strategies are numerous, it is not yet possible to automatically
decompose most models. Instead, the ITEM framework seeks to provide possible
decomposition options to the user, which they can be easily executed (and if necessary,
quickly undone).

• Click Build meshable topology

• Click Decompose volume
• Click Check Meshability
• Examine Volume 3. There is 1 source and 1 target surface and it is sweepable.
• Examine Volume 1. There are two source surfaces and two target surfaces. It

needs to be webcut cylindrically through middle

Step-by-Step Tutorials

798

• Click on Volume 1

• Choose cylindrical webcut and execute making sure the imprint and merge after
webcut is checked

Cubit_15.5_User_Documentation

799

• Examine Volume 2. The tall portion should be swept around in the direction of
the holes. The bottom portion should be swept from top to bottom. It is many to
one sweepable if webcut cylindrically around inner cylinder.

• Choose cylindrical webcut that cuts off thicker part at bottom of Volume 4.

Step-by-Step Tutorials

800

Cubit_15.5_User_Documentation

801

• Click Done.
• Click Done after running checked diagnostics again to verify.
• Click Done.

ITEM Tutorial Step 6

Step 6: Meshing the Geometry

The actual mesh generation process is usually quite iterative. Rare is the case where
meshing succeeds perfectly on the first try, even when all volumes are "meshable". Even
if it does succeed, it is usually constrained by areas of poor quality elements. ITEM was
designed to help users navigate the iterative mesh generation process. When meshing
fails, the mesh generation panel helps to explain common error messages and suggest
possible strategies for getting a model to mesh.

• Click Mesh the geometry

• Click Generate Mesh. Meshing succeeds in this case, but on closer inspection, it
appears as though it has forced a mapped mesh on two surfaces that would be
better as paved surfaces.

Step-by-Step Tutorials

802

• Right click on Meshed Volumes and select Delete Mesh

• Click on Volume 3-Surface 44 - Notice the scheme is set to map

• Click on the Meshing-Surface command panel and set the scheme to pave for
Surface 44

Cubit_15.5_User_Documentation

803

• Repeat for Surface 20

• Go to command panel for Meshing-Volume and select Volume 3. Change the
scheme to Sweep.

Step-by-Step Tutorials

804

The mesh density didn’t adequately capture the mesh features. To decrease the mesh
size, return to the setup panel.

• Back on the ITEM Panel, click on Setup the FEA model button on the left panel.

Cubit_15.5_User_Documentation

805

• Change the mesh size by moving the target mesh density slider one position to
the left.

• Click Apply next to the Element Size

• Click on Done

• Click on Mesh the geometry
• Click on Generate Mesh

Step-by-Step Tutorials

806

ITEM Tutorial Step 7

Step 7: Validate Mesh

• Click on Validate Mesh
• Click on Check mesh quality
• Click on Analyze Quality - No bad elements found

Cubit_15.5_User_Documentation

807

ITEM Tutorial Step 8

Step 8: Define Boundary Conditions

Exodus boundary conditions are specified as generic blocks, nodesets, and sidesets.
Clicking on a boundary condition type on the ITEM panel will open the corresponding
command panel.

• Click on Define boundary conditions on the ITEM panel
• Click on Define Block. This opens the Material Properties->Block Panel and

automatically assigns a default block id of 1.
• Set selection type to Volume
• Select Volumes 1 5
• Click Apply

Step-by-Step Tutorials

808

• Click on Define Block on the ITEM Panel. It should automatically increment the
Block ID for you.

• Select Volume 3
• Click Apply

Cubit_15.5_User_Documentation

809

• Click Create Block on the ITEM Panel to increment block ID

• Select Volumes 4 6
• Click Apply

Step-by-Step Tutorials

810

• Change to the Element Type panel by selecting the element type button

• Change the Element Type to Hex9
• Click Apply

Cubit_15.5_User_Documentation

811

Step-by-Step Tutorials

812

• On the ITEM panel click Done

ITEM Tutorial Step 9

Step 9: Export the Exodus Model

Cubit primarily supports the Exodus format for mesh export. But there are also limited
export abilities for other formats as well. For a list of export capabilities see Exporting the
Finite Element Model

• Click on the Export the Mesh link from the main ITEM task page

• Set the export type to Genesis. This opens the export mesh dialog box on the
command panels.

• Assign a filename

• Click Apply (all blocks will exported by default).

Cubit_15.5_User_Documentation

813

•
Congratulations on completing the ITEM tutorial. Click on the arrow to return to the
main tutorial page.

power tools
Power Tools GUI Tutorial

Step-by-Step Tutorials

814

Overview

This tutorial demonstrates using the Power Tools on the CUBIT GUI for geometry
decomposition and cleanup. The following features will be covered:

• Importing Geometry

• Analyzing Geometry
• Geometry Power Tools
• Webcutting
• Imprint/Merge
• Mesh Power Tools
• Meshing

Each of these steps is described in detail in the following sections. For this tutorial you
will need to have a basic understanding of the CUBIT GUI functionality, including how to
select entities, maneuver in the graphics window, operate the Control Panel, and use
toolbars. If you have not already done so, we recommend completing the Basic Tutorial
first. The following image shows the geometry that will be used for this tutorial.
NOTE: Many of the steps in this tutorial include operations on specific entities which are
identified by ID. When the solid modeling kernal is updated in Cubit the ID space may
change. As such, you may not be able to rely on the IDs specified in this tutorial. Please
look at the associated graphics to determine which entity/ID is being referred to.

Cubit_15.5_User_Documentation

815

Power Tools GUI Tutorial Step 1

Step 1: Import the Geometry

Begin by opening a new session of CUBIT. To complete this tutorial, you will need to
download the ACIS file that contains the geometry definition.

• Download geometry file knuckle.sat (Note: This link will not work from within
Cubit. You will need to access this documentation from the cubit web site, or
locate the file on your computer. It is included in the distribution of CUBIT under
components\cubit\help\step_by_step_tutorials\power_tools)

• Select the Import option from File menu

file:///D:/CubitDocs/help/source%20files/step_by_step_tutorials/power_tools/knuckle.sat

Step-by-Step Tutorials

816

• The following dialog box will appear. Open the file by clicking on the name and
selecting Open. If you do not see the file, make sure that you are in the right
directory, and that the file type is set to ACIS.

Cubit_15.5_User_Documentation

817

• Leave all of the import settings on their default settings and select Finish

Step-by-Step Tutorials

818

Your graphics window should now appear as follows:

Cubit_15.5_User_Documentation

819

• Use the mouse to rotate the image in the graphics window to get a better
perspective. For help with using the mouse in the graphics window, see Mouse
Based Zoom, Pan and Rotate .

Step-by-Step Tutorials

820

Power Tools GUI Tutorial Step 2

Step 2: Analyze the Geometry

The Geometry Power Tools are located in the Entity Tree Window under the blue
geometry tab. This menu provides access to many of the geometry analysis and clean-
up tools in CUBIT.

Cubit_15.5_User_Documentation

821

Many geometries that are imported from other solid modeling software contain
inconsistencies or small gaps that can cause meshing to fail. These problems are the
result of differences in tolerances, file transfer loss, or inherent limitations in the parent
system. In other instances, the geometry has no inconsistencies, but may be unsuitable
for meshing because of topology such as small angles, overlap, or features smaller than
the desired meshing size. The geometry analysis tool will analyze the volumes and return
a list of suspected problems. To see a list of analysis options, click the "Show Options"
box below the Analyze button.
Many of these problems can be fixed using the tools on the Power Tools menu. These
include Split Surface, Heal, Tweak, Remove, Merge, Composite, Collapse Angle,
Collapse Curve, and Collapse Surface. Many of these tools will be demonstrated in this
tutorial.

• Open the geometry repair tab in the Entity Tree window

• Type all in the Volumes to Analyze field
• Set the Shortest Edge Length to 1
• Press Analyze

Step-by-Step Tutorials

822

After the Analyze Button is pushed, display area will appear as shown above. There are
four suspected problems with this geometry: Curves with Small Angles, Blend Surfaces,
Close Loops, and Badly Defined Geometry. The numbers in parentheses indicate the
number of occurrences of this problem in the model. Clicking on the + sign by each label
will list the CUBIT entities by ID with this problem. Clicking on the + sign by each entity
will cause that entity's children or parents to be listed (depending on the entity and the
type of geometry test). See documentation on Geometry Repair for more information
about the display window. Clicking on the name of an entity will highlight that entity in the
graphics window.

• Select Vertex 45 under Curves with Small Angles

Observe that this vertex is highlighted in the graphics window.

• Right click and select Zoom To from the list of options

The graphics window should look like this:

Cubit_15.5_User_Documentation

823

• Right Click on Vertex 45 and select Reset Zoom from the list of options

The image should now be reset to the previous graphics state.
You can experiment with some of the other options in the top half of the right click menu.
They are:

• Fly-in - Animated zoom feature

• Locate - Labels entity
• Draw - Draw this entity by itself
• Draw with Neighbors - Draw this entity with all adjacent curves and surfaces
• Clear Highlights - Clear all highlighted entities
• Reset Graphics - Refresh graphics screen

The graphics window may also be reset by pressing the reset graphics button on the
menu.

Step-by-Step Tutorials

824

Power Tools GUI Tutorial Step 3

Step 3: Healing the Geometry

The first step to improving any geometry is to look for badly defined geometry and to fix it using

the Autoheal tool in CUBIT. The Geometry Analysis tool may detect these inconsistencies, but

only if such a function exists in the parent software. It is always a good idea to run the Autoheal

on imported geometry. In this example, the Power Tools has located some badly defined curves.

This step will show you how to use the geometry repair tool to fix these curves.

• Highlight all of the badly defined curves by holding down the Shift key while
selecting

• Right click and select Heal Owning Body from the list of options

OR

• Click the button

Cubit_15.5_User_Documentation

825

The Geometry Repair Tool does not execute any geometry clean-up commands directly,
but directs you to the place on the Control Panel where this function can be executed.
The following menu will appear on the Control Panel. Notice that the id of the owning
body has already been pasted into the input window.

Step-by-Step Tutorials

826

• Select the Autoheal button

• Press Apply

The output window on the CUBIT GUI should appear with the following message. You
may have to scroll to see the whole thing. The percentage before and after healing are
97% to 100%. Healing has been successful.

Cubit_15.5_User_Documentation

827

Run the geometry analysis test again to guarantee that all bad geometry has been
removed.

• Press the Analyze Button in the Geometry Repair window

Power Tools GUI Tutorial Step 4

Step 4: Mesh Power Tools

The Mesh Power Tool provides an easy and graphical way to determine if volumes are
meshable. This tool will employ the AutoScheme feature in CUBIT to select and assign
schemes to meshable volumes. If a volume is not currently meshable, it will be flagged
and highlighted. Use the Mesh Power Tool to determine if the volume is currently
meshable.

• Click on the purple Mesh Tools tab in the Power Tools window.
• Select Volume as the entity type in the pull-down menu (It may already be

selected)
• Enter all in the input window
• Press Analyze

Step-by-Step Tutorials

828

Volume 1 will appear under the "No Scheme Set" heading.
The graphics window should look like this with Volume 1 highlighted in red. Using this
graphics feature, all volumes that are meshable will be highlighted in green, and all
volumes that are not currently meshable will be highlighted in red.

Cubit_15.5_User_Documentation

829

• Toggle the Graphics Button (located in the bottom right corner of the tool) off so
that Volume 1 is shown in green again

Power Tools GUI Tutorial Step 5

Step 5: Splitting Filleted Surfaces

The previous step determined that the volume was not currently meshable, and that
further decomposition was required. This decomposition can be performed using the tools
in the Geometry Repair power tools. A good place to start is with blend surfaces.
A blend surface is a transitional surface that connects two orthogonal planes, also known
as a fillet. Blend surfaces can be problematic in meshing because there is no clear
transition between the two orthogonal surfaces, making sweeping or mapping algorithms
difficult. The Split Surface function divides these blend surfaces (or any surface) into two
distinct surfaces.

Step-by-Step Tutorials

830

• Select Surface 22 from the list of blend surfaces

• Right click and select Zoom To from the list of options

The graphics window should look like this:

• Right click with Surface 22 highlighted and select the Split button

OR

• Click the button on the tool panel

Cubit_15.5_User_Documentation

831

The Geometry-Surface-Modify-Split Menu will appear on the Control Panel. Make sure
the Surface id is input in the window.

• Press the Preview Button

Step-by-Step Tutorials

832

The blue line shows where the surface will be split.

Cubit_15.5_User_Documentation

833

• Press the Apply Button

The surface should now appear split.

• Repeat these steps with the opposite blend surface (ID 10)

Power Tools GUI Tutorial Step 6

Step 6: Web Cutting

Since the model has several through holes, sweeping is not possible from a single source
and target. However, it is possible to divide the model into three sweepable regions. The
figure below shows where to divide the model to get it into sweepable regions. These
regions coincide with the holes in the model.

Step-by-Step Tutorials

834

Web cutting is this process of dividing volumes into sweepable regions by cutting with a
plane. For this exercise, you will use the curves that were just created with the split
surface command to cut the volume.

In order to visualize the process more clearly, switch to the isometric view.

• Change the view to isometric in the Display menu under View Point

Cubit_15.5_User_Documentation

835

The web cutting menu is located under Geometry-Webcut-Volume on the Control Panel.

• Click on Geometry, then Webcut, then Volume on the Control Panel
• Select Plane from Curve from the list of options

Step-by-Step Tutorials

836

The following image shows the entity ids that will be used to webcut the volume. Select
entities with the mouse by clicking on them.

Cubit_15.5_User_Documentation

837

• Enter Volume 1 by typing it or selecting from the graphics window

• Enter Curve 35 by typing it or selecting from the graphics window
• Change the Type to Near Vertex
• Enter Vertex 51 by typing it or selecting from the graphics window
• Press Preview

Step-by-Step Tutorials

838

A blue preview plane should appear in the following position. Check to make sure that
your model looks the same.

Cubit_15.5_User_Documentation

839

• Press Apply

The volume has now been split into two volumes. Volume 2 is shown in yellow.
Repeat these steps with the other side of the part. The Volume and Curve ids will remain
the same.

• Enter Vertex 49 in the input window or select from the graphics window

• Press Preview, then Apply

The final webcut volume should look like this:

Step-by-Step Tutorials

840

Power Tools GUI Tutorial Step 7

Step 7: Removing Small Surfaces

Some surfaces are too small for analysis and should be removed from the model. In this
example, Surface 15 and Surface 17 may fall into that category, assuming that the
distance between curves on these surfaces is smaller than the desired final mesh size.
You can remove these surfaces by extending adjacent surfaces until they intersect.

• Rotate the model to the following orientation

Cubit_15.5_User_Documentation

841

• Press Analyze on the Geometry Power Tools menu

You will notice that a new category has appeared labeled Overlapping Surfaces. This is
because there are two new surfaces created for each of the webcuts that overlap a
surface on the original body. This can be removed using the Imprint/Merge function which
will be explained in Step 9.

• Zoom to Surface 17 in the graphics display

• Right Click on Surface 17 in the Geometry Repair window and select Remove

OR

• Press the Remove Button on the tool bar

Step-by-Step Tutorials

842

The Control Panel will appear under the Geometry-Surface-Modify- Remove heading.
The Surface id should appear in the input window.

• Make sure that Surface 17 appears in the window and the Extend button is
checked

• Press Apply

Cubit_15.5_User_Documentation

843

The small surface no longer appears.

Step-by-Step Tutorials

844

• Highlight Surface 15 and select the Remove option

Surface 15 is shown highlighted in the following image.

Cubit_15.5_User_Documentation

845

• The Geometry-Surface-Modify-Remove option appears on the Control Panel.
Make sure that Surface 15 appears in the input window.

• Press Apply

Reset the Zoom to show the entire model.

Step-by-Step Tutorials

846

Power Tools GUI Tutorial Step 8

Step 8: Tweaking Surfaces

Tweaking is the process of deleting, moving, or offsetting, surfaces and extending or
trimming adjacent surfaces to fill in the gaps. Tweaking is useful for eliminating gaps
between components, simplifying geometry or changing the dimensions of an entity.
Tweaking will be used in this example to decrease the radius of the upper cylinder.
Begin by reanalyzing the geometry.

• Press Analyze on the Power Tools menu

There should be 1 entry under the "Close Loops" category for Surface 38. A close loop
(pronounced KLOS) is a surface which has two loops that are within some small distance
of each other at their closest points. The parameter for distance is the square of the
shortest edge length parameter.

• Press the Tweak Button (since you are not tweaking Surface 41 directly,
the surface does not need to be highlighted when you press the tweak button)

Cubit_15.5_User_Documentation

847

The Geometry-Surface-Modify-Tweak will open on the Control Panel as shown below.

• Enter Surface 16 by typing it in at the input line or selecting from the graphics
window

• Select the Offset option from the pull-down menu

Surface 16 is shown highlighted below.

Step-by-Step Tutorials

848

• Enter an Offset Value of -0.9.

The offset value is a percentage of the current size. Entering -0.9 will decrease the radius
by 10 percent.

• Press Apply

The graphics window should now look like this. Notice that the radius of the cylinder has
shrunk inward, increasing the gap between the edges on Surface 41.

Cubit_15.5_User_Documentation

849

Power Tools GUI Tutorial Step 9

Step 9: Imprint/Merge

Imprinting is the process of projecting curves from one surface onto an overlapping
surface. Merging is the process of taking two overlapping surfaces and merging them into
one surface shared by two volumes, creating non-manifold geometry. Both imprinting and
merging are necessary to make adjacent volumes have identical meshes at their
intersection. Imprinting and merging is almost always necessary after webcutting.

• To open the imprint/merge menu, select the Geometry icon, then Imprint and
Merge, then Volumes on the Control Panel

• Enter all in the input window.
• Press Apply

Step-by-Step Tutorials

850

You will not notice any visible changes in the graphics window after imprint/merge
operations, but results of the operations will be printed in the output window. Confirm that
both surfaces have been merged by reading the output in the graphics window (You may
have to scroll to see all of the results)
You can return to the Power Tools menu to see that the Close Loops and Overlapping
Surfaces are gone.

• Press Analyze in the Power Tools menu

The display window will now read "Nothing Found" to indicate that are no geometry tests
that fail.

Power Tools GUI Tutorial Step 10

Step 10: Compositing Surfaces

Cubit_15.5_User_Documentation

851

Composite surfaces are adjacent surfaces that have been merged into one surface.
Composite surfaces are created using Virtual Geometry, which is a built-in geometry
kernel that sits on top of the existing geometry, and does not change the underlying
geometry definition. Virtual geometry has the added advantage of being reversible. It can
be removed after meshing. The general purpose for using composite surfaces is to
deconstrain the mesh. For example, compositing two surfaces will remove the
requirement that nodes be placed on the curve between the surfaces. Composite
surfaces will be used in this example to facilitate the sweeping algorithm.

• Open the Mesh Tools tab
• Enter 'all' in the input field
• Press Analyze
• Toggle the Reset Graphics button to show entities in green and red (for

meshable and non-meshable volumes)

No volumes are listed as automatically meshable. In the graphics window, red indicates
that the volume scheme has not been set. Green indicates that the scheme has been set.

• Toggle the Reset Graphics button so it returns to the normal colors

• Open the Geometry Tools tab

• Press the Composite Button on the toolbar

Step-by-Step Tutorials

852

The Geometry-Surface-Modify-Composite menu will open on the Control Panel.

• Select Surfaces 9 and 27 (shown in the image above) by entering them in at the
input line, using CTRL-Click (Windows) in the graphics window, or Command
Key-Click (Macintosh) in the graphics window

• Make sure the Create button is checked
• Press Apply

Cubit_15.5_User_Documentation

853

The two surfaces should appear merged.

Step-by-Step Tutorials

854

Repeat these steps with the opposite side.

• Rotate the view window so Surface 6 and 24 are visible

• Select Surface 6 and Surface 24 by using CTRL-Click (Windows), Command
Key-Click (Macintosh), or entering the ids the input window

• Press Apply

Cubit_15.5_User_Documentation

855

Check to see that the surfaces have been composited and that your graphics window
looks like the following image.

Step-by-Step Tutorials

856

Finally, surfaces 11, 25, and 35 (shown below) need to be composited.

Cubit_15.5_User_Documentation

857

Use the command panel to choose surfaces for the composite command.

Step-by-Step Tutorials

858

Press the apply button and check the results in the graphics window.

Cubit_15.5_User_Documentation

859

Power Tools GUI Tutorial Step 11

Step 11: Meshing the Model

Use the Mesh Power Tools to apply schemes to the remaining volumes.

• Press the Mesh Tools tab in the Power Tools window

• Press Analyze

Step-by-Step Tutorials

860

All of the schemes have now been set with a sweeping algorithm. The model is ready to
be meshed. All volumes should appear green in the graphics window.

Cubit_15.5_User_Documentation

861

• Toggle the Reset Graphics button to return volumes to their original colors

Select Volume as the entity, and Intervals as the Action.

• Enter all in the "Select Volumes" input window

• Select Constant Size from the list of sizing options
• Enter 2 for the size
• Press Apply Size
• Press Preview

Step-by-Step Tutorials

862

The graphics window should appear as follows, with the mesh size increments highlighted
on all of the curves in the model.

Cubit_15.5_User_Documentation

863

• Go to Mode - Meshing, Entity - Volume, Action - Mesh, and press the Mesh
Button

There is no need to press the Apply Scheme button since the scheme have already been
set in the Meshing Tools.

Step-by-Step Tutorials

864

The final mesh should look like this:

Cubit_15.5_User_Documentation

865

Congratulations! You have just completed the Power Tools Tutorial. Click on the arrow to
return to the Tutorial home.

decomposition
Decomposition Tutorial

Creating Sweepable Volumes Through Webcutting

Most volumes require some measure of decomposition before they can be meshed with a

hexahedral meshing scheme. The most common hexahedral meshing tool is the sweeping

algorithm. Sweeping is the process of creating a hexahedral mesh by extruding a quadrilateral

surface mesh from a source surface onto a topologically similar target surface by way of a

linking surface. The surface mesh can be meshed with any surface meshing scheme (i.e.

structured or unstructured mesh), but the most common surface meshing scheme for the

sweeping algorithm is the pave scheme. In fact, the sweeping algorithm is sometimes called the

"pave-sweep" algorithm. Most volumes aren't automatically sweepable, which is why geometry

decomposition is so important to the meshing process. Decomposition usually involves a series

of webcutting, boolean, and virtual geometry operations that break up a larger model into

sweepable regions. Studies have shown that this step in the meshing process is the most time

consuming for the analyst. The goals of this tutorial are for the user to learn to:

Step-by-Step Tutorials

866

1. Recognize sweepable volumes

2. Recognize how to decompose a model into sweepable parts
3. Gain proficiency with webcutting and other decomposition techniques
4. Avoid common pitfalls with decomposition and sweeping

Why use sweeping?

Of all the hexahedral meshing schemes in the Cubit toolkit, sweeping is considered the
most reliable at producing high quality elements. Although decomposing a model into
sweepable volumes can be time-consuming, and sometimes falls into the realm of trying
to fit a square peg into a round hole, the pave-sweep algorithm has a high rate of success,
and it sometimes the only way to get a hexahedral mesh on a model.

What makes a volume sweepable?

Recognizing sweepable topologies can be an art form. Sweepable volumes can be
comprised of many different topologies. We typically classify sweeping problems into
three groups, based on the number of source/target surfaces.

Basic Sweep Groups

One-to-one: A volume with a one source surface and one target surface.

Many-to-one: A volume with multiple source surfaces and one target surface

Cubit_15.5_User_Documentation

867

Multisweep (or Many-to-Many): A volume with multiple target surfaces

Points to consider when determining whether a volume is sweepable

• Swept surface meshes can be extruded through a volume which is rotated or
translated. However, if the translation/rotation is severe then the quality of the
resulting mesh may be poor.

• A volume with multiple target surfaces and a single source surface can
sometimes be inverted and handled as a many-to-one sweepable volume.
Otherwise, it is treated as a multisweep problem.

• Imprinting introduces new topology onto surfaces. Sweepable volumes may not
be sweepable after imprinting and merging adjacent surfaces

Step-by-Step Tutorials

868

• Multisweep is still under development, and has limitations, so if you are having
difficulty with the multisweep algorithm, it is usually a good idea to decompose it
into many-to-one or one-to-one sweepable regions.

• Cubit won’t always automatically recognize your volume as a sweepable volume,
even if it is. Sometimes, you have to give it a list of source/target surfaces
explicitly.

Basic Sweep Paths

In addition to the different topologies, sweepable volumes can be classified by the sweep
direction. These include: top-to-bottom, inside-to-outside, and around (rotational). Be
sure to consider all the possibilities for sweep directions when you begin decomposing a
model. And keep in mind that sweep paths must be compatible with adjacent volumes.
To be compatible, overlapping surfaces must have the same scheme (i.e. both must be
a linking surface or a paved surface). The volume below is meshed three different times
with the three different sweep directions. Notice the difference in element sizes and
orientations between the meshes. See if you can pick out the different source and target
surfaces in each example. As an exercise, try to mesh this model with each of the different
sweep paths.

Top-to-Bottom Inside-to-Outside Around (Rotational)

Many-to-one Many-to-one
One-to-one (this is the
default sweep direction
for this model)

What are some good strategies for decomposing my model?

Recognizing when a volume is sweepable is a difficult task of itself, but being able to
come up with viable webcutting, compositing, and boolean strategies to make a volume
sweepable is even more difficult, and can only be achieved through practice. Here are
some general principles to follow when decomposing a model.

1. Select your sweep path
2. Use as few webcuts as possible
3. Set your own source and target surfaces if Cubit does not pick them

automatically

Cubit_15.5_User_Documentation

869

4. If one of your volumes does not mesh, or has an undesirable mesh, try changing
the order in which you mesh volumes. This will hardset the intervals on the
volumes.

5. The Reset Volume command will remove all schemes and interval settings from
volumes.

6. If changing the mesh order or resetting the volumes does not work and you
continue to get "Matching Intervals Failed" errors, set explicit intervals on some
or all curves.

7. Make additional webcuts if necessary.
8. Check for sliver surfaces or curves that may have been introduced during

decomposition and remove these through tweaking collapsing, or compositing.
9. Change surface vertex types on mapped or submapped surfaces if you need to

force a certain configuration
10. Use partitioning to introduce virtual geometry constraints without affecting the

underlying geometry
11. Composite surfaces to remove constraints without affecting the underlying

geometry
12. Save your work often. For a complex model, the meshing process can be very

iterative. You may need to start over many times until you find an acceptable
solution.

The following is a compilation of several different decomposition problems of varying
difficulty. If you accessed this help from the Cubit program (as opposed to the web
documentation), you will need to browse for the geometry files from within your Cubit
installation directory. They should be located in the
"/components/cubit/help/step_by_step_tutorials/decomposition" directory of the Cubit
installation folder.

Example Image File

Beginner

Sweeping through multiple
adjacent volumes

example01.sat

Interlocking rings

example02.sat

Step-by-Step Tutorials

870

Webcutting using the "sweep"
option

example03.sat

Using the loft command

example04.sat

Multiple sweep directions

example05.sat

Advanced

Employing symmetry and
controlling skew

example06.sat

Cubit_15.5_User_Documentation

871

Using virtual geometry

example07.sat

Sweeping volumes with
narrow angles and surfaces

example08.sat

Example 1. Sweeping multiple adjacent volumes
The following model has several interior volumes which share surfaces. This example may at

first seem complex, but it actually requires very little decomposition. The key to this example is

that each of the interior volumes is already sweepable, oriented along the same sweep axis, and

none of the linking surfaces have additional topology introduced through imprint/merge. In fact,

there is only one required webcut to make this model automatically sweepable.

Figure 1. Exterior view

Step-by-Step Tutorials

872

Figure 2. Interior view

We examine several of the volumes below.

Source Surface(s) Target Surface(s) Sweep type

Many-to-one
Sweepable
Imprinting and
merging adjacent
volumes creates
additional partitions
on the source
surface, but the
target surface does
not contain imprints.

Many-to-one
Sweepable
Multiple source
surfaces due to
interior void

One-to-One
Sweepable
Source and target
surfaces are single
surfaces, and there
are no imprints on
the linking surfaces

Cubit_15.5_User_Documentation

873

Many-to-one
Sweepable
Interior void causes
multiple source
surfaces.

Multisweep
Imprinting causes
multiple source
surfaces and
interior void causes
multiple target
surfaces. This
volume requires
decomposition

Suggested webcut

Webcut Command

CUBIT> webcut volume 5 with
sheet extended from surface
70
CUBIT> imprint all
CUBIT> merge all
CUBIT> volume all size 0.15
CUBIT> volume all scheme
auto

Final mesh

The final mesh is created at a size of 0.15 for all volumes.

Step-by-Step Tutorials

874

Example 2. Interlocking rings
The following example is composed of two rings of constant cross-section that can be swept

along their axes. The problem here is that the rings overlap, forming a tetrahedral shape which

cannot be swept. The key to solving this problem is separating out the region of overlap,

explicitly setting the source and target surfaces, and using the tetprimitive scheme on the

tetrahedral region.

Suggested webcuts

Webcut Command

CUBIT> webcut body 1 plane surface 5

Cubit_15.5_User_Documentation

875

CUBIT> webcut body 2 sheet extended from

surface 4

CUBIT> webcut body 3 plane surface 12

CUBIT> webcut body 4 sheet extended from

surface 10

CUBIT> imprint all

CUBIT> merge all

There are five volumes that result from the webcutting. Two of them are automatically
sweepable. Two of them must have their schemes set explicitly, and one of them is
meshed using the tetprimitive scheme.

Webcut Command

One-to-one Sweepable
Source and target are set
automatically using autoscheme
CUBIT> volume 1 3 scheme auto

One-to-one Sweepable
Must have source and target set
explicitly
CUBIT> volume 2 scheme sweep

source 17 target 7

CUBIT> volume 4 scheme sweep

source 29 target 18

Step-by-Step Tutorials

876

Non-sweepable
Use the tetprimitive scheme
CUBIT> curve in volume 5

interval 6

CUBIT> volume 5 scheme

tetprimitive

CUBIT> volume all size 0.5

CUBIT> mesh volume all

Final mesh

The final mesh is created at a size of 0.5 for all volumes.

Example 3. Webcutting using the sweep option
This example introduces additional webcutting options. This example would be a simple many-

to-one sweep except for the overhanging lip and the protrusions on the bottom surface. To a

beginner user, it may at first seem reasonable to use the bottom surface as a webcutting plane.

However, this will not create a many-to-one sweepable volume. Instead, you need to use the

protruding surfaces as cutting planes, and extend them through the entire volume.

Cubit_15.5_User_Documentation

877

Suggested webcuts

Webcut Command

CUBIT> webcut volume 1 with sheet

extended from surface 27

CUBIT> webcut volume 1 with plane

surface 30

CUBIT> webcut vol all sweep surf 26

vector -1 0 0 through_all

Now Volume 3 (red) has only 1 target
surface.
CUBIT> imprint all

CUBIT> merge all

CUBIT> volume all size 0.05

CUBIT> mesh volume all

Final mesh

The final mesh is created at a size of 0.05 for all volumes.

Step-by-Step Tutorials

878

Example 4. Using the Loft command
In the next example, the loft command significantly decreases the number of required webcuts.

This model also demonstrates using 2 separate sweep paths (top-to-bottom and rotational) on

adjacent volumes.

Original Volume
Webcuts created from
sweeping surfaces (not
recommended)

Webcuts using loft
command
(recommended)

Suggested webcuts

Webcut Command

Cubit_15.5_User_Documentation

879

CUBIT> webcut body 2 loop curve 6

CUBIT> webcut body 2 sheet extended

from surface 1

CUBIT> create surface from surface

10

CUBIT> create surface from surface 4

CUBIT> create body loft surface 19

20

Step-by-Step Tutorials

880

CUBIT> webcut body 3 tool body 7

CUBIT> delete body 5 6 7

CUBIT> webcut body 2 3 plane yplane

CUBIT> imprint all

CUBIT> merge all

CUBIT> volume all size 0.15

CUBIT> mesh volume all

Final mesh

The final webcut model consists of a central shaft which can be swept top to bottom, and
a surrounding casing which can be swept around. This is possible because the shared
surface is a linking surface for both types of sweeps. The final mesh is created with a size
of 0.15

Cubit_15.5_User_Documentation

881

Example 5. Multiple sweep directions
The next example gives another example of using different sweep directions on the same model.

The following model shows a brick which is perforated by several cylindrical shafts. The shafts

do not intersect each other.

Suggested webcuts

Step-by-Step Tutorials

882

Webcut Command

CUBIT> webcut volume all with plane

yplane offset 20

CUBIT> webcut volume all with plane

yplane offset -20

CUBIT>imprint all

CUBIT>merge all

All of the volumes in this model are now one-to-one sweepable. However, the source and
target surfaces for the main block portions must be set explicitly

CUBIT>volume 8 scheme Sweep source

surface 94 target surface 90 rotate

off
CUBIT>volume 10 scheme sweep source

surface 71 target surface 73 rotate

off
CUBIT>volume 12 scheme Sweep source

surface 97 target surface 100 rotate

off
CUBIT>volume all size 2
CUBIT>mesh volume all

Final mesh

Cubit_15.5_User_Documentation

883

In this model it is possible to have different sweep directions since the surfaces which
overlap are both linking surfaces. The final mesh is created with a mesh size of 2 and is
shown below.

Example 6. Employing Symmetry
One technique for creating a symmetric mesh on a symmetric model is to mesh only half
of the volume, then copy the mesh onto the other half. The following example employs
this technique. This model at first appears quite simple, but it actually requires a good
deal of webcutting to get a reasonable mesh that is not highly skewed.

Step-by-Step Tutorials

884

Suggested webcuts

Webcut Command

Cubit_15.5_User_Documentation

885

CUBIT> webcut body 1 with

plane xplane offset 0
CUBIT> delete body 2

CUBIT> webcut body 1 with

cylinder radius 2.75 axis y

Step-by-Step Tutorials

886

CUBIT> webcut body 1 3 with

plane yplane offset 0

CUBIT> webcut body 1 with

plane yplane offset -15

CUBIT> webcut body 1 6 4 with

plane surface 64

Cubit_15.5_User_Documentation

887

CUBIT> webcut body 1 with

plane surface 67

CUBIT> webcut body 5 with

plane zplane offset 1.5
CUBIT> webcut body 11 with

plane zplane offset -1.5

Step-by-Step Tutorials

888

CUBIT> create vertex on curve

540 distance 2 from vertex 368
CUBIT> webcut body 4 with

plane vertex 409 vertex 410

vertex 630

CUBIT> create vertex on curve

1093 distance 3 from vertex

646
CUBIT> webcut body 14 with

plane vertex 570 vertex 569

vertex 647

This wedge shape webcut is a
method of controlling skew in the
final mesh.

CUBIT> unite body 5 11 12

Cubit_15.5_User_Documentation

889

CUBIT> unite body 4 13
CUBIT> delete vertex all
CUBIT> imprint all
CUBIT> merge all
CUBIT> vol all size .5

CUBIT> surf 229 size .25
CUBIT> mesh surf 229
CUBIT> volume 5 scheme sweep

source 229 target 230
CUBIT> mesh volume 5

Step-by-Step Tutorials

890

CUBIT> volume 4 scheme sweep

source surface 526 target 528
CUBIT> mesh volume 4

CUBIT> volume 14 scheme sweep

source 543 target 541
CUBIT> mesh volume 14
CUBIT> delete mesh
CUBIT> unmerge all

CUBIT> webcut body 6 with

plane surface 524

Cubit_15.5_User_Documentation

891

CUBIT> unite body 16 17

CUBIT> webcut body 8 with

plane surface 524

Step-by-Step Tutorials

892

CUBIT> webcut body 18 with

plane surface 540

CUBIT> webcut volume 9 with

plane zplane offset -3 rotate

5 about x

This is another effort to prevent
skew in the final mesh
CUBIT> imprint all
CUBIT> merge all

CUBIT> mesh volume 5 (swept

around)
CUBIT> mesh volume 4 (mapped)
CUBIT> mesh volume 14 (swept

top to bottom)
CUBIT> volume 15 scheme map
CUBIT> curve all in volume 15

size 0.5
CUBIT> mesh volume 15

CUBIT> volume 18 scheme

tetprimitive
CUBIT> volume 18 interval 3
CUBIT> mesh volume 18

Cubit_15.5_User_Documentation

893

CUBIT> volume 9 scheme sweep

source surface 579 601 target

surface 592 rotate off
CUBIT> mesh volume 9
CUBIT> mesh volume 20

CUBIT> volume 6 scheme sweep

source 569 target 570
CUBIT> mesh volume 6

CUBIT> volume 3 scheme sweep

source 224 target 226
CUBIT> surf 224 226 scheme map
CUBIT> mesh volume 3

Step-by-Step Tutorials

894

CUBIT> volume 19 scheme sweep

source 543 target 586
CUBIT> mesh volume 19

CUBIT> volume 17 scheme sweep

source 545 583 582 target 239
CUBIT> mesh volume 17

CUBIT> volume 8 scheme sweep

source 574 597 601 target 241
CUBIT> mesh volume 8

Cubit_15.5_User_Documentation

895

CUBIT> volume 7 1 size 2
CUBIT> volume 7 1 scheme auto

CUBIT> volume 10 scheme sweep

source 270 target 267
CUBIT> mesh volume 7 1
CUBIT> mesh volume 10

CUBIT> unmerge all
CUBIT> body all copy reflect x
CUBIT> merge all

Final mesh

Step-by-Step Tutorials

896

The entire mesh is copied and reflected around the x axis during the last step. The
advantage of symmetry in this example is that it cuts the decomposition in half, and it also
ensures a perfectly symmetrical mesh.

Example 7. Using virtual geometry in geometry decomposition
Virtual geometry is used to change the properties of mesh without changing the
underlying geometry. The next example uses virtual geometry to remove unwanted sliver
curves, and to create a sweepable volume. The composite curve function is used to
combine sliver curves that are created from webcutting a slightly curved surface. Then
the partition surface command is used to create additional partitions on a surface to
ensure sweepability.

Cubit_15.5_User_Documentation

897

Suggested webcuts

Webcut Command

CUBIT> webcut volume 1 sweep surface 2 vector

0 0 -1 through_all

CUBIT> webcut volume 3 sweep surface 108

vector 0 0 -1 through_all

Step-by-Step Tutorials

898

CUBIT> webcut volume 3 sweep surface 13 vector

0 0 -1 through_all
CUBIT> webcut volume 3 sweep surface 28 vector

0 0 -1 through_all
CUBIT> webcut volume 3 sweep surface 74 vector

0 0 -1 through_all

CUBIT> webcut volume 3 with sheet extended

from surface 197

CUBIT> webcut volume 8 with sheet extended

from surface 224

Cubit_15.5_User_Documentation

899

CUBIT> webcut volume 11 10 12 9 with plane

surface 28

CUBIT> webcut volume 3 with plane normal to

curve 116 fraction 0.5

CUBIT> webcut volume 3 17 with plane normal to

curve 835 close_to vertex 487

CUBIT> webcut volume 18 19 with sheet extended

from surface 376

Step-by-Step Tutorials

900

CUBIT> webcut volume 3 17 with sheet extended

from surface 378

CUBIT> webcut volume 8 with sheet extended

from surface 73
CUBIT> webcut volume 8 with sheet extended

from surface 72
CUBIT> webcut volume 8 with sheet extended

from surface 133
CUBIT> webcut volume 8 with sheet extended

from surface 71

CUBIT> webcut volume 8 with plane vertex 709

vertex 713 vertex 702

CUBIT> unite volume 36 45
CUBIT> unite volume 37 43
CUBIT> unite volume 35 44
CUBIT> unite volume 39 42

Cubit_15.5_User_Documentation

901

CUBIT> webcut volume 29 with plane vertex 81

vertex 93 vertex 154

CUBIT> unite volume 33 36 50 11
CUBIT> unite volume 10 49 37 31
CUBIT> unite volume 12 52 35 34
CUBIT> unite volume 9 51 39 32
CUBIT> unite volume 9 22
CUBIT> unite volume 12 23
CUBIT> unite volume 20 33
CUBIT> unite volume 21 10

CUBIT> webcut volume 12 with plane vertex 86

vertex 71 vertex 76

CUBIT> webcut volume 53 with plane vertex 738

vertex 87 vertex 741

CUBIT> webcut volume 12 with plane vertex 72

vertex 85 vertex 74

CUBIT> webcut volume 55 with plane vertex 754

vertex 205 vertex 208

CUBIT> webcut volume 12 sweep surface 731

along curve 1073 through_all

CUBIT> unite volume 53 57 56

CUBIT> unite volume 54 12 55
CUBIT> webcut volume 9 with plane vertex 99

vertex 101 vertex 103

CUBIT> webcut volume 58 with plane vertex 769

vertex 98 vertex 772

CUBIT> webcut volume 9 with plane vertex 106

vertex 104 vertex 100

CUBIT> webcut volume 60 with plane vertex 781

vertex 201 vertex 198

CUBIT> webcut volume 9 sweep surface 764 along

curve 1078 through_all

CUBIT> unite volume 58 62 60

CUBIT> unite volume 59 9 61
CUBIT> webcut volume 20 with plane vertex 140

vertex 138 vertex 135

CUBIT> webcut volume 63 with plane vertex 139

vertex 137 vertex 134

CUBIT> webcut volume 20 with plane vertex 141

vertex 800 vertex 796

CUBIT> webcut volume 64 with plane vertex 803

vertex 220 vertex 223

CUBIT> webcut volume 63 sweep surface 803

along curve 1238 through_all

Step-by-Step Tutorials

902

CUBIT> unite volume 20 67 66

CUBIT> unite volume 65 63 64
CUBIT> webcut volume 21 with plane vertex 165

vertex 163 vertex 160

CUBIT> webcut volume 68 with plane vertex 164

vertex 162 vertex 159

CUBIT> webcut volume 21 with plane vertex 825

vertex 169 vertex 822

CUBIT> webcut volume 69 with plane vertex 830

vertex 216 vertex 213

CUBIT> webcut volume 68 sweep surface 836

along curve 1069 through_all

CUBIT> unite volume 21 72 69

CUBIT> unite volume 70 68 71

These are the steps to webcut each of the stiffeners
into the configuration shown. It is repeated for each
of the stiffeners. This is also the step which creates
the sliver curves which must be composited out
later.

Cubit_15.5_User_Documentation

903

CUBIT> webcut volume 70 65 59 54 with plane

surface 2

CUBIT> unite volume 1 76 75 73 74

CUBIT> unite volume 28 47 46 41 48 38 8 30 29

40

Step-by-Step Tutorials

904

CUBIT> webcut volume 28 with plane surface 870
CUBIT> webcut volume 28 77 with plane surface

871
CUBIT> webcut volume 28 77 with plane surface

878
CUBIT> webcut volume 28 77 with plane surface

879

CUBIT> webcut volume 1 81 2 82 with plane

normal to curve 1849 fraction 0.5

CUBIT>webcut volume 19 18 with plane normal to

curve 843 fraction 0.75

Cubit_15.5_User_Documentation

905

CUBIT> create curve vertex 1122 vertex 471 on

surface 1134

CUBIT> webcut volume 19 sweep curve 2073 along

curve 2042 through_all
CUBIT> webcut volume 18 with sheet extended

from surface 1146
CUBIT> webcut volume 18 with sheet extended

from surface 1135

CUBIT> unite volume 91 92
CUBIT> delete curve 2073

CUBIT> unite volume 89 18
CUBIT> unite volume 88 19
CUBIT> imprint all
CUBIT> merge all

Step-by-Step Tutorials

906

Composite small curves formed from webcuts
CUBIT> composite create curve 1456 1468

CUBIT> composite create curve 1459 1467

CUBIT> composite create curve 1499 1511

CUBIT> composite create curve 1502 1510

CUBIT> composite create curve 1371 1379

CUBIT> composite create curve 1370 1381

CUBIT> composite create curve 1423 1413

CUBIT> composite create curve 1422 1414

CUBIT> volume all scheme auto

Create the partitioned curves shown using existing
vertices
CUBIT> partition create surface 1067 vertex

311 175

CUBIT> partition create surface 1067 vertex

174 312

CUBIT> partition create surface 1063 vertex

123 294

CUBIT> partition create surface 1251 vertex

170 226

CUBIT> partition create surface 1082 vertex

195 115

CUBIT> partition create surface 1082 vertex

242 116

CUBIT> partition create surface 1077 vertex

117 309

CUBIT> partition create surface 1255 vertex

118 310

Meshing order is significant in this case. Since
meshing a volume will hard set the interval counts
on curves and surfaces, you will need to make sure
that all of the interval counts are the same on
adjacent volumes. Usually the meshing algorithm
can handle this interval matching, but sometimes it
helps to mesh volumes in a certain order. In this
case, the meshing order also significantly changes
the quality in the resulting mesh.
CUBIT> reset volume all

CUBIT> volume all scheme auto

CUBIT> volume 81 scheme sweep source surface

979 target surface 1061 rotate off

CUBIT> volume 81 sweep smooth auto

CUBIT> volume 85 scheme sweep source surface

1061 target surface 889 rotate off

CUBIT> volume 85 sweep smooth auto

CUBIT> volume all size 0.1

CUBIT> curve 2125 2122 interval 12

CUBIT> mesh vol 5 6 7 13 14 15 16 (COLORED

GREEN)

CUBIT> mesh Volume 85 81 77 83 78 82 87 28 80

79 (COLORED RED)

Cubit_15.5_User_Documentation

907

CUBIT> mesh vol 88 89 91 90 17 3 (COLORED

YELLOW)

CUBIT> mesh volume with not is_meshed (COLORED

WHITE)

Final mesh

The final mesh is shown below.

Example 8. Sweeping volumes with narrow angles and surfaces
Narrow angles are a challenge for sweeping algorithms. In the next example, a well-
placed webcut shaves off the end of the small angle to create an additional surface for
the sweeping algorithm.

Step-by-Step Tutorials

908

Suggested webcuts

Webcut Command

CUBIT> webcut volume 1 with sheet

extended from surface 16

Cubit_15.5_User_Documentation

909

CUBIT> webcut volume 5 with plane

surface 50

CUBIT> webcut volume 4 with plane

surface 47

CUBIT> webcut volume 3 with sheet

extended from surface 36

Step-by-Step Tutorials

910

CUBIT> webcut volume 2 with plane

surface 25

CUBIT> unite volume 3 9 7

CUBIT> webcut volume 5 with sheet

extended from surface 13

Cubit_15.5_User_Documentation

911

CUBIT> webcut volume 5 with sheet

extended from surface 69

CUBIT> webcut volume 4 with sheet

extended from surface 13

Step-by-Step Tutorials

912

CUBIT> webcut volume 4 with sheet

extended from surface 69

CUBIT> webcut volume 5 with plane

vertex 23 vertex 25 vertex 31

Cubit_15.5_User_Documentation

913

CUBIT> webcut volume 4 with plane

vertex 23 vertex 25 vertex 31

CUBIT> webcut volume 16 with plane

vertex 18 vertex 9 vertex 33

CUBIT> webcut volume 17 with plane

vertex 18 vertex 9 vertex 33

Step-by-Step Tutorials

914

CUBIT> webcut volume 6 with plane

normal to curve 26 distance 0.6 from

vertex 25

CUBIT> delete volume 20

Cubit_15.5_User_Documentation

915

CUBIT> webcut volume 8 with plane

normal to curve 33 distance 0.6 from

vertex 31

CUBIT> delete volume 8

Step-by-Step Tutorials

916

CUBIT> unite volume 3 21 6
CUBIT> imprint volume all

CUBIT> merge volume all

CUBIT> volume all size 0.3

CUBIT> volume all scheme auto

CUBIT> volume 2 scheme sweep source

13 target 69
CUBIT> volume 2 sweep smooth auto
CUBIT> unmerge volume all

Cubit_15.5_User_Documentation

917

CUBIT> webcut volume 2 3 with plane

zplane

CUBIT> webcut volume 3 with sheet

extended from surface 154

CUBIT> webcut volume 23 with sheet

extended from surface 153

Step-by-Step Tutorials

918

CUBIT> webcut volume 11 with plane

zplane noimprint nomerge
CUBIT> imprint volume all
CUBIT> merge volume all

CUBIT> volume 11 scheme sweep source

surface 221 target surface 222

rotate off
CUBIT> volume 11 sweep smooth auto

CUBIT> volume 28 scheme sweep source

surface 222 target surface 221

rotate off
CUBIT> volume 28 sweep smooth auto

Cubit_15.5_User_Documentation

919

CUBIT> volume 22 scheme sweep source

surface 176 target surface 179

rotate off
CUBIT> volume 22 sweep smooth auto

CUBIT> volume 2 scheme sweep source

surface 173 target surface 170

rotate off
CUBIT> volume 2 sweep smooth auto

CUBIT> volume 24 scheme sweep source

surface 204 target surface 202

rotate off
CUBIT> volume 24 sweep smooth auto

Step-by-Step Tutorials

920

CUBIT> volume 25 scheme sweep source

surface 205 target surface 207

rotate off
CUBIT> volume 25 sweep smooth auto

CUBIT> volume 26 scheme sweep source

surface 214 target surface 216

rotate off
CUBIT> volume 26 sweep smooth auto

CUBIT> volume 27 scheme sweep source

surface 217 target surface 219

rotate off
CUBIT> volume 27 sweep smooth auto

Cubit_15.5_User_Documentation

921

CUBIT> volume 3 scheme sweep source

surface 197 187 target surface 200

rotate off
CUBIT> volume 3 sweep smooth auto

CUBIT> volume 23 scheme sweep source

surface 212 193 target surface 210

rotate off
CUBIT> volume 23 sweep smooth auto
CUBIT> volume all scheme auto
CUBIT> volume all size 0.2
CUBIT> mesh volume all

Final mesh

The final mesh is shown below.

Step-by-Step Tutorials

922

gui
GUI Basic Tutorial

Overview

This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-
hole. The primary steps in performing this task are:

• Creating the geometry
• Setting the interval sizes and meshing schemes
• Meshing the geometry

Cubit_15.5_User_Documentation

923

• Specifying the boundary conditions
• Exporting the mesh

The geometry for this tutorial is a brick with a cylindrical hole in the center, shown in the
figure below. This figure also shows the curve and surface identification (ID) numbers,
which are referenced in the command lines options shown with each step. The final
meshed body is shown in the next figure.

Geometry for Brick with Cylindrical Hole

Step-by-Step Tutorials

924

Generated Mesh for Brick with Cylindrical Hole

GUI Basic Tutorial Step 1

Step 1: Beginning Execution

Type "cubit" from a UNIX prompt or select cubit from the start menu if you are running
on a PC with Windows. The CUBIT Application Window will appear as illustrated below:

Cubit_15.5_User_Documentation

925

CUBIT Application Window

The use of each window in the CUBIT program is described briefly below

Graphics
Window

The current model will be displayed here. Zooming,
panning, and rotating are also performed in this
window.

Drop Down
Menus

Functions such as file management, edit controls,
display options, user preferences, journal file
management, window manipulation, and help are
available in the pull-down menus.

Toolbars

This is a large selection of selectable icons that
duplicate the functions found in the pull-down menus.
Additionally, picking types, and mouse selection
controls are found here.

Power Tools

The Power Tools contains the ITEM workflow,
geometry repair power tools, meshing power tools,
mesh/geometry comparison tool, defeaturing tool,
assembly tool, and mesh quality power tools.

Step-by-Step Tutorials

926

Command
Line
Workspace

The command line workspace contains both the cubit
command, error, history, and script windows. The
command window is used to enter cubit commands
and view the output. The error window is used to view
cubit errors. The history window is used to view recent
commands. The optional script window is used for
Python programming.

Command
Panels

Most Cubit commands are available in the command
panels. The panel is organized topologically, by mode.

Properties
Page

This is a list of properties of the selected geometry,
mesh, boundary condition, or assembly. Some of the
properties can also be edited from this window.

Model Tree
The model tree shows all geometric entities and their
relationships, boundary conditions, boundary layers,
and groups.

GUI Basic Tutorial Step 2

Step 2: Creating the Brick

Now you may begin generating the geometry to be meshed. You will create a brick of
width 10, depth 10 and height 10. The width and depth correspond to the x and y
dimensions of the object being created. The "width" or x-dimension is screen-horizontal
and the "depth" or y-dimension is screen-vertical. The height or z-dimension is out of the
screen.

• On the Command Panel, select Geometry, then Create Geometry, then
Volume. Brick is the default type.

Cubit_15.5_User_Documentation

927

• Enter values for X, Y, and Z. Note, X (width) has a default value of 10. Select
Apply to create the brick.

The brick should appear in your Graphics window as shown below.

Step-by-Step Tutorials

928

Display of Brick

If you would like to change the rendering mode of your model, you may click on one of
the view buttons in the Display Tools tool bar.

Cubit_15.5_User_Documentation

929

GUI Basic Tutorial Step 3

Step 3: Creating the Cylinder

Now you must form the cylinder which will be used to cut a hole in the brick.

• Select Cylinder from the Volume-type combo box.

• Enter 12 for the height and 3 for the radius. Then select Apply.

The brick and the cylinder should appear in your display window as shown below:

Step-by-Step Tutorials

930

Brick and Cylinder

GUI Basic Tutorial Step 4

Step 4: Adjusting the Graphics Display

The geometry is drawn in the graphics window in perspective mode, by default from a
viewing direction of the +z axis. This view can now be adjusted to verify the proper
orientation of the geometry just created.
The following button clicks apply for 3-button mice (these are the default GUI settings):

• left will pick when the mouse is over an entity. Left click will also pan when held
down.

Cubit_15.5_User_Documentation

931

• middle will rotate
• right will show a context menu when an entity is selected. Right click will zoom

when no entity is selected.

Mouse button behavior can be customized from the Tools-Options menu for use with non
3-button mice.
Use the mouse buttons to make the display look like the figure below.

View from Different Perspective

GUI Basic Tutorial Step 5

Step 5: Forming the Hole

Now the cylinder can be subtracted from the brick to form the hole in the block.

Step-by-Step Tutorials

932

• Select the Boolean operation button. Select Volume as the entity type. Then
select Subtract from the Boolean combo box.

• Enter 2 for Subtract Volume ID(s) and 1 for From Volume ID(s).
• Select the Apply button

You can also select the brick or cylinder interactively. Place the cursor in the Subtract
Volume ID(s) field and click. This field is known as a Pick Widget. Clicking in a pick
widget automatically sets the graphics pick mode for the entity type expected by the pick
widget. Move the cursor to the graphics window and, using the left mouse button, select
an entity. The id of the selected entity will be echoed into the pick widget field. Holding
the control key while selecting entities in the graphics window will select multiple entities.
Notice that both original volumes are deleted in the Boolean operation and replaced with
a new volume, with an id of 1. The result of this operation is a single volume, a brick with
a hole through it, as shown below.

Cubit_15.5_User_Documentation

933

Brick after Subtracting Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

GUI Basic Tutorial Step 6

Step 6: Setting Interval Sizes

The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side
of the brick to the other. Before generating any mesh, the user must specify the size of
the elements to be generated. In this example, one element size will be specified for the
volume as a whole and a smaller size will be specified for around the hole. A direct interval
setting will be specified for the sweep direction.
To set the interval size for the overall volume, do the following:

Step-by-Step Tutorials

934

• Change the mode to Meshing, then select Volume followed by Intervals.

• Place the cursor into the Select Volumes field. Since this is a pick widget, click
anywhere on the volume in the graphics window. Alternatively, type 1 in the field.
Set the Interval Size to 1.0 and select Apply Size

Cubit_15.5_User_Documentation

935

Since the brick is 10 units in length on a side, this specifies that each straight curve is to
receive approximately 10 mesh elements.
In order to better resolve the hole in the middle of the top surface, we set a smaller size
for the curve bounding this hole.

• Change the object of the command panel to curve by selecting Curve from the
Entity buttons and Mesh from the Action Buttons.

Note: There is not a separate interval action panel for curves. The interval and mesh
actions for curves are grouped together in one panel.

Step-by-Step Tutorials

936

• Place the cursor into the Select Curves pick widget field. Select the near end of
the cylinder in the graphics window. Once you have selected the curve, the id of
that curve, 16 should appear in the Selected Curves field. Select Size

• Enter 0.78 for the size and select Apply Size.

Cubit_15.5_User_Documentation

937

Finally, we would like to generate exactly 5 element layers in the sweep direction. This is
accomplished by setting the intervals on one of the curves in the sweep direction.

• Place the cursor back into the Selected Curves field and enter 11.
• Select the Interval radio button
• Enter an interval count of 5 and select Apply.

Step-by-Step Tutorials

938

GUI Basic Tutorial Step 7

Cubit_15.5_User_Documentation

939

Step 7: Surface Meshing

Now all necessary intervals have been set, the meshing can proceed. Begin by meshing
the front surface (with the hole) using the paving algorithm. This is done in two steps.
First, set the scheme for that surface to Pave, then issue the command to Mesh.

• Select Surface then Mesh buttons in the Control Panel.
• Select Pave in the Available Mesh Schemes combo box.

Step-by-Step Tutorials

940

Place the cursor into the Surface ID(s) field. Select the front surface of the object by
selecting anywhere within the region indicated. The id of Surface 11 will be echoed in the
field.

Cubit_15.5_User_Documentation

941

• Select the Apply button to set the scheme.
• Select the Mesh button to mesh the surface.

A mesh should be generated on surface 11 using the paving algorithm. The result is
shown below.

Step-by-Step Tutorials

942

Surface Meshed with Paving

GUI Basic Tutorial Step 8

Step 8: Volume Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of
meshing scheme that should be used and the second step is to issue the order to mesh.
In certain cases, the scheme can be determined by CUBIT automatically. For sweepable
volumes, the automatic scheme detection algorithm also identifies the source and target
surfaces of the sweep automatically.
To instruct the code to automatically determine the meshing scheme, and in this case the
source and target surfaces, do the following:

Cubit_15.5_User_Documentation

943

• Select Volume then Mesh on the control panel.

• Place the cursor into the Volume ID(s) field then select the volume in the
Graphics Window. The id of Volume 1 should appear in the field. Choose the
Automatically Calculate scheme using the combo box provided.

• Select Apply Scheme to set the scheme. Then select Mesh to mesh the volume.

Step-by-Step Tutorials

944

The final meshed body will appear in the Graphics Window, as shown below:

Smooth Shade View of Volume Mesh

GUI Basic Tutorial Step 9

Step 9: Inspecting the Model

The type, quality, and speed of rendering the image can be controlled in CUBIT by
selecting one of the buttons in the Display icon group. These icons appear by default in
the icon bar above the graphics window. They can be used to change the display mode
to wire frame, hidden line, true hidden line, transparent or smooth shade.

Cubit_15.5_User_Documentation

945

For example, the following two figures result from selecting the Hidden Line and Wire
Frame Mode buttons respectively.

Hidden Line View of Mesh

Step-by-Step Tutorials

946

Wire Frame View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh
and warns the user about certain cases of bad quality, it is still a good idea to inspect a
broader set of quality measures. To do this, use the Command Window to enter the
command:

CUBIT> quality volume 1 Allmetrics

The results of the quality are displayed in the Command Window. For an explanation of
each quality metric along with acceptable ranges, see Mesh Quality Assessment. For the
purposes of this tutorial, you can assume the quality metrics shown are in an acceptable
range.

GUI Basic Tutorial Step 10

Cubit_15.5_User_Documentation

947

Step 10: Defining Boundary Conditions

Let us assume that we need to define one material type for the entire mesh, and a single
node-based boundary condition on all surfaces. This is accomplished by identifying an
Element Block and a Nodeset, respectively; the id numbers assigned to these entities are
assigned by the user, usually by some convention meaningful to the analysis to be done.
The element block and nodeset are identified from the Materials and Properties button on
the control panel.

• Select the Analysis Groups and Materials button and then Blocks in the
Control Panel window

• Select the Create button
• Select Create block in the pull down menu
• Enter 100 into the Block ID field
• Select the Volume radio button
• Enter the id of Volume 1 by selecting it in the graphics window, or just manually

entering in ID(s) field
• Press Apply

Step-by-Step Tutorials

948

Create a nodeset by following the steps below

• Open the Nodeset window on the Control Panel
• Select the Create button
• Enter a Nodeset id of 100
• Select the Surface radio button and type all in the ID(s) field
• Press Apply

Cubit_15.5_User_Documentation

949

GUI Basic Tutorial Step 11

Step 11: Exporting the Mesh

Finally, the mesh needs to be written to an Exodus II file. This is easily done:

• From the File menu, select Export.
• Set the file export type to Genesis Files from file type combo box.
• Enter a file name in the dialog, such as brick_with_hole.g, and select Save.

Since this is a standard file management dialog, the user may browse or use any
other file management functionality supported by the platform.

• Select the Export All check box

Step-by-Step Tutorials

950

• Select Finish to export the mesh.

command line
Command Line Basic Tutorial

Overview

This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-
hole. The primary steps in performing this task are:

• Creating the geometry
• Setting the interval sizes and meshing schemes
• Meshing the geometry
• Specifying the boundary conditions
• Exporting the mesh

Each of these steps is described in detail in the following sections. The geometry in this
tutorial is a brick with a cylindrical hole in the center, shown in the figure below. This figure
also shows the curve and surface identification (ID) numbers, which are referenced in the
command lines shown with each step. The final meshed body is shown in the next figure.

Cubit_15.5_User_Documentation

951

Geometry for Cube with Cylindrical Hole

Generated Mesh for Cube with Cylindrical Hole

CL Basic Tutorial Step 1

Step 1: Beginning Execution

Type "cubit" from a UNIX prompt to begin execution of CUBIT. A CUBIT console window
will appear which tells the user which CUBIT version is being run and the most recent
revision date. An example of the UNIX output window is shown below. This window
echoes the commands and relays information about the success or failure of attempted
actions.

Step-by-Step Tutorials

952

Some things to notice are:

• At the top of the CUBIT window you will be told where the commands entered in
this CUBIT session will be journaled. For example: "Commands will be journaled
to `cubit01.jou' for this example.

• In addition to the CUBIT version, the code also reports the versions of ACIS and
VTK that have been compiled into CUBIT.

• The command line prompt appears after the banner screen, and appears as
"CUBIT>".

• Commands are entered at that prompt, followed by the "Enter" key.
• Upon startup, a graphics window should also appear, with an axis triad in the

lower left hand corner (this window will not appear if CUBIT is started with the -
nographics option.)

CL Basic Tutorial Step 2

Step 2: Beginning Execution

Now you may begin generating the geometry to be meshed. You will create a brick of
width 10, depth 10 and height 10. The width and depth correspond to the x and y
dimensions of the object being created. The "width" or x-dimension is screen-horizontal
and the "depth" or y-dimension is screen-vertical. The height or z-dimension is out of the
screen. The command to create this object is:

cubit> create brick width 10 depth 10 height 10 (OR)

Cubit_15.5_User_Documentation

953

cubit> create brick x 10

The cube should appear in your display window as shown below:

Display of Brick

CL Basic Tutorial Step 3

Step 3: Creating the Cylinder

Now you must form the cylinder which will be used to cut the hole from the brick. This is
accomplished with the command:

cubit> create cylinder height 12 radius 3

Step-by-Step Tutorials

954

At this point you will see both a brick and a cylinder appear in the CUBIT display window,
as shown below:

Brick and Cylinder

CL Basic Tutorial Step 4

Step 4: Adjusting the Graphics Display

The geometry is drawn in the graphics display in perspective mode by default from a
viewing direction of the +z axis. This view can now be adjusted to verify the proper
orientation of the geometry just created. The orientation of the geometry can be adjusted
using the command line or interactively with the mouse.

Cubit_15.5_User_Documentation

955

Command Line

You can adjust the orientation of the object from the command line. For example, the from
command can be used as follows

cubit>from 20 15 25

cubit>display

Mouse

To interactively change the orientation, activate your graphics window by placing your
cursor in the window or by clicking at the top of it (this will vary depending upon your
window settings in your operating system).

• Use the left mouse button to interactively rotate the view
• Use the middle mouse button to zoom in or out
• Use the right mouse button to pan the view.

Use the mouse buttons to make the display look the figure below:

Step-by-Step Tutorials

956

View from a Different Perspective

CL Basic Tutorial Step 5

Step 5: Forming the Hole

Now, the cylinder can be subtracted from the brick to form the hole in the block. Issue the
following command:

cubit> subtract 2 from 1

Note that both original volumes are deleted in the Boolean operation and replaced with a
new volume (with an id of 1) which is the result of the Boolean operation Subtract .

Cubit_15.5_User_Documentation

957

The result of this operation is a single body, a brick with a hole through as shown below:

Brick after Subtracting the Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

CL Basic Tutorial Step 6

Step 6: Setting Interval Sizes

The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side
of the brick to the other. Before generating any mesh, the user must specify the size of
the elements to be generated. In this example, one element size will be specified for the
volume as a whole and a smaller size will be specified for around the hole. A direct interval
setting will be specified for the sweep direction.

Step-by-Step Tutorials

958

To set the interval size for the overall volume, enter the command

cubit> volume 1 size 1.0

Since the brick is 10 units in length on a side, this specifies that each straight curve is to
receive approximately 10 mesh elements.
In order to better resolve the hole in the middle of the top surface, we set a smaller size
for the curve bounding this hole. To find the id number of the curve bounding the hole,
the user can either pick the curve (See Selecting Entities with the Mouse) or turn curve
labels on and regenerate the view. To do the latter, use the command

cubit> label curve on

cubit> display

The default size of the labels can sometimes be too small to read. To change the text
size, use the graphics text size command:

cubit> graphics text size 2

cubit> display

The result is shown in the figure below. Then the interval size can be set for the
appropriate curve:

Cubit_15.5_User_Documentation

959

Geometry with Curve Labeling Turned on

cubit> curve 16 interval size 0.78

Finally, we would like to generate exactly 5 element layers in the sweep direction. This is
accomplished by setting the intervals on curve 11:

cubit> curve 11 interval 5

CL Basic Tutorial Step 7

Step 7: Surface Meshing

Step-by-Step Tutorials

960

Now that all the necessary intervals have been set, the meshing can proceed. Begin by
meshing the front surface (with the hole) using the paving algorithm. This is done in two
steps. First, set the scheme for that surface to Pave; then, issue the command to Mesh.
Since the surface to be paved is number 11, issue the command:

cubit> surface 11 scheme pave

With the meshing scheme specified, we proceed to mesh the surface:

cubit> mesh surface 11

cubit>display

The results are shown below:

Surface Meshed with Paving

Cubit_15.5_User_Documentation

961

CL Basic Tutorial Step 8

Step 8: Surface Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of
meshing scheme to be used and the second step is to issue the order to mesh. In certain
cases, the scheme can be determined by CUBIT automatically. For sweepable volumes,
the automatic scheme detection algorithm also identifies the source and target surfaces
of the sweep automatically.
To instruct the code to automatically determine the meshing scheme and in this case the
source and target surfaces, enter the command:

cubit> volume 1 scheme auto

To view the results of auto scheme selection, certain data about the volume can be listed:

cubit> list volume 1

The results of this command are shown below; note that the scheme, and in this case the
source and target surfaces, are reported toward the top of the list output.

Output from Listing Volume 1

With the scheme set, the mesh command may be given:

Step-by-Step Tutorials

962

cubit> mesh volume 1

The final meshed body will appear in the display window, as shown below:

View of Volume Mesh

CL Basic Tutorial Step 9

Step 9: Inspecting the Model

The type, quality, and speed of rendering the image can be controlled in CUBIT by using
several graphics mode commands, such as Wire Frame, Hidden Line, Transparent and
Smooth Shade. For example:

Cubit_15.5_User_Documentation

963

cubit> graphics mode wireframe

The wire frame display is illustrated below:

Wire Frame View of Mesh

Next, try:

cubit> graphics mode hiddenline

The hidden line display is illustrated below:

Step-by-Step Tutorials

964

Hidden Line View of Mesh

Next, try:

cubit> graphics mode transparent

The transparent display is shown below.

Cubit_15.5_User_Documentation

965

Transparent View of Mesh

Next, try:

cubit> graphics mode smoothshade

The smooth shade display is shown below. For detailed information on the viewing mode
options, See Graphics Modes.

Step-by-Step Tutorials

966

Smooth Shade View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh
and warns the user about certain cases of bad quality, it is still a good idea to inspect a
broader set of quality measures. To do this, enter the command:

cubit> quality volume 1

The results of the quality output are shown below. For an explanation of quality metrics
along with acceptable ranges, see Mesh Quality Assessment. For the purposes of this
tutorial, you can assume the quality metrics shown below are in an acceptable range.

Cubit_15.5_User_Documentation

967

Quality Table from Volume 1's Hex Mesh

CL Basic Tutorial Step 10

Step 10: Defining Boundary Conditions

Let us assume that we need to define one material type for the entire mesh, and a single
node-based boundary condition on all surfaces. This is accomplished by identifying an
Element Block and a Nodeset, respectively; the id numbers assigned to these entities are
assigned by the user, usually by some convention meaningful to the analysis to be done.
The element block and nodeset are identified using the commands:

cubit> block 100 volume 1

cubit> nodeset 100 surface all in volume 1

CL Basic Tutorial Step 11

Step 11: Exporting the Mesh

Finally, the mesh needs to be written to an ExodusII file. This is easily done:

cubit> export genesis `brick_with_hole.g'

The filename and extension are arbitrary and, like the block and nodeset numbers, are
usually named according to a convention meaningful to the analysis.

Step-by-Step Tutorials

968

Geometry Cleanup Process Flow

Cubit_15.5_User_Documentation

969

Step-by-Step Tutorials

970

971

ITEM

Immersive Topology Environment for Meshing
(ITEM)
The Cubit Geometry and Meshing Toolkit team at Sandia has taken on the ambitious task
of reducing the time for simulation by specifically addressing the bottlenecks in the mesh
generation process. It is not unusual for the meshing process to take upwards of three-
quarters of the entire simulation time. With its many tools developed for a wide range of
application areas, it takes time to gain enough proficiency in Cubit to quickly generate a
mesh from a complex geometry. As a result, the Immersive Topology Environment for
Meshing (ITEM) was developed. ITEM is a user-interactive meshing tool that guides the
user through a typical mesh generation process.
With the ultimate goal of reducing the time to generate a mesh for simulation, ITEM has
been developed within the Cubit Geometry and Meshing Toolkit to take advantage of its
extensive tool suite. Built on top of these tools it attempts to improve the user experience
by accomplishing three main tasks:

1. Guiding the user through the workflow
2. Providing the user with smart options
3. Automating geometry and meshing tasks

Guiding the user through the workflow.
In software of any complexity where usage may be occasional or infrequent, the overhead
of learning the new tool to a point of proficiency may be daunting. Given a solid model
that may have been designed for manufacturing purposes, the analysts may be faced
with generating a mesh. They may not be working with Cubit on a daily basis, but would
like to take advantage of the powerful tools provided by the software.
To address this, ITEM provides a wizard-like environment that steps the user through the
geometry and meshing process. For someone unfamiliar with the software, it provides an
interactive, step-by-step set of tools for accomplishing the major tasks in the process. For
those more familiar with the tools, it serves as a reminder of the major tasks, but is flexible
enough to accommodate a more iterative approach, allowing them to jump between major
tasks easily. Currently restricting the workflow to models requiring three-dimensional,
solid elements, ITEM uses the following steps:

1. Define the Geometric Model: Import a CAD model or create geometry within
the Cubit environment.

2. Set up the model: Define basic information such as element shape, volumes to
be meshed and element sizes or budgets.

3. Clean up the geometry: Detect common issues and simplify geometric features
on the CAD model.

4. Meshing: Perform operations to make the model meshable, such as
imprint/merge, scheme selection, decomposition and performing the meshing.

5. Validate the Mesh: Check element quality and perform mesh improvement
operations

ITEM

972

6. Apply boundary conditions regions: Define regions where boundary
conditions may be applied using nodeset, sideset and block definitions.

7. Export the mesh: Define a target analysis code format and export the mesh.

Providing the user with smart options.
Solid models used for analysis may have a huge variety of different characteristics that
may prevent them from being easily meshed. Questions such as, What are the problems
associated with my model? What are the current roadblocks to generating a mesh on this
model? and What should I do to resolve the problems, are constantly being asked by the
analysts. Without an extensive knowledge of the tools and algorithms, it may be difficult
to answer these questions effectively.
ITEM addresses this issue by providing smart options to the user. Based on the current
state of the model, it will automatically run diagnostics and determine potential solutions
that the user may consider. For example, where unwanted small features may exist in the
model, ITEM will direct the user to these features and provide a range of geometric
solutions to the problem. Scrolling through the solutions provides a preview of the
expected result. The user can then select the solution that seems most appropriate and
execute the solution to change or simplify the geometry. This diagnostic-solution
approach is the basis for the ITEM design and is the common mode of user interaction
while in this environment. This contrasts with the more traditional hunt-and-guess
approach of providing the user with an array of buttons and icons that they may choose
from and guessing what may result. ITEM, on the other hand, serves in effect, as an
expert providing guidance to the user as they proceed through the geometry and meshing
process.

Automating geometry and meshing tasks.
With all of the advanced research and development that has gone into the meshing and
geometry problem, a push-button solution for any arbitrary solid model may seem like the
ideal objective of any meshing tool. Although for many cases, this would be the best
solution, for others it may not even be desirable. A push-button solution assumes a certain
amount of trust in the geometric reasoning the software chooses to provide. This may be
more trust than an occasional user who is tasked with a high consequence simulation
may be willing to give. Even if the user is willing to accept full automation, in many cases,
the geometric complexity of the model may be beyond the capability of current algorithms
to adequately resolve.
On the other hand, once the user is familiar with the characteristics of the solutions that
the software provides, they may not be concerned with examining and intervening on
every detail of the model creation process. Instead, in the interest of increasing efficiency,
they may want the fastest solution possible. Providing the option for the user to automate
as much of the geometry and meshing process as possible is another important aspect
of ITEM.
For various characteristic geometric problems that are encountered in a solid model,
ITEM can determine from the potential geometric solutions, which of them may be most
applicable and apply that solution without any user intervention. For many configurations
of geometry, a completely automated solution may be available. For others, only a portion
of the process may be able to be automated. Where an adequate solution cannot be
determined automatically, the smart options described above are available to help guide

Cubit_15.5_User_Documentation

973

the user. As new advances in geometric reasoning and advanced meshing algorithms
are developed, ITEM will incorporate these into the solutions for automation.
It should be clear that ITEM is not intended to be a fully automated system for meshing
solid models. Instead it is intended to be a flexible environment that will guide the user
through the model generation process by offering solution alternatives and providing
automation should the user choose. The remainder of this document is organized
according to the basic workflow used in ITEM. The objective is to describe the general
problems that may be encountered in developing an analysis model and how ITEM and
Cubit may be used to address the problems. In developing this environment, many new
innovative tools were invented and developed to help support this new approach to mesh
and model generation.

How to Use the ITEM Wizard
The ITEM Workflow
The Immersive Topology Environment for Meshing (ITEM) is a wizard-like environment
that guides the user through the mesh generation process from geometry definition to
export. ITEM was designed to provide a step-by-step set of tools to help new users
generate a mesh with very little previous knowledge of the CUBIT program. But ITEM is
also flexible enough to accomodate advanced users who want to use a more iterative
approach, or who just want to use ITEM for a specific tool or panel.
The main ITEM task page is shown below. To access this page, click on the "wizard hat"
icon from the Power Tools window.

ITEM

974

Main ITEM Task Panel

The main item tasks are shown both in the text window, and also along the sidebar. The
icons in the sidebar are available from any of the ITEM panels. It is acceptable to jump to
different tasks during the process, although beginning users may just want to follow the
steps in order. To get to the main task page, click on the Task icon on the sidebar during
any step in the process.
Many meshing tasks require an iterative approach to the mesh generation process. For
your convenience, if you do click on one of the task buttons from a different panel, it will
take you to the last visited panel in that section. For example, if you are on the mesh
generation page, and you click on the prepare geometry section, it will take you to the last
page you visited in the prepare geometry section.
There are two help links at the bottom of the main task page. The first link will open this
document which describes the general ITEM process and how to use the panels. This
page is only accessible from the main task page. The second link opens the main ITEM
documentation which describes each process in the ITEM mesh generation process in
detail. This document can be accessed from any of the ITEM panels.
To proceed through the ITEM panels you must either click on a task or click on the "Done"
button at the bottom of each page. There is no "Back" button on the ITEM interface. But
in most cases, clicking the "Done" button works like a "Back" button.

Using an ITEM Panel
The item panels are designed to be self-explanatory, with plenty of documentation on
each page, and access to more help if needed. However, it does help to be generally
familiar with the main types of panels.

Task panels that link to other ITEM panels

Some ITEM panels provide a list of tasks that link to other ITEM panels. Sometimes the
tasks are designed to be completed in sequential or iterative fashion. In that case, you
will be returned to the task page after selecting done on each sub-panel where you can
select the next task. The Prepare Geometry panel is an example of this case. Each of the
tasks with a warning flag should be completed. As you return to this panel, you may need
to run the diagnostics again, and possibly even revisit previous task pages.
In other cases, the list of tasks is a presents a list of choices, from which you will only
select one option. The Import Geometry Page shown below is such an example. It gives
a list of different geometry import/creation options and you just select one of the
alternatives.

Cubit_15.5_User_Documentation

975

Prepare Geometry

ITEM Panel

Import Geometry

ITEM Panel

Task Panels that Link to Control Panels

A few of the ITEM task panels will provide links to existing control panel topics. Clicking
on a link from one of these panels will NOT open a new panel, but will open the
corresponding control panel. The Define Boundary Conditions page is an example of this
type of panel.

ITEM

976

Define Boundary Conditions Panel

Set-up Panels

A set-up panel is used to provide input or set-up options for your model. The most
prominent set-up panel is the Set-up FEA Model page which is used to define mesh
budget, element type, and element size. Another set-up page is the Define Metrics page
under the Validate Mesh task. This panel is used to define quality metrics for your model.
These panels provide useful information for the diagnostics used in other panels.

Cubit_15.5_User_Documentation

977

Setup FEA Model Panel

Diagnostic Panels

The most useful type of ITEM panel is the diagnostic panel. These panels each focus on
a specific diagnostic such as invalid topology, small features, blend surfaces, overlapping
surfaces, or meshability. Most of theses panels contain some or all of the following
features.

• Diagnostic Button - Clicking on this button will run a series of tests on the
model.

• Output Window - Displays the results of the diagnostics and lists entities with
problems. Includes a right-click menu with visualization and other options.

• Automatically Repair Button - Tries to solve the problems automatically.
• Solution Window - Presents a list of specific solutions based on the entity you

select in the output window. This window also contains several right-click context

ITEM

978

menu items for each solution, including a "More Information" button which will
open the documentation to information about that specific task. Another useful
feature of the solution window is that in most cases clicking on one of the
solutions will preview that option in the graphics window.

• Execute Button - Executes the solution selected.
• Additional Options - Sometimes you won't see your desired solution in the list.

Additional solutions with brief descriptions are provided at the bottom of the
panel. Clicking on these links will open the corresponding control panel.

• More Information Link - Opens a page describing the diagnostics and solutions
used for this panel.

The Small Features Panel shows an example diagnostic panel in ITEM.

Cubit_15.5_User_Documentation

979

Remove Small Features Diagnostic Panel

Undo Button
The Undo button allows you to reverse the most recent command. To enable the Undo
button, click on the "Enable Undo" option from the Edit menu. The undo button works by
saving information about your model after each step. For large or complex models, this
can be time consuming, so you may need to disable the undo feature. Additionally, not
all commands are enabled for undo. Many of the graphics and meshing commands, and
various default settings are not included. Within ITEM, many commands are bundled into

ITEM

980

a single button click. Clicking undo will attempt to reverse all of the executed commands.
See the command line window for the results of the undo command.

Magic Mesh Button
This button, shown at the top of each ITEM panel, provides the user with the opportunity
to use Cubit’s internal automation algorithms to generate a mesh. In addition to simply
issuing a mesh command, it will attempt to execute the following steps.

• Geometry Cleanup: Check for small or ill-defined geometry and automatically
resolve it

• Auto-scheme: Automatically set meshing schemes and select sources and
targets for hex meshing

• Decomposition: If hex meshing, attempt to decompose the volume to admit a
sweep or mapped mesh

• Force Sweeps: For almost-sweepable geometry, modify the linking surfaces to
force a sweep

• Imprint/Merge: For assemblies, imprint adjacent volumes and merge common
surfaces

• Overlap check: Check for any remaining overlapping volumes and attempt to
resolve merge problems

• Mesh sizing: For tetrahedral meshing, automatically define a sizing function
based on geometry characteristics

• Interval Matching: For hex meshing, coordinate the assignment of curve
intervals.

• Sweep grouping: Determine an appropriate order to mesh volumes to reduce
dependencies

• Mesh: Perform the mesh operation volume(s)
• Mesh Quality: Check mesh quality and locally optimize if necessary

If for any reason, Cubit is unable to complete these steps without further user intervention,
the process will stop and the user will directed to continue with the ITEM workflow. For
simple geometries, executing the magic mesh button at this phase of the workflow may
be all that is necessary to completely define a good quality mesh. For other more complex
geometry, considerable user intervention may be required.
The magic mesh button may be executed at any time during the ITEM workflow by
selecting the button at the top right corner of the ITEM panel. Once the user has visited
the various panels of the ITEM interface to provide user intervention, the automatic
execution of the appropriate operations will not longer be attempted.

Getting Help
There are several ways to get help from within the ITEM interface. Most of these have
already been discussed, but they are listed here again for reference:

• How to Use ITEM - This document which is available only from the main task
page

• Guide to Meshing in ITEM - A document which describes the ITEM workflow,
and how to use the diagnostics on each page. This is accessible from each page
using the More Information links.

Cubit_15.5_User_Documentation

981

• Individual help topics for specific solutions - Opens the documentation to
help for each specific solution topic. This is accessible from the right-click menu
when a command is selected in the solutions window.

• Documentation included on panels - Many of the panels contain brief
descriptions and explanations to describe the features and tools on that panel.

Setting up the Finite Element Model
Once the geometry to be meshed has been imported or created, the first step to defining
the mesh is to set up the model. Basic parameters that are needed through the rest of the
ITEM workflow are defined at this stage. Subsequent diagnostics and workflow may
change based on how the model is initially set up.
Element Shape
Either a hexahedral or tetrahedral element shape may be selected. The meshing
algorithm used to mesh the volumes will change based on this setting. Specific element
characteristics such as the order of the element (i.e. TET10, HEX20) may be specified at
a later time. The steps that will be displayed in the workflow will change based on the
element type that is selected.
FEA Model Size
The number of elements or average size of the elements is an important aspect of defining
your analysis model. Geometric features that are considerably smaller than the average
element size, in most cases should be ignored since the mesh resolution will not be able
to adequately capture them. Defining the element size at this point in the workflow permits
subsequent diagnostic tests and operations to have a relative measure of what is “small”.
More detailed sizing attributes such as biasing and geometry-adaptive sizing may be
defined later in the ITEM workflow.
One of three different mechanisms may be used to define the size, element budget,
element size and mesh density. Each of these values is dependent on the other. As a
result, changing one value will automatically change the other.

• Element Budget: This value is an approximate number of elements that should be
generated in the entire model. The element budget for hexahedra, Nhex, is related
to the element size, esize, by the following relationship:

• Where Vmodel is the geometric volume of the solid model. The element budget for

tetrahedra vs. hexahedra is approximately 1:7. That is, for an equivalent edge
length, a tetrahedral mesh will contain roughly seven times as many elements as
a hexahedral mesh.

• Element Size: Element budget and mesh density are indirect methods for setting
the element size, esize. This value can also be set explicitly. It represents the
approximate average edge length of elements in the model. This size will
determine the relative definition of small for subsequent diagnostic tests and will
be used to set the mesh size the meshing algorithms will use.

• Mesh Density: The mesh density is represented by an integer between 1 and 10,
where 1 is the finest resolution and 10 is the coarsest. It is a heuristic measure of

ITEM

982

how fine of a mesh will be generated and permits the user to indirectly set an
element size without explicitly defining a real value. In most cases, the mesh
density, md is related to the element size, esize by the following heuristic
relationship:

Where Vmax is the of the geometric volume of the largest volume in the solid model.
Changing the target mesh density will display a preview of the approximate nodal
spacing on the curves of the model in the graphics window.

Defining the Geometric Model
Various methods may be used to define a geometric model. In most cases, a solid model
is created in a commercial CAD tool such as Pro/Engineer or Solidworks. It can also be
generated natively within Cubit using geometry commands. One of the most time
consuming tasks in developing an analysis model is in dealing with geometric anomalies.
Carefully considering how the model is constructed and what format the model will be
defined in can eliminate many potential problems downstream in the model creation
workflow. The following describes the various solutions for defining geometry within Cubit
along with their pros and cons:

• Geometry Formats

• Creating Your Own Geometry
• Scripting
• CUB Files

Geometry Formats
Cubit can use one of three different commercial geometry representations, ACIS (.sat,
.sab), Pro/E (.g) or Catia (.cat). It may also use a facetted format (MBG) that is developed
in-house at Sandia. When a model of any of these formats is imported, Cubit uses the
appropriate third party geometry kernel to directly manage and evaluate the geometry.
Since the geometry is considered “native” when any of these formats is used, no
translation step is required.
Since commercial solid modelers do not necessarily agree on formats and
representations, using a translation process to convert a non-native format to a native
format, can introduce errors in the geometry. While this in itself may not be a show-
stopper, it can frequently add hours to an otherwise simple process while the user is
forced to clean up dirty geometry. Neutral formats such as STEP and IGES are common
in the CAE industry. They can often be an ideal solution for representing the analysis solid
model. In Cubit, when importing a neutral format, it is automatically translated to the ACIS
format. The user should be careful however in selecting these formats as commercial
solid modeling engines frequently interpret standard specifications for these formats in
different ways sometimes resulting in unusual results. Wherever possible a native format
should be used.

Cubit_15.5_User_Documentation

983

Native geometry kernels provide the most accurate way for transferring data between
solid-model based applications. Since these geometry kernels must be licensed and
incorporated into the Cubit distribution separately, one drawback is the additional
licensing and cost for maintaining these kernels. Cubit is currently able to provide licenses
for ACIS and Pro/E kernels for government and academic use. Additional licensing
arrangements may be required for Catia or for any commercial use.
Creating your own geometry
Cubit offers a wide variety of tools for creating geometry natively. The advantage to this
is the ability to control the geometry creation process without the need for another CAD
tool. Although Cubit is not designed to be a CAD tool it does provide many tools for both
bottom-up and primitive creation.
Bottom-up creation refers to the process of building geometry from its basic components
starting with vertices, curves, surfaces and then volumes. This process can be somewhat
tedious, but is often useful for generating auxiliary geometry once a CAD model has been
imported.
Primitive creation refers to the various operations for generating geometric primitives such
as bricks, spheres, cylinders and cones. Once defined, operations for repositioning the
objects and performing Boolean operations between them may be used. Relatively
complex models may be generated using this approach.
Scripting
One advantage to generating your own geometry within Cubit is the ability to
parameterize the construction of the model. Cubit utilizes a rich command language that
can be stored as a script or journal file. Parameters representing dimensions of objects
may be defined in the script and conveniently adjusted to update the geometry
representation. For more ambitious users, Cubit also has the ability to interpret python
scripts, allowing a high degree of customization that can employ the full capability of the
python scripting language.
It should be noted that when using Cubit, commands are automatically echoed to an
external temporary journal file on disk and to the history window. Observing these
commands is a good way to become familiar with Cubit’s internal command language.
Copying and pasting selected commands to a text editor is an ideal method for building
a parameterized journal file. Journal files may be built up and played back to reproduce
the entire process of building an analysis model.
CUB Files
A CUB file is Cubit’s database file. You may want to think of it as a snap-shot of the
current state of the model. While journal files record the process for creating the model,
a CUB file stores only the end state. It can include both geometry in its native format and
any mesh information as well as attributes and boundary condition information. Restoring
a CUB file will write over any existing data you currently have defined.

Generating a Mesh in ITEM
The mesh generation panel in ITEM is different from the other panels in Cubit. Meshing
errors can arise from a number of different problems. Many of these problems are caused
from improper geometry preparation/cleanup. Other problems can be caused from
improper interval settings, or meshing schemes. Instead of suggesting specific operations
as it does on other panels, the meshing panel in ITEM will suggest several possible

ITEM

984

solutions based on the error message output. Each of these solutions may require
significant user input, and may require you to revisit previous ITEM panels or Control
panels. To open the appropriate Control panel, you can right click on the solution and
select "Show Command Panel". For convenience, these general solutions are described
here, including which ITEM panels and which Control panels they refer to. References to
help topics are also included.

Figure 1. ITEM Mesh Panel

ITEM Meshing Suggestions

1. The volume is not decomposed enough. It may need to be webcut.

Diagnostic: This solution message appears when auto scheme selection fails.
There are many reasons that auto scheme selection may have failed. Check to
make sure that your volume is broken up into meshable parts. For sweepable
volumes, this means that each volume should only have one target surface.
Action: Right-clicking on this solution and selecting the "Show command panel"
option will open the webcutting commands on the control panel. Alternatively, you
can also return to the ITEM decomposition panel for more webcutting suggestions.

Cubit_15.5_User_Documentation

985

Help Topics:
Geometry Decomposition explains diagnostics and solutions on the ITEM
decomposition panel
Decomposition Tutorial has several webcutting tips and examples.
Web Cutting Documentation contains all of the syntax for webcutting commands
in Cubit.

2. Meshing schemes may need to be manually set.

Diagnostic: This solution message appears when auto scheme selection fails,
interval matching fails, or interval assignments fail. Setting the schemes manually
may help resolve some of these issues. It may also help to set source and target
surfaces explicitly for swept meshes.
Action: The volume schemes can be set explicitly from the Volume-Mesh control
panel. The "Set Source and Target" panel in ITEM can be used to aid in setting
explicit source and target surfaces for swept meshes.

Help Topics:
Recognizing Nearly Sweepable Regions explains how ITEM might be used to
recognize nearly sweepable regions.
Meshing the Geometry has some suggestions for getting difficult geometry to
mesh.
Decomposition Tutorial has several examples where the meshing schemes have
to be set manually.
Meshing Schemes gives an overview of all of the meshing schemes in Cubit.

3. The mesh size or number of intervals on a volume may need to be
changed.

Diagnostic: This solution message appears for many reasons: auto scheme
selection fails, interval matching fails, interval assignments fail, inconsistent edge-
face ratios, odd number of intervals on a paver loop, or connectivity problems.
Setting explicit intervals may be necessary
Action: The volume mesh intervals can be set explicitly from the Volume-Interval
control panel. The "Set Element Sizes" panel in ITEM can be used to aid in setting
explicit sizes and sizing functions for meshes.

Help Topics:
Interval Assignment has links to different interval assignment methods in Cubit
Bias, Dualbias describes how to create a biased mesh and Controlling Mesh
Quality describes how to propagate a curve bias.
Decomposition Tutorial has several examples where the meshing intervals are
set manually.
Mesh Adaptivity and Sizing Functions describes how to use sizing functions in
Cubit.

ITEM

986

4. Compositing surfaces or curves to remove unnecessary details may
resolve the problem.

Diagnostic: This solution message appears when auto-scheme selection fails. A
model may contain small curves or surfaces that need to be composited with
adjacent surfaces. Or it may just contain more detail than is needed for analysis.
Compositing surfaces and curves does not affect the underlying geometry.
Action: The Remove Small Features or Force Sweep Topology panels in ITEM
may suggest several possible candidates for compositing. The Surface-Modify-
Composite or the Curve-Modify-Composite panels can be used to composite
surfaces or curves respectively. These panels are also used to delete virtual
geometry from curves or surfaces.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and
narrow features in your model.
Forced Sweepability describes using ITEM to force sweepability using virtual
geometry.
Composite Curves explains how to composite curves in Cubit.
Composite Surfaces explains how to composite surfaces in Cubit.
Decomposition Tutorial Example 7 has an example of using composite curves to
improve meshability.
Power Tools Tutorial has another example of using composite geometry.

5. Collapsing surfaces, curves, or angles to remove unnecessary details may
resolve the problem.

Diagnostic: This solution message appears when auto-scheme selection fails.
Collapsing a surface involves splitting a surface, and compositing it with adjacent
surfaces.
Action: The Remove Small Features panel in ITEM may suggest several possible
candidates for collapse. The Surface-Modify-Collapse, Curve-Modify-Collapse, or
Vertex-Modify-Collapse Angle panels can also be used to collapse surfaces,
curves, or angles respectively.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small
and narrow features in your model.
Collapse Angle explains how to collapse angles in Cubit.
Collapse Curves explains how to collapse curves in Cubit.
Collapse Surfaces explains how to collapse surfaces in Cubit.

6. Removing unnecessary surfaces or curves to simplify geometry may
improve the chances that a volume will mesh.

Cubit_15.5_User_Documentation

987

Diagnostic: This solution message appears when auto-scheme selection fails.
Removing unnecessary surfaces may improve meshability.
Action: The Remove Small Features panel in ITEM may suggest several possible
candidates for removal. The Surface-Modify-Tweak panel, Surface-Modify-
Remove panel, Curve-Modify-Tweak or the Volume-Modify-Remove Slivers
panels are also used to remove unnecessary features in a model.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small
and narrow features in your model.
Removing Geometric Features describes the syntax for removing unneeded
surfaces and vertices, including sliver surfaces.
Tweaking Geometry contains the syntax for tweaking surfaces, curves, and
vertices.
Power Tools Tutorial has an example of using the tweak surface command to
simplify a model.

7. Smoothing the mesh may improve the mesh quality.

Diagnostic: This solution message appears when mesh generation creates poor
quality elements, particularly if it creates inverted or "negative Jacobian" elements.
In some cases, smoothing a mesh may get rid of these bad elements.
Action: Depending on the geometry type, the smoothing panel can be accessed
from the Control panel under Volume-Smooth or Surface-Smooth panels. It is also
helpful to use the Validate Mesh page in ITEM for assessing quality metrics.

Help Topics:
Mesh Smoothing describes the different smoothing schemes in Cubit and how to
use them.
Mesh Validation describes how to use quality metrics in ITEM and gives
suggestions on smoothing schemes to try.
Mesh Quality Assessment describes the different quality metrics in Cubit and
how to use them.

8. Deleting the mesh on an entity in order to further decompose or modify it
may be necessary.

Diagnostic: This solution message appears when mesh generation creates a poor
quality mesh, due to negative Jacobians, inconsistent edge-face ratios,
connectivity problems, or any other invalid mesh configuration. Mesh generation
can be a very iterative process. It is sometimes necessary to delete a mesh and
try different schemes, sizes, or even just change the meshing order. Sometimes
you must further decompose or modify your geometry to get it to mesh.
Action: To delete a mesh, you can select it in the graphics window and choose
Delete Mesh from the right-click context menu. You can also delete a mesh from
any of the Mesh-Entity-Delete panels on the Control Panel.

ITEM

988

Help Topics:
Mesh Deletion describes command line syntax for deleting a mesh.

9. Changing vertex types may make the surface or volume meshable.

Diagnostic: This solution message appears when mesh generation fails to assign
valid vertex types on mapped or submapped surfaces.
Action:To change the vertex type on a surface, select the Surface-Mesh-Submap-
Advanced or Surface-Mesh-Map-Advanced panels. From here you can assign and
view vertex types.

Help Topics:
Surface Vertex Types describes how to change the vertex types on a geometry.

Validating the Mesh in ITEM
Advancements in the mesh generation algorithms have significantly reduced the amount
of quality problems seen in the initially generated mesh. Further, ITEM generally relies on
the most robust meshing algorithms available in CUBIT, specifically sweeping for
hexahedral mesh generation (Scott,05) and the MeshGems (George,91) meshing
software (See http://www.distene.com). However, some problems can still exist, and
therefore ITEM has integrated quality diagnostics and solution options.
Diagnostics: After the mesh has been generated, the user may choose to perform
element quality checks. ITEM utilizes the Verdict (Stimpson,07) library where a large
number of mesh quality metrics have been defined and available as a modular library. If
no user preference is specified, ITEM uses the Scaled Jacobian distortion metric to
determine element quality. This check will warn users of any elements that are below a
default or user-specified threshold, allowing various visualization options for displaying
element quality.
Solutions: If the current element quality is unacceptable, ITEM will present several
possible mesh improvement solutions. The most promising solutions are provided
through ITEM's interface to two smoothers: mean ratio optimization and Laplacian
smoothing. These are provided as part of the Mesquite (Brewer,03) mesh quality
improvement tool built within CUBIT. The user has the option of performing these
improvements on the entire mesh, subsets of the mesh defined by the element quality
groups, or on individual elements. The Laplacian smoothing scheme allows the users to
smooth just the interior nodes or to simultaneously smooth both the interior and boundary
nodes in an attempt to improve surface element quality.

clean up
Recognizing Nearly Sweepable Regions
The purpose of geometry operations such as decomposition is to transform an
unmeshable region into one or more meshable regions. However, even the operations
suggested by the decomposition tool can degenerate into guesswork if they are not

http://www.distene.com/

Cubit_15.5_User_Documentation

989

performed with a specific purpose in mind. Without a geometric goal to work toward, it
can be difficult to recognize whether a particular operation will be useful.
Incorporated within the proposed ITEM environment are algorithms that are able to detect
geometry that is nearly sweepable, but which are not fully sweepable due to some
geometric feature or due to incompatible constraints between adjacent sections of
geometry. By presenting potential sweeping configurations to the user, ITEM provides
suggested goals to work towards, enabling the user to make informed decisions while
preparing geometry for meshing.
Unlike the decomposition solutions presented in the previous section, the purpose of
recognizing nearly sweepable regions is to show potential alternative source-target pairs
for sweeping even when the autoscheme tool does not recognize the topology as strictly
sweepable. When combined with the decomposition solutions and the forced sweepability
capability described later, it provides the user with an additional powerful strategy for
building a hexahedral mesh topology.
Diagnostics: In recognizing nearly sweepable regions, the diagnostic tool employed is
once again the autoscheme tool described in [White, 00]. Volumes that do not meet the
criteria defined for mapping or sweeping are presented to the user. The user may then
select from these volume for which potential source-target pairs are computed.
Solutions: The current algorithm for determining possible sweep configurations is an
extension of the autoscheme algorithm described in [White, 00]. Instead of rejecting a
configuration which does not meet the required sweeping constraints, the sweep
suggestion algorithm ignores certain sweeping roadblocks until it has identified a nearly
feasible sweeping configuration. The suggestions are presented graphically, as seen in
Figure 1. In most cases, the source-target pairs presented by the sweep suggestion
algorithm are not yet feasible for sweeping given the current topology. The user may use
this information for further decomposition or to apply solutions identified by the forced
sweepability capability described next. The sweep suggest algorithm also provides the
user with alternative feasible sweep direction solutions as shown in Figure 1. This is
particularly useful when dealing with interconnected volumes where sweep directions are
dependent on neighboring volumes.

ITEM

990

Figure 1. (a) ITEM displays the source and target of a geometry that is nearly sweepable.

The region is not currently sweepable due to circular imprints on the side of the cylinder.

(b) Alternative feasible sweep directions are also computed.

Blend Surfaces
Blend surfaces are common in solid model meshing problems. A blend surface, also
known as a fillet or chamfer, is problematic for sweeping algorithms which have trouble
assigning vertex types on blend surfaces. While blend surfaces present a challenge for
meshing applications, there are many tools within ITEM to help guide the user through
possible solutions.
Diagnostic: Blend surfaces are detected by looping over the curves on a surface and
examining the angles, surface normals, and curvature of curves and adjacent surfaces.
Solutions: The current solution to blend surfaces is to remove the surface and attempt
to extend adjacent surfaces to fill in the gap. An example of blend surfaces that have been
removed is shown below. This is useful for models which can be simplified without losing
important topology.

Figure 1. A volume which has been simplified by removing blend surfaces.

Clean Up the Geometry
Meshing packages have the challenge of dealing with a host of geometry problems. Many
of these problems can be generalized as file translation issues. Typically, the geometry
used in a meshing package has not been created there but in one of many CAD
packages. Exporting these files out of CAD and into a neutral file format (IGES, STEP,
SAT) accepted by the meshing software can introduce misrepresentations in the
geometry. If the CAD and meshing packages do not support the same file formats, a
second translation may be necessary, possibly introducing even more problems.
Another complication caused by file translation is that of tolerances. Some CAD packages
see two points as coincident if they are within 1e-3 units, while others use 1e-6. If the
meshing software's tolerance is finer than the CAD package's, this disparity in tolerance
can cause subsequent geometry modification operations in the meshing package to
inadvertently create sliver features, which tend to be difficult and tedious to deal with. This
tolerance problem also causes misalignment issues between adjacent volumes of

Cubit_15.5_User_Documentation

991

assemblies, hindering the sharing of coincident geometry in order to produce a conformal
mesh.
Modeling errors caused by the user in the CAD package is another problem that the
meshing package has to correct. In the CAD package, the user may not create the
geometry correctly, causing some parts to overlap, or introduce small gaps between parts
that should touch. Many times these problems are detected in the meshing package at a
point when it is not feasible to simply go back into the CAD system and fix the problem,
so the meshing package must be capable of correcting it.
Several approaches for addressing the geometry cleanup problem have been proposed
in the literature, but they typically provide operations that are automatically applied to the
geometry once one or more topology problems have been identified. While very effective
in many cases, they generally lack the ability for the user to have control over the
resolution of these CAD issues while still maintaining the option for automation. The ITEM
environment provides tools to both diagnose these common issues and to provide a list
of solutions from which the user may select that will correct the problems.
For the purposes of mesh generation, features in a solid model that should be carefully
considered and addressed prior to meshing generally fit in one of four categories:

• Bad geometry representation As a result of translation errors between CAD
representations, errors or differences in the way the geometry is interpreted may
occur. Depending on the severity of the problem, sometimes a mesh can be
generated even with a less-than perfect geometric representation, however, in
most cases, these should be resolved before meshing.

• Small details in the model In some cases there exist small details in the geometry
that, if meshed, would result in very small elements and a potentially huge
element budget. Small curves and surfaces can sometimes result from details in
the design solid model that may not be necessary for analysis or may even be a
result of careless construction of the CAD model. In either case, it is important to
remove or modify these features before meshing.

• Compatible topology for meshing scheme Several meshing algorithms, such as
the structured, mapping and sweeping techniques require a specific configuration
of vertices, curves and surfaces in order to operate. Operations to decompose
the geometry into a meshable topology are often needed. Other unstructured
techniques like paving, and tetrahedral meshing do not require decomposition.

• Conformal topology for assemblies Assemblies of parts are often required to
have a conformal mesh across their interface. (i.e. Shared nodes at a common
boundary). The operations imprint and merge are often required to connect parts
together so that when meshed, the representation will be a single continuous
mesh.

Being able to recognize when a problem exists and what operations to apply to resolve
issues in each of the four categories described above, is indeed an art-form and requires
significant experience to become proficient. ITEM will not take the place of an
experienced user, but it is intended to offer the user help along the way by detecting
potential problems and suggesting solutions they might consider.

ITEM

992

Resolving Problems with Conformal Assemblies
Where more than a single geometric volume is to be modeled, a variety of common
problems may arise that must be resolved prior to mesh generation. These are typically
a result of misaligned volumes defined in the CAD package or problems arising from the
imprint and merge operations in the meshing package. ITEM addresses some of the
same problems by allowing the option for user interaction as well as full automation using
the CAD geometry representation. The proposed environment utilizes two main
diagnostics to detect potential problems: the misalignment check, and the overlapping
surfaces check. Associated with both of these are solutions that are specific to the entity
and from which the user may preview and select to resolve the problem.

Resolving Misaligned Volumes with Manage Gaps/Overlaps Tool

The Manage Gaps/Overlaps Tool within the geometry cleanup area of ITEM allows the
user to quickly search an assembly for gaps and overlaps between assembly
components. The search criteria for gaps is a tolerance specified by the user and defines
the maximum gap between components to look for. A gap angle can also be specified
which specifies how "parallel" two entities must be to be considered in the gap check. The
overlap check simply asks Cubit to see if any of the volumes are overlapping and doesn't
require a tolerance from the user. The results are displayed in a list of pairs of volumes.
The user can right-click on these pairs and tell Cubit to draw the pair. A useful graphical
depiction of the gap or overlap will be displayed. When the user clicks on a pair in the list
a set of solutions for fixing the gap or overlap will also be displayed below in a separate
list. The user can select a solution and click the "Execute" button to execute it. The gap
solutions are either a surface "tweak" operation and the overlap solution can be either a
tweak operation or a Boolean operation to remove the overlap. This tool provides a
powerful way to quickly work through the assembly and fix gaps and overlaps.

Cubit_15.5_User_Documentation

993

Resolving Misaligned Volumes with Near Coincident Vertex Checks

The near coincident vertex check or misalignment check is used to diagnose possible
misalignments between adjacent volumes. This diagnostic is performed prior to the
imprint operation in order to reduce the sliver surfaces and other anomalies which can
occur as a result of imprinting misaligned volumes. With this diagnostic, the distance
between pairs of vertices on different volumes are measured and flagged when they are
just beyond the merge tolerance. The merge tolerance, T, is the maximum distance at
which the geometry kernel will consider the vertices the same entity. A secondary
tolerance, Ts, is defined where Ts > T which is used for determining which pairs of vertices
may also be considered for merging. Pairs of vertices whose distance, d is T < d > Ts are
presented to the user, indicating areas in the model that may need to be realigned. The
misalignment check should also detect small distances between vertices and curves on
adjacent volumes.

ITEM

994

When pairs of vertices are found that are slightly out of tolerance, the current solution is
to move one of the surfaces containing one vertex of the pair to another surface containing
the other vertex in the pair. Moving or extending a surface is known as tweaking.

Figure 1. Example of a solution generated to correct misaligned volumes using the tweak

operator

The result of this procedure will be a list of possible solutions that will be presented to the
users. They can then graphically preview the solutions and select the one that is most
appropriate to correct the problem.

Correcting Merge Problems

The merge operation is usually performed immediately following imprinting and is also
subject to occasional tolerance problems. In spite of correcting misalignments in the
volume, the geometry kernel may still miss merging surfaces that may occupy the same
space on adjacent volumes. If volumes in an assembly are not correctly merged, the
subsequent meshes generated on the volumes will not be conformal. As a result, it is vital
that all merging issues be resolved prior to meshing. The ITEM environment provides a
diagnostic and several solutions for addressing these issues.
An overlapping surface check is performed to diagnose the failed sharing of topology
between adjacent volumes. In contrast to the misalignment check, the check for
overlapping surfaces is performed after the imprinting and merging operations. The
overlapping surface check will measure the distance between surfaces on neighboring
volumes to ensure that they are greater than the merge tolerance apart. Pairs of surfaces
that failed to merge and that are closer than the merge tolerance are flagged and
displayed to the user as potential problems.
A test for nonmanifold curves and vertices is also performed after imprinting and merging
to find geometry that was not merged correctly. The test for nonmanifold curves is looking
for curves that are merged, but do not share merged surfaces. Similarly, the test for
nonmanifold vertices is looking for merged vertices that do not share any merged curves.
Another test for floating volumes is performed to identify volumes that are not attached to
any other entities.
If imprinting and merging has been performed and a subsequent overlapping surface
check finds overlapping surface pairs, the user may be offered three different options for
correcting the problem: force merge, tolerant imprint of vertex locations and tolerant
imprint of curves.
If the topology for both surfaces in the pair is identical, the force merge operation can
generally be utilized. The merge operation will remove one of the surface definitions in

Cubit_15.5_User_Documentation

995

order to share a common surface between two adjacent volumes. Normally this is done
only after topology and geometry have been determined to be identical, however the force
merge will bypass the geometry criteria and perform the merge. Figure 2 shows a simple
example where the bounding vertices are identical but the surface definitions are slightly
different so that the merge operation fails. Force merge in this case would be an ideal
choice.

Figure 2. Example where the merge operation will fail, but force merge will be successful

The force merge operation is presented as a solution where a pair of overlapping surfaces
are detected and if any of the following criteria are satisfied:

• All curves of both surfaces are merged

• All vertices between the two surfaces are merged and all the curves are
coincident to within 1% of their length or 0.005, whichever is larger

• All the curves of both surfaces are either merged or overlapping and a vertex of
any curve of one surface that will imprint onto any other curve of the other
surface cannot be identified

• At least one curve of one surface may be imprinted onto the other and if both
surfaces have an equal number of curves and vertices, and the overlapping area
between the 2 surfaces is more than 99% of the area of each surface. This
situation generally prevents generating sliver surfaces

• At least one vertex of surface B may be imprinted onto surface A, and if both
surfaces have equal number of curves and vertices, and the vertex(s) of surface
B to imprint onto surface A lies too close to any vertices of surface A

• All the curves of both surfaces are either merged or overlapping and no vertices
of any curve of surface A will imprint onto any other curve of surface B

Individual vertices may need to be imprinted in order to accomplish a successful merge.
The solution of imprinting a position x,y,z onto surface A or B is presented to the user if
the following criteria is met

• Curves between the two surfaces overlap within tolerance, and a vertex of curve
A lies within tolerance to curve B and outside tolerance to any vertex of curve B.
Tolerance is 0.5% of the length of the smaller of the 2 curves or the merge
tolerance (0.0005), whichever is greater.

ITEM

996

Figure 3. Curve on surface A was not imprinted on surface B due to tolerance mismatch.

Solution is defined to detect and imprint the curve

In some cases one or more curves may not have been correctly imprinted onto an
overlapping surface which may be preventing merging. This may again be the result of a
tolerance mismatch in the CAD translation. If this situation is detected a tolerant imprint
operation may be performed which will attempt to imprint the curve onto the adjacent
volume. Figure 3 shows an example where a curve on surface A is forced to imprint onto
surface B using tolerant imprint, because it did not imprint during normal imprinting. The
solution of a curve of surface A to be imprinted onto surface B may be presented to the
user if all 3 of the following conditions are satisfied:

• There are no positions to imprint onto the owning volume of either surface

• Curve of surface A is not overlapping another curve of surface B
• Curve of surface A passes tests to ensure that it is really ON surface B

Contact Surfaces
A contact surface is two surfaces which overlap, but are not merged. In a physical sense,
this could represent two surfaces which come in contact with each other, as opposed to
two surfaces which merely form a partition for meshing purposes. It is easy using the
ITEM interface to identify and select contact surfaces in your model. Simply select
surfaces in the graphics window and press the "Add" button on the ITEM interface. The
contact surfaces will be shown in the window.
To remove a contact surface from the list, right click on the surface and select "Not a
Contact Surface" from the context menu to remove that specific surface, or "Remove all
contact surfaces" to remove all contact surfaces. Several other visualization tools are also
available from the context menu including Zoom, Fly-in, Draw, List, Locate, etc.

Geometry Decomposition
Automatic decomposition has been researched and tools have been developed which
have met with some limited success [Lu,99 , Staten,05]. Automatic decomposition
requires complex feature detection and sub-division algorithms. The decomposition
problem is at least on the same order of difficulty as the auto-hex meshing problem. Fully
automatic methods for quality hexahedral meshing have been under research and

Cubit_15.5_User_Documentation

997

development for many years [Blacker,93 , Folwell,98 , Price,95]. However, a method that
can reliably generate hexahedral meshes for arbitrary volumes, without user intervention
and that will build meshes of an equivalent quality to mapping and sweeping techniques,
has yet to be realized. Although fully automatic techniques continue to progress
[Staten,06], the objective of the proposed environment is to reduce the amount of user
intervention required while utilizing the tried and true mapping and sweeping techniques
as its underlying meshing engine.
Instead of trying to solve the all-hex meshing problem automatically, the ITEM approach
to this problem is to maintain user interaction. The ITEM algorithms determine possible
decompositions and suggest these to the user. The user can then make the decision as
to whether a particular cut is actually useful. This process helps guide new users by
demonstrating the types of decompositions that may be useful. It also aids experienced
users by reducing the amount of time required to set up decomposition commands.
Diagnostics: The current diagnostic for determining whether a volume is mappable or
sweepable is based upon the autoscheme tool described in [White,00]. Given a volume,
the autoscheme tool will determine if the topology will admit a mapping, sub-mapping or
sweeping meshing scheme. For volumes where a scheme cannot be adequately
determined, a set of decomposition solutions are generated and presented to the user.
Solutions: The current algorithm for determining possible cut locations is based on the
algorithm outlined in [Lu,99] and is described here for clarity:

• Find all curves that form a dihedral angle less than an input value (currently 135)
• Build a graph of these curves to determine connectivity
• Find all curves that form closed loops
• For each closed loop:

o Find the surfaces that bound the closed loop
o Save the surface
o Remove the curves in the closed loop from the processing list

• For each remaining curve:
o Find the open loops that terminates at a boundary
o For each open loop:

▪ Find the surfaces that bound the open loop
▪ Save the surfaces

• For each saved surface:
o Create an extension of the surface
o Present the extended surface to the user as a possible decomposition

location.

This relatively simple algorithm detects many cases that are useful in decomposing a
volume. Future work will include determining symmetry, sweep, and cylindrical core
decompositions. These additional decomposition options should increase the likelihood
of properly decomposing a volume for hexahedral meshing.
Figure 1 shows an example scenario for using this tool. The simple model at the top is
analyzed using the above algorithm. This results in several different solutions being
offered to the user, three of which are illustrated here. As each of the options is selected,
the extended cutting surface is displayed providing rapid feedback to the user as to the

ITEM

998

utility of the given option. Note that all solutions may not result in a volume that is closer
to being successfully hex-meshed. Instead the system relies on some user understanding
of the topology required for sweeping.
Each time a decomposition solution is selected and performed, additional volumes may
be added, which will in turn be analyzed by the autoscheme diagnostic tool. This
interactive process continues until the volume is successfully decomposed into a set of
volumes which are recognized as either mappable or sweepable.

Figure 1. ITEM decomposition tool shows 3 of the several solutions generated that can be

selected to decompose the model for hex meshing

Forced Sweepability
In some cases, decomposition alone is not sufficient to provide the necessary topology
for sweeping. The forced sweepability capability attempts to force a model to have
sweepable topology given a set of source and target surfaces. The source-target pairs
may have been identified manually by the user, or defined as one the solutions from the
sweep suggestion algorithm described above. All of the surfaces between source and
target surfaces are referred to as linking surfaces. Linking surfaces must be mappable or
submappable in order for the sweeping algorithm to be successful. There are various
topology configurations that will prevent linking surfaces from being mappable or
submappable.
Diagnostics: The first check that is made is for small curves. Small curves will not
necessarily introduce topology that is not mappable or submappable but will often enforce
unneeded mesh resolution and will often degrade mesh quality as the mesh size has to
transition from small to large. Next, the interior angles of each surface are checked to see
if they deviate far from 90 multiples. As the deviation from 90 multiples increases the
mapping and submapping algorithms have a harder time classifying corners in the
surface. If either of these checks identify potential problems they are flagged and potential
solutions are generated.
Solutions: If linking surface problems are identified ITEM will analyze the surface and
generate potential solutions for resolving the problem. Compositing the problem linking
surface with one of its neighbors is a current solution that is provided. ITEM will look at

Cubit_15.5_User_Documentation

999

the neighboring surfaces to decide which combination will be best. When remedying bad
interior angles the new interior angles that would result after the composite are calculated
in order to choose the composite that would produce the best interior angles. Another
criterion that is considered is the dihedral angle between the composite candidates.
Dihedral angles close to 180 are desirable. The suggested solutions are prioritized based
on these criteria before being presented to the user. Figure 1 shows an example of a
model before and after running the forced sweepability solutions. The top and bottom of
the cylinder were chosen as the source and target surfaces respectively.

Figure 1. Non-submappable linking surface topology is composited out to force a sweepable

volume topology

Bad geometry representation
As a result of translation errors between CAD representations, errors or differences in the
way the geometry is interpreted may occur. Depending on the severity of the problem,
sometimes a mesh can be generated even with a less-than perfect geometric
representation, however, in most cases, these should be resolved before meshing.

Detecting Invalid Geometry

In most cases, bad or invalid topology or geometry definition comes from problems which
arise in the CAD translation process. CUBIT’s main geometry kernel, ACIS is used to
represent the model if it has been imported using an IGES or STEP format. Translation
to and from these neutral formats is frequently the cause of bad geometry. ITEM will use
the geometry validation procedures built into the ACIS kernel to detect if there is any bad
geometry and will list the entities that may be causing a problem.
Since the validation procedures are specific to ACIS, models that may have been
imported from another native format such as Pro/E will not provide this diagnostic.
Although this may seem like a severe limitation, importing native formats rarely have bad
geometry, since no translation process is necessary.
It is good practice to always check your model for bad geometry before proceeding to
other geometry or meshing operations. In some cases, if a webcut or meshing operation
fails, the cause is an invalid geometric definition that has not been adequately healed.
Resolving bad geometry problems up front, in most cases is essential to obtaining a
mesh. On the other hand, if the location of the bad geometry in the model is such that it
will not effect subsequent Boolean or decomposition operations, there may be a chance
that completely resolving bad geometry is not necessary. Simply ignoring bad geometry

ITEM

1000

that cannot be easily repaired with automatic procedures may be a reasonable solution,
provided the user is aware of the potential limitations.

Resolving Invalid Geometry

To resolve invalid geometry, ITEM uses the heal procedure built into the ACIS geometry
kernel. In almost all cases, this is a fully automatic procedure. Simply selecting the
automatic repair button will make the appropriate adjustments to the geometry. This can
be done one volume at a time by healing the owning volume, or by healing the full model
all at once. If healing was successful, No problems detected should be displayed.
If auto repair does not successfully repair the geometry, you may want to try additional
options available in Cubit for healing. See the Cubit documentation for a complete
description of additional healing options.

Determining an Appropriate Merge Tolerance
Determining the appropriate merge tolerance for a model can be essential for creating
conformal meshes on some models. The merge tolerance is a value that identifies at
which distance different entities can be considered the same entity. Many entities will fail
to merge because of widespread geometry tolerance or alignment problems that are
either too difficult, time-consuming or even impossible to resolve. Specifying a merge
tolerance that is larger than these small discrepancies allows the user to account for
geometry that is misaligned. But specifying a merge tolerance that is too large can
combine features the user wishes to keep, and possibly corrupt the model. The ideal
merge tolerance should be smaller than the smallest feature, but larger than the biggest
gap or misalignment that cannot be resolved. Since it is not always a simple task to
determine either of these features, the ITEM workflow provides a diagnostic tool designed
to guide the user to find the small misalignments that may lead to merge problems. It then
presents possible solutions to fix these problems, or the ability to change the merge
tolerance to ignore them.

Opening the Merge Tolerance Panel

To open the merge tolerance tool from the ITEM Wizard, click on Prepare Geometry-
>Connect Volumes->Imprint and Merge. Then click on the button with three dots next to
the Merge Tolerance input field.

Figure 1. How to open the merge tolerance panel

The merge tolerance panel is shown in the following image.

Cubit_15.5_User_Documentation

1001

Figure 2. The Merge Tolerance Diagnostic Panel

Estimating Merge Tolerance with Small Feature Size

Since the merge tolerance must be smaller than the smallest feature in the mesh, the
best place to start is by finding the smallest feature and using that value to create an
estimate for the merge tolerance. To find the smallest feature, click on the small button
with three dots next to the input box for Small Features.
Note: The small feature checks will not find misalignments between different volumes- it
will only list vertex-vertex pairs and vertex-curve pairs on the same volume. The small
feature size is used on the merge tolerance panel to find an initial estimate for the merge
tolerance.
After determining the smallest feature size, click on the Estimate Merge Tolerance button
to come up with a rough estimate for the merge tolerance. It is important to note that this

ITEM

1002

is only an estimate. After an initial estimate is made, it can be fine tuned using the Fine
Tune Merge Tolerance tool.

Fine Tuning the Merge Tolerance

In the fine tune merge tolerance area, the user may search for vertex-vertex, vertex-curve,
and vertex-surface pairs that are within user-specified ranges. This includes checks
between entities on different volumes. This allows the user to determine if the merge
tolerance he/she has determined will capture all of the merges he/she intends. The user
can check/uncheck which pairs to search for and what range to look in. The results from
the search will show up in the window below and the user can select the results, right
click on it, and choose Draw with Volumes to zoom into that pair of features. For vertex-
vertex pairs there may be tweak solutions presented to the user in the list box below for
fixing the problems.

Setting the Merge Tolerance

The Apply button next to Estimated Merge Tolerance edit field is used to take the
estimated merge tolerance and use it to set the merge tolerance in CUBIT by issuing the
Merge Tolerance <val> command.

Building a Sweepable Topology
The hex meshing problem presents a number of additional challenges to the user that
tetrahedral meshing does not. Where a good quality tetrahedral mesh can generally be
created once small features and imprint/merge problems have been addressed, the
hexahedral meshing problem poses additional topology constraints which must be met.
Although progress has been made in automating the hex meshing process, the most
robust meshing algorithms still rely on geometric primitives. Mapping [Cook, 82] and sub-
mapping [Whiteley, 96] algorithms rely on parametric cubes and sweeping[Knupp, 98;
Scott, 05] relies on extrusions. Most real world geometries do not automatically fit into
one of these categories so the topology must be changed to match the criteria for one of
these meshing schemes. ITEM addresses the hex meshing topology problem through
four primary diagnostic and solution mechanisms.

1. Detecting blend surfaces

2. Detecting and suggesting decomposition operations
3. Recognizing nearly sweepable topologies and suggesting source-target pairs
4. Detecting and compositing surfaces to force a sweep topology

Small details in the model
The small feature removal area of ITEM focuses on identifying and removing small
features in the model that will either inhibit meshing or force excessive mesh resolution
near the small feature. Small features may result from translating models from one format
to another or may be intentional design features. Regardless of the origin small features
must often be removed in order to generate a high quality mesh.

Cubit_15.5_User_Documentation

1003

ITEM will recognize small features that fall in four classifications:

1. small curves
2. small surfaces
3. narrow surfaces
4. surfaces with narrow regions

These operations may involve either real, virtual or a combination of both types of
operations to remove these features. A virtual operation is one in which does not modify
the CAD model, but rather modifies an overlay topology on the original CAD model. Real
operations, on the other hand directly modify the CAD model. Where real operations are
provided by the solid modeling kernel upon which CUBIT is built, virtual operations are
provided by CUBIT's CGM (Tautges, 00) module and are implemented independently of
the solid modeling kernel. The following describes the diagnostics for finding each of the
four classifications of small features and the methods for removing them.

Small Curves

Diagnostic: Small curves are found by simply comparing each curve length in the model

to a user-specified characteristic small curve size. A default epsilon () is automatically
calculated as 10 percent of the user specified mesh size, but can be overridden by the
user.
Solutions: ITEM provides three different solutions for eliminating small curves from the
model. The first solution uses a virtual operation to composite surfaces. Two surfaces
near the small curve can often be composited together to eliminate the small curve as
shown in Figure 1(a).
The second solution for eliminating small curves is the collapse curve operation. This
operation combines partitioning and compositing of surfaces near the small curve to
generate a topology that is similar to pinching the two ends of the curve together into a
single point. The partitioning can be done either as a real or virtual operation. Figure 1(b)
illustrates the collapse curve operation.
The third solution for eliminating small curves is the remove topology operation. This
operation can be thought of as cutting out an area around the small curve and then
reconstructing the surfaces and curves in the cut-out region so that the small curves no
longer exist. (Clark, 07) provides a detailed description of the remove topology operation.
This operation has more impact on the actual geometry of the model because it redefines
surfaces and curves in the vicinity of a small curve. The reconstruction of curves and
surfaces is done using real operations followed by composites to remove extra topology
introduced during the operation. Figure 1(c) shows the results using the remove topology
operation.

ITEM

1004

Figure 1. Three operators used for removing small curves (a) composite; (b) collapse curve;

(c) remove topology

Small and Narrow Surfaces

ITEM also addresses the problem of small and narrow surfaces. Both are dealt with in a
similar manner and are described here.
Diagnostic: Small surfaces are found by comparing the surface area with a characteristic
small area. The characteristic small area is defined simply as the characteristic small

curve length squared or 2.
Narrow surfaces are distinguished from surfaces with narrow regions by the characteristic
that the latter can be split such that the narrow region is separated from the rest of the
surface. Narrow surfaces are themselves a narrow region and no further splits can be
done to separate the narrow region. Figure 2 shows examples of each. ITEM provides
the option to split off the narrow regions, subdividing the surface so the narrow surfaces
can be dealt with independently.

Narrow regions/surfaces are also recognized using the characteristic value of . The
distance, di from the endpoints of each curve in the surface to the other curves in the

surface are computed and compared to . When di< other points on the curve are
sampled to identify the beginning and end of the narrow region. If the narrow region
encompasses the entire surface, the surface is classified as a narrow surface. If the region
contains only a portion of the surface, it is classified as a surface with a narrow region.

Cubit_15.5_User_Documentation

1005

Figure 2. Two cases illustrating the difference between surfaces with narrow regions and

narrow surfaces

Solutions: ITEM provides four different solutions for eliminating small and narrow
surfaces from the model. The first solution uses the regularize operation. Regularize is a
real operation provided by the solid modeling kernel that removes unnecessary/redundant
topology in the model. In many cases a small/narrow surface's definition may be the same
as a surface next to it and therefore the curve between them is not necessary and can be
regularized out. An example of regularizing a small/narrow surface out is shown in Figure
3.

Figure 3. When the small surface’s underlying geometric definition is the same as a

neighbor the curve between them can be regularized out.

The second solution for removing small/narrow surfaces uses the remove operation.
Remove is also a real operation provided by the solid modeling kernel. However, it differs
from regularize in that it doesn't require the neighboring surface(s) to have the same
geometric definition. Instead the remove operation removes the specified surface from

ITEM

1006

the model and then attempts to extend and intersect adjacent surfaces to close the
volume. An example of using the remove solution is shown in Figure 4.

Figure 4. The remove operation extends an adjacent surface to remove a small surface

The third solution for removing small/narrow surfaces uses the virtual composite
operation to composite the small surface with one of its neighbors. This is very similar to
the use of composites for removing small curves. An example is shown in Figure 5.

Figure 5. Composite solution for removing a narrow surface

The final solution for removing small/narrow surfaces uses the remove topology operation
(Clark, 07). The remove topology operation behaves the same as when used for removing
small curves in that it cuts out the area of the model around the small/narrow surface and
replaces it with a simplified topology. In the case of a small surface where all of the curves
on the surface are smaller than the characteristic small curve length, the small surface is
replaced by a single vertex. In the case of a narrow surface where the surface is longer
than the characteristic small curve length in one of its directions, the surface is replaced
with a curve. The remove topology operation can be thought of as a local dimensional
reduction to simplify the topology. The remove topology operation can also be used to
remove networks of small/narrow surfaces in a similar fashion. Examples of using the
remove topology solution to remove small/narrow surfaces are shown in Figures 6 and
Figure 7.

Cubit_15.5_User_Documentation

1007

Figure 6. Remove topology solution for removing a narrow surface

Figure 7.Remove topology solution for removing a network of narrow surfaces

Determining the Small Feature Size
The smallest feature size is a value that represents the size of the smallest detail in the
volume that the user wants to include in the final mesh. Any details that are smaller than
this size should be removed from the model before completing the other steps of the
meshing process. Small details can result from a variety of different reasons. Sometimes
the model contains excessive detail that the user does not need. Other times, small
features such as extra curves are created during import to account for a mismatching
topology. Still other times, the small features are the result of webcutting or other
decomposition methods. Ideally there should be a minimum threshold at which the user
decides to keep all features above the given size, and remove the rest. The smallest
feature size is used for other diagnostic tools, so selecting an appropriate feature size is
important for other steps in the mesh generation process.
After the Find Small Features button is pressed, Cubit lists the 10 closests vertex-vertex
and vertex-curve pairs. The pairs are listed in the display window from smallest to largest.
To see more pairs, change the search parameter in the input box. To visualize each pair,
the user can right click on a feature and select the Draw Pair with Volumes option. After
determining the smallest feature size the user can enter it in the edit field at the bottom of
the panel and it will be used in later calculations. The user can also right click on one of

ITEM

1008

the pairs in the list and choose Use as smallest feature to populate the edit field at the
bottom of the panel.

Why doesn’t the list include small gaps between volumes?

The smallest feature check is only searching over vertex-vertex and vertex-curve pairs in
the same volume. Small gaps and misalignments are not included in this list. The purpose
of the small feature diagnostic panel is to search for features that need to be removed
prior to meshing. A feature is an entity such as a small curve or sliver surface that exists
on a single volume which must be resolved by the mesh. A gap or misalignment is two
entities that should be coincident, but are not, due to translation or other problems. Gaps
and misalignments may not hinder mesh generation on a given volume, but they do
prevent proper imprinting and merging.
The imprint/merge, merge tolerance, and overlapping volume panels contain diagnostics
that check for misalignment problems. The purpose of those diagnostics is to enable
imprinting and merging of a volume with small misalignments.
Note: The smallest feature size is used as a metric on the merge tolerance page, but it is
only used to get an initial estimate for the merge tolerance. Small feature size and merge
tolerance represent different metrics, and should not be confused.
In Figure 1, the small feature size diagnostic finds small features with lengths of 0.707,
0.15 and 0.25. The user may decide that the smallest feature he or she wishes to keep is
the one at the 0.25 size. If he sets the small feature size to 0.25, the other features will
be flagged as small curves and surfaces on the Small Features page. They can then be
removed using tweaking and other geometry clean-up commands. If he sets the small
feature size to 0.707, none of the features will be flagged as small features.
In addition to the features shown, this model contains two vertices that are slightly
misaligned due to geometry translation problems. The nearly coincident vertices are not
listed on the small features list because the vertices lie on different volumes. To find these
near coincident vertices, the user would use the merge tolerance panel.

Cubit_15.5_User_Documentation

1009

Figure 1. Small Features and Overlap on a Model

1011

Appendix

Appendix

• Alpha Commands
• Available Colors
• Element Numbering
• FullHex vs. NodeHex Representation
• APREPRO
• Cubit Python Interface
• Navigation XML Files
• FASTQ
• Periodic Space-filling Models (Tile)
• Generating Meshes for Adaptive Topological Optimization (ATO)
• References

alpha
Alpha Commands
CUBIT has several functions that are currently in development and are considered
"Alpha" features. These features can be can be accessed or hidden within Cubit by typing
the following command:

Set Developer Commands {On|OFF}

The commands that are currently developer commands are:

• Automatic Detail Suppression

• Automatic Geometry Decomposition
• Cohesive Elements
• Deleting Mesh Elements
• Feature Size
• Optimize Jacobian
• Mesh Cutting
• Mesh Grafting
• Randomize Smoothing
• Refine Mesh Boundary
• Super Sizing Function
• Test Sizing Function
• Triangle Mesh Coarsening
• Transition
• Importing MBG Files
• Exporting MBG Files
• Remove Tiny Edge Length

Appendix

1012

Creating ACIS Geometry From Mesh
Note: These features are under development. The command to enable or disable
features under development is:
 Set Developer Commands {On|OFF}
Using the Acis options (in red) in the commands below will produce ACIS geometry
instead of mesh-based geometry. ACIS geometry is generally more desirable than mesh-
based geometry because it can be modified easily.

Importing a Mesh

Import Mesh Geometry '<exodusII_filename>' [Block <id_range>|ALL]

[Unique Genesis IDs] [Start_id <id>] [Use [NODESET|no_nodeset]

[SIDESET|no_sideset] [Feature_Angle <angle>]

[LINEAR|Gradient|Quadratic|Spline|Acis] [Deformed {Time <time>|Step

<step>|Last} [Scale <value>]] [MERGE|No_Merge] [Export_facets <1|2|3>]

[Merge_nodes <tolerance>]

This command tries to associate the mesh to the ACIS geometry that is created. If the
association fails, the mesh ends up as free mesh. For more information on this command
see: Importing Exodus II Files

Existing Mesh

 Create Mesh Geometry {Hex|Tet|Face|Tri|Block} <range> [Feature_Angle

<angle=135>] [Acis] [Keep]

This command tries to associate the mesh to the ACIS geometry that is created. If the
association fails, the mesh ends up as free mesh. For more information on this command
see: Free Meshes

Importing STL File

 Import STL '<filename>' Create Acis

Existing Mesh

 Create Geometry {Hex|Tet|Face|Tri} <id_range>

These two commands do not use blocks, sidesets, nodesets or a user-specified dihedral
angle to create vertices, curves, and surfaces. These commands use a proprietary third-
party routine to create geometry. They also do not associate the mesh to the ACIS
geometry that is created.

Automatic Detail Suppression
Note: This feature is under development. The command to enable or disable features
under development is:

Cubit_15.5_User_Documentation

1013

Set Developer Commands {On|OFF}

Geometry models often have small features, which can be difficult to resolve in a mesh.
In fact, these features are sometimes too small to see, and are revealed only when the
user attempts to mesh the geometry. Automatic detail suppression identifies and removes
the following types of features from the geometric model:

• valence-2 vertices

• short edges
• small faces

Details are removed using virtual geometry , which means they can be restored later if
desired.
There are several stages to the automatic detail suppression process, all of which can be
controlled separately by the user. Small details are identified using the command:

Detail <ref entity list> [identify] [dimension <dim> [only]]

The results are placed in a series of groups named "detail_vertices", "detail_edges",
"detail_faces" and "detail_volumes". These details can be drawn or highlighted using the
normal group commands:

Draw {detail_vertices | detail_edges | detail_faces | detail_volumes}

Highlight {detail_vertices | detail_edges | detail_faces | detail_volumes}

Or by using the following command:

Detail <ref entity list> draw [dimension <dim> [only]]

Details are removed automatically from the model using the command:

Detail <ref entity list> remove [dimension <dim> [only]]

The dimension option is used to identify the maximum dimension of entities examined
for small detail identification (<dim> is 3, 2, 1 for volumes, surface, and curves,
respectively). If the only identifier is specified, only entities of the specified dimension are
examined, otherwise that dimension and all lower dimensions are examined.
In some cases, details are identified which the user would like to retain in the model;
likewise, the algorithm used to identify small details sometimes misses small details the
user would like removed from the model. To include or exclude geometric entities from
the list of small details to be removed, the following command is used:

Detail <ref entity list> [include | exclude]

Example

Appendix

1014

Shown below is a model of a game die meshed with identical mesh size, with details
included (left) and removed (right).

Note: "Small" Measurement
Automatic detail suppression identifies "small" geometric entities by comparing their
"size" to the mesh size assigned by the user to the entity. Anything smaller than that size
is identified as being a detail and put in the appropriate detail group (e.g. detail_faces,
detail_edges, etc.). The size of an edge is simply its arc length; surfaces and volumes are
measured using the "hydraulic diameter" (see next note).
Note: Hydraulic Diameter
The hydraulic diameter of a surface is computed as 4.0*A/P, where A is the surface area
and P is the summed arc lengths of all bounding curves. For circles, the hydraulic
diameter is the circle diameter; for squares, it is the length of the bounding curves.
Similarly, for volumes, the hydraulic diameter is computed as 6.0*V/A, which evaluates to
the diameter and bounding curve length for perfect spheres and cubes, respectively.

Automatic Geometry Decomposition
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

In many cases, model geometry includes protrusions which, when cut off using geometry
decomposition, are easily meshable with existing algorithms. CUBIT includes a feature-
based decomposition capability, which automates this process. This algorithm operates
by finding concave curves in the model, grouping them into closed loops, then forming
cutting surfaces based on those loops. Although this algorithm is still in the research
stage, it can be useful for automating some of the decomposition required for typical
models.
To automatically decompose a model, use the command

Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]

Cubit_15.5_User_Documentation

1015

If the Trace option is used, the algorithm prints progress information as decomposition
progresses. The Depth option controls how many cuts are made before the algorithm
returns; by default, the algorithm cuts the model wherever it can.
Automatic decomposition is used to decompose the model shown in Figure 1 (left), with
the results shown in Figure 1 (right). In this case, automatic decomposition performs all
but one of the required cuts.

Figure 1. Model where automatic decomposition was utilized.

Cohesive Elements
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Cohesive elements are used to model things like adhesive that may lose its
bond. Elements in a cohesive region originally have zero volume or area, and then
expand as the simulation progresses.
Cubit supports 2D cohesive regions. Cohesive elements are implemented in Cubit as
element blocks with an element type of FLATQUAD. The cohesive region is identified by
assigning geometric curves to the FLATQUAD element block. When the element block
is exported, each edge on the specified curves is represented in the exported file as a 4-
noded quadrilateral element with zero area. The quadrilateral element is formed by

Appendix

1016

duplicating each node in the original edge and then connecting the two original and two
duplicate nodes to form a zero-area quadrilateral.
The image below shows how a FLATQUAD is represented in an exported mesh file. The
figure on the left is how the mesh appears in Cubit. The figure on the right is how the
mesh appears in the output file. Note that the figure on the right is a topological
representation, not a true geometric representation. In reality, the nodes on the left side
of block 100 are coincident with the nodes on the right side of block 100, causing the pink
elements to have zero area.

Multiple Curves in FLATQUAD Blocks

Multiple curves may be assigned to a single FLATQUAD element block, as long as the
curves do not form a branching path. The figure below, for example, shows an
acceptable configuration of multiple curves.

Cubit_15.5_User_Documentation

1017

Although multiple curves may be assigned to a single cohesive block, the curves assigned
to a block of type FLATQUAD must not branch. A branch occurs whenever three or more
curves share a common vertex, as shown in the figure below.

Appendix

1018

Deleting Mesh Elements
Element deletion for owned geometry is no longer available unless the developer flag is
turned on. Element deletion is still available without the developer flag for free meshes.
The command to enable or disable features under development is:

Set Developer Commands {On|OFF}

The following forms of the delete commands operate on meshed entities only. They allow
low-level editing of meshes to make minor corrections to a mostly correct mesh. They are
not designed for major modifications to existing meshes. Because Cubit's display routines
were not designed with these type of operations in mind, these commands may cause
the current display of the affected entities to take an unexpected form. An appropriate
drawing command can used to return the display to the desired view.
When deleting elements, the default behavior will be that the child mesh entities will be
deleted when they become orphaned. For example, when a hex is deleted, if its faces,
edges and vertices are no longer used by adjacent hex elements, then they will also be
deleted. The no_propagate option will leave any child mesh entities regardless if they
become orphaned.
The delete command removes one or more mesh entities from an existing mesh.
Additional mesh entities may be deleted as well depending on the particular form of the
command. Exactly which entities are removed is explained in the following descriptions.

Cubit_15.5_User_Documentation

1019

Delete {Hex|Tet} <range> [No_Propagate]

Deletes the specified hexes or tets. All associated tris, faces, edges, and nodes are also
deleted unless the no_propagate option is given.

Delete Wedge <range>

Deletes the specified wedges. No other mesh entities are affected.

Delete {Face|Tri} <range> [No_Propagate]

Deletes the specified faces or tris. For faces, all hexes that contain the face are also
deleted. For tris, all tets that contain the tri are also deleted. All associated edges and
nodes are also deleted unless the no_propagate option is given.

Delete Edge <range> [No_Propagate]

Deletes the specified edges. Any associated tris, faces, hexes, and tets are also deleted.
Any associated nodes are also deleted unless the no_propagate option is given.

Delete Node <range>

Deletes the specified nodes. Any associated edges, tris, faces, hexes, and tets are also
deleted.

FeatureSize
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Applies to: Curves
Summary: Meshes a curve based on its proximity to nearby geometry and size of nearby
geometric features. This is an alpha feature and should be used with caution.
Syntax:

Curve <range> Scheme Featuresize

Related Commands:

Curve <range> Density <density_factor>

Discussion:
The user may also automatically bias the mesh from small elements near complicated
geometry to large elements near expanses of simple geometry. Meshing a curve with
scheme featuresize places nodes roughly proportional to the distance from the node to a

Appendix

1020

piece of geometry that is foreign to the curve. Foreign means that the geometric entity
doesn't contain the curve, or any of its vertices (i.e. the entity's intersection with the curve
is empty). It is known that featuresize is a continuous function that varies slowly.
Featuresize meshing is very automatic and integrated with interval matching. Featuresize
meshing works well with paving, and in some cases with structured surface-meshing
schemes (map, submap) as well.
If desired, the user may specify the exact or goal number of intervals with a size or interval
command, and then the featuresize function will be used to space the nodes.
The featuresize function may also be scaled by the user to produce a finer or coarser
mesh using the density command as follows:

Curve <range> Density <density_factor>

The default scaling factor or density is 1. Higher densities also reduce the transition rate
of the node spacing. A density of 2 usually gives a good quality mesh. A density below
about 0.5 could produce rapid transitions and poor mesh quality. The following shows an
example of different density values when using the featuresize scheme.

Importing Abaqus Files
Note: This feature is under development. The command to enable or disable features
under development is:

Set developer commands {on|OFF}

The command to import a mesh from an Abaqus format file is:

Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle

<angle>]

For a description of importing mesh geometry see Importing Exodus II Files.

Importing Meshed Based Geometry Files (MBG)
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Cubit_15.5_User_Documentation

1021

CUBIT provides the capability to import a model composed of mesh based geometry. The
command to import meshed based geometry is:

Import mbg ''<filename>"

MBG is created in Cubit when one meshes a volume or imputs the mesh from a previously
meshed volume with the import mesh geometry command. Optionaly there one may
create geometry with the "set dev on" option.
In order to create, import and export MBG one needs to set the geometry engine to facet
with the following command "set geom eng facet".
The following commands create a brick and export and import it as a MBG file: set
geometry engine facet set dev on brick x 10 export mbg "brick.mbg" overwrite reset import
mbg "brick.mbg" set geometry engine facet set dev on brick x 10 export mbg "brick.mbg" overwrite reset import mbg "brick.mbg"

Exporting Meshed Based Geometry Files (MBG)
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

CUBIT provides the capability to import a model composed of mesh based geometry. The
command to import meshed based geometry is:
Export mbg ''<filename>"
MBG is created in Cubit when one meshes a volume or imputs the mesh from a previously
meshed volume with the import mesh geometry command. Optionaly one may create
geometry with the "set dev on" option.
In order to create, import and export MBG one needs to set the geometry engine to facet
with the following command "set geom eng facet".
The following commands create a brick and export and import it as a MBG file: set geometry engine facet set dev on brick x 10 export mbg "brick.mbg" overwrite reset import mbg "brick.mbg"

Mesh Cutting
Note: This feature is under development. The command to enable or disable features
under development is:
 Set Developer Commands {On|OFF}
The term "mesh cutting" refers to modifying an existing mesh by moving nodes to a cutting
entity and modifying the connectivity of the mesh so that the original mesh fits a new
geometry. The behavior of mesh cutting is intended to be similar to web cutting in that the
process results in a decomposition of the original geometry. The difference is that the
decomposition is performed on meshed geometry and results in the creation of virtual
geometry partitions. The underlying acis body remains unchanged. The user has the
option to determine what is partitioned during mesh cutting: the volume, the surfaces only,
or nothing.
The current scope of mesh cutting is limited to cutting hex meshed volumes with planes
and extended surfaces. These cutting entities are also limited in that mesh cutting will not

Appendix

1022

work if they pass through a vertex at the end of more than two curves. Mesh cutting does
not work on tet meshes or surface meshes.
The steps of mesh cutting include:

• Create a starting mesh. This mesh is typically simpler than the desired final
mesh and can be created with sweeping, mapping, or some other available
meshing algorithm. Currently, the starting mesh must be a single volume: mesh
cutting does not handle merged volumes or assemblies.

• Create a cutting entity that can be used to capture the new detail in the mesh.
Currently, mesh cutting works with planes or sheets extended from surfaces. It is
important to note that if an extended surface is used, mesh cutting will not
capture any geometric features (curves or vertices) of the surface.

• Issue the command to cut the mesh. The meshcut commands are similar in
syntax and behavior to the webcut commands.

The following entities with the associated commands are available for mesh cutting:

Coordinate Plane

A coordinate plane can be used to cut the model, and can optionally be offset a positive
or negative distance from its position at the origin.

Meshcut Volume <range> Plane {xplane|yplane|zplane} [offset <dist>]

The planar surface to be used for mesh cutting can also be previewed using the Draw
Plane command.

Planar Surface

An existing planar surface can also be used to cut the model.

Meshcut Volume <range> Plane Surface <surface_id>

The planar surface to be used for mesh cutting can also be previewed using the Draw
Plane command.

Plane from 3 points

Any arbitrary planar surface can be used by specifying three nodes that define the plane.

Meshcut Volume <range> Plane Node <3_node_ids>

Extended Surface

An extended surface or "sheet" can also be used for mesh cutting. In this case, the sheet
is not restricted to be planar and will be extended in all directions possible. When cutting
with an extended surface mesh cutting will ignore all curves and vertices of the surface.

Cubit_15.5_User_Documentation

1023

Also, the resolution of the mesh will determine how well curved surfaces are captured
with meshcutting. A surface with high curvature will not be captured accurately with a
coarse mesh. Note that some spline surfaces are limited in extent and may not give an
expected result from mesh cutting.

Meshcut Volume <range> Sheet [Extended From] Surface <surface_id>

Note: When cutting with surfaces extended from composite surfaces the default
underlying surface approximation may result in a poor final mesh for mesh cutting. This
problem can be fixed using the following command:

Composite closest_pt surface <id> gme

See the discussion on composite geometry for a more detailed description of this
command.

Meshcut Options

The following options can be used with all the meshcut commands:
[PARTITION VOLUME|partition surface|no_partition]: By default, mesh cutting will
create virtual partitions of the volume being cut to match the cutting entity. This option
allows mesh cutting to also create only the surface partitions or create no partitions for
the volume or surfaces.
[no_refine]: This option tells mesh cutting not to refine the mesh around the cutting entity.
[no_smooth]: This option tells mesh cutting not to perform the final smoothing step after
the cut has been made.

Meshcutting Scope

The following is a list of the current scope and limitations of meshcutting.

• Meshcutting only works on hex meshes.
• Meshcutting only works for single volumes. It currently does not handle assembly

meshes.
• Currently, only planes and extended surfaces can be used as the cutting entity.
• Curves and vertices on the cutting entity will not be captured in the mesh.
• Meshcutting will not work if the cutting entity passes through a meshed vertex

that is at the end of more than two curves.
• The resolution of the mesh determines how well a non-planar cutting entity will

be captured in the resulting mesh. Small features and high curvature will not be
captured by a coarse mesh.

• Spline surfaces are limited in extent and may not give expected results if used as
an extended cutting surface.

Meshcutting Example

Appendix

1024

The figures below show an example of mesh cutting. Figure 1 shows the body that will be
meshed. This body is a brick with intersecting through-holes. The steps to create a mesh
for this body are listed below.

Figure 1: The original, unmeshed body

Step 1: Create a starting mesh. Figure 2 below shows the starting mesh for this problem.
The commands for this mesh are:

cubit> create brick x 10

cubit> create cylinder radius 3 z 15

cubit> subtract 2 from 1

cubit> volume 1 scheme sweep

cubit> volume 1 size .75

cubit> mesh volume 1

Cubit_15.5_User_Documentation

1025

Figure 2: The starting mesh

Step 2: Create a cutting entity. Figure 3 shows the volume that will be used to cut the
mesh. The commands are:

cubit> create cylinder radius 2 z 15

cubit> rotate body 3 about x angle 90

Appendix

1026

Figure 3: The starting mesh and cutting entity

Step 3: Cut the mesh. Figure 4 shows the new mesh after the original mesh has been
cut. At this point we have 3 meshed volumes. The commands for this step are:

cubit> meshcut vol 1 sheet surface 13

cubit> draw volume 1 4 5

Cubit_15.5_User_Documentation

1027

Figure 4: The mesh after meshcutting

Step 4: Final step. Figure 5 shows the final mesh after the mesh of the mesh of the two
extra volumes is deleted. The commands are:

cubit> delete mesh vol 4 5 propagate

cubit> draw volume 1

Appendix

1028

Figure 5: Final mesh after deleting unneeded elements

Mesh Grafting
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Grafting is used to merge a meshed surface with a dissimilar unmeshed surface. In the
process, the location of the nodes on the meshed surface will be adjusted to fit to the
bounding curves of the unmeshed surface and the connectivity of the original mesh may
be changed to improve the final quality of the mesh. This allows an unmeshed volume to
be attached--or grafted--onto a meshed volume. Grafting is particularly useful for models
that have intersecting sweep directions (see example below).
The command syntax for grafting is:

Graft {Surface <range> | Volume <id>} onto Volume <id> [no_refine]

[no_smooth]

Cubit_15.5_User_Documentation

1029

The Graft command will check that the second volume is meshed. It then searches for
surfaces on the second volume that overlap with the other volume or range of surfaces
that is specified. If overlapping surfaces are found the mesh will then be adjusted on the
second volume and after any needed imprinting is done the overlapping surfaces will be
merged together.

Grafting Options

[no_refine]: This option tells grafting not to modify the connectivity of the original mesh.
The mesh is still adjusted to fit the boundary of the branch surface but no new elements
are added.
[no_smooth]: This option tells grafting not to perform the final smoothing of the modified
surface or volume mesh.

Grafting Scope

The following is a list describing the current scope and limitations of grafting:

• Grafting only works on volumes meshed with hex elements.
• The unmeshed branch surface cannot have any point outside the boundary of

the meshed trunk surface.
• Grafting may have difficulty with branch surfaces that are very thin with respect to

the element size of the meshed surface or that have sharp angles.
• If grafting fails some of the nodes of the original mesh may have been moved.

Check the mesh quality and re-smooth if needed.

Grafting Example
This example shows the four basic steps of grafting:

1. Partition the geometry (optional).
2. Mesh the trunk volume.
3. Graft the branch volume onto the trunk volume.
4. Mesh the branch volume.

Step 1: Partition the geometry
Figure 1 shows the model that will be meshed. The arrows in the figure show the two
intersecting sweep directions. Figure 2 shows the model decomposed for grafting.

Appendix

1030

Figure 1. A model with two intersecting sweep directions.

Figure 2. The model decomposed for grafting

Step 2: Mesh the trunk volume.
Figure 3 shows the mesh of the trunk volume. At this point the mesh on the trunk surface
adjacent to the branch surface is a structured mesh that does not align with the boundary
of the branch surface. The trunk and branch surfaces are two separate surfaces.

Cubit_15.5_User_Documentation

1031

Figure 3. Meshed trunk volume.

Step 3: Graft the branch onto the trunk
Figure 4 shows the trunk surface after it has been modified to fit the branch surface. At
this point the two surfaces have been merged together.

Figure 4. Trunk surface after grafting.

Step 4: Mesh the branch volume.
The final mesh is shown in Figure 5.

Appendix

1032

Figure 5. Final mesh

Optimize Jacobian
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Applies to: Volume meshes
Summary: Produces locally-uniform hex meshes by optimizing element Jacobians
Syntax:

Volume <range> Smooth Scheme Optimize Jacobian [param]

Discussion:
The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (i.e.,
volumes) attached to the smooth node. Meshes smoothed by this means tend to have
locally-uniform hex volumes.
The parameter <param> has a default value of 1, meaning that the method will attempt
to make local volumes equal. The parameter, which should always be between 1 and 2
(with 1.05 recommended), can be used to sacrifice local volume equality in favor of
moving towards meshes with all-positive Jacobians.

Randomize
Note: This feature is under development. The command to enable or disable features
under development is:

Cubit_15.5_User_Documentation

1033

Set Developer Commands {On|OFF}

Applies to: Curve, Surface and Volume meshes
Summary: Randomizes the placement of nodes on a geometry entity
Syntax:

{Surface|Volume} <range> Smooth Scheme Randomize [percent]

Discussion:

This scheme will create non-smooth meshes. If a percent argument is given, this sets the
amount by which nodes will be moved as a percentage of the local edge length. The
default value for percent is 0.40. This smooth scheme is primarily a research scheme to
help test other smooth schemes.

Refine Mesh Boundary
Note: This feature is under development. The command to enable or disable features
under development is:
 Set Developer Commands {On|OFF}
Boundary effects to be modeled in the analysis code frequently require a refined mesh
near a specific surface. CUBIT provides this capability with the Refine Mesh Boundary
command. This command is similar to the Refine Mesh Volume Feature command except
that it can insert multiple sheets of hexes near the specified surface.

Refine Mesh Boundary Surface <range> Volume <id> {Bias <double>}

{First_delta <double> | Thickness <double>} [Layer <num_layers=1>]

[SMOOTH|No_smooth]

With this command num_layers of hexes can be inserted at the first interval from the
specified surface. A bias factor indicating the change in element size must be specified.
You must also indicate a first_delta or thickness which represents the distance to the
first inserted layer. The mesh in Figure 5 with bias 1.0 and first_delta of 5. The default
smooth option provides the capability to smooth the mesh following the refinement
procedure.

Appendix

1034

Figure 5. Example of Boundary Surface Refinement

Remove Tiny Edge Length
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Applies to: Trimesh Surface Scheme
Summary: Tolerance specified to prevent small edges in a triangle mesh
Syntax:

 [Set] Trimesher Remove Tiny Edge Length {<value>|[off]}

Discussion:
Setting the tiny edge length forces the MeshGems trimesher to generate triangles with
edges greater than the specified value. It is actually a post processing step that collapses
triangles with edges less than the specified value. This setting is necessary because the
MeshGems triangle mesher sometimes inserts triangles with small edges along high
curvature features, even though a larger size has been specified and geometry
approximation has been turned off. Using this setting is the only way to guarantee that no
edges smaller than the specified value will be created.
The off option resets the 'tiny edge length' value so it is not used.
The user should not use 'tiny edge length' values approaching the mesh size because an
invalid mesh can result.
The images below show meshing a surface with and without setting a 'tiny edge length'
value. In this example all surfaces have been composited into a single surface.

Cubit_15.5_User_Documentation

1035

Compositing small surfaces with larger neighbors in conjunction with using 'tiny edge
length' has the effect of washing-over small features.

Without using 'remove tiny edge length' triangles with short edges remain.

With appropriate 'remove tiny edge length' value triangles with short edges are

collapsed.

Appendix

1036

Super Sizing Function
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

The Super sizing function computes both the Curvature and the Linear function and takes
the smaller value of the two. This is an alpha feature and should be used with caution.
The following is an example of Super element sizing.

Figure 1. NURB mesh with super sizing function, 34 by 16 density

Test Sizing Function
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Cubit_15.5_User_Documentation

1037

The Test sizing function is a hardwired numerical function used to demonstrate the
transitional effect of sizing function-based and adaptive paving. The function is a periodic
function which is repeated in 50x50 unit intervals on a 2D surface in the first quadrant (x
> 0, y > 0, z = 0). This is an alpha feature and should be used with caution. An example
of a surface meshed with this sizing function is shown in Figure 1.

Figure 1. Test sizing function for spline geometry

Figure 2. Test sizing function for square geometry

Appendix

1038

Transition
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Applies to: Surfaces
Summary: Produces a specified transition mesh for specific situations
Syntax:

Surface <range> Scheme Transition

{Triangle|Half_circle|Three_to_one|Two_to_one|Convex_corner|Four_to_tw

o} [Source Curve <id>] [Source Vertex <id>]

Discussion:
The transition scheme supplies a set of transition primitives which serve to transition a
mesh from one density to another across a given surface. The six transition sub-types
are demonstrated here.

Scheme Transition Triangle creates four
quads in a triangle that has sides of three,
two, and one intervals.

Scheme Transition Half_circle creates
three intervals on the flat and three on the
curved part of the half-circle, then creates
four quads in the surface.

Cubit_15.5_User_Documentation

1039

Scheme Transition Three_to_one creates
four quads on a rectangular surface that
has intervals of three, one, one, and one
on its sides.

Scheme Transition Two_to_one creates
three quads on a rectangular surface that
has intervals of two, two, one and one on
its sides :

Scheme Transition Convex_corner takes
a six-sided block with a convex corner and
connects that inner corner to the opposite
one, creating two quads on the surface.

Scheme Transition Four_to_two creates
seven quads on a rectangular surface that
has intervals of four, two, two, and two on
its sides.

The user also has the option of specifying a source curve and/or a source vertex. The
rules for these specifications are as follows

• If both a curve and vertex are specified, the vertex must be on the curve.
• The Convex_corner sub-type does not allow a source curve.
• The Four_to_two sub-type does not allow a source vertex.
• The source curve will be the curve that will be given the fewest intervals.
• The source vertex will specify which corner will be used for the scheme, in cases

where this makes sense (primarily in the Triangle, and Two_to_one cases).

Appendix

1040

• If none of the optional information is given, the program will assign the source
curve to be the shortest one on the face, in keeping with the most probable

Triangle Mesh Coarsening
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

CUBIT provides the capability for coarsening triangle surface meshes. Triangle
coarsening uses a technique known as edge collapsing to coarsen a mesh. With this
technique, triangle edges are selectively eliminated from the mesh until the specified
criteria have been met. The following commands will coarsen an existing triangle surface
mesh:

Coarsen {Node|Edge|Tri} <range> {Factor|Size <double> [Bias <double>]}

[Depth <int>|Radius <double>] [Sizing_Function] [no_smooth]

Coarsen {Vertex|Curve|Surface} <range> {Factor|Size<double>

[Bias<double>]} [Depth<int>|Radius<double>] [Sizing_Function]

[no_smooth]

Important: These commands are currently implemented only for triangle shaped
elements.
To use these commands, first select mesh or geometric entities at which you would like
to perform coarsening. Coarsening operations will be applied to all mesh entities
associated with or within proximity of the entities. The all keyword may be used to
uniformly coarsen all triangles in the model.
Following is a description of each of the coarsen options:
Factor
Defines the approximate size relative to the existing edge lengths for which the
coarsening will be applied. For example, a factor of 2 will attempt to make every edge
length within the specified region approximately twice the size. A factor of 3 will make
everything three times the size. Valid input values for factor must be greater than 1. Figure
1 shows an example where a coarsening factor of 2 was applied

Cubit_15.5_User_Documentation

1041

Figure 1. Example of coarsening all triangles with a factor of 2.

Size, Bias
The Size and Bias options are useful when a specific element size is desired at a known
location. This might be used for locally coarsening around a vertex or curve. The Bias
argument can be used with the Size option to define the rate at which the element sizes
will change to meet the existing element sizes on the model. Valid input values for Bias
are greater than 1.0 and represent the maximum change in element size from one
element to the next. Since coarsening is a discrete operation, the Size and Bias options
can only approximate the desired input values. This may cause apparent discontinuities
in the element sizes. Using the default smooth option can lessen this effect. It should also
be noted that the Size option is exclusive of the Factor option. Either Factor or Size can
be specified, but not both.
Depth
The Depth option permits the user to specify how many elements away from the specified
entity will also be coarsened. Default Depth is 1.

Figure 2. Coarsening performed at a node with factor = 3 and depth = 3

Appendix

1042

Radius
Instead of specifying the number of elements to describe how far to propagate the
coarsening, a real Radius may be entered.
Sizing Function
Coarsening may also be controlled by a sizing function. CUBIT uses sizing functions to
control the local density of a mesh. Various options for setting up a sizing function are
provided, including importing scalar field data from an exodus file. In order to use this
option, a sizing function must first be specified on the surface on which the coarsening
will be applied. See Adaptive Meshing for a description of how to define a sizing function.
No_Smooth
The default mode for coarsening operations is to perform smoothing after coarsening the
elements. This will generally provide better quality elements. In some cases it may be
necessary to retain the original node locations after coarsening. The no_smooth option
provides this capability.

Whisker Weave
Note: This feature is under development. The command to enable or disable features
under development is:

Set Developer Commands {On|OFF}

Applies to: Volumes
Summary: Research algorithm for all-hexahedral meshing of arbitrary 3D volumes
Syntax:

Volume <range> Scheme Weave

Related Commands:

Pillow Volume <range>

{Volume|Surface|Curve} <range> Mesh [Fixed|Free]

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Discussion:
Whisker Weaving (Tautges, 96; Tautges, 95; Folwell, 98) is a volume meshing algorithm
currently being researched and is not released for general use. However, daring users
may find the current form of the algorithm useful for mostly-convex geometries.
Whisker Weaving holds the promise of being able to fill arbitrary geometries with
hexahedra that conform to a fixed surface mesh. The algorithm is based on the rich
information contained in the Spatial Twist Continuum (STC) (Murdoch, 95), which is the
grouping of the dual of an all-hexahedral mesh into an arrangement of surfaces called
sheets. Given a bounding quadrilateral surface mesh, Whisker Weaving constructs
sheets advancing from the boundary inward. The sheets are then modified so that the

Cubit_15.5_User_Documentation

1043

arrangement dualizes to a well defined hexahedral mesh. Once the primal hex-mesh is
generated, interior node positions are generated by smoothing.
Examples of meshes generated using the whisker weaving algorithm are shown in the
following figure.

Figure 1. Some simple Whisker Weaving meshes with good quality

Whisker Weaving Basic Commands

The basic steps for meshing a volume with Whisker Weaving are the following:
Set the meshing scheme for the volume to weave

Volume <range> Scheme Weave

Mesh the volume, which generates hexes

Mesh Volume <range>

Pillow the volume to remove certain additional degenerate hexes

Appendix

1044

Pillow Volume <range>

and typically, smooth the mesh to improve quality, e.g.

Volume <range> Smooth Scheme Condition Number

Smooth Volume <range>

Whisker Weaving Options

Currently, Whisker Weaving relies on being able to perturb the bounding quadrilateral
mesh. However, a bounding surface's mesh will not be changed if it is contained in
another volume that is already meshed.
The user may also explicitly prevent Whisker Weaving from changing a bounding mesh
by fixing it with the following command:

{Volume|Surface|Curve} <range> Mesh [Fixed|Free]

The user may select an optional control strategy that doesn't change the surface mesh
by setting AutoWeaveShrink off, and setting Statelist on with the following commands:

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Numerous developer commands are available for stepping through the algorithm,
examining results, and toggling options. These are available via the command line help
but are not detailed here.

Higher Order Element Metrics
Note: This feature is under development.
Cubit contains an Node Distance and Altitude quality metric for higher order elements.
Currently, HEX27, WEDGE21 and TET15 are supported. The metrics are designed to
help identify small distances which limit the analysis time step.
These metrics may be accessed by using the commands:

Quality <element list> Node Distance

Quality <element list> Altitude

The Node Distance quality metric for a single element is the minimum distance between
nodes within that element. Not every node is compared against every other node within
an element, rather, a structured approach is used. For a single HEX27 element, the
element can be subdivided using the 27 nodes to form 8 logical hexes with 8 nodes each.
The edge lengths of the logical hexes are the distances considered for the HEX27
element. See the image below for a representation of the edges used to compute node
distance in a single HEX27 element.

Cubit_15.5_User_Documentation

1045

Additionally, the representation of edges used for a single WEDGE21 and TET15 element
are given in the following images.

Appendix

1046

The Altitude quality metric for a single element is the minimum distance between the
body center node and the projection of the body center node to the faces. Specifically, for
a HEX27, the body center node is projected to each of the 6 faces of the element, and
the minimum distance between the body center node and the 6 projections is the altitude
metric for that element. The face projection is based on the linear approximation of the
higher order face. The image below shows an example of the distance calculated when
a body center node is projected to a face.

aprepro

Cubit_15.5_User_Documentation

1047

APREPRO

Within CUBIT there is support for a programming language called APREPRO (An

Algebraic Preprocessor for Parameterizing Finite Element Analyses). In addition to the
standard APREPRO functionality, CUBIT extends the language with its own functions to
aid in the meshing process. Included here is a summary of the CUBIT-specific APREPRO
functionality. For a description of the APREPRO language and its usage, please refer to
the APREPRO user's manual (PDF).

• Using APREPRO in CUBIT
• APREPRO Functions
• APREPRO Journaling

Note: APREPRO variables can be created and modified from the GUI. Enable/disable the
editor from the View/Aprepro editor menu option. The editor is a docking window and can
be placed anywhere in the GUI.

Using APREPRO in CUBIT
To use APREPRO within CUBIT, simply enclose APREPRO statements within curly
braces '{}' as part of the CUBIT command. Any APREPRO statements included in a
command will be evaluated before the command is executed. For example, if the
APREPRO variable 'my_x' is given the value of 3, the command

 brick x {my_x}

will become

 brick x 3

before the command is executed by CUBIT. Note that this means APREPRO will NOT
give CUBIT parametric modeling abilities. In the above example, if the value of 'my_x' is
later changed to 5, the size of the brick already created will not automatically change to
five.
APREPRO expressions can also exist on separate lines. When doing this, it is
recommended to add the CUBIT comment character '#' before the APREPRO statement.
This will tell CUBIT to treat the evaluated expression as a comment, which will prevent
errors from being issued in many cases.
Consider the following example:

 #{my_x = 3}

 #{my_y = my_x + 2}

 #{if(my_y < my_x)}

 brick x {my_x} y {my_y}

 #{else}

file:///D:/CubitDocs/help/source%20files/appendix/aprepro/Aprepro.pdf

Appendix

1048

 create cylinder radius {my_x} height {my_y}

 #{endif}

In the first two lines, only APREPRO statements are being executed (values are assigned
to the variables 'my_x' and 'my_y'). After being evaluated by APREPRO, these two lines
will be sent to CUBIT as
 #3
 #5
If the comment character was omitted instead CUBIT would issue several errors about
incorrect command syntax. However, because these lines start with the comment
character, they are ignored by CUBIT. Also note that the character '$' may be used in
place of '#' for comments.

Loops

Repeated processing of a group of lines can be controlled with the {loop(control)},
{endloop} commands, as noted in section 6.2.5 of the APREPRO documentation.
A loop may also be terminated before running the specified number of times using a
#{break} statement. As soon as a #{break} statement is encountered, the loop is exited
and the rest of the statements in the loop will not execute. Additional iterations of the loop
will not be executed either.
For example, the following commands will create 3 bricks:

 #{_x = 1}

 #{loop(10)}

 brick x 1

 #{if(_x == 2)}

 #{break}

 #{endif}

 #{_x++}

 pause

 brick x 1

 #{endloop}

When a #{break} statement executes, anything in the loop following the #{break}
statement will be skipped, including the #{endif}. For this reason, a #{break} statement

Cubit_15.5_User_Documentation

1049

not only exits the loops, but also terminates the most recent #{if} statement exactly as
#{endif} would do. #{break} statements should not be used outside of #{if} statements.
It is also possible to terminate a loop using the #{abortloop} statement. #{abortloop} will
terminate all loops (including nested loops) without executing the contents of the loop(s).
This can be useful when a typo is made while manually entering a loop at the command
line. Instead of ending the loop normally and waiting for the loop to execute with numerous
errors, the loop will end immediately without any execution or errors. Please note,
however, that the #{abortloop} statement is only valid within a loop block; otherwise, it
will generate errors.
When creating a loop, APREPRO will record all lines that are given to the command line
until the corresponding #{endloop} is reached. During this process, no commands will
be passed to CUBIT. Once the terminating #{endloop} is reached, APREPRO will
expand the loop, repeating the recorded lines the number of times specified by the loop
counter, and send the expanded list of commands to CUBIT. If the terminating
#{endloop} is accidentally omitted, CUBIT may appear to be unresponsive to commands
because APREPRO is still recording lines for the loop. In situations like these, the
#{abortloop} statement may be used to terminate any unfinished loops and restore the
command line to a working state.
Also note that it is not recommended to use the 'pause' command within a loop, as it can
lead to situations in which the user must repeatedly enter the command 'resume' to
execute the entire loop. In situations like these #{abortloop} will NOT terminate the loop
because it has already been expanded by APREPRO and CUBIT is simply executing a
list of commands.

Deleting APREPRO Variables

There are two ways to delete an APREPRO variable in CUBIT. The first is to use the
APREPRO 'delete' function. The delete function takes the name of the variable to be
deleted as its argument, as shown in the following example:

 #{my_var = 2}

 ...

 #{delete('my_var')}

The second way to delete an APREPRO variable is by using the 'reset aprepro'
command:

 #{my_var = 2}

 #{some_var = 3}

 ...

 reset aprepro

Appendix

1050

This will delete all APREPRO variables and reset APREPRO to its initial state.

Other Examples

The following example shows the use of some of the string functions.

 #{t1 = "ATAN2"}{t2="(0,-1)"}

 #{t3 = tolower(t1 // t2)}

 ... The variable t3 is equal to the string atan2(0,-1)

 #{execute(t3)}

 ...t3 = 3.141592654
 The result is the same as executing {atan2(0,-1)} This is admittedly a very contrived
example; however, it does illustrate the workings of several of the functions. In the first
example, an expression is constructed by concatenating two strings together and
converting the resulting string to lowercase. This string is then executed.
The following example uses the rescan function to illustrate a basic macro capability in
APREPRO. The example creates vertices in CUBIT equally spaced about the
circumference of a 180 degree arc of radius 10. Note that the macro is 5 lines long (2 of
the lines start with #, with the exception of the looping constructs - the actual journal file
for this would not continue lines but would put each one on one long line).

 #{num = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}

 #{line = 'Create Vertex {polarX(rad,(++num-1)*180/nintv)} {polarY(rad,(num-

1)*180/nintv)}'}

 #{loop(nloop)}

 {rescan(line)}

 #{endloop}

Note the loop construct to automatically repeat the rescan line. To modify this example
to calculate the coordinates of 101 points rather than eleven, the only change necessary
would be to set {nintv=100}.

APREPRO Functions
CUBIT adds a number of APREPRO functions to aid in the meshing process. A
description of each function is available in the categories below.

• Geometry Query Functions

• Mesh Query Functions
• Group, Block, and Assembly Functions

Cubit_15.5_User_Documentation

1051

• Id Functions
• Miscellaneous Functions
• Pre-defined Variables

Table 1. Geometry Functions

Syntax Description

BBox_XMin("type", id)

Returns the xmin value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined
bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

BBox_XMax("type", id)

Returns the xmax value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined
bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

BBox_YMin("type", id)

Returns the ymin value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined
bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

BBox_YMax("type", id)

Returns the ymax value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined
bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

BBox_ZMin("type", id)

Returns the zmin value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined

Appendix

1052

bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

BBox_ZMax("type", id)

Returns the zmax value of the bounding box of the specified
geometric entity. “type” can be “volume”, “surface”, “curve”,
“vertex”, or “group”. If “volume”, “surface”, “curve”, or
“vertex” it will calculate the bounding box for the entity with
the given id. If “group” it will calculate the combined
bounding box for the group. A group can have any of the
geometry types (vol, surf, curve, vert) in it and can be of
mixed types.

GeomCentroid_X("type",
id)

Returns the x coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

GeomCentroid_Y("type",
id)

Returns the y coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

GeomCentroid_Z("type",
id)

Returns the z coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

Length(id) Returns the length of the curve with the given id.

Length(x, y, z, ord)
Returns the length of the curve identified by the given center
point coordinates and ordinal value.

NumCurves() Returns the number of curves in the model.

NumSurfaces() Returns the number of surfaces in the model.

NumVertices() Returns the number of vertices in the model.

NumVolumes() Returns the number of volumes in the model.

Radius(id) Returns the radius of the curve at its midpoint.

Radius(x, y, z, ord)
Returns the radius of the curve identified by the given center
point coordinates and ordinal value.

SurfaceArea(id) Returns the surface area of the surface with the given id.

SurfaceArea(x, y, z, ord)
Returns the surface area of the surface identified by the
given center point coordinates and ordinal value.

Cubit_15.5_User_Documentation

1053

Type("entity name") Returns the type of the specified entity name

Volume(id) Gets the geometric volume of the volume with the given id.

Volume(x, y, z, ord)
Gets the geometric volume of the volume identified by the
given center point coordinates and ordinal value.

Vx(id), Vy(id), Vz(id) Gets the x, y or z coordinate of vertex with the given id.

Vx(x, y, z, ord)
Vy(x, y, z, ord)
Vz(x, y, z, ord)

Gets the x, y or z coordinate of vertex identified by the given
center point coordinates and ordinal value.

VertexAt(x, y, z, ordinal)
Returns the id of the vertex with the idless reference,
x,y,z,ordinal.

CurveAt(x, y, z, ordinal)
Returns the id of the curve with the idless reference,
x,y,z,ordinal.

SurfaceAt(x, y, z, ordinal)
Returns the id of the surface with the idless reference,
x,y,z,ordinal.

VolumeAt(x, y, z, ordinal)
Returns the id of the volume with the idless reference,
x,y,z,ordinal.

Table 2. Mesh Functions

Syntax Description

EdgeLength(id) Returns the length of the edge with the given id.

EdgeLength(x, y, z, ord)
Returns the length of the edge identified by the given
center point coordinates and ordinal value.

FaceArea(id) Returns the area of the face with the given id.

FaceArea(x, y, z, ord)
Returns the area of the face identified by the given
center point coordinates and ordinal value.

HexVolume(id) Returns the volume of the hex with the given id.

HexVolume(x, y, z, ord)
Returns the volume of the hex identified by the given
center point coordinates and ordinal value.

IntNum(id)
Returns the number of intervals on a curve with the
given id.

IntNum(x, y, z, ord)
Returns the number of intervals on a curve identified by
the given center point coordinates and ordinal value.

IntSize(id) Returns the interval size on a curve with the given id.

IntSize(x, y, z, ord)
Returns the interval size on a curve identified by the
given center point coordinates and ordinal value.

MeshCentroid_X("type", id)

Returns the x coordinate of the centroid of the specified
mesh entity. “type” can be “volume”, “block”, or “group”.
If “volume” it calculates the centroid of the 3D elements
in the volume with the given id. If “block” it calculates

Appendix

1054

the centroid of the elements in the block with the given
id. If “group” it must be a group of volumes and it
calculates the centroid of the group with the given id.

MeshCentroid_Y("type", id)

Returns the y coordinate of the centroid of the specified
mesh entity. “type” can be “volume”, “block”, or “group”.
If “volume” it calculates the centroid of the 3D elements
in the volume with the given id. If “block” it calculates
the centroid of the elements in the block with the given
id. If “group” it must be a group of volumes and it
calculates the centroid of the group with the given id.

MeshCentroid_Z("type", id)

Returns the z coordinate of the centroid of the specified
mesh entity. “type” can be “volume”, “block”, or “group”.
If “volume” it calculates the centroid of the 3D elements
in the volume with the given id. If “block” it calculates
the centroid of the elements in the block with the given
id. If “group” it must be a group of volumes and it
calculates the centroid of the group with the given id.

MeshLength(id) Gets the length of the meshed curve with the given id.

MeshLength(x, y, z, ord)
Gets the length of the meshed curve identified by the
given center point coordinates and ordinal value.

MeshSurfaceArea(id)

Returns the total area of all triangle or quadrilateral
elements on the surface with the given id. This will vary
from the geometric surface area since the mesh
approximates the boundary with linear mesh edges.

MeshSurfaceArea(x, y, z, ord)

Returns the total area of all triangle or quadrilateral
elements on the surface identified by the given center
point coordinates and ordinal value. This will vary from
the geometric surface area since the mesh
approximates the boundary with linear mesh edges.

MeshVolume(id)

Returns the total volume of all mesh elements in the
volume with the given id. This will vary from the actual
geometric volume since the mesh approximates curved
boundaries with linear mesh edges.

MeshVolume(x, y, z, ord)

Returns the total volume of all mesh elements in the
volume identified by the given center point coordinates
and ordinal value. This will vary from the actual
geometric volume since the mesh approximates curved
boundaries with linear mesh edges.

MinSurfaceMeshQuality(id,
"metric")

Returns the worst value of the specified element quality
metric of all elements on the given surface.

Acceptable metrics include:
shape

Cubit_15.5_User_Documentation

1055

aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MinSurfaceMeshQuality(x, y,
z, ord, "metric")

Returns the worst value of the specified element quality
metric of all elements on the surface identified by the
given center point coordinates and ordinal value.

Acceptable metrics include:
shape
aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MinVolumeMeshQuality(id,
"metric")

Returns the worst value of the specified element quality
metric of all elements in the volume with the given id.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam

Appendix

1056

aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

MinVolumeMeshQuality(x, y,
z, ord, "metric")

Returns the worst value of the specified element quality
metric of all elements in the volume identified by the
given center point coordinates and ordinal value.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

NumEdgesOnCurve(id)
Returns the number of edges on the curve with the
given id.

NumEdgesOnCurve(x, y, z,
ord)

Returns the number of edges on the curve identified by
the given center point coordinates and ordinal value.

NumElemsOnSurface(id)
Returns the number of elements on the surface with the
given id.

Cubit_15.5_User_Documentation

1057

NumElemsOnSurface(x, y, z,
ord)

Returns the number of elements on the surface
identified by the given center point coordinates and
ordinal value.

NumElemsInVolume(id)
Returns the number of elements in the volume with the
given id.

NumElemsInVolume(x, y, z,
ord)

Returns the number of elements in the volume identified
by the given center point coordinates and ordinal value.

Nx(id), Ny(id), Nz(id) Gets the x, y or z coordinate of node with the given id.

Nx(x, y, z, ord)
Ny(x, y, z, ord)
Nz(x, y, z, ord)

Gets the x, y or z coordinate of node identified by the
given center point coordinates and ordinal value.

TetVolume(id) Returns the volume of the tet with the given id.

TetVolume(x, y, z, ord)
Returns the volume of the tet identified by the given
center point coordinates and ordinal value.

TriArea(id) Returns the area of the tri with the given id.

TriArea(x, y, z, ord)
Returns the area of the tri identified by the given center
point coordinates and ordinal value. .

Table 3. Group, Block, and Assemblyl Metadata Functions

Syntax Description

BlockAttributeName(id, index)
Returns the name for the specified attribute index
in the block within the given id

BlockAttributeValue(id, index)
Returns the value for the specified attribute index
in the block within the given id

NumBlocks() Returns the number of blocks in the model.

NumSidesets() Returns the number of sidesets in the model.

NumNodesets() Returns the number of nodesets in the model.

NumInGrp("groupname") Returns the number of entities in the given group.

NumTypeInGroup("group_name",
"entity_type")

Returns the number of "entity_type" in group
"group_name".

NumVolsInPart("part_name")
Returns the number of volumes assigned to the
part with the specified name.

PartInVol(id)
Returns the name and instance number of the part
that the volume has been assigned to.

Table 4. ID Functions

Syntax Description

Appendix

1058

CurveAt(x, y, z, ordinal)
Returns the id of the curve with the idless reference,
x,y,z,ordinal.

EdgeAt(x, y, z, ordinal)
Returns the id of the edge with the idless reference,
x,y,z,ordinal.

FaceAt(x, y, z, ordinal)
Returns the id of the quad face with the idless
reference, x,y,z,ordinal.

GroupMemberId("group_name",
"entity_type", index)

Returns the ID of "entity_type" in group
"group_name" at the specified index. If the group
contains multiple entity types the index will only be
relevant for the entity type specified and will behave
as if the group only contained that entity type.

HexAt(x, y, z, ordinal)
Returns the id of the hexahedra element with the
idless reference, x,y,z,ordinal.

Id("type")

Returns the ID of the entity most recently created
with the specified type. Acceptable types include:
"body", "volume", "surface", "curve", "vertex",
"group", "node", "edge", "quad", "face", "tri", "hex",
"tet", or "pyramid".

NodeAt(x, y, z) Returns the id of the node closest to the xyz location.

NodeAt(x, y, z, ordinal)
Returns the id of the Node with the idless reference,
x,y,z,ordinal.

PyramidAt(x, y, z, ordinal)
Returns the id of the pyramid element with the idless
reference, x,y,z,ordinal.

SurfaceAt(x, y, z, ordinal)
Returns the id of the surface with the idless
reference, x,y,z,ordinal.

TetAt(x, y, z, ordinal)
Returns the id of the tetraheral element with the
idless reference, x,y,z,ordinal.

TriAt(x, y, z, ordinal)
Returns the id of the triangle with the idless
reference, x,y,z,ordinal.

VertexAt(x, y, z, ordinal)
Returns the id of the vertex with the idless reference,
x,y,z,ordinal.

VolumeAt(x, y, z, ordinal)
Returns the id of the volume with the idless
reference, x,y,z,ordinal.

WedgeAt(x, y, z, ordinal)
Returns the id of the wedge element with the idless
reference, x,y,z,ordinal.

Table 5. Miscellaneous Functions

Syntax Description

Cubit_15.5_User_Documentation

1059

FileExists("file name") Checks if the given file exists. Returns non-zero if
true.

GeometryEngineVersion("engine
name")

Get the version for the specified geometry engine.

get_error_count() Returns the current error count in CUBIT

get_warning_count() Returns the current warning count in CUBIT

HasFeature("feature name") Checks if the specified feature is available. Returns
non-zero if the feature is enabled.

Print(msg) Prints msg

PrintError(svar) Outputs the string svar to stderr.

Quote(svar) Returns the string svar, enclosed in single quotes.

SessionId() Returns the unique id for the current CUBIT
session.

GetMachineType() Returns the string name of the platform Cubit is
running on ("Linux", "Darwin", "Microsoft
Windows", etc.).

set_error_count(val) Sets the error count in CUBIT to val

set_warning_count(val) Sets the warning count in CUBIT to val

TimerStart() Starts the CPU timer

TimerStop() Stops the CPU timer

Table 6. Pre-defined Variables

The following APREPRO variables are predefined in CUBIT.

Variable Description

CUBIT Variable to indicate that CUBIT is defined

CUBIT_VERSION Current version of CUBIT (not to be confused with
VERSION, which stores the current version of
APREPRO)

APREPRO Journaling
When using APREPRO, statements can be echoed to a journal file. To do so, use the
following command:

Appendix

1060

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

Simply typing "journal aprepro" without an argument will display the current aprepro
journaling setting.
For example,

bri x {2*5.0}

is journaled as

brick x {2*5.0}

if aprepro journaling is ON, or

brick x 10

if aprepro journaling is off. The default is ON.

APREPRO Comments

Comments are also journaled. This is useful for documenting aprepro definitions and
descriptions.
Comments on the same line as a command get split into two separate lines in the journal
file.

Significant Figures

When journal aprepro is ON, numbers are journaled exactly as they are entered. The
maximum number of significant digits is determined by the command input.
When journal aprepro is off, numeric results of aprepro statements are journaled
according to the maximum number of significant digits hard-coded into CUBIT, using the
value of DBL_DIG.

Loops and Journaling

Loops are not journaled as loops, per se. For example, the APREPRO expression:
{loop(3)}

bri x {x}

{endloop}

is journaled as:
bri x {x}

bri x {x}

bri x {x}

Multi-line Strings

Cubit_15.5_User_Documentation

1061

Multi-line strings are currently not journaled (both definitions and when they are
expanded). For example,

#{line = 'bri x 10
mesh vol 1'}
{line}

will be journaled as
bri x 10
mesh vol 1

Note that bri x 10\n mesh vol 1 was not journaled as {line}

python
Python Interface
The following Python functions and objects provide capability to query and modify Cubit
models.

Functions

CubitInterface - Cubit model query and modify functions.

Classes

PyObserver - A base class to be extended to perform custom actions on Cubit events.
PyObservable - The base class of all interface objects.
Entity - The base class of all the geometry and mesh types.
GeomEntity - The base class for specifically the Geometry types (Body, Surface, etc.).
Body - Defines a body object that mostly parallels Cubit's Body class.
Volume - Defines a volume object that mostly parallels Cubit's RefVolume class
Surface - Defines a surface object that mostly parallels Cubit's RefFace class.
Curve - Defines a curve object that mostly parallels Cubit's RefEdge class.
Vertex - Defines a vertex object that mostly parallels Cubit's RefVertex class.
CubitFailureException - An exception class to alert the caller when the underlying Cubit
function fails.
InvalidEntityException - An exception class to alert the caller that an invalid entity was
attempted to be used.
InvalidInputException - An exception class to alert the caller of a function that invalid
inputs were entered.
MeshImport - Mesh import interface

Importing Cubit into Python
Python users are able to import Cubit into Python and make calls into Cubit via
CubitInterface and the other Python classes described in this section. Below is a simple
Python script. The key parts are ensuring the Cubit libraries are on the path and ensuring
the cubit.init() call is made first.

import sys

add Cubit libraries to your path

Appendix

1062

sys.path.append('/opt/cubit/bin')

import cubit

#start cubit - this step is key

#cubit.init does not require any arguments.

#If you do want to provide arguments, you must

#provide 2 or more, where the first must

#be "cubit", and user args start as the 2nd argument.

#If only one argument is used, it will be ignored.

cubit.init(['cubit','-nojournal'])

height = 1.2

blockHexRadius = 0.1732628

#hexagon

baseBlock = cubit.prism(height, 6, blockHexRadius, blockHexRadius)

#etc . . .

Cubit 15.4 User Documentation

CubitInterface

The CubitInterface provides a Python/C++ interface into Cubit.
It provides an object oriented structure that allows a developer to manipulate objects
familiar to Cubit such as bodies, volumes, surfaces, etc. It also allows developers to
create and manipulate as well as query geometry.
Functions

[CFD_BC_Entity] get_all_cfd_bcs ()

[AssemblyItem] get_assembly_items ()

{ AssemblyItem] get_top_level_assembly_items ()

[AssemblyItem] get_assembly_children (int assembly_id)

[int] get_volumes_for_node (str node_name, int
node_instance)

[MeshErrorFeedback *] get_mesh_errors ()

Cubit_15.5_User_Documentation

1063

int get_mesh_error_count ()

Class Member Functions
System Control and Data

 set_progress_tool (ProgressTool *progress)

 Register a progress-bar callback handler with Cubit.

 set_cubit_interrupt (Bool interrupt)

This sets the global flag in Cubit that stops all
interruptable processes.

 set_playback_paused_on_error (Bool pause)

Sets whether or not playback is paused when an error
occurs.

Bool is_playback_paused_on_error ()

Gets whether or not playback is paused when an error
occurs.

Bool developer_commands_are_enabled ()

This checks to see whether developer commands are
enabled.

 add_filename_to_recent_file_list (str &filename)

str get_version ()

 Get the Cubit version.

str get_revision_date ()

 Get the Cubit revision date.

str get_build_number ()

 Get the Cubit build number.

str get_acis_version ()

 Get the Acis version number.

int get_acis_version_as_int ()

 Get the Acis version number as an int.

str get_exodus_version ()

 Get the Exodus version number.

str get_meshgems_version ()

 Get the MeshGems version number.

float get_cubit_digits_setting ()

Appendix

1064

 Get the Cubit digits setting.

str get_graphics_version ()

 Get the VTK version number.

 print_cmd_options ()

 Used to print the command line options.

Bool is_modified ()

 Get the modified status of the model.

 set_modified ()

Set the status of the model (is_modified() is now false). If
you modify the model after you set this flag, it will register
true.

Bool is_undo_save_needed ()

Get the status of the model relative to undo
checkpointing.

 set_undo_saved ()

 Set the status of the model relative to undo checkpointin.

Bool is_performing_undo ()

 Check if an undo command is currently being performed.

Bool is_command_echoed ()

 Check the echo flag in cubit.

str get_command_from_history (int command_number)

Get a specific command from Cubit's command history
buffer.

str get_next_command_from_history ()

 Get 'next' command from history buffer.

str get_previous_command_from_history ()

 Get 'previous' command from history buffer.

Bool is_volume_meshable (int volume_id)

 Check if volume is meshable with current scheme.

 journal_commands (Bool state)

 Set the journaling flag in cubit.

Bool is_command_journaled ()

Cubit_15.5_User_Documentation

1065

 Check the journaling flag in cubit.

 override_journal_stream (JournalStreamBase
*jnl_stream)

 Override the Journal Stream in CUBIT.

str get_current_journal_file ()

 Gets the current journal file name.

Bool is_working_dir_set ()

 Create BCVizInterface for CompSimUI.

Bool cmd (str input_string)

 Pass a command string into Cubit.

Bool silent_cmd (str input_string)

Pass a command string into Cubit and have it executed
without being verbose at the command prompt.

Bool was_last_cmd_undoable ()

Report whether the last executed command was
undoable.

[int] parse_cubit_list (str type, str int_list)

 Parse a Cubit style entity list into a list of integers.

 print_raw_help (str input_line, int order_dependent, int
consecutive_dependent)

 Used to print out help when a ?, & or ! is pressed.

int get_error_count ()

 Get the number of errors in the current Cubit session.

[str] get_mesh_error_solutions (int error_code)

Get the paired list of mesh error solutions and help
context cues.

 complete_filename (str &line, int &num_chars, Bool
&found_quote)

Get the file completion inside a quote based on files in the
current directory. This handles completion of directories
as well as filtering on specific types (.jou, .g, .sat, etc.).

Graphics Manipulation and Data

float get_view_distance ()

Appendix

1066

 Get the distance from the camera to the model (from - at).

[float] get_view_at ()

 Get the camera 'at' point.

[float] get_view_from ()

 Get the camera 'from' point.

[float] get_view_up ()

 Get the camera 'up' direction.

 reset_camera ()

reset the camera in all open windows this includes
resetting the view, closing the histogram and color
windows and clearing the scalar bar, highlight, and picked
entities.

 flush_graphics ()

 Flush the graphics.

 clear_drawing_set (str set_name)

 Clear a named drawing set (this is for mesh preview).

 unselect_entity (str entity_type, int entity_id)

 Unselect an entity that is currently selected.

int get_rubberband_shape ()

 Get the current rubberband select mode.

Bool is_perspective_on ()

 Get the current perspective mode.

Bool is_occlusion_on ()

 Get the current occlusion mode.

Bool is_scale_visibility_on ()

 Get the current scale visibility setting.

Bool is_mesh_visibility_on ()

 Get the current mesh visibility setting.

Bool is_geometry_visibility_on ()

 Get the current geometry visibility setting.

Bool is_select_partial_on ()

 Get the current select partial setting.

Cubit_15.5_User_Documentation

1067

int get_rendering_mode ()

 Get the current rendering mode.

 set_rendering_mode (int mode)

 Set the current rendering mode.

 clear_preview ()

Clear preview graphics without affecting other display
settings.

str get_pick_type ()

 Get the current pick type.

[int] get_selected_ids ()

 Get a list of the currently selected ids.

 highlight (str type, int id)

 Highlight the given entity.

Mesh Query Support

float get_mesh_edge_length (int edge_id)

 Get the length of a mesh edge.

float get_meshed_volume_or_area (str geom_type, [int]
entity_ids)

 Get the total volume/area of a entity's mesh.

int get_mesh_intervals (str geom_type, int entity_id)

 Get the interval count for a specified entity.

float get_mesh_size (str geom_type, int entity_id)

 Get the mesh size for a specified entity.

float get_requested_mesh_size (str geom_type, int id)

Get the requested mesh size for a specified entity. This
returns a size that has been set specifically on the entity
and not averaged from parents.

int has_valid_size (str geom_type, int entity_id)

Get whether an entity has a size. All entities have a size
unless the auto sizing is off. If the auto sizing is off, an
entity has a size only if it has been set.

Bool auto_size_needs_to_be_calculated ()

 Get whether the auto size needs to be calculated.
Calculating the auto size may be expensive on complex

Appendix

1068

models. The auto size may be outdated if the model has
changed.

float get_default_auto_size ()

 Get auto size needs for the current set of geometry.

int get_requested_mesh_intervals (str geom_type, int
entity_id)

Get the interval count for a specified entity as set
specifically on that entity.

float get_auto_size (str geom_type, [int] entity_id_list, float
size)

Get the auto size for a given set of enitities. Note, this
does not actually set the interval size on the volumes. It
simply returns the size that would be set if an 'size auto
factor n' command were issued.

int get_element_budget (str element_type, [int]
entity_id_list, int auto_factor)

Get the element budget based on current size settings for
a list of volumes.

str get_exodus_sizing_function_variable_name ()

 Get the exodus sizing function variable name.

str get_exodus_sizing_function_file_name ()

 Get the exodus sizing function file name.

str get_sizing_function_name (str entity_type, int surface_id)

 Get the sizing function name for a surface or volume.

Bool exodus_sizing_function_file_exists ()

 return whether the exodus sizing funnction file exists

Bool get_vol_sphere_params ([int] sphere_id_list, int
&rad_intervals, int &az_intervals, float &bias, float &fract,
int &max_smooth_iterations)

 get the current sphere parameters for a sphere volume

str get_curve_bias_type (int curve_id)

float get_curve_bias_geometric_factor (int curve_id)

float get_curve_bias_geometric_factor2 (int curve_id)

float get_curve_bias_first_interval_length (int curve_id)

float get_curve_bias_first_interval_fraction (int curve_id)

Cubit_15.5_User_Documentation

1069

float get_curve_bias_fine_size (int curve_id)

float get_curve_bias_coarse_size (int curve_id)

float get_curve_bias_first_last_ratio1 (int curve_id)

float get_curve_bias_first_last_ratio2 (int curve_id)

float get_curve_bias_last_first_ratio1 (int curve_id)

float get_curve_bias_last_first_ratio2 (int curve_id)

Bool get_curve_bias_from_start (int curve_id, Bool &value)

Bool get_curve_bias_from_start_set (int curve_id)

int get_curve_bias_start_vertex_id (int curve_id)

float get_curve_mesh_scheme_curvature (int curve_id)

 Get the curvature mesh scheme value of a curve.

Bool get_curve_mesh_scheme_stretch_values (int curve_id,
float &first_size, float &factor, float &last_size, Bool
&start, int &vertex_id)

[float] get_curve_mesh_scheme_pinpoint_locations (int
curve_id)

 get_quality_stats (str entity_type, [int] id_list, str
metric_name, float single_threshold, Bool
use_low_threshold, float low_threshold, float
high_threshold, float &min_value, float &max_value, float
&mean_value, float &std_value, int &min_element_id, int
&max_element_id, [int] &mesh_list, str &element_type,
int &bad_group_id, Bool make_group=false)

 Get the quality stats for a specified entity.

float get_quality_value (str mesh_type, int mesh_id, str
metric_name)

 Get the metric value for a specified mesh entity.

str get_mesh_scheme (str geom_type, int entity_id)

 Get the mesh scheme for the specified entity.

str get_mesh_scheme_firmness (str geom_type, int
entity_id)

 Get the mesh scheme firmness for the specified entity.

str get_mesh_interval_firmness (str geom_type, int entity_id)

Appendix

1070

Get the mesh interval firmness for the specified entity.
This may include influence from connected mesh intervals
on connected geometry.

str get_requested_mesh_interval_firmness (str geom_type,
int entity_id)

Get the mesh interval firmness for the specified entity as
set specifically on the entity.

str get_mesh_size_type (str geom_type, int entity_id)

Get the mesh size setting type for the specified entity.
This may include influence from attached geometry.

str get_requested_mesh_size_type (str geom_type, int
entity_id)

Get the mesh size setting type for the specified entity as
set specifically on the entity.

Bool get_tetmesh_proximity_flag (int volume_id)

 Get the proximity flag for tet meshing.

int get_tetmesh_proximity_layers (int volume_id)

Get the number of proximity layers for tet meshing. This is
the number of layers between close surfaces.

float get_mesh_geometry_approximation_angle (str
geom_type, int entity_id)

Get the geometry approximation angle set for tri/tet
meshing.

float get_trimesh_surface_gradation ()

Get the global surface mesh gradation set for meshing
with MeshGems.

float get_trimesh_volume_gradation ()

Get the global volume mesh gradation set for meshing
with MeshGems.

float get_tetmesh_growth_factor (int volume_id)

 Get the tetmesh growth factor.

Bool is_meshed (str geom_type, int entity_id)

 Determines whether a specified entity is meshed.

Bool is_merged (str geom_type, int entity_id)

 Determines whether a specified entity is merged.

Cubit_15.5_User_Documentation

1071

str get_smooth_scheme (str geom_type, int entity_id)

 Get the smooth scheme for a specified entity.

int get_hex_count ()

 Get the count of hexes in the model.

int get_pyramid_count ()

 Get the count of pyramids in the model.

int get_tet_count ()

 Get the count of tets in the model.

int get_quad_count ()

 Get the count of quads in the model.

int get_tri_count ()

 Get the count of tris in the model.

int get_edge_count ()

 Get the count of edges in the model.

int get_sphere_count ()

 Get the count of sphere elements in the model.

int get_node_count ()

 Get the count of nodes in the model.

int get_element_count ()

 Get the count of elements in the model.

int get_volume_element_count (int volume_id)

 Get the count of elements in a volume.

int get_surface_element_count (int surface_id)

 Get the count of elements in a surface.

Bool volume_contains_tets (int volume_id)

 Determine whether a volume contains tets.

[int] get_hex_sheet (int node_id_1, int node_id_2)

Get the list of hex elements forming a hex sheet through
the given two node ids. The nodes must be adjacent in
the connectivity of the hex i.e. they form an edge of the
hex.

str get_default_element_type ()

Appendix

1072

Get the current default setting for the element type that
will be used when meshing.

Geometry Query Support

Bool is_visible (str geom_type, int entity_id)

 Query visibility for a specific entity.

Bool is_virtual (str geom_type, int entity_id)

 Query virtualality for a specific entity.

Bool contains_virtual (str geom_type, int entity_id)

 Query virtualality of an entity's children.

[int] get_source_surfaces (int volume_id)

 Get a list of a volume's sweep source surfaces.

[int] get_target_surfaces (int volume_id)

 Get a list of a volume's sweep target surfaces.

int get_common_curve_id (int surface_1_id, int
surface_2_id)

 Given 2 surfaces, get the common curve id.

int get_common_vertex_id (int curve_1_id, int curve_2_id)

 Given 2 curves, get the common vertex id.

[[float]] project_unit_square ([[float]] pts, int surf_id, int
quad_id, int node00_id, int node10_id)

Given points in a unit square, map them to the given quad
using the orientation info, then project them onto the
given surface, and return their projected positions.

str get_merge_setting (str geom_type, int entity_id)

 Get the merge setting for a specified entity.

str get_curve_type (int curve_id)

 Get the curve type for a specified curve.

str get_surface_type (int surface_id)

 Get the surface type for a specified surface.

 get_surface_normal (int surface_id, float &x, float &y,
float &z)

This function only works for C++*** Get the surface
normal for a specified surface.

[float] get_surface_normal (int surface_id)

Cubit_15.5_User_Documentation

1073

 Get the surface normal for a specified surface.

 get_surface_centroid (int surface_id, float &x, float &y,
float &z)

This function only works from C++*** Get the surface
centroid for a specified surface.

[float] get_surface_centroid (int surface_id)

 Get the surface centroid for a specified surface.

str get_surface_sense (int surface_id)

 Get the surface sense for a specified surface.

[str] get_entity_modeler_engine (str geom_type, int entity_id)

 Get the modeler engine type for a specified entity.

str get_default_geometry_engine ()

 Get the name of the default modeler engine.

[float] get_bounding_box (str geom_type, int entity_id)

 Get the bounding box for a specified entity.

[float] get_total_bounding_box (str geom_type, [int] entity_list)

 Get the bounding box for a list of entities.

[float] get_tight_bounding_box (str geom_type, [int] entity_list)

 Get the tight bounding box for a list of entities.

float get_total_volume ([int] volume_list)

 Get the total volume for a list of volume ids.

str get_entity_name (str entity_type, int entity_id)

 Get the name of a specified entity.

Bool set_entity_name (str entity_type, int entity_id, str
new_name)

 Set the name of a specified entity.

int get_entity_color_index (str entity_type, int entity_id)

 Get the color of a specified entity.

Bool is_multi_volume (int body_id)

 Query whether a specified body is a multi volume body.

Bool is_sheet_body (int volume_id)

 Query whether a specified volume is a sheet body.

Appendix

1074

Bool is_interval_count_odd (int surface_id)

 Query whether a specified surface has an odd loop.

Bool is_periodic (str geom_type, int entity_id)

 Query whether a specified surface or curve is periodic.

Bool is_surface_planer (int surface_id)

 Query whether a specified surface is planer.

Bool is_surface_planar (int surface_id)

 get_periodic_data (str geom_type, int entity_id, float
&interval, str &firmness, int &lower_bound, str
&upper_bound)

 Get the periodic data for a surface or curve.

Bool get_undo_enabled ()

int number_undo_commands ()

[str] get_aprepro_vars ()

 Gets the current aprepro variable names.

str get_aprepro_value_as_string (str var_name)

 Gets the string value of an aprepro variable.

Bool get_aprepro_value (str var_name, int &var_type, float
&dval, str &sval)

 Get the value of an aprepro variable.

float get_aprepro_numeric_value (str var_name)

 get the value of the given aprepro variable

Bool get_node_constraint ()

Query current setting for node constraint (move nodes to
geometry).

int get_node_constraint_value ()

Query current setting for node constraint (move nodes to
geometry).

str get_vertex_type (int surface_id, int vertex_id)

Get the Vertex Types for a specified vertex on a specified
surface. Vertex types include "side", "end", "reverse",
"unknown".

[int] get_relatives (str source_geom_type, int source_id, str
target_geom_type)

Cubit_15.5_User_Documentation

1075

 Get the relatives (parents/children) of a specified entity.

[int] get_adjacent_surfaces (str geom_type, int entity_id)

 Get a list of adjacent surfaces to a specified entity.

[int] get_adjacent_volumes (str geom_type, int entity_id)

 Get a list of adjacent volumes to a specified entity.

[int] get_entities (str entity_type)

Get all entities of a specified type (including geometry,
mesh, etc...).

[int] get_list_of_free_ref_entities (str geom_type)

 Get all free entities of a given geometry type.

int get_owning_body (str geom_type, int entity_id)

 Get the owning body for a specified entity.

int get_owning_volume (str geom_type, int entity_id)

 Get the owning volume for a specified entity.

int get_owning_volume_by_name (str entity_name)

 Get the owning volume for a specified entity.

float get_curve_length (int curve_id)

 Get the length of a specified curve.

float get_arc_length (int curve_id)

 Get the arc length of a specified curve.

float get_distance_from_curve_start (float x, float y, float z, int
curve_id)

Get the distance from a point on a curve to the curve's
start point.

float get_curve_radius (int curve_id)

 Get the radius of a specified arc.

[float] get_curve_center (int curve_id)

 Get the center point of the arc.

float get_surface_area (int surface_id)

 Get the area of a surface.

float get_volume_area (int volume_id)

 Get the area of a volume.

Appendix

1076

float get_hydraulic_radius_surface_area (int surface_id)

 Get the area of a hydraulic surface.

float get_hydraulic_radius_volume_area (int volume_id)

 Get the area of a hydraulic volume.

[float] get_center_point (str entity_type, int entity_id)

 Get the center point of a specified entity.

int get_valence (int vertex_id)

 Get the valence for a specific vertex.

float get_distance_between (int vertex_id_1, int vertex_id_2)

 Get the distance between two vertices.

int is_point_contained (str geom_type, int id, const [float]
&point)

Determine if given point is inside, outside, on or unknown
the given entity. note that this is typically used for
volumes or sheet bodies.

 print_surface_summary_stats ()

 Print the surface summary stats to the console.

 print_volume_summary_stats ()

 Print the volume summary stats to the console.

 get_bc_info (BCEntity *sourceBC, str &bcType, int &bcID)

 Get the bc type and id given a piece of BCEntity.

 get_entity_info (RefEntity *source_entity, str
&geom_type, int &entity_id)

 Get the geometry type and id given a ref entity.

int get_block_count ()

 Get the current number of blocks.

int get_sideset_count ()

 Get the current number of sidesets.

int get_nodeset_count ()

 Get the current number of sidesets.

int get_volume_count ()

 Get the current number of nodesets.

Cubit_15.5_User_Documentation

1077

int get_body_count ()

 Get the current number of bodies.

int get_surface_count ()

 Get the current number of surfaces.

int get_vertex_count ()

 Get the current number of vertices.

int get_curve_count ()

 Get the current number of curves.

int get_curve_count ([int] target_volume_ids)

Get the current number of curves in the passed-in
volumes.

Bool is_catia_engine_available ()

 Determine whether catia engine is available.

Bool is_acis_engine_available ()

Bool is_opencascade_engine_available ()

[int] evaluate_exterior_angle ([int] curve_list, const float
test_angle)

find all curves in the given list with an exterior angle (the
angle between surfaces) less than the test angle. This is
equivalent to the df parser "exterior_angle" test. (draw
curve with exterior_angle] 90)

float get_overlap_max_gap ()

 Get the max gap setting for calculating surface overlaps.

 set_overlap_max_gap (const float max_gap)

 Set the max gap setting for calculating surface overlaps.

float get_overlap_max_angle ()

Get the max angle setting for calculating surface
overlaps.

 set_overlap_max_angle (const float max_angle)

 Set the max angle setting for calculating surface overlaps.

Geometry Repair Support

 get_small_surfaces_hydraulic_radius ([int]
target_volume_ids, float mesh_size, [int]
&small_surfaces, [float] &small_radius)

Appendix

1078

Get the list of small hydraulic radius surfaces for a list of
volumes.

 get_small_volumes_hydraulic_radius ([int]
target_volume_ids, float mesh_size, [int]
&small_volumes, [float] &small_radius)

Get the list of small hydraulic radius volumes for a list of
volumes.

[int] get_small_curves ([int] target_volume_ids, float
mesh_size)

 Get the list of small curves for a list of volumes.

[int] get_smallest_curves ([int] target_volume_ids, int
num_to_return)

Get a list of the smallest curves in the list of volumes. The
number returned is specified by 'num_to_return'.

[int] get_small_surfaces ([int] target_volume_ids, float
mesh_size)

 Get the list of small surfaces for a list of volumes.

[int] get_narrow_surfaces ([int] target_volume_ids, float
mesh_size)

 Get the list of narrow surfaces for a list of volumes.

[int] get_small_and_narrow_surfaces ([int] target_ids, float
small_area, float small_curve_size)

Get the list of small or narrow surfaces from a list of
volumes.

[int] get_closed_narrow_surfaces ([int] target_ids, float
narrow_size)

Get the list of closed, narrow surfaces from a list of
volumes.

[int] get_surfs_with_narrow_regions ([int] target_ids, float
narrow_size)

 Get the list of surfaces with narrow regions.

[int] get_narrow_regions ([int] target_ids, float narrow_size)

 Get the list of surfaces with narrow regions.

[int] get_small_volumes ([int] target_volume_ids, float
mesh_size)

 Get the list of small volumes from a list of volumes.

Cubit_15.5_User_Documentation

1079

[int] get_blend_surfaces ([int] target_volume_ids)

 Get the list of blend surfaces for a list of volumes.

[int] get_small_loops ([int] target_volume_ids, float
mesh_size)

 Get the list of close loops (surfaces) for a list of volumes.

[int] get_tangential_intersections ([int] target_volume_ids,
float upper_bound, float lower_bound)

Get the list of bad tangential intersections for a list of
volumes.

[int] get_coincident_vertices ([int] target_volume_ids, float
high_tolerance)

[[str]] get_solutions_for_near_coincident_vertices (int
vertex_id1, int vertex_id2)

Get lists of display strings and command strings for near
coincident vertices.

[[str]] get_solutions_for_overlapping_volumes (int vol_id_1, int
vol_id_2, float max_gap_tolerance, float max_gap_angle)

Get lists of display strings and command strings for
overlapping volumes.

[[str]] get_volume_gap_solutions (int surface_id_1, int
surface_id_2)

[[str]] get_solutions_for_near_coincident_vertex_and_curve (int
vertex_id, int curve_id)

Get lists of display strings and command strings for near
coincident vertices and curves.

[[str]] get_solutions_for_near_coincident_vertex_and_surface
(int vertex_id, int surface_id)

Get lists of display strings and command strings for near
coincident vertices and surfaces.

[[str]] get_solutions_for_imprint_merge (int surface_id1, int
surface_id2)

Get lists of display strings and command strings for
imprint/merge solutions.

[[str]] get_solutions_for_forced_sweepability (int volume_id, [
int] &source_surface_id_list, [int]
&target_surface_id_list, float small_curve_size=-1.0)

Appendix

1080

This function only works from C++*** Get lists of display
strings and command strings for forced sweepability
solutions.

[[str]] get_solutions_for_small_surfaces (int surface_id, float
small_curve_size, float mesh_size)

Get lists of display, preview and command strings for
small surface solutions.

[[str]] get_solutions_for_small_curves (int curve_id, float
small_curve_size, float mesh_size)

Get lists of display, preview and command strings for
small curve solutions.

[[str]] get_solutions_for_surfaces_with_narrow_regions (int
surface_id, float small_curve_size, float mesh_size)

Get lists of display, preview and command strings for
surfaces with narrow regions solutions.

Bool get_solutions_for_source_target (int volume_id, [[int]]
&feasible_source_surface_id_list, [[int]]
&feasible_target_surface_id_list, [[int]]
&infeasible_source_surface_id_list, [[int]]
&infeasible_target_surface_id_list)

Get a list of suggested sources and target surface ids
given a specified volume.

 get_sharp_surface_angles ([int] target_volume_ids, [int
] &large_surface_angles, [int] &small_surface_angles, [
float] &large_angles, [float] &small_angles, float
upper_bound, float lower_bound)

 Get the list of sharp surface angles for a list of volumes.

 get_sharp_curve_angles ([int] target_volume_ids, [int]
&large_curve_angles, [int] &small_curve_angles, [float]
&large_angles, [float] &small_angles, float
upper_bound, float lower_bound)

 Get the list of sharp curve angles for a list of volumes.

 get_bad_geometry ([int] target_volume_ids, [int]
&body_list, [int] &volume_list, [int] &surface_list, [int]
&curve_list)

This function only works from C++*** Get the list of bad
geometry for a list of volumes.

 get_overlapping_surfaces_in_volumes ([int]
target_volume_ids, [int] &surf_list_1, [int] &surf_list_2, [

Cubit_15.5_User_Documentation

1081

float] &distance_list, Bool filter_slivers=false, Bool
filter_volume_overlaps=false)

This function only works from C++*** Get the list of
overlapping surfaces for a list of volumes.

 get_overlapping_surfaces ([int] target_surface_ids, [int]
&surf_list_1, [int] &surf_list_2, [float] &distance_list,
Bool filter_slivers=false, Bool
filter_volume_overlaps=false)

This function only works from C++*** Get the list of
overlapping surfaces for a list of surfaces.

 get_volume_gaps ([int] target_volume_ids, [int]
&surf_list_1, [int] &surf_list_2, [float] &distance_list,
float max_gap_tolerance, float max_gap_angle)

This function only works from C++*** Get the list of gaps
for a list of volumes.

[int] get_overlapping_volumes ([int] target_volume_ids)

 Get the list of overlapping volumes for a list of volumes.

 get_mergeable_entities ([int] target_volume_ids, [[int]]
&surface_list, [[int]] &curve_list, [[int]] &vertex_list)

This function only works from C++*** Get the list of
mergeable entities from a list of volumes.

[[int]] get_mergeable_vertices ([int] target_volume_ids)

Get the list of mergeable vertices from a list of
volumes/bodies.

[[int]] get_mergeable_curves ([int] target_volume_ids)

Get the list of mergeable curves from a list of
volumes/bodies.

[[int]] get_mergeable_surfaces ([int] target_volume_ids)

Get the list of mergeable surfaces from a list of
volumes/bodies.

 get_closest_vertex_curve_pairs ([int] target_ids, int
&num_to_return, [int] &vert_ids, [int] &curve_ids, [float
] &distances)

 Find the n closest vertex pairs in the model.

 get_smallest_features ([int] target_ids, int
&num_to_return, [int] &type1_list, [int] &type2_list, [int
] &id1_list, [int] &id2_list, [float] &distance_list)

Appendix

1082

 Finds all of the smallest features.

float estimate_merge_tolerance ([int] target_volume_ids,
Bool accurate_in=false, Bool report_in=false, float
lo_val_in=-1.0, float hi_val_in=-1.0, int
num_calculations_in=10, Bool
return_calculations_in=false, [float] *merge_tols=NULL, [
int] *num_proximities=NULL)

Estimate a good merge tolerance for the passed-in
volumes.

 find_floating_volumes ([int] target_volume_ids, [int]
&floating_list)

 Get the list of volumes with no merged children.

 find_nonmanifold_curves ([int] target_volume_ids, [int]
&curve_list)

 Get the list of nonmanifold curves in the volume list.

 find_nonmanifold_vertices ([int] target_volume_ids, [int]
&vertex_list)

 Get the list of nonmanifold vertices in the volume list.

 get_coincident_entity_pairs ([int] target_volume_ids, [int
] &v_v_vertex_list, [int] &v_c_vertex_list, [int]
&v_c_curve_list, [int] &v_s_vertex_list, [int]
&v_s_surf_list, [float] &vertex_distance_list, [float]
&curve_distance_list, [float] &surf_distance_list, float
low_value, float hi_value, Bool do_vertex_vertex=true,
Bool do_vertex_curve=true, Bool do_vertex_surf=true,
Bool filter_same_volume_cases=false)

Get the list of coincident vertex-vertex, vertex-curve, and
vertex-surface pairs and distances from a list of volumes.

 get_coincident_vertex_vertex_pairs ([int]
target_volume_ids, [int] &vertex_pair_list, [float]
&distance_list, float low_value, float threshold_value,
Bool filter_same_volume_cases=false)

Get the list of coincident vertex pairs and distances from a
list of volumes.

 get_coincident_vertex_curve_pairs ([int]
target_volume_ids, [int] &vertex_list, [int] &curve_list, [
float] &distance_list, float low_value, float
threshold_value, Bool filter_same_volume_cases=false)

Cubit_15.5_User_Documentation

1083

Get the list of coincident vertex/curve pairs and distances
from a list of volumes.

 get_coincident_vertex_surface_pairs ([int]
target_volume_ids, [int] &vertex_list, [int] &surface_list,
[float] &distance_list, float low_value, float
threshold_value, Bool filter_same_volume_cases=false)

Get the list of coincident vertex/surface pairs and
distances from a list of volumes.

[str] get_solutions_for_decomposition ([int] volume_list, float
exterior_angle, Bool do_imprint_merge, Bool tol_imprint)

 Get the list of possible decompositions.

[[str]] get_solutions_for_blends (int surface_id)

 Get the solution list for a given blend surface.

[[int]] get_blend_chains (int surface_id)

 Queries the blend chains for a surface.

float get_merge_tolerance ()

 Get the current merge tolerance value.

Blocks, Sidesets, and Nodesets

str get_exodus_entity_name (str entity_type, int entity_id)

 Get the name associated with an exodus entity.

str get_exodus_entity_type (str entity_type, int entity_id)

 Get the type of an exodus entity.

str get_exodus_entity_description (str entity_type, int
entity_id)

 Get the description associated with an exodus entity.

[float] get_all_exodus_times (str filename)

Open an exodus file and get a vector of all stored time
stamps.

[str] get_all_exodus_variable_names (str filename, str type)

Open an exodus file and get a list of all stored variable
names.

int get_block_id (str entity_type, int entity_id)

Get the associated block id for a specific curve, surface,
or volume.

[int] get_block_ids (str mesh_geom_file_name)

Appendix

1084

 Get list of block ids from a mesh geometry file.

[int] get_block_id_list ()

 Get a list of all blocks.

[int] get_nodeset_id_list ()

 Get a list of all nodesets.

[int] get_sideset_id_list ()

 Get a list of all sidesets.

[int] get_bc_id_list (CI_BCTypes bc_type_in)

 Get a list of all bcs of a specified type.

str get_bc_name (CI_BCTypes bc_type_in, int bc_id)

 Get the name for the specified bc.

[int] get_nodeset_id_list_for_bc (CI_BCTypes bc_type_in, int
bc_id)

 Get a list of all nodesets the specified bc is applied to.

[int] get_sideset_id_list_for_bc (CI_BCTypes bc_type_in, int
bc_id)

 Get a list of all sidesets the specified bc is applied to.

int get_next_sideset_id ()

 Get a next available sideset id.

int get_next_nodeset_id ()

 Get a next available nodeset id.

int get_next_block_id ()

 Get a next available block id.

str get_copy_nodeset_on_geometry_copy_setting ()

 Get the copy nodeset on geometry copy setting.

str get_copy_sideset_on_geometry_copy_setting ()

 Get the copy nodeset on geometry copy setting.

str get_copy_block_on_geometry_copy_setting ()

 Get the copy nodeset on geometry copy setting.

 get_block_children (int block_id, [int] &group_list, [int]
&node_list, [int] &sphere_list, [int] &edge_list, [int]
&tri_list, [int] &face_list, [int] &pyramid_list, [int]
&tet_list, [int] &hex_list, [int] &wedge_list, [int]

Cubit_15.5_User_Documentation

1085

&volume_list, [int] &surface_list, [int] &curve_list, [int]
&vertex_list)

 Get lists of any and all possible children of a block.

 get_nodeset_children (int nodeset_id, [int] &node_list, [
int] &volume_list, [int] &surface_list, [int] &curve_list, [
int] &vertex_list)

 get lists of any and all possible children of a nodeset

 get_sideset_children (int sideset_id, [int] &face_list, [int
] &surface_list, [int] &curve_list)

 get lists of any and all possible children of a sideset

[int] get_block_volumes (int block_id)

 Get a list of volume ids associated with a specific block.

[int] get_block_surfaces (int block_id)

 Get a list of surface associated with a specific block.

[int] get_block_curves (int block_id)

 Get a list of curve associated with a specific block.

[int] get_block_vertices (int block_id)

 Get a list of vertices associated with a specific block.

Bool get_block_elements_and_nodes (int block_id, [int]
&node_list, [int] &sphere_list, [int] &edge_list, [int]
&tri_list, [int] &face_list, [int] &pyramid_list, [int]
&wedge_list, [int] &tet_list, [int] &hex_list)

Get lists of the nodes and different element types
associated with this block. This function is recursive,
meaning that if the block was created pointing to a piece
of geometry, it will traverse down and get the mesh
entities associated to that geometry.

[int] get_block_nodes (int block_id)

 Get a list of nodes associated with a specific block.

[int] get_block_edges (int block_id)

 Get a list of edges associated with a specific block.

[int] get_block_tris (int block_id)

 Get a list of tris associated with a specific block.

[int] get_block_faces (int block_id)

 Get a list of faces associated with a specific block.

Appendix

1086

[int] get_block_pyramids (int block_id)

 Get a list of pyramids associated with a specific block.

[int] get_block_wedges (int block_id)

 Get a list of wedges associated with a specific block.

[int] get_block_tets (int block_id)

 Get a list of tets associated with a specific block.

[int] get_block_hexes (int block_id)

 Get a list of hexes associated with a specific block.

[int] get_volume_hexes (int volume_id)

 get the list of any hex elements in a given volume

[int] get_volume_tets (int volume_id)

 get the list of any tet elements in a given volume

[int] get_nodeset_volumes (int nodeset_id)

Get a list of volume ids associated with a specific
nodeset.

[int] get_nodeset_surfaces (int nodeset_id)

Get a list of surface ids associated with a specific
nodeset.

[int] get_nodeset_curves (int nodeset_id)

 Get a list of curve ids associated with a specific nodeset.

[int] get_nodeset_vertices (int nodeset_id)

 Get a list of vertex ids associated with a specific nodeset.

[int] get_nodeset_nodes (int nodeset_id)

Get a list of node ids associated with a specific nodeset.
This only returns the nodes that were specifically
assigned to this nodeset. If the nodeset was created as a
piece of geometry, get_nodeset_nodes will not return the
nodes on that geometry See also
get_nodeset_nodes_inclusive.

[int] get_nodeset_nodes_inclusive (int nodeset_id)

Get a list of node ids associated with a specific nodeset.
This includes all nodes specifically assigned to the
nodeset, as well as nodes associated to a piece of
geometry which was used to define the nodeset.

Cubit_15.5_User_Documentation

1087

[int] get_sideset_curves (int sideset_id)

 Get a list of curve ids associated with a specific sideset.

[int] get_curve_edges (int curve_id)

 get the list of any edge elements on a given curve

[int] get_sideset_surfaces (int sideset_id)

 Get a list of any surfaces in a sideset.

[int] get_sideset_quads (int sideset_id)

 Get a list of any quads in a sideset.

[int] get_surface_quads (int surface_id)

 get the list of any quad elements on a given surface

[int] get_surface_tris (int surface_id)

 get the list of any tri elements on a given surface

str get_entity_sense (str source_type, int source_id, int
sideset_id)

 Get the sense of a sideset item.

str get_wrt_entity (str source_type, int source_id, int
sideset_id)

 Get the with-respect-to entity.

[str] get_geometric_owner (str mesh_entity_type, str
mesh_entity_list)

Get a list of geometric owners given a list of mesh
entities.

Geometry-Mesh Entity Support

[int] get_volume_nodes (int vol_id)

Get list of node ids owned by a volume. Excludes nodes
owned by bounding surfs, curves and verts.

[int] get_surface_nodes (int surf_id)

Get list of node ids owned by a surface. Excludes nodes
owned by bounding curves and verts.

[int] get_curve_nodes (int curv_id)

Get list of node ids owned by a curve. Excludes nodes
owned by bounding vertices.

int get_vertex_node (int vert_id)

 Get the node owned by a vertex.

Appendix

1088

Group Support

int get_id_from_name (str name)

 Get id for a named entity.

 get_group_children (int group_id, [int] &group_list, [int]
&body_list, [int] &volume_list, [int] &surface_list, [int]
&curve_list, [int] &vertex_list, int &node_count, int
&edge_count, int &hex_count, int &quad_count, int
&tet_count, int &tri_count, int &wedge_count, int
&pyramid_count, int &sphere_count)

 Get group children.

[int] get_group_groups (int group_id)

Get group groups (groups that are children of another
group).

[int] get_group_volumes (int group_id)

 Get group volumes (volumes that are children of a group).

[int] get_group_bodies (int group_id)

 Get group bodies (bodies that are children of a group).

[int] get_group_surfaces (int group_id)

Get group surfaces (surfaces that are children of a
group).

[int] get_group_curves (int group_id)

 Get group curves (curves that are children of a group).

[int] get_group_vertices (int group_id)

 Get group vertices (vertices that are children of a group).

[int] get_group_nodes (int group_id)

 Get group nodes (nodes that are children of a group).

[int] get_group_edges (int group_id)

 Get group edges (edges that are children of a group).

[int] get_group_quads (int group_id)

 Get group quads (quads that are children of a group).

[int] get_group_tris (int group_id)

 Get group tris (tris that are children of a group).

[int] get_group_tets (int group_id)

 Get group tets (tets that are children of a group).

Cubit_15.5_User_Documentation

1089

[int] get_group_wedges (int group_id)

 Get group wedges (wedges that are children of a group).

[int] get_group_pyramids (int group_id)

Get group pyramids (pyramids that are children of a
group).

[int] get_group_spheres (int group_id)

[int] get_group_hexes (int group_id)

int get_next_group_id ()

 Get the next available group id from Cubit.

 delete_all_groups ()

 Delete all groups.

 delete_group (int group_id)

 Delete a specific group.

 set_max_group_id (int max_group_id)

Reset Cubit's max group id This is really dangerous to
use and exists only to overcome a limitation with Cubit.
Cubit keeps track of the next group id to assign. But those
ids just keep incrementing in Cubit. Some of the power
tools in the Cubit GUI make groups 'under the covers' for
various operations. The groups are immediately deleted.
But, creating those groups will cause Cubit's group id to
increase and downstream journal files may be messed up
because those journal files are expecting a certain ID to
be available.

int create_new_group ()

 Create a new group.

 remove_entity_from_group (int group_id, int entity_id, str
entity_type)

 Remove a specific entity from a specific group.

 add_entity_to_group (int group_id, int entities, str
entity_type)

 Add a specific entity to a specific group.

 add_entities_to_group (int group_id, [int] entity_id, str
entity_type)

 Add a list of entities to a specific group.

Appendix

1090

 group_list ([str] &name_list, [int] &id_list)

Get the names and ids of all the groups (excluding the
pick group) that are defined by the current cubit session.

[int] get_mesh_group_parent_ids (str element_type, int
element_id)

Get the group ids which are parents to the indicated mesh
element.

Bool is_mesh_element_in_group (str element_type, int
element_id)

 Indicates whether a mesh element is in a group.

General Purpose Utility

Bool is_part_of_list (int target_id, [int] id_list)

 Routine to check for the presence of an id in a list of ids.

int get_last_id (str entity_type)

 Get the id of the last created entity of the given type.

str get_idless_signature (str type, int id)

 get the idless signature of a geometric or mesh entity

str get_idless_signatures (str type, [int] idlist)

get the idless signatures of a range of geometric or mesh
entities

Metadata Support

str get_assembly_classification_level ()

 Get Classification Level for metadata.

str get_assembly_classification_category ()

 Get Classification Category for metadata.

str get_assembly_weapons_category ()

 Get Weapons Category for metadata.

str get_assembly_metadata (int volume_id, int data_type)

 Get metadata for a specified volume id.

Bool is_assembly_metadata_attached (int volume_id)

Determine whether metadata is attached to a specified
volume.

str get_assembly_name (int assembly_id)

 Get the stored name of an assembly node.

Cubit_15.5_User_Documentation

1091

str get_assembly_path (int assembly_id)

 Get the stored path of an assembly node.

str get_assembly_type (int assembly_id)

 Get the stored type of an assembly node.

str get_parent_assembly_path (int assembly_id)

 Get the stored path of an assembly node' parent.

int get_assembly_level (int assembly_id)

 Get the stored level of an assembly node.

str get_assembly_description (int assembly_id)

 Get the stored description of an assembly node.

int get_assembly_instance (int assembly_id)

 Get the stored instance number of an assembly node.

int get_parent_assembly_instance (int assembly_id)

Get the stored instance number of an assembly node's
instance.

str get_assembly_file_format (int assembly_id)

 Get the stored file format of an assembly node.

str get_assembly_units (int assembly_id)

 Get the stored units measure of an assembly node.

str get_assembly_material_description (int assembly_id)

 Get the stored material description of an assembly part.

str get_assembly_material_specification (int assembly_id)

 Get the stored material specification of an assembly part.

Mesh Element Queries

int get_exodus_id (str entity_type, int entity_id)

 Get the exodus/genesis id for this element.

str get_geometry_owner (str entity_type, int entity_id)

 Get the geometric owner of this mesh element.

[int] get_connectivity (str entity_type, int entity_id)

 Get the list of node ids contained within a mesh entity.

[int] get_expanded_connectivity (str entity_type, int entity_id)

Appendix

1092

Get the list of node ids contained within a mesh entity,
including interior nodes.

[int] get_sub_elements (str entity_type, int entity_id, int
dimension)

Get the lower dimesion entities associated with a higher
dimension entities. For example get the faces associated
with a hex or the edges associated with a tri.

Bool get_node_exists (int node_id)

 Check the existance of a node.

Bool get_element_exists (int element_id)

 Check the existance of an element.

str get_element_type (int element_id)

 return the type of a given element

int get_element_type_id (int element_id)

 return the type id of a given element

int get_element_block (int element_id)

 return the block that a given element is in.

int get_global_element_id (str elem_type, int id)

 Given a hex, tet, etc. id, return the global element id.

int get_hex_global_element_id (int hex_id)

 Given a hex id, return the global element id.

int get_tet_global_element_id (int tet_id)

 Given a tet id, return the global element id.

int get_wedge_global_element_id (int wedge_id)

 Given a wedge id, return the global element id.

int get_pyramid_global_element_id (int pyramid_id)

 Given a pyramid id, return the global element id.

int get_tri_global_element_id (int tri_id)

 Given a tri id, return the global element id.

int get_quad_global_element_id (int quad_id)

 Given a quad id, return the global element id.

int get_edge_global_element_id (int edge_id)

Cubit_15.5_User_Documentation

1093

 Given a edge id, return the global element id.

int get_sphere_global_element_id (int edge_id)

 Given a sphere id, return the global element id.

int get_node_global_id (int node_id)

Given a node id, return the global element id that is
assigned when the mesh is exported.

int get_closest_node (float x, float y, float z)

 Get the node closest to the given coordinates.

[float] get_nodal_coordinates (int node_id)

 Get the nodal coordinates for a given node id.

[int] get_node_faces (int node_id)

[int] get_node_tris (int node_id)

Bool get_node_position_fixed (int node_id)

Query "fixedness" state of node. A fixed node is not
affecting by smoothing.

[int, int] get_submap_corner_types (int surface_id)

Get a list of vertex ids and the corresponding corner
vertex types if the surface were defined as submap
surface. There are no side affects. This does not actually
assign corner types or change the underlying mesh
scheme of the surface.

str get_sideset_element_type (int sideset_id)

 Get the element type of a sideset.

str get_block_element_type (int block_id)

 Get the element type of a block.

int get_exodus_element_count (int entity_id, str entity_type)

 Get the number of elements in a exodus entity.

int get_block_attribute_count (int block_id)

 Get the number of attributes in a block.

int get_block_element_attribute_count (int block_id)

float get_block_attribute_value (int block_id, int index)

 Get a specific block attribute value.

str get_block_attribute_name (int block_id, int index)

Appendix

1094

 Get a specific block attribute name.

[str] get_block_element_attribute_names (int block_id)

[str] get_valid_block_element_types (int block_id)

 Get a list of potential element types for a block.

int get_exodus_variable_count (str entity_type, int id)

Get the number of exodus variables in a nodeset, sideset,
or block.

[str] get_exodus_variable_names (str entity_type, int id)

Get the names of exodus variables in a nodeset, sideset,
or block.

int get_nodeset_node_count (int nodeset_id)

 Get the number of nodes in a nodeset.

int get_geometry_node_count (str entity_type, int entity_id)

 get_owning_volume_ids (str entity_type, [int]
&entity_list, [int] &vol_ids)

Gets the id's of the volumes that are owners of one of the
specified entities.

str get_mesh_element_type (str entity_type, int entity_id)

Get the mesh element type contained in the specified
geometry.

Boundary Condition Support

Bool is_on_thin_shell (CI_BCTypes bc_type_in, int entity_id)

Determine whether a BC is on a thin shell. Valid for
temperature, convection and heatflux.

Bool temperature_is_on_solid (CI_BCTypes bc_type_in, int
entity_id)

Determine whether a BC temperature is on a solid. Valid
for convection and temperature.

Bool convection_is_on_solid (int entity_id)

Determine whether a BC convection is on a solid. Valid
for convection.

Bool convection_is_on_shell_area (int entity_id,
CI_BCEntityTypes shell_area)

Determine whether a BC convection is on a shell top or
bottom. Valid for convection.

Cubit_15.5_User_Documentation

1095

float get_convection_coefficient (int entity_id,
CI_BCEntityTypes cc_type)

 Get the convection coefficient.

float get_bc_temperature (CI_BCTypes bc_type, int entity_id,
CI_BCEntityTypes temp_type)

 Get the temperature. Valid for convection, temperature.

Bool temperature_is_on_shell_area (CI_BCTypes bc_type,
CI_BCEntityTypes bc_area, int entity_id)

Determine whether a BC temperature is on a shell area.
Valid for convection and temperature and on top, bottom,
gradient, and middle.

Bool heatflux_is_on_shell_area (CI_BCEntityTypes bc_area,
int entity_id)

 Determine whether a BC heatflux is on a shell area.

float get_heatflux_on_area (CI_BCEntityTypes bc_area, int
entity_id)

 Get the heatflux on a specified area.

int get_cfd_type (int entity_id)

 Get the cfd subtype for a specified cfd BC.

float get_contact_pair_friction_value (int entity_id)

 Get the contact pair's friction value.

float get_contact_pair_tolerance_value (int entity_id)

 Get the contact pair's upper bound tolerance value.

float get_contact_pair_tol_lower_value (int entity_id)

 Get the contact pair's lower bound tolerance value.

Bool get_contact_pair_tied_state (int entity_id)

 Get the contact pair's tied state.

Bool get_contact_pair_general_state (int entity_id)

 Get the contact pair's general state.

Bool get_contact_pair_exterior_state (int entity_id)

 Get the contact pair's exterior state.

int get_displacement_coord_system (int entity_id)

 Get the displacement's coordinate system id.

Appendix

1096

const float * get_displacement_dof_values (int entity_id)

This function only available from C++*** Get the
displacement's dof values.

const int * get_displacement_dof_signs (int entity_id)

This function only available from C++*** Get the
displacement's dof signs.

const float * get_velocity_dof_values (int entity_id)

This function only available from C++*** Get the velocity's
dof values.

const int * get_velocity_dof_signs (int entity_id)

This function only available from C++*** Get the velocity's
dof signs.

str get_velocity_combine_type (int entity_id)

This function only available from C++*** Get the
acceleration's dof values.

const float * get_acceleration_dof_values (int entity_id)

This function only available from C++*** Get the
acceleration's dof values.

const int * get_acceleration_dof_signs (int entity_id)

This function only available from C++*** Get the
acceleration's dof signs.

str get_acceleration_combine_type (int entity_id)

Get the acceleration's combine type which is "Overwrite",
"Average", "SmallestCombine", or "LargestCombine".

str get_displacement_combine_type (int entity_id)

Get the displacement's combine type which is
"Overwrite", "Average", "SmallestCombine", or
"LargestCombine".

float get_pressure_value (int entity_id)

 Get the pressure value.

str get_pressure_function (int entity_id)

 Get the pressure function.

float get_force_magnitude (int entity_id)

 Get the force magnitude from a force.

Cubit_15.5_User_Documentation

1097

float get_moment_magnitude (int entity_id)

 Get the moment magnitude from a force.

[float] get_force_direction_vector (int entity_id)

 Get the direction vector from a force.

[float] get_force_moment_vector (int entity_id)

 Get the moment vector from a force.

str get_constraint_type (int constraint_id)

 Get the type of a specified constraint.

str get_constraint_reference_point (int constraint_id)

 Get the reference point of a specified constraint.

str get_constraint_dependent_entity_point (int constraint_id)

 Get the dependent entity of a specified constraint.

float get_material_property (CI_MaterialProperty mp, int
entity_id)

int get_media_property (int entity_id)

[str] get_material_name_list ()

[str] get_media_name_list ()

float calculate_timestep_estimate (str entity_type, [int]
entity_ids)

float calculate_timestep_estimate (str entity_type, [int]
entity_ids, float density, float youngs_modulus, float
poissons_ratio)

 set_label_type (str entity_type, int label_flag)

int get_label_type (str entity_type)

[int] get_coordinate_systems_id_list ()

 compare_geometry_and_mesh ([int] volume_ids, [int]
block_ids, [int] hex_ids, [int] tet_ids, float tolerance, int
&unmatched_volumes, int &unmatched_elements, [int]
&full_matches_group_ids, [int]
&partial_matches_group_ids, int
&volume_curves_group_id)

float get_dbl_sculpt_default (str variable)

int get_int_sculpt_default (str variable)

Bool get_Bool_sculpt_default (str variable)

Appendix

1098

str get_string_sculpt_default (str variable)

Boundary Layer Support

int get_next_boundary_layer_id ()

Bool is_boundary_layer_id_available (int id)

str get_boundary_layer_algorithm (int id)

Bool get_boundary_layer_uniform_parameters (int id, float
&first_row_height, float &growth_factor, int
&number_rows)

Bool get_boundary_layer_aspect_first_parameters (int id, float
&first_row_aspect, float &growth_factor, int
&number_rows)

Bool get_boundary_layer_aspect_last_parameters (int id, float
&first_row_height, int &number_rows, float
&last_row_aspect)

Bool get_boundary_layer_curve_surface_pairs (int id, [int]
&curve_list, [int] &surface_list)

Bool get_boundary_layer_surface_volume_pairs (int id, [int]
&surface_list, [int] &volume_list)

Bool get_boundary_layer_vertex_intersection_types ([int]
&vertex_list, [int] &surface_list, [str] &types)

Bool get_boundary_layer_curve_intersection_types ([int]
&curve_list, [int] &volume_list, [str] &types)

Bool get_boundary_layer_continuity (int id)

[int] get_boundary_layer_id_list ()

CubitInterface Control - Not Generally Useful

const int CI_ERROR = -1

 init (const [str] &argv)

Use init to initialize Cubit. Using a blank list as the input
parameter is acceptable.

 destroy ()

 Closes the current journal file.

 process_input_files ()

 C++ only***.

 set_exit_handler (ExternalExitHandler *hdlr)

 C++ only***.

Cubit_15.5_User_Documentation

1099

 set_playback_handler (ExternalPlaybackHandler *hdlr)

 C++ only***.

ExternalPlaybackHandler * get_playback_handler ()

 set_cubit_message_handler (CubitMessageHandler
*hdlr)

 redirect the output from cubit. C++ only***

CubitMessageHandler * get_cubit_message_handler ()

 get the default message handler C++ only***

 enable_signal_handling (Bool on)

 initialize/uninitialize signal handling C++ only***

Typedef Documentation

typedef CIObserve ObserverBase

ObserverBase is a typedef for the latest version of the CIObserve class. It is provided for
convenience so that code does not need to be updated to use the new class name when
additional functions are added to CIObserve.

Function Documentation

add_entities_to_group (int group_id,

 [int] entity_id,

 str entity_type)

Add a list of entities to a specific group.
 add_entities_to_group(3, list, "surface");

 cubit.add_entities_to_group(3, list, "surface")

Parameters:

group_id ID of group to which the entity will be added
list a vector of IDs of the entities to be added to the group
entity_type Type of the entity to be added to the group. Note that this function is

valid only for geometric entities

add_entity_to_group (int group_id,

 int entities,

 str entity_type)

Add a specific entity to a specific group.
 add_entity_to_group(3, 22, "surface");

Appendix

1100

 cubit.add_entity_to_group(3, 22, "surface")

Parameters:

group_id ID of group to which the entity will be added
entity_id ID of the entity to be added to the group
entity_type Type of the entity to be added to the group. Note that this function is

valid only for geometric entities

add_filename_to_recent_file_list (str & filename)

/brief Adds the filename to the recent file list. /param filename to be added to the recent
file list.

Bool auto_size_needs_to_be_calculated ()

Get whether the auto size needs to be calculated. Calculating the auto size may be
expensive on complex models. The auto size may be outdated if the model has changed.

float calculate_timestep_estimate (str entity_type,

 [int] entity_ids,

 float density,

 float youngs_modulus,

 float poissons_ratio)

/brief Calculate timestep estimate
/return timestep estimate (smallest time step)

float calculate_timestep_estimate (str entity_type,

 [int] entity_ids)

/brief Calculate timestep estimate on elements in entity type: "Tet" or "Hex" or "Volume"
or "Block" or "Group" The hexes or tets must belong to a single block and that block must
have a material property assigned to it, where properties elastic_modulus, poisson_ratio,
and density are defined. /return timestep estimate (smallest time step)

clear_drawing_set (str set_name)

Clear a named drawing set (this is for mesh preview).

clear_preview ()

Clear preview graphics without affecting other display settings.

Bool cmd (str input_string)

Pass a command string into Cubit.
Passing a command into Cubit using this method will result in an immediate execution of
the command. The command is passed directly to Cubit without any validation or other
checking.
 cmd("create brick x 10");

 cubit.cmd("brick x 10")

Parameters:

input_string Pointer to a string containing a complete Cubit command

compare_geometry_and_mesh ([int] volume_ids,

Cubit_15.5_User_Documentation

1101

 [int] block_ids,

 [int] hex_ids,

 [int] tet_ids,

 float tolerance,

 int & unmatched_volumes,

 int & unmatched_elements,

 [int] & full_matches_group_ids,

 [int] & partial_matches_group_ids,

 int & volume_curves_group_id)

complete_filename (str & line,

 int & num_chars,

 Bool & found_quote)

Get the file completion inside a quote based on files in the current directory. This handles
completion of directories as well as filtering on specific types (.jou, .g, .sat, etc.).
Parameters:

line [in/out] the line to be completed and the completed line num_chars [out] the

number of characters added to the input line. If 0 there are multiple
completions found_quote [out] if the end of quote was found

Bool contains_virtual (str geom_type,

 int entity_id)

Query virtualality of an entity's children.
 if (contains_virtual("surface", 134)) . . .

 if cubit.contains_virtual("surface", 134)):

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool convection_is_on_shell_area (int entity_id,

 CI_BCEntityTypes shell_area)

Determine whether a BC convection is on a shell top or bottom. Valid for convection.
/param entity_id Id of the BC convection /param shell_area enum of BCEntityTypes. Use
7 to check if on top, 8 to check if on bottom /return true if convection is on the shell area,
otherwise false

Bool convection_is_on_solid (int entity_id)

Determine whether a BC convection is on a solid. Valid for convection.
/param entity_id Id of the BC convection /return true if convection is on a solid, otherwise
false

int create_new_group ()

Create a new group.
Returns:

group_id ID of new group

Appendix

1102

delete_all_groups ()

Delete all groups.

delete_group (int group_id)

Delete a specific group.
Parameters:

group_id ID of group to delete

destroy ()

Closes the current journal file.

Bool developer_commands_are_enabled ()

This checks to see whether developer commands are enabled.
Returns:

True if developer commands are enabled, otherwise False

enable_signal_handling (Bool on)

initialize/uninitialize signal handling C++ only***
Parameters:

on Set to true to initialize signal handling, false to uninitialize.

float estimate_merge_tolerance ([int] target_volume_ids,

 Bool accurate_in = false,

 Bool report_in = false,

 float lo_val_in = -1.0,

 float hi_val_in = -1.0,

 int num_calculations_in = 10,

 Bool return_calculations_in = false,

 [float] * merge_tols = NULL,

 [int] * num_proximities = NULL)

Estimate a good merge tolerance for the passed-in volumes.
Given a list of volumes try to estimate a good merge tolerance.
Parameters:

target_volume_ids List of volumes ids to examine.
accurate_in Flag specifying whether to do a lengthier, more accurate

calculation.
report_in Flag specifying whether to report results to the command

line.
lo_val_in Low value of range to search for merge tolerance.
hi_val_in High value of range to search for merge tolerance.
num_calculations_in Number of intervals to split search range up into.
return_calculations_in Flag specifying whether to return the number of

proximities at each step.

Cubit_15.5_User_Documentation

1103

merge_tols List containing merge tolerance at each step of

calculation.
num_proximities List containing number of proximities at each step of

calculation.

[int] evaluate_exterior_angle ([int] curve_list,

 const float test_angle)

find all curves in the given list with an exterior angle (the angle between surfaces) less
than the test angle. This is equivalent to the df parser "exterior_angle" test. (draw curve
with exterior_angle] 90)
Parameters:

curve_list a list of curve ids (integers)
test_angle the value (in degrees) that will be used in testing the exterior angle

Returns:

A list (python tuple) of curve ids that meet the angle test.

Bool exodus_sizing_function_file_exists ()

return whether the exodus sizing funnction file exists
Returns:

whether the exodus sizing function file exists

find_floating_volumes ([int] target_volume_ids,

 [int] & floating_list)

Get the list of volumes with no merged children.
Given a list of volumes find all of the volumes that are not attached to any other entity
through a merge.
Parameters:

target_volume_ids List of volumes ids to examine.
volume_list User specified list where the ids of floating volumes are

returned

find_nonmanifold_curves ([int] target_volume_ids,

 [int] & curve_list)

Get the list of nonmanifold curves in the volume list.
Given a list of volumes find all of the nonmanifold curves. This is found by seeing if there
is at least one merged face attached to any merged curve. If there exist merged curves
that don't belong to merged faces it represents a nonmanifold case.
Parameters:

target_volume_ids List of volumes ids to examine.
curve_list User specified list where the ids of nonmanifold curves are

returned

find_nonmanifold_vertices ([int] target_volume_ids,

 [int] & vertex_list)

Get the list of nonmanifold vertices in the volume list.

Appendix

1104

Given a list of volumes find all of the nonmanifold vertices. This is found by seeing if there
is at least one merged curve attached to any merged vertex. If there exist merged vertices
that don't belong to merged curves it represents a nonmanifold case.
Parameters:

target_volume_ids List of volumes ids to examine.
vertex_list User specified list where the ids of nonmanifold vertices are

returned

flush_graphics ()

Flush the graphics.

str get_acceleration_combine_type (int entity_id)

Get the acceleration's combine type which is "Overwrite", "Average",
"SmallestCombine", or "LargestCombine".
/param entity_id Id of the acceleration /return The combine type for the given acceleration

const int* get_acceleration_dof_signs (int entity_id)

This function only available from C++*** Get the acceleration's dof signs.
/param entity_id Id of the acceleration /return

const float* get_acceleration_dof_values (int entity_id)

str get_acis_version ()

Get the Acis version number.
Returns:

A string containing the Acis version number

int get_acis_version_as_int ()

Get the Acis version number as an int.
Returns:

An integer containing the Acis version number

[int] get_adjacent_surfaces (str geom_type,

 int entity_id)

Get a list of adjacent surfaces to a specified entity.
For a specified entity, find all surfaces that own the entity and surfaces that touch the
surface that owns this entity.
 [int] surface_id_list;

 surface_id_list = get_adjacent_surfaces("curve", 22);

 surface_id_list = cubit.get_adjacent_surfaces("curve", 22)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:

A list (python tuple) of surfaces ids

[int] get_adjacent_volumes (str geom_type,

 int entity_id)

Cubit_15.5_User_Documentation

1105

Get a list of adjacent volumes to a specified entity.
For a specified entity, find all volumes that own the entity and volumes that touch the
volume that owns this entity.
 [int] volume_id_list;

 volume_id_list = get_adjacent_volumes("curve", 22);

 volume_id_list = cubit.get_adjacent_volumes("curve", 22)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:

A list (python tuple) of volume ids

[CFD_BC_Entity] get_all_cfd_bcs ()

[float] get_all_exodus_times (str filename)

Open an exodus file and get a vector of all stored time stamps.
Parameters:

filename Fully qualified exodus file name

Returns:

List (python tuple) of time stamps in the exodus file

[str] get_all_exodus_variable_names (str filename,

 str type)

Open an exodus file and get a list of all stored variable names.
Parameters:

filename Fully qualified exodus file name
type Variable type - 'g', 'n', or 'e'

Returns:

List (python tuple) of variable names in the exodus file

float get_aprepro_numeric_value (str var_name)

get the value of the given aprepro variable
Returns:

value as float on failure returns CUBIT_DBL_MAX

Bool get_aprepro_value (str var_name,

 int & var_type,

 float & dval,

 str & sval)

Get the value of an aprepro variable.
Parameters:

var_name aprepro variable name
var_type return 0, 1 or 3 where 0=undefined 1=float/int 2=string
dval return integer or float value if var_type=1
sval return string if var_type=2

Appendix

1106

Returns:

1 = success, 0 = failure (no such variable name)

str get_aprepro_value_as_string (str var_name)

Gets the string value of an aprepro variable.
/param var_name aprepro variable name /return The string value of the aprepro variable
name

[str] get_aprepro_vars ()

Gets the current aprepro variable names.
/return A list (python tuple) of the current aprepro variable names

float get_arc_length (int curve_id)

Get the arc length of a specified curve.
Parameters:

curve_id ID of the curve

Returns:

Arc length of the curve

[AssemblyItem] get_assembly_children (int assembly_id)

str get_assembly_classification_category ()

Get Classification Category for metadata.
Returns:

Requested data

str get_assembly_classification_level ()

Get Classification Level for metadata.
Returns:

Requested data

str get_assembly_description (int assembly_id)

Get the stored description of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Description of the assembly node

str get_assembly_file_format (int assembly_id)

Get the stored file format of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

File Format of the assembly node

int get_assembly_instance (int assembly_id)

Cubit_15.5_User_Documentation

1107

Get the stored instance number of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Instance of the assembly node

[AssemblyItem] get_assembly_items ()

int get_assembly_level (int assembly_id)

Get the stored level of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Level of the assembly node - Level == 0 == Root

str get_assembly_material_description (int assembly_id)

Get the stored material description of an assembly part.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Material Description of the assembly part

str get_assembly_material_specification (int assembly_id)

Get the stored material specification of an assembly part.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Material Specification of the assembly part

str get_assembly_metadata (int volume_id,

 int data_type)

Get metadata for a specified volume id.
Parameters:

volume_id ID of the volume
data_type Magic number representing the type of assembly information to return.

1 = Part Number, 2 = Description, 3 = Material Description 4 =
Material Specification, 5 = Assembly Path, 6 = Original File

Returns:

Requested data

str get_assembly_name (int assembly_id)

Get the stored name of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Appendix

1108

Returns:

Name of the assembly node

str get_assembly_path (int assembly_id)

Get the stored path of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Path of the assembly node

str get_assembly_type (int assembly_id)

Get the stored type of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Type of the assembly node -- 'part' or 'assembly'

str get_assembly_units (int assembly_id)

Get the stored units measure of an assembly node.
Parameters:

assembly_id Id that identifies the assembly node

Returns:

Units of the assembly node

str get_assembly_weapons_category ()

Get Weapons Category for metadata.
Returns:

Requested data

float get_auto_size (str geom_type,

 [int] entity_id_list,

 float size)

Get the auto size for a given set of enitities. Note, this does not actually set the interval
size on the volumes. It simply returns the size that would be set if an 'size auto factor n'
command were issued.
Parameters:

entity_type Specifies the geometry type of the entity
enitty_id_list List (vector) of entity ids
size The auto factor for the AutoSizeTool

Returns:

The interval size from the AutoSizeTool

get_bad_geometry ([int] target_volume_ids,

 [int] & body_list,

Cubit_15.5_User_Documentation

1109

 [int] & volume_list,

 [int] & surface_list,

 [int] & curve_list)

This function only works from C++*** Get the list of bad geometry for a list of volumes.
Bad geometry can be any number of problems associated with poorly defined ACIS
geometry.
Parameters:

target_volume_ids List of volume ids to examine.
body_list User specified list where ids of bad bodies will be returned
volume_list User specified list where ids of bad volumes will be returned
surface_list User specified list where ids of bad surfaces will be returned
curve_list User specified list where ids of bad curves will be returned

[int] get_bc_id_list (CI_BCTypes bc_type_in)

Get a list of all bcs of a specified type.
Parameters:

bc_type_in as an enum defined by CI_BCTypes. 1-9 is FEA, 10-30 is CFD

Returns:

List (python tuple) of all active bc ids

get_bc_info (BCEntity * sourceBC,

 str & bcType,

 int & bcID)

Get the bc type and id given a piece of BCEntity.
Parameters:

source_entity Pointer to a BCEntity entity
bcType User specified variable where the bc type will be returned
bcID User specified variable where the bc id will be returned

str get_bc_name (CI_BCTypes bc_type_in,

 int bc_id)

Get the name for the specified bc.
Parameters:

bc_type_in type of bc, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is

CFD
bc_id ID of the desired bc.

Returns:

The bc name

float get_bc_temperature (CI_BCTypes bc_type,

 int entity_id,

 CI_BCEntityTypes temp_type)

Get the temperature. Valid for convection, temperature.

Appendix

1110

/param bc_type enum of CI_BCTypes. temperature = 4, convection = 7 /param entity_id
Id of the BC convection /param temp_type enum of CI_BCEntityTypes (normal, shell top,
shell bottom). For convection, 2 if on solid, 7 if on top, 8 if on bottom. For temperature, 3
if on solid, 7 for top, 8 for bottom, 9 for gradient, 10 for middle /return The value of the
specified BC temperature

[[int]] get_blend_chains (int surface_id)

Queries the blend chains for a surface.
Parameters:

surface_id surface to retrieve the blend chains from

Returns:

A list of lists of id's in each blend chain. Note: If using python, lists will be python

tuples.

[int] get_blend_surfaces ([int] target_volume_ids)

Get the list of blend surfaces for a list of volumes.
Parameters:

target_volume_ids List of volume ids to examine. List (python tuple) of blend

surface ids

int get_block_attribute_count (int block_id)

Get the number of attributes in a block.
Parameters:

block_id The block id

Returns:

Number of attributes in the block

str get_block_attribute_name (int block_id,

 int index)

Get a specific block attribute name.
Parameters:

block_id The block id
index The index of the attribute

Returns:

Attribute name as a str

float get_block_attribute_value (int block_id,

 int index)

Get a specific block attribute value.
Parameters:

block_id The block id
index The index of the attribute

Returns:

List of attributes

Cubit_15.5_User_Documentation

1111

get_block_children (int block_id,

 [int] & group_list,

 [int] & node_list,

 [int] & sphere_list,

 [int] & edge_list,

 [int] & tri_list,

 [int] & face_list,

 [int] & pyramid_list,

 [int] & tet_list,

 [int] & hex_list,

 [int] & wedge_list,

 [int] & volume_list,

 [int] & surface_list,

 [int] & curve_list,

 [int] & vertex_list)

Get lists of any and all possible children of a block.
A block can contain a variety of entity types. This routine will return all contents of a
specified block.
Parameters:

block_id ID of block to examine
group_list User specified list where groups associated with this block are

returned
node_list User specified list where nodes associated with this block are

returned
edge_list User specified list where edges associated with this block are

returned
tri_list User specified list where tris associated with this block are returned
face_list User specified list where faces associated with this block are

returned
pyramid_list User specified list where pyramids associated with this block are

returned
tet_list User specified list where tets associated with this block are returned
hex_list User specified list where hexes associated with this block are

returned
volume_list User specified list where volumes associated with this block are

returned
surface_list User specified list where surfaces associated with this block are

returned
curve_list User specified list where curves associated with this block are

returned
vertex_list User specified list where vertices associated with this block are

returned

int get_block_count ()

Appendix

1112

Get the current number of blocks.
Returns:

The number of blocks in the current model, if any

[int] get_block_curves (int block_id)

Get a list of curve associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of curve ids contained in the block

[int] get_block_edges (int block_id)

Get a list of edges associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of edge ids contained in the block

int get_block_element_attribute_count (int block_id)

[str] get_block_element_attribute_names (int block_id)
str get_block_element_type (int block_id)

Get the element type of a block.
Parameters:

block_id The block id

Returns:

Element type

Bool get_block_elements_and_nodes (int block_id,

 [int] & node_list,

 [int] & sphere_list,

 [int] & edge_list,

 [int] & tri_list,

 [int] & face_list,

 [int] & pyramid_list,

 [int] & wedge_list,

 [int] & tet_list,

 [int] & hex_list)

Get lists of the nodes and different element types associated with this block. This function
is recursive, meaning that if the block was created pointing to a piece of geometry, it will
traverse down and get the mesh entities associated to that geometry.
Parameters:

Cubit_15.5_User_Documentation

1113

block_id User specified id of the desired block A list (python tuple) of node ids

contained in the block A list (python tuple) of edge ids contained in the
block A list (python tuple) of tri ids contained in the block A list (python
tuple) of quad ids contained in the block A list (python tuple) of pyramid
ids contained in the block A list (python tuple) of wedge ids contained in
the block A list (python tuple) of tet ids contained in the block A list
(python tuple) of hex ids contained in the block

Returns:

true for success, otherwise false

[int] get_block_faces (int block_id)

Get a list of faces associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of face ids contained in the block

[int] get_block_hexes (int block_id)

Get a list of hexes associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of hex ids contained in the block

int get_block_id (str entity_type,

 int entity_id)

Get the associated block id for a specific curve, surface, or volume.
 int block_id = get_block_id("surface", 33);

 block_id = cubit.get_block_id("surface", 33)

Parameters:

entity_type Type of entity
entity_id Id of entity in question

Returns:

Block id associated with this entity or zero (0) if none

[int] get_block_id_list ()

Get a list of all blocks.
Returns:

List (python tuple) of all active block ids

[int] get_block_ids (str mesh_geom_file_name)

Get list of block ids from a mesh geometry file.
Parameters:

mesh_geom_file_name Fully qualified name of a mesh geometry file

Appendix

1114

Returns:

List of block ids in the mesh geometry file

[int] get_block_nodes (int block_id)

Get a list of nodes associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of node ids contained in the block

[int] get_block_pyramids (int block_id)

Get a list of pyramids associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of pyramid ids contained in the block

[int] get_block_surfaces (int block_id)

Get a list of surface associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of surface ids contained in the block

[int] get_block_tets (int block_id)

Get a list of tets associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of tet ids contained in the block

[int] get_block_tris (int block_id)

Get a list of tris associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of tri ids contained in the block

[int] get_block_vertices (int block_id)

Get a list of vertices associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

Cubit_15.5_User_Documentation

1115

A list (python tuple) of vertex ids contained in the block

[int] get_block_volumes (int block_id)

Get a list of volume ids associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of volume ids contained in the block

[int] get_block_wedges (int block_id)

Get a list of wedges associated with a specific block.
Parameters:

block_id User specified id of the desired block

Returns:

A list (python tuple) of wedges ids contained in the block

int get_body_count ()

Get the current number of bodies.
Returns:

The number of bodies in the current model, if any

Bool get_Bool_sculpt_default (str variable)

str get_boundary_layer_algorithm (int id)
Bool get_boundary_layer_aspect_first_parameters (int id,

 float & first_row_aspect,

 float & growth_factor,

 int & number_rows)

Bool get_boundary_layer_aspect_last_parameters (int id,

 float & first_row_height,

 int & number_rows,

 float & last_row_aspect)

Bool get_boundary_layer_continuity (int id)

Bool get_boundary_layer_curve_intersection_types ([int] & curve_list,

 [int] & volume_list,

 [str] & types)

Bool get_boundary_layer_curve_surface_pairs (int id,

 [int] & curve_list,

 [int] & surface_list)

[int] get_boundary_layer_id_list ()
Bool get_boundary_layer_surface_volume_pairs (int id,

 [int] & surface_list,

Appendix

1116

 [int] & volume_list)

Bool get_boundary_layer_uniform_parameters (int id,

 float & first_row_height,

 float & growth_factor,

 int & number_rows)

Bool get_boundary_layer_vertex_intersection_types ([int] & vertex_list,

 [int] & surface_list,

 [str] & types)

[float] get_bounding_box (str geom_type,

 int entity_id)

Get the bounding box for a specified entity.
 [float] vector_list;

 vector_list = get_bounding_box("surface", 22);

 vector_list = cubit.get_bounding_box("surface", 22)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:

A vector (python tuple) of coordinates describing the entity's bounding box. Ten (10)

values will be returned in axis-min, axis-max, and axis-range order, repeated for x-axis,

y-axis, and z-axis and ending with the total diagonal measure.

str get_build_number ()

Get the Cubit build number.
Returns:

A string containing the current Cubit build number

[float] get_center_point (str entity_type,

 int entity_id)

Get the center point of a specified entity.
 [float] center_point;

 center_point = get_center_point("surface", 22);

 center_point = cubit.get_center_point("surface", 22)

Parameters:

entity_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:

Vector (python tuple) of floats representing x y z

int get_cfd_type (int entity_id)

Get the cfd subtype for a specified cfd BC.
Parameters:

entity_id ID of the cfd BC

Cubit_15.5_User_Documentation

1117

Returns:

Integer corresponding to the type of cfd, as defined by CI_BCTypes

[int] get_closed_narrow_surfaces ([int] target_ids,

 float narrow_size)

Get the list of closed, narrow surfaces from a list of volumes.
Parameters:

target_volume_ids List of volume ids to examine.
narrow_size Indicate the narrow size threshold

Returns:

List (python tuple) of close, narrow surface ids

int get_closest_node (float x,

 float y,

 float z)

Get the node closest to the given coordinates.
Parameters:

x coordinate
y coordinate
z coordinate

Returns:

id of closest node, 0 if none found

get_closest_vertex_curve_pairs ([int] target_ids,

 int & num_to_return,

 [int] & vert_ids,

 [int] & curve_ids,

 [float] & distances)

Find the n closest vertex pairs in the model.
Given a list of volumes find the n closest vertex curve pairs. The checks will be done on
a surface by surface basis so that only curve-vertex pairs within a given surface will be
returned. This function is for finding the smallest features within the surfaces of the
model.
Parameters:

target_ids List of volumes ids to examine.
num_to_return Number of vertex curve pairs to return.
vert_ids Ids of returned vertices.
curve_ids Ids of returned curves.
distances Vertex-curve pair distances.

get_coincident_entity_pairs ([int] target_volume_ids,

 [int] & v_v_vertex_list,

 [int] & v_c_vertex_list,

 [int] & v_c_curve_list,

Appendix

1118

 [int] & v_s_vertex_list,

 [int] & v_s_surf_list,

 [float] & vertex_distance_list,

 [float] & curve_distance_list,

 [float] & surf_distance_list,

 float low_value,

 float hi_value,

 Bool do_vertex_vertex = true,

 Bool do_vertex_curve = true,

 Bool do_vertex_surf = true,

 Bool filter_same_volume_cases = false)

Get the list of coincident vertex-vertex, vertex-curve, and vertex-surface pairs and
distances from a list of volumes.
Given a list of volumes get lists of coincident vertex-vertex, vertex-curve, and vertex-
surface pairs and their distances based on the passed-in thresholds. The returned lists
will be exactly float the size of the distance lists. For each distance, 2 entities will be
associated at the same relative place in the list.
Parameters:

target_volume_ids List of volumes ids to examine.
do_vertex_vertex Parameter specifying whether to do vertex-vertex

check.
do_vertex_curve Parameter specifying whether to do vertex-curve

check.
do_vertex_surf Parameter specifying whether to do vertex-surface

check.
v_v_vertex_list User specified list where the ids of coincident vertex

pairs are returned
v_c_vertex_list User specified list where the ids of the vertices of

coincident vertex-curve pairs are returned
v_c_curve_list User specified list where the ids of the curves of

coincident vertex-curve pairs are returned
v_s_vertex_list User specified list where the ids of the vertices of

coincident vertex-surface pairs are returned
v_s_surf_list User specified list where the ids of the surfaces of

coincident vertex-surface pairs are returned
vertex_distance_list User specified list where the vertex-vertex distance

values will be returned
curve_distance_list User specified list where the vertex-curve distance

values will be returned
surf_distance_list User specified list where the vertex-surface distance

values will be returned
low_value User specified low threshold value
hi_value User specified high threshold value

Cubit_15.5_User_Documentation

1119

filter_same_volume_cases Parameter specifying whether to weed out entity pairs

that are in the same volume.

get_coincident_vertex_curve_pair
s ([int] target_volume_ids,

 [int] & vertex_list,

 [int] & curve_list,

[float]
& distance_list,

 float low_value,

 float threshold_value,

 Bool
filter_same_volume_cases =
false

)

Get the list of coincident vertex/curve pairs and distances from a list of volumes.
Given a list of volumes get a list of coincident vertex/curve pairs and their distances based
on the current merge tolerance value and a threshold value. The returned lists will be of
equal length and matched by order.
Parameters:

target_volume_ids List of vertices ids to examine.
vertex_list User specified list for the ids of coincident vertices
curve_list User specified list for the ids of coincident curves
distance_list User specified list where the distance values will be returned
threshold_value User specified threshold value

get_coincident_vertex_surface_pai
rs ([int] target_volume_ids,

 [int] & vertex_list,

 [int] & surface_list,

[float]
& distance_list,

 float low_value,

 float threshold_value,

 Bool
filter_same_volume_cases =
false

)

Get the list of coincident vertex/surface pairs and distances from a list of volumes.
Given a list of volumes get a list of coincident vertex/pairs pairs and their distances based
on the current merge tolerance value and a threshold value. The returned lists will be of
equal length and matched by order.
Parameters:

target_volume_ids List of vertices ids to examine.
vertex_list User specified list for the ids of coincident vertices
surface_list User specified list for the ids of coincident surfaces
distance_list User specified list where the distance values will be returned
threshold_value User specified threshold value

Appendix

1120

get_coincident_vertex_vertex_pair
s ([int] target_volume_ids,

 [int] & vertex_pair_list,

[float]
& distance_list,

 float low_value,

 float threshold_value,

 Bool
filter_same_volume_cases =
false

)

Get the list of coincident vertex pairs and distances from a list of volumes.
Given a list of volumes get a list of coincident vertex pairs and their distances based on
the current merge tolerance value and a threshold. The returned vertex list will be exactly
float the size of the distance list. For each distance, 2 vertices will be associated at the
same relative place in the list.
Parameters:

target_volume_ids List of volumes ids to examine.
vertex_pair_list User specified list where the ids of coincident vertex pairs be

returned
distance_list User specified list where the distance values will be returned
threshold_value User specified threshold value

[int] get_coincident_vertices ([int] target_volume_ids,

 float high_tolerance)

Get the list of coincident vertex pairs
Parameters:

target_volume_list List of volumes ids to examine.

Returns:

Paired list (python tuple) of vertex ids considered coincident

str get_command_from_history (int command_number)

Get a specific command from Cubit's command history buffer.
Returns:

A string which is the command at the given index

int get_common_curve_id (int surface_1_id,

 int surface_2_id)

Given 2 surfaces, get the common curve id.
Parameters:

surface_1_id The id of one of the surfaces
surface_2_id The id of the other surface

Returns:

The id of the curve common to the two surfaces

int get_common_vertex_id (int curve_1_id,

 int curve_2_id)

Cubit_15.5_User_Documentation

1121

Given 2 curves, get the common vertex id.
Parameters:

curve_1_id The id of one of the curves
curve_2_id The id of the other curves

Returns:

The id of the vertex common to the two curves, 0 if there is none

[int] get_connectivity (str entity_type,

 int entity_id)

Get the list of node ids contained within a mesh entity.
 [int] node_id_list;

 node_id_list = get_connectivity("hex", 221);

 node_id_list = cubit.get_connectivity("hex", 221)

Parameters:

entity_type The mesh element type
entity_id The mesh element id

Returns:

List (python tuple) of node ids

str get_constraint_dependent_entity_point (int constraint_id)

Get the dependent entity of a specified constraint.
Parameters:

constraint_id ID of the constraint

Returns:

A str indicating the dependent entity

str get_constraint_reference_point (int constraint_id)

Get the reference point of a specified constraint.
Parameters:

constraint_id ID of the constraint

Returns:

A str indicating the reference point

str get_constraint_type (int constraint_id)

Get the type of a specified constraint.
Parameters:

constraint_id ID of the constraint

Returns:

A str indicating the type -- Kinematic, Distributing, Rigidbody

Bool get_contact_pair_exterior_state (int entity_id)

Get the contact pair's exterior state.
/param entity_id Id of the contact pair /return The exterior state of the contact pair

Appendix

1122

float get_contact_pair_friction_value (int entity_id)

Get the contact pair's friction value.
/param entity_id Id of the contact pair /return The friction value of the contact pair

Bool get_contact_pair_general_state (int entity_id)

Get the contact pair's general state.
/param entity_id Id of the contact pair /return The general state of the contact pair

Bool get_contact_pair_tied_state (int entity_id)

Get the contact pair's tied state.
/param entity_id Id of the contact pair /return The tied state of the contact pair

float get_contact_pair_tol_lower_value (int entity_id)

Get the contact pair's lower bound tolerance value.
/param entity_id Id of the contact pair /return The tolerance value of the contact pair

float get_contact_pair_tolerance_value (int entity_id)

Get the contact pair's upper bound tolerance value.
/param entity_id Id of the contact pair /return The tolerance value of the contact pair

float get_convection_coefficient (int entity_id,

 CI_BCEntityTypes cc_type)

Get the convection coefficient.
/param entity_id Id of the BC convection /param cc_type enum of CI_BCEntityTypes (1-
normal, 5-shell top, 6-shell bottom) /return The value of the convection coefficient

[int] get_coordinate_systems_id_list ()

/brief get a list of coordinate system ids
/return List (python tuple) of ids

str get_copy_block_on_geometry_copy_setting ()

Get the copy nodeset on geometry copy setting.
Returns:

copy nodeset setting

str get_copy_nodeset_on_geometry_copy_setting ()

Get the copy nodeset on geometry copy setting.
Returns:

copy nodeset setting

str get_copy_sideset_on_geometry_copy_setting ()

Get the copy nodeset on geometry copy setting.
Returns:

copy nodeset setting

float get_cubit_digits_setting ()

Cubit_15.5_User_Documentation

1123

Get the Cubit digits setting.
Returns:

A float containing the digits. -1 if no digits are set

CubitMessageHandler* get_cubit_message_handler ()

get the default message handler C++ only***
Parameters:

str get_current_journal_file ()

Gets the current journal file name.
Returns:

The current journal file name.

float get_curve_bias_coarse_size (int curve_id)

Get the bias coarse size of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias coarse size of the curve.

float get_curve_bias_fine_size (int curve_id)

Get the bias fine size of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias fine size of the curve.

float get_curve_bias_first_interval_fraction (int curve_id)

Get the bias first interval fraction of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias first interval fraction of the curve.

float get_curve_bias_first_interval_length (int curve_id)

Get the bias first interval length of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias first interval length of the curve.

float get_curve_bias_first_last_ratio1 (int curve_id)

Get the bias first/last ratio at start of a curve

Appendix

1124

Parameters:

curve_id Specifies the id of the curve

Returns:

The bias coarse size of the curve.

float get_curve_bias_first_last_ratio2 (int curve_id)

Get the bias first/last ratio at end of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias coarse size of the curve.

Bool get_curve_bias_from_start (int curve_id,

 Bool & value)

Get whether the bias is from the start of a curve
Parameters:

curve_id Specifies the id of the curve
value Returns whether the bias is from the start of the curve.

Returns:

True/False A curve with the curve_id exists.

Bool get_curve_bias_from_start_set (int curve_id)

Get whether the bias from the start of a curve settings has been set
Parameters:

curve_id Specifies the id of the curve
value Returns whether the bias from the start of the curve settings has been

set.
Returns:

True/False A curve with the curve_id exists.

float get_curve_bias_geometric_factor (int curve_id)

Get the first bias geometric factor of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias geometric factor of the curve.

float get_curve_bias_geometric_factor2 (int curve_id)

Get the second bias geometric factor of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias geometric factor of the curve.

Cubit_15.5_User_Documentation

1125

float get_curve_bias_last_first_ratio1 (int curve_id)

Get the bias last/first ratio at start of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias coarse size of the curve.

float get_curve_bias_last_first_ratio2 (int curve_id)

Get the bias last/first ratio at end of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias coarse size of the curve.

int get_curve_bias_start_vertex_id (int curve_id)

Get the bias start vertex id of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias start vertex id of a curve.

str get_curve_bias_type (int curve_id)

Get the bias type of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The bias type of the curve.

[float] get_curve_center (int curve_id)

Get the center point of the arc.
Parameters:

curve_id ID of the curve

Returns:

x, y, z center point of the curve in a vector (python tuple)

int get_curve_count ([int] target_volume_ids)

Get the current number of curves in the passed-in volumes.
Returns:

The number of curves in the volumes

int get_curve_count ()

Get the current number of curves.
Returns:

Appendix

1126

The number of curves in the current model, if any

[int] get_curve_edges (int curve_id)

get the list of any edge elements on a given curve
Parameters:

curve_id User specified id of the desired curve

Returns:

A list (python tuple) of the edge element ids on the curve

float get_curve_length (int curve_id)

Get the length of a specified curve.
Parameters:

curve_id ID of the curve

Returns:

Length of the curve

float get_curve_mesh_scheme_curvature (int curve_id)

Get the curvature mesh scheme value of a curve.
Parameters:

curve_id Specifies the id of the curve

Returns:

The curvature mesh scheme value of a curve.

[float] get_curve_mesh_scheme_pinpoint_locations (int curve_id)

Get the pinpoint mesh scheme locations of a curve
Parameters:

curve_id Specifies the id of the curve

Returns:

The pinpoint mesh scheme locations for a curve.

Bool get_curve_mesh_scheme_stretch_values (int curve_id,

 float & first_size,

 float & factor,

 float & last_size,

 Bool & start,

 int & vertex_id)

Get the stretch mesh scheme values of a curve
Parameters:

curve_id Specifies the id of the curve
first_size Returns the first_size
factor Returns the factor
last_size Returns the last_size
start Returns whether the scheme is from the start of the curve.

Cubit_15.5_User_Documentation

1127

vertex_id Returns the vertex id used for the start of the scheme.

Returns:

True/False A curve with the curve_id exists.

[int] get_curve_nodes (int curv_id)

Get list of node ids owned by a curve. Excludes nodes owned by bounding vertices.
 int curv_id = 12;

 vector int] curve_nodes = get_curve_nodes(curv_id);

Parameters:

curv_id id of curve

Returns:

List (python tuple) of IDs of nodes owned by the curve

float get_curve_radius (int curve_id)

Get the radius of a specified arc.
Parameters:

curve_id ID of the curve

Returns:

Radius of the curve

str get_curve_type (int curve_id)

Get the curve type for a specified curve.
Parameters:

curve_id ID of the curve

Returns:

Type of curve

float get_dbl_sculpt_default (str variable)

/brief return sculpt default value

float get_default_auto_size ()

Get auto size needs for the current set of geometry.

str get_default_element_type ()

Get the current default setting for the element type that will be used when meshing.
Returns:

A string indicating the default mesh type:

• "tri" indicates a tri/tet mesh default
• "hex" indicates a quad/hex mesh default
• "none" indicates no default has been assigned

str get_default_geometry_engine ()

Get the name of the default modeler engine.
 str engine;

Appendix

1128

 engine = get_default_geometry_engine();

 engine = cubit.get_default_geometry_engine()

Returns:
The name of the default modeler engine in the form ACIS, CATIA, OCC, facet

str get_displacement_combine_type (int entity_id)

Get the displacement's combine type which is "Overwrite", "Average",
"SmallestCombine", or "LargestCombine".
/param entity_id Id of the displacement /return The combine type for the given
displacement

int get_displacement_coord_system (int entity_id)

Get the displacement's coordinate system id.
/param entity_id Id of the displacement /return The Id of the displacement's coordinate
system

const int* get_displacement_dof_signs (int entity_id)

This function only available from C++*** Get the displacement's dof signs.
/param entity_id Id of the displacement /return

const float* get_displacement_dof_values (int entity_id)

This function only available from C++*** Get the displacement's dof values.
/param entity_id Id of the displacement /return

float get_distance_between (int vertex_id_1,

 int vertex_id_2)

Get the distance between two vertices.
Parameters:

vertex_id_1 ID of vertex 1 vertex_id_2 ID of vertex 2

Returns:
distance

float get_distance_from_curve_start (float x,

 float y,

 float z,

 int curve_id)

Get the distance from a point on a curve to the curve's start point.
Parameters:

x value of the point to measure
y value of the point to measure
z value of the point to measure
curve_id ID of the curve

Returns:
Distance from the xyz to the curve start

Cubit_15.5_User_Documentation

1129

int get_edge_count ()

Get the count of edges in the model.
Returns:

The number of edges in the model

int get_edge_global_element_id (int edge_id)

Given a edge id, return the global element id.
 int gid = get_edge_global_element_id(22);

Parameters:

edge_id Specifies the id of the edge

Returns:
The corresponding element id

int get_element_block (int element_id)

return the block that a given element is in.
Parameters:

element_id The element id (i.e. the global element export id)

Returns:
block_id, the id of the containing block

int get_element_budget (str element_type,

 [int] entity_id_list,

 int auto_factor)

Get the element budget based on current size settings for a list of volumes.
Parameters:

element_type "hex" or "tet"
entity_id_list List (vector) of volume ids
auto_factor The current auto size factor value

Returns:
The approximate number of elements that will be generated

int get_element_count ()

Get the count of elements in the model.
Returns:

The number of quad, hex, tet, tri, wedge, edge, spheres, etc. which have been
assigned to a block, given a global element id, and will be exported.

Bool get_element_exists (int element_id)

Check the existance of an element.
Parameters:

element_id The element id (i.e. the global element export id)

Returns:
true or false

Appendix

1130

str get_element_type (int element_id)

return the type of a given element
Parameters:

element_id The element id (i.e. the global element export id)

Returns:
The type

int get_element_type_id (int element_id)

return the type id of a given element
Parameters:

element_id The element id (i.e. the global element export id)

Returns:
type_id The hex, tet, wedge, etc. id is returned.

[int] get_entities (str entity_type)

Get all entities of a specified type (including geometry, mesh, etc...).
 [int] entity_id_list;

 entity_id_list = get_entities("volume");

 entity_id_list = cubit.get_entities("volume")

Parameters:

entity_type Specifies the type of the entity

Returns:
A list (python tuple) of ids of the specified geometry type

int get_entity_color_index (str entity_type,

 int entity_id)

Get the color of a specified entity.
 int color_index = get_entity_color_index("curve", 33);

 color_index = cubit.get_entity_color_index("curve", 33)

Parameters:

entity_type Specifies the type of the entity
entity_id Specifies the id of the entity

Returns:
The color of the entity

get_entity_info (RefEntity * source_entity,

 str & geom_type,

 int & entity_id)

Get the geometry type and id given a ref entity.
Parameters:

source_entity Pointer to a ref entity
geom_type User specified variable where the geometry type will be returned
entity_id User specified variable where the entity id will be returned

Cubit_15.5_User_Documentation

1131

[str] get_entity_modeler_engine (str geom_type,

 int entity_id)

Get the modeler engine type for a specified entity.
 [str] engine_list;

 engine_list = get_entity_modeler_engine("surface", 47);

 engine_list = cubit.get_entity_modeler_engine("surface", 47)

Parameters:
geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
A vector (python tuple) of modeler engines associated with this entity

str get_entity_name (str entity_type,

 int entity_id)

Get the name of a specified entity.
Names returned are of two types: 1) user defined names which are actually stored in
Cubit when the name is defined, and 2) 'default' names supplied by Cubit at run-time
which are not stored in Cubit. The second variety of name cannot be used to query Cubit.
 str name = get_entity_name("vertex", 22);

 name = cubit.get_entity_name("vertex", 22)

Parameters:

entity_type Specifies the type of the entity
entity_id Specifies the id of the entity

Returns:
The name of the entity

str get_entity_sense (str source_type,

 int source_id,

 int sideset_id)

Get the sense of a sideset item.
 str sense;

 sense = get_entity_sense("face", 332, 2);

 sense = cubit.get_entity_sense("face", 332, 2)

Parameters:

source_type Item type - could be 'face', 'quad' or 'tri'
source_id ID of entity
sideset_id ID of the sideset

Returns:
Sense of the source_type/source_id in specified sideset

int get_error_count ()

Get the number of errors in the current Cubit session.
Returns:

The number of errors in the Cubit session.

int get_exodus_element_count (int entity_id,

Appendix

1132

 str entity_type)

Get the number of elements in a exodus entity.
 int element_count = get_exodus_element_count(2, "sideset");

 element_count = cubit.get_exodus_element_count(2, "sideset")

Parameters:

entity_id The id of the entity
entity_type The type of the entity

Returns:
Number of Elements

str get_exodus_entity_description (str entity_type,

 int entity_id)

Get the description associated with an exodus entity.
 str entity_description;

 entity_description = get_exodus_entity_description("sideset", 33);

 entity_description = cubit.get_exodus_entity_description("sideset", 33)

Parameters:

entity_type "block", "sideset", nodeset
entity_id Id of the entity in question

Returns:
Description of the entity or "" if none

str get_exodus_entity_name (str entity_type,

 int entity_id)

Get the name associated with an exodus entity.
 str entity_name;

 entity_name = get_exodus_entity_name("sideset", 33);

 entity_name = cubit.get_exodus_entity_name("sideset", 33)

Parameters:

entity_type "block", "sideset", nodeset
entity_id Id of the entity in question

Returns:
Name of the entity or "" if none

str get_exodus_entity_type (str entity_type,

 int entity_id)

Get the type of an exodus entity.
 str entity_description;

 entity_description = get_exodus_entity_description("sideset", 33);

 entity_description = cubit.get_exodus_entity_type("sideset", 33)

Parameters:

entity_type "block", "sideset", nodeset
entity_id Id of the entity in question

Returns:
Type of the entity or "" if none. Returns "lite" or ""

Cubit_15.5_User_Documentation

1133

int get_exodus_id (str entity_type,

 int entity_id)

Get the exodus/genesis id for this element.
 int exodus_id = get_exodus_id("hex", 221);

 exodus_id = cubit.get_exodus_id("hex", 221)

Parameters:

entity_type The mesh element type
entity_id The mesh element id

Returns:
Exodus id of the element if element has been written out, otherwise 0

str get_exodus_sizing_function_file_name ()

Get the exodus sizing function file name.
Returns:

The sizing function file name

str get_exodus_sizing_function_variable_name ()

Get the exodus sizing function variable name.
Returns:

The sizing function variable name

int get_exodus_variable_count (str entity_type,

 int id)

Get the number of exodus variables in a nodeset, sideset, or block.
Parameters:

entity_type : nodeset, sideset, or block block_id The block id

Returns:
Number of exodus variables

[str] get_exodus_variable_names (str entity_type,

 int id)

Get the names of exodus variables in a nodeset, sideset, or block.
Parameters:

entity_type : nodeset, sideset, or block block_id The block id

Returns:
Names of exodus variables

str get_exodus_version ()

Get the Exodus version number.
Returns:

A string containing the Exodus version number

[int] get_expanded_connectivity (str entity_type,

 int entity_id)

Appendix

1134

Get the list of node ids contained within a mesh entity, including interior nodes.
 [int] node_id_list;

 node_id_list = get__expanded_connectivity("hex", 221);

 node_id_list = cubit.get__expanded_connectivity("hex", 221)

Parameters:

entity_type The mesh element type
entity_id The mesh element id

Returns:
List (python tuple) of all node ids associated with the element, including interior
nodes

[float] get_force_direction_vector (int entity_id)

Get the direction vector from a force.
/param entity_id Id of the force /return A vector (python tuple) [x,y,z] of the direction the
given force is acting

float get_force_magnitude (int entity_id)

Get the force magnitude from a force.
/param entity_id Id of the force /return Magnitude of the given force

[float] get_force_moment_vector (int entity_id)

Get the moment vector from a force.
/param entity_id Id of the force /return A vector (python tuple) [x,y,z] of the direction of
the moment for the given force

[str] get_geometric_owner (str mesh_entity_type,

 str mesh_entity_list)

Get a list of geometric owners given a list of mesh entities.
 [str] owner_list;

 owner_list = get_geometric_owner("quad", id_list);

 owner_list = cubit.get_geometric_owner("quad", id_list)

Parameters:

mesh_entity_type The type of mesh entity in the form: 'quad, 'face', 'tri', 'hex', 'tet',

'edge', 'node'
mesh_entity_list A string containing space delimited ids, Cubit command form

(i.e. 'all', '1 to 8', '1 2 3', etc)
Returns:

A list (python tuple) of geometry owners in the form of 'surface x', 'curve y', etc.

int get_geometry_node_count (str entity_type,

 int entity_id)

/brief Get the node count for a specific geometric entity
/param entity_type The geometry type ("surface", "curve", etc) /param entity_id The entity
id /return Number of nodes in the geometry

str get_geometry_owner (str entity_type,

Cubit_15.5_User_Documentation

1135

 int entity_id)

Get the geometric owner of this mesh element.
 str geom_owner = get_geometry_owner("hex", 221);

 geom_owner = cubit.get_geometry_owner("hex", 221)

Parameters:

entity_type The mesh element type
entity_id The mesh element id

Returns:
Name of owner

int get_global_element_id (str elem_type,

 int id)

Given a hex, tet, etc. id, return the global element id.
 int gid = get_global_element_id("hex", 22);

Parameters:

id Specifies the id of the elem_type
elem_type The element type: "hex", "tet", "wedge", "pyramid", "tri", "face", "quad",

"edge", or "sphere"
Returns:

The corresponding element id

str get_graphics_version ()

Get the VTK version number.
Returns:

A string containing the VTK version number

[int] get_group_bodies (int group_id)

Get group bodies (bodies that are children of a group).
This routine returns a list of bodies that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of bodies ids

contained in the specified group

get_group_children (int group_id,

 [int] & group_list,

 [int] & body_list,

 [int] & volume_list,

 [int] & surface_list,

 [int] & curve_list,

 [int] & vertex_list,

 int & node_count,

 int & edge_count,

 int & hex_count,

 int & quad_count,

Appendix

1136

 int & tet_count,

 int & tri_count,

 int & wedge_count,

 int & pyramid_count,

 int & sphere_count)

Get group children.
This routine returns a list for each geometry entity type in the group. Since groups may
contain both geometry and mesh entities, this routine also returns the count of any mesh
entity contained in the group. For groups contained in the group, the group_list will only
contain one generation. In other words, if this routine is examining Group ABC, and Group
ABC contains Group XYZ and Group XYZ happens to contain other groups (which in turn
may contain other groups) this routine will only return the id of Group XYZ.
Parameters:

group_id ID of the group to examine
group_list User specified list where group ids will be returned
body_list User specified list where body ids will be returned
volume_list User specified list where volume ids will be returned
surface_list User specified list where surface ids will be returned
curve_list User specified list where curve ids will be returned
vertex_list User specified list where vertex ids will be returned
node_count User specified variable where the number of nodes will be returned
edge_count User specified variable where the number of edges will be returned
hex_count User specified variable where the number of hexes will be returned
quad_count User specified variable where the number of quads will be returned
tet_count User specified variable where the number of tets will be returned
tri_count User specified variable where the number of tris will be returned

[int] get_group_curves (int group_id)

Get group curves (curves that are children of a group).
This routine returns a list of curves that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of curve ids
contained in the specified group

[int] get_group_edges (int group_id)

Get group edges (edges that are children of a group).
This routine returns a list of edges that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of edge ids contained
in the specified group

[int] get_group_groups (int group_id)

Get group groups (groups that are children of another group).
This routine returns a list a groups that are contained in a specified group.
Parameters:

Cubit_15.5_User_Documentation

1137

group_id ID of the group to examine return List (python tuple) of group ids

contained in the specified group

[int] get_group_hexes (int group_id)

Get group hexes (hexes that are children of a group)
This routine returns a list of hexes that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of hex ids contained
in the specified group

[int] get_group_nodes (int group_id)

Get group nodes (nodes that are children of a group).
This routine returns a list of nodes that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of node ids contained
in the specified group

[int] get_group_pyramids (int group_id)

Get group pyramids (pyramids that are children of a group).
This routine returns a list of pyramids that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of pyramid ids
contained in the specified group

[int] get_group_quads (int group_id)

Get group quads (quads that are children of a group).
This routine returns a list of quads that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of quad ids contained
in the specified group

[int] get_group_spheres (int group_id)

Get group spheres (sphere elements that are children of a group)
This routine returns a list of spheres that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of sphere ids
contained in the specified group

[int] get_group_surfaces (int group_id)

Get group surfaces (surfaces that are children of a group).
This routine returns a list of surfaces that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of surface ids
contained in the specified group

[int] get_group_tets (int group_id)

Get group tets (tets that are children of a group).
This routine returns a list of tets that are contained in a specified group.
Parameters:

Appendix

1138

group_id ID of the group to examine return List (python tuple) of tet ids contained

in the specified group

[int] get_group_tris (int group_id)

Get group tris (tris that are children of a group).
This routine returns a list of tris that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of tri ids contained
in the specified group

[int] get_group_vertices (int group_id)

Get group vertices (vertices that are children of a group).
This routine returns a list of vertices that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of vertex ids
contained in the specified group

[int] get_group_volumes (int group_id)

Get group volumes (volumes that are children of a group).
This routine returns a list of volumes that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of volume ids
contained in the specified group

[int] get_group_wedges (int group_id)

Get group wedges (wedges that are children of a group).
This routine returns a list of wedges that are contained in a specified group.
Parameters:

group_id ID of the group to examine return List (python tuple) of wedge ids
contained in the specified group

float get_heatflux_on_area (CI_BCEntityTypes bc_area,

 int entity_id)

Get the heatflux on a specified area.
/param bc_area enum of CI_BCEntityTypes. If on solid, use 4. If on thin shell, use 7 for
top, 8 for bottom /param entity_id ID of the heatflux /return The value or magnitude of the
specified heatflux

int get_hex_count ()

Get the count of hexes in the model.
Returns:

The number of hexes in the model

int get_hex_global_element_id (int hex_id)

Given a hex id, return the global element id.
 int gid = get_hex_global_element_id(22);

Parameters:

hex_id Specifies the id of the hex

Cubit_15.5_User_Documentation

1139

Returns:
The corresponding element id

[int] get_hex_sheet (int node_id_1,

 int node_id_2)

Get the list of hex elements forming a hex sheet through the given two node ids. The
nodes must be adjacent in the connectivity of the hex i.e. they form an edge of the hex.
Returns:

A list (python tuple) of hex ids in the hex sheet

float get_hydraulic_radius_surface_area (int surface_id)

Get the area of a hydraulic surface.
Parameters:

surface_id ID of the surface

Returns:
Hydraulic area of the surface

float get_hydraulic_radius_volume_area (int volume_id)

Get the area of a hydraulic volume.
Parameters:

volume_id ID of the volume

Returns:
Hydraulic area of the volume

int get_id_from_name (str name)

Get id for a named entity.
This routine returns an integer id for the entity whose name is passed in.
 int entity_id = get_id_from_name("member_2");

 entity_id = cubit.get_id_from_name("member_2")

Parameters:

name Name of the entity to examine return Integer representing the entity

str get_idless_signature (str type,

 int id)

get the idless signature of a geometric or mesh entity
Parameters:

type the type of the requested entity
id the id of the requested entity

Returns:
the idless signature i.e. curve at (1 1 0 ordinal 2)

str get_idless_signatures (str type,

 [int] idlist)

get the idless signatures of a range of geometric or mesh entities
Parameters:

Appendix

1140

type the type of the requested entity
idlist a list of ids

Returns:
the idless signature i.e. curve at (1 1 0 ordinal 2) curve at (0 0 1 ordinal 1) ...

int get_int_sculpt_default (str variable)

int get_label_type (str entity_type)

/brief make calls to SVDrawTool::get_label_type
/return label type currently associated with entity_type

int get_last_id (str entity_type)

Get the id of the last created entity of the given type.
 int last_id = get_last_id("surface");

 last_id = cubit.get_last_id("surface")

Parameters:

entity_type Type of the entity being queried

Returns:
Integer id of last created entity

[int] get_list_of_free_ref_entities (str geom_type)

Get all free entities of a given geometry type.
 [int] free_curve_id_list;

 free_curve_id_list = get_list_of_free_ref_entities("curve");

 free_curve_id_list = cubit.get_list_of_free_ref_entities("curve")

Parameters:

geom_type Specifies the geometry type of the free entity

Returns:
A list (python tuple) of ids of the specified geometry type

[str] get_material_name_list ()

/brief Get a list of all defined material names
/return List (python tuple) of all the material names.

float get_material_property (CI_MaterialProperty mp,

 int entity_id)

/brief Get the specified material property value
/param mp enum of CI_MaterialProperty. 0-Elastic Modulus, 1-Shear Modulus, 2-
Poisson Ratio, 3-Density, 4-Specific Heat, 5-Conductivity /param entity_id Id of the
material /return Value of the specified property for that material

[str] get_media_name_list ()

/brief Get a list of all defined material names
/return List (python tuple) of all the material names.

int get_media_property (int entity_id)

/brief Get the media property value

Cubit_15.5_User_Documentation

1141

/param entity_id Id of the media /return Value of the media property, 0 == FLUID, 1 ==
POROUS, 2 == SOLID

str get_merge_setting (str geom_type,

 int entity_id)

Get the merge setting for a specified entity.
 str merge_setting = get_merge_setting("surface", 33);

 merge_setting = cubit.get_merge_setting("surface", 33)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
A text string that indicates the merge setting for the entity

float get_merge_tolerance ()

Get the current merge tolerance value.
Returns:

The value of the current merge tolerance

[[int]] get_mergeable_curves ([int] target_volume_ids)

Get the list of mergeable curves from a list of volumes/bodies.
Given a list of volume ids, this will return a list of potentially mergeable curves. The
returned lists include lists of the merge partners.
Parameters:

target_volume_ids List of volume ids to examine.

Returns:
list of lists of mergeable curves (potentially more than a pair) Note: If using python,
lists will be python tuples.

get_mergeable_entities ([int] target_volume_ids,

 [[int]] & surface_list,

 [[int]] & curve_list,

 [[int]] & vertex_list)

This function only works from C++*** Get the list of mergeable entities from a list of
volumes.
Given a list of volume ids, this will return 3 lists of potential merge candidates. The
returned lists include lists of the merge partners.
Parameters:

target_volume_ids List of volume ids to examine.
surface_list User specified list where mergeable surfaces will be stored
curve_list User specified list where mergeable curves will be stored
vertex_list User specified list where mergeable vertices will be stored

[[int]] get_mergeable_surfaces ([int] target_volume_ids)

Appendix

1142

Get the list of mergeable surfaces from a list of volumes/bodies.
Given a list of volume ids, this will return a list of potentially mergeable surfaces. The
returned lists include lists of the merge partners.
Parameters:

target_volume_ids List of volume ids to examine.
Returns:

list of lists of mergeable surfaces (potentially more than a pair) Note: If using
python, lists will be python tuples.

[[int]] get_mergeable_vertices ([int] target_volume_ids)

Get the list of mergeable vertices from a list of volumes/bodies.
Given a list of volume ids, this will return a list of potentially mergeable vertices. The
returned lists include lists of the merge partners.
Parameters:

target_volume_ids List of volume ids to examine.

Returns:
list of lists of mergeable vertices (potentially more than a pair) Note: If using
python, lists will be python tuples.

float get_mesh_edge_length (int edge_id)

Get the length of a mesh edge.
Parameters:

edge_id Specifies the id of the edge

Returns:
The length of the mesh edge

str get_mesh_element_type (str entity_type,

 int entity_id)

Get the mesh element type contained in the specified geometry.
 str element_type = get_mesh_element_type("surface", 2);

 element_type = cubit.get_mesh_element_type("surface", 2)

Parameters:

entity_type The type of entity
entity_id The id of the entity

Returns:
Mesh element type for that entity

int get_mesh_error_count ()

[str] get_mesh_error_solutions (int error_code)

Get the paired list of mesh error solutions and help context cues.
Parameters:

error_code The error code associated with the error solution
Returns:

Cubit_15.5_User_Documentation

1143

List (python tuple) of 'married' strings. First string is solution text. Second string is
help context cue. Third string is command_panel cue.

[MeshErrorFeedback*] get_mesh_errors ()

float get_mesh_geometry_approximation_angle (str geom_type,

 int entity_id)

Get the geometry approximation angle set for tri/tet meshing.
Parameters:

geom_type either "surface" or "volume"
entity_id the entity id

Returns:
Boolean value as to whether or not the proximity flag is set

[int] get_mesh_group_parent_ids (str element_type,

 int element_id)

Get the group ids which are parents to the indicated mesh element.
 [int] parent_id_list;

 parent_id_list = get_mesh_group_parent_ids("tri", 332);

 parent_id_list = cubit.get_mesh_group_parent_ids("tri", 332)

Parameters:

element_type Mesh type of the element
element_id ID of the mesh element return List (python tuple) of group ids that

contain this mesh element

str get_mesh_interval_firmness (str geom_type,

 int entity_id)

Get the mesh interval firmness for the specified entity. This may include influence from
connected mesh intervals on connected geometry.
 str firmness;

 get_mesh_interval_firmness("surface", 12);

 firmness = cubit.get_mesh_interval_firmness("surface", 12)

Parameters:
geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's meshing firmness (HARD, SOFT, LIMP) HARD = set directly SOFT =
computed LIMP = not set

int get_mesh_intervals (str geom_type,

 int entity_id)

Get the interval count for a specified entity.
 int intervals = get_mesh_intervals("surface", 12);

 intervals = cubit.get_mesh_intervals("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Appendix

1144

Returns:
The entity's interval count

str get_mesh_scheme (str geom_type,

 int entity_id)

Get the mesh scheme for the specified entity.
 str scheme;

 get_mesh_scheme("surface", 12, scheme);

 scheme = cubit.get_mesh_scheme("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's meshing scheme

str get_mesh_scheme_firmness (str geom_type,

 int entity_id)

Get the mesh scheme firmness for the specified entity.
 str firmness;

 get_mesh_firmness("surface", 12);

 firmness = cubit.get_mesh_firmness("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's meshing firmness (HARD, LIMP, SOFT)

float get_mesh_size (str geom_type,

 int entity_id)

Get the mesh size for a specified entity.
 float mesh_size = get_mesh_size("volume", 2);

 mesh_size = cubit.get_mesh_size("volume", 2)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's mesh size

str get_mesh_size_type (str geom_type,

 int entity_id)

Get the mesh size setting type for the specified entity. This may include influence from
attached geometry.
 str firmness;

 get_mesh_size_setting_type("surface", 12);

 firmness = cubit.get_mesh_size_setting_type("surface", 12)

Parameters:

Cubit_15.5_User_Documentation

1145

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's mesh size type (USER_SET, CALCULATED, NOT_SET)

float get_meshed_volume_or_area (str geom_type,

 [int] entity_ids)

Get the total volume/area of a entity's mesh.
 float area = get_meshed_volume_or_area("volume", 1);

 area = cubit.get_meshed_volume_or_area("volume", 1)

Parameters:

geom_type Specifies the type of entity - volume, surface, hex, tet, tri, quad
entity_ids A list of ids for the entity type

Returns:
The entity's meshed volume or area

str get_meshgems_version ()

Get the MeshGems version number.
Returns:

A string containing the MeshGems version number

float get_moment_magnitude (int entity_id)

Get the moment magnitude from a force.
/param entity_id Id of the force /return magnitude of the moment on the given force

[int] get_narrow_regions ([int] target_ids,

 float narrow_size)

Get the list of surfaces with narrow regions.
Parameters:

target_volume_ids List of volume ids to examine.
narrow_size Indicate the size that defines 'narrowness'

Returns:
List (python tuple) of surface ids

[int] get_narrow_surfaces ([int] target_volume_ids,

 float mesh_size)

Get the list of narrow surfaces for a list of volumes.
'Narrow' is a function of the mesh_size passed into the routine. The mesh_size
parameter will act as the threshold for determining what 'narrow' is.
Parameters:

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Returns:
List (python tuple) of small surface ids

Appendix

1146

int get_next_block_id ()

Get a next available block id.
Returns:

Next available block id

int get_next_boundary_layer_id ()

str get_next_command_from_history ()

Get 'next' command from history buffer.
Returns:

A string which is the command

int get_next_group_id ()

Get the next available group id from Cubit.

int get_next_nodeset_id ()

Get a next available nodeset id.
Returns:

Next available nodeset id

int get_next_sideset_id ()

Get a next available sideset id.
Returns:

Next available sideset id

[float] get_nodal_coordinates (int node_id)

Get the nodal coordinates for a given node id.
Parameters:

node_id The node id

Returns:
a triple (python tuple) containing the x, y, and z coordinates

Bool get_node_constraint ()

Query current setting for node constraint (move nodes to geometry).
Returns:

True if constrained, otherwise false

int get_node_constraint_value ()

Query current setting for node constraint (move nodes to geometry).
Returns:

Returns 0 (off), 1(on), 2(smart)

int get_node_count ()

Get the count of nodes in the model.
Returns:

The number of nodes in the model

Cubit_15.5_User_Documentation

1147

Bool get_node_exists (int node_id)

Check the existance of a node.
Parameters:

node_id The node id

Returns:
true or false

[int] get_node_faces (int node_id)

|brief Get the face/quad ids that share a node
Parameters:

node_id The node id

Returns:
List (python tuple) of face/quad ids adjacent the node

int get_node_global_id (int node_id)

Given a node id, return the global element id that is assigned when the mesh is exported.
 int gid = get_node_global_id(22);

Parameters:

node_id Specifies the id of the sphere

Returns:
The corresponding global node id

Bool get_node_position_fixed (int node_id)

Query "fixedness" state of node. A fixed node is not affecting by smoothing.
Parameters:

node_id The node id

Returns:
True if constrained, otherwise false

[int] get_node_tris (int node_id)

|brief Get the tri ids that share a node
Parameters:

node_id The node id

Returns:
List (python tuple) of tri ids adjacent the node

get_nodeset_children (int nodeset_id,

 [int] & node_list,

 [int] & volume_list,

 [int] & surface_list,

 [int] & curve_list,

 [int] & vertex_list)

get lists of any and all possible children of a nodeset

Appendix

1148

A nodeset can contain a variety of entity types. This routine will return all contents of a
specified nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset
node_list User specified list where nodes associated with this nodeset are

returned
volume_list User specified list where volumes associated with this nodeset are

returned
surface_list User specified list where surfaces associated with this nodeset are

returned
curve_list User specified list where curves associated with this nodeset are

returned
vertex_list User specified list where vertices associated with this nodeset are

returned

int get_nodeset_count ()

Get the current number of sidesets.
Returns:

The number of sidesets in the current model, if any

[int] get_nodeset_curves (int nodeset_id)

Get a list of curve ids associated with a specific nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of curve ids contained in the nodeset

[int] get_nodeset_id_list ()

Get a list of all nodesets.
Returns:

List (python tuple) of all active nodeset ids

[int] get_nodeset_id_list_for_bc (CI_BCTypes bc_type_in,

 int bc_id)

Get a list of all nodesets the specified bc is applied to.
Parameters:

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-

30 is CFD
bc_id ID of the bc to query

Returns:
A list (python tuple) of nodeset ID's associated with that bc

int get_nodeset_node_count (int nodeset_id)

Get the number of nodes in a nodeset.
Parameters:

Cubit_15.5_User_Documentation

1149

nodeset_id The nodeset id

Returns:
Number of nodes in the nodeset

[int] get_nodeset_nodes (int nodeset_id)

Get a list of node ids associated with a specific nodeset. This only returns the nodes that
were specifically assigned to this nodeset. If the nodeset was created as a piece of
geometry, get_nodeset_nodes will not return the nodes on that geometry See also
get_nodeset_nodes_inclusive.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of node ids contained in the nodeset

[int] get_nodeset_nodes_inclusive (int nodeset_id)

Get a list of node ids associated with a specific nodeset. This includes all nodes
specifically assigned to the nodeset, as well as nodes associated to a piece of geometry
which was used to define the nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of node ids contained in the nodeset

[int] get_nodeset_surfaces (int nodeset_id)

Get a list of surface ids associated with a specific nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of surface ids contained in the nodeset

[int] get_nodeset_vertices (int nodeset_id)

Get a list of vertex ids associated with a specific nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of vertex ids contained in the nodeset

[int] get_nodeset_volumes (int nodeset_id)

Get a list of volume ids associated with a specific nodeset.
Parameters:

nodeset_id User specified id of the desired nodeset

Returns:
A list (python tuple) of volume ids contained in the nodeset

Appendix

1150

float get_overlap_max_angle ()

Get the max angle setting for calculating surface overlaps.
Returns:

The max angle setting

float get_overlap_max_gap ()

Get the max gap setting for calculating surface overlaps.
Returns:

The max gap setting

get_overlapping_surfaces ([int] target_surface_ids,

 [int] & surf_list_1,

 [int] & surf_list_2,

 [float] & distance_list,

 Bool filter_slivers = false,

 Bool filter_volume_overlaps = false)

This function only works from C++*** Get the list of overlapping surfaces for a list of
surfaces.
For every occurance of two overlapping surfaces, two surfaces ids are returned. Those
ids are returned in the indicated lists and are aligned. In other words the first id in
surf_list_1 overlaps with the first id in surf_list_2. The second id in surf_list_1 overlaps
with the second id in surf_list-2, and so on.
Parameters:

target_surface_ids List of surface ids to examine.
surf_list_1 User specified list where the ids of overlapping surfaces will be

returned
surf_list_2 User specified list where the ids of overlapping surfaces will be

returned

get_overlapping_surfaces_in_volume
s ([int] target_volume_ids,

 [int] & surf_list_1,

 [int] & surf_list_2,

 [float] & distance_list,

 Bool filter_slivers = false,

 Bool
filter_volume_overlaps =
false

)

This function only works from C++*** Get the list of overlapping surfaces for a list of
volumes.
For every occurance of two overlapping surfaces, two surfaces ids are returned. Those
ids are returned in the indicated lists and are aligned. In other words the first id in
surf_list_1 overlaps with the first id in surf_list_2. The second id in surf_list_1 overlaps
with the second id in surf_list-2, and so on.
Parameters:

Cubit_15.5_User_Documentation

1151

target_volume_ids List of volume ids to examine.
surf_list_1 User specified list where the ids of overlapping surfaces will be

returned
surf_list_2 User specified list where the ids of overlapping surfaces will be

returned

[int] get_overlapping_volumes ([int] target_volume_ids)

Get the list of overlapping volumes for a list of volumes.
For every occurance of two overlapping volumes, two volume ids are returned in
volume_list. Modulus 2 of the volume_list should always be 0 (the list should contain an
even number of volume ids). The first volume id in the returned list overlaps with the
second volume id. The third volume id overlaps with the fourth volume id, and so on.
Parameters:

target_volume_ids List of volume ids to examine.
Returns:

List (python tuple) of overlapping volumes ids

int get_owning_body (str geom_type,

 int entity_id)

Get the owning body for a specified entity.
 int body_id = get_owning_body("curve", 12);

 body_id = cubit.get_owning_body("curve", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
ID of the specified entity's owning body

int get_owning_volume (str geom_type,

 int entity_id)

Get the owning volume for a specified entity.
 int volume_id = get_owning_volume("curve", 12);

 volume_id = cubit.get_owning_volume("curve", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
ID of the specified entity's owning volume

int get_owning_volume_by_name (str entity_name)

Get the owning volume for a specified entity.
 int volume_id = get_owning_volume_by_name("TipSurface");

 volume_id = cubit.get_owning_volume_by_name("TipSurface")

Parameters:

entity_name Specifies the name (supplied by Cubit) of the entity

Returns:

Appendix

1152

ID of the specified entity's owning volume or 0 if name is unknown

get_owning_volume_ids (str entity_type,

 [int] & entity_list,

 [int] & vol_ids)

Gets the id's of the volumes that are owners of one of the specified entities.
Parameters:

entity_type
entity_list

vol_ids

int get_parent_assembly_instance (int assembly_id)

Get the stored instance number of an assembly node's instance.
Parameters:

assembly_id Id that identifies the assembly node
Returns:

Instance of the assembly node' instance

str get_parent_assembly_path (int assembly_id)

Get the stored path of an assembly node' parent.
Parameters:

assembly_id Id that identifies the assembly node

Returns:
Path of the assembly node' parent

get_periodic_data (str geom_type,

 int entity_id,

 float & interval,

 str & firmness,

 int & lower_bound,

 str & upper_bound)

Get the periodic data for a surface or curve.
Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity
interval User specified variable where interval count for the specified entity

is returned
firmness User specified variable where a firmness of 'hard', 'soft', or 'default'

is returned
lower_bound User specified variable where the lower bound value is returned
upper_bound User specified variable where the upper bound value is returned

const char* get_pick_type ()

Get the current pick type.

Cubit_15.5_User_Documentation

1153

Returns:
The current pick type of the graphics system

ExternalPlaybackHandler* get_playback_handler ()

str get_pressure_function (int entity_id)

Get the pressure function.
/param entity_id Id of the pressure /return The pressure function

float get_pressure_value (int entity_id)

Get the pressure value.
/param entity_id Id of the pressure /return The value or magnitude of the given pressure

str get_previous_command_from_history ()

Get 'previous' command from history buffer.
Returns:

A string which is the command

int get_pyramid_count ()

Get the count of pyramids in the model.
Returns:

The number of pyramids in the model

int get_pyramid_global_element_id (int pyramid_id)

Given a pyramid id, return the global element id.
 int gid = get_pyramid_global_element_id(22);

Parameters:

pyramid_id Specifies the id of the pyramid

Returns:
The corresponding element id

int get_quad_count ()

Get the count of quads in the model.
Returns:

The number of quads in the model

int get_quad_global_element_id (int quad_id)

Given a quad id, return the global element id.
 int gid = get_quad_global_element_id(22);

Parameters:

quad_id Specifies the id of the quad

Returns:
The corresponding element id

get_quality_stats (str entity_type,

 [int] id_list,

 str metric_name,

Appendix

1154

 float single_threshold,

 Bool use_low_threshold,

 float low_threshold,

 float high_threshold,

 float & min_value,

 float & max_value,

 float & mean_value,

 float & std_value,

 int & min_element_id,

 int & max_element_id,

 [int] & mesh_list,

 str & element_type,

 int & bad_group_id,

 Bool make_group = false)

Get the quality stats for a specified entity.
Parameters:

entity_type Specifies the geometry type of the entity
id_list Specifies a list of ids to work on
metric_name Specify the metric used to determine the quality
single_threshold Quality threshold value
use_low_threshold use threshold as lower or upper bound
low_threshold Quality threshold when using a lower and upper range
high_threshold Quality threshold when using a lower and upper range
min_value Quality value of the worst element
max_value Quality value of the best element
mean_value Average quality value of all elements
std_value Std deviationvalue of all elements
min_element_id ID of the worst element
max_element_id ID of the best element
mesh_list list of failed elements
element_type type of failed elements (does not support mixed element types)
make_group whether to create a group or not
bad_group_id ID of the created group
min_value User specified variable where the minimum quality value will

be returned
max_value User specified variable where the maximum quality value will

be returned
mean_value User specified variable where the mean quality value will be

returned
std_value User specified variable where the standard deviation quality

value will be returned

float get_quality_value (str mesh_type,

 int mesh_id,

Cubit_15.5_User_Documentation

1155

 str metric_name)

Get the metric value for a specified mesh entity.
 get_quality_value("hex", 223, "skew");

Parameters:
mesh_type Specifies the mesh entity type (hex, tet, tri, quad)
mesh_id Specifies the id of the mesh entity
metric_name Specifies the name of the metric (skew, taper, jacobian, etc)

Returns:
The value of the quality metric

[int] get_relatives (str source_geom_type,

 int source_id,

 str target_geom_type)

Get the relatives (parents/children) of a specified entity.
This can be used to get either ancestors or predecessors for a specific entity. Only one
specified entity type is returned with one use of the routine. For example, to get all
surface parents associated with Curve 1, 'curve' is the source_geom_type, '1' is the
source_id, and 'surface' is the target_geom_type.
 [int] relative_list;

 curve_list = get_relatives("surface", 12, "curve");

 curve_list = cubit.get_relatives("surface", 12, "curve")

Parameters:

source_geom_type The entity type of the source entity
source_id The id of the source entity
target_geom_type The target geometry type

Returns:
A list (python tuple) of ids of the target geometry type

int get_rendering_mode ()

Get the current rendering mode.
Returns:

The current rendering mode of the graphics subsystem

str get_requested_mesh_interval_firmness (str geom_type,

 int entity_id)

Get the mesh interval firmness for the specified entity as set specifically on the entity.
 str firmness;

 get_requested_mesh_interval_firmness("surface", 12);

 firmness = cubit.get_requested_mesh_interval_firmness("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's meshing firmness (HARD, SOFT, LIMP) HARD = set directly SOFT =
computed LIMP = not set

Appendix

1156

int get_requested_mesh_intervals (str geom_type,

 int entity_id)

Get the interval count for a specified entity as set specifically on that entity.
 int intervals = get_meshed_intervals("surface", 12);

 intervals = cubit.get_meshed_intervals("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's interval count

float get_requested_mesh_size (str geom_type,

 int id)

Get the requested mesh size for a specified entity. This returns a size that has been set
specifically on the entity and not averaged from parents.
 float mesh_size = get_requested_meshed_size("volume", 2);

 mesh_size = cubit.get_mesh_size("volume", 2)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's requested mesh size

str get_requested_mesh_size_type (str geom_type,

 int entity_id)

Get the mesh size setting type for the specified entity as set specifically on the entity.
 str firmness;

 get_requested_mesh_size_setting_type("surface", 12);

 firmness = cubit.get_requested_mesh_size_setting_type("surface", 12)

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
The entity's mesh size type (USER_SET, CALCULATED, NOT_SET)

str get_revision_date ()

Get the Cubit revision date.
Returns:

A string containing Cubit's last date of revision

int get_rubberband_shape ()

Get the current rubberband select mode.
Returns:

0 for box, 1, for polygon, 2 for circle

Cubit_15.5_User_Documentation

1157

[int] get_selected_ids ()

Get a list of the currently selected ids.
Returns:

A list of the currently selected ids

get_sharp_curve_angles ([int] target_volume_ids,

 [int] & large_curve_angles,

 [int] & small_curve_angles,

 [float] & large_angles,

 [float] & small_angles,

 float upper_bound,

 float lower_bound)

Get the list of sharp curve angles for a list of volumes.
'Sharp' is a function of the upper_bound and lower_bound threshold parameters. The id
of curves are returned when any angle associated with a curve is less than the
lower_bound or greater than the upper_bound.
Parameters:

target_volume_ids List of volume ids to examine.
large_curve_angles User specified list where the ids of curves with curve angles

will be returned
small_curve_angles User specified list where the ids of curves with small angles

will be returned
large_angles User specified list where the angles associated with

large_curve_angles will be returned. Angles returned are in
the same order as the ids returned in large_curve_angles.

small_angles User specified list where the angles associated with
small_curve_angles will be returned. Angles returned are in
the same order as the ids returned in small_curve_angles.

upper_bound Upper threshold angle
lower_bound Lower threshold angle

get_sharp_surface_angles ([int] target_volume_ids,

 [int] & large_surface_angles,

 [int] & small_surface_angles,

 [float] & large_angles,

 [float] & small_angles,

 float upper_bound,

 float lower_bound)

Get the list of sharp surface angles for a list of volumes.
'Sharp' is a function of the upper_bound and lower_bound threshold parameters. The id
of surfaces are returned when any angle associated with a surface is less than the
lower_bound or greater than the upper_bound.
Parameters:

target_volume_ids List of volume ids to examine.

Appendix

1158

large_surface_angles User specified list where the ids of surfaces with large

angles will be returned
small_surface_angles User specified list where the ids of surfaces with small

angles will be returned
large_angles User specified list where the angles associated with

large_surface_angles will be returned. Angles returned are
in the same order as the ids returned in
large_surface_angles.

small_angles User specified list where the angles associated with
small_surface_angles will be returned. Angles returned are
in the same order as the ids returned in
small_surface_angles.

upper_bound Upper threshold angle
lower_bound Lower threshold angle

get_sideset_children (int sideset_id,

 [int] & face_list,

 [int] & surface_list,

 [int] & curve_list)

get lists of any and all possible children of a sideset
A nodeset can contain a variety of entity types. This routine will return all contents of a
specified sideset.
Parameters:

sideset_id User specified id of the desired sideset
face_list User specified list where faces associated with this sideset are

returned
surface_list User specified list where surfaces associated with this sideset are

returned
curve_list User specified list where curves associated with this sideset are

returned

int get_sideset_count ()

Get the current number of sidesets.
Returns:

The number of sidesets in the current model, if any

[int] get_sideset_curves (int sideset_id)

Get a list of curve ids associated with a specific sideset.
Parameters:

sideset_id User specified id of the desired sideset

Returns:
A list (python tuple) of curve ids contained in the sideset

str get_sideset_element_type (int sideset_id)

Get the element type of a sideset.
Parameters:

Cubit_15.5_User_Documentation

1159

sideset_id The id of the sideset to be queried

Returns:
Element type

[int] get_sideset_id_list ()

Get a list of all sidesets.
Returns:

List (python tuple) of all active sideset ids

[int] get_sideset_id_list_for_bc (CI_BCTypes bc_type_in,

 int bc_id)

Get a list of all sidesets the specified bc is applied to.
Parameters:

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-

30 is CFD
bc_id ID of the bc to query

Returns:
A list (python tuple) of sideset ID's associated with that bc

[int] get_sideset_quads (int sideset_id)

Get a list of any quads in a sideset.
A sideset can contain quadrilateral elements. This function will return those quad
elements if they exist. An empty list will be returned if there are no quads in the sideset.
Parameters:

sideset_id User specified id of the desired sideset

Returns:
A list (python tuple) of the quads in the sideset

[int] get_sideset_surfaces (int sideset_id)

Get a list of any surfaces in a sideset.
A sideset can contain surfaces. This function will return those surfaces if they exist. An
empty list will be returned if there are no surfaces in the sideset.
Parameters:

sideset_id User specified id of the desired sideset

Returns:
A list (python tuple) of the surfaces defining the sideset

str get_sizing_function_name (str entity_type,

 int surface_id)

Get the sizing function name for a surface or volume.
Parameters:

entity_type Type (volume or surface)
entity_id Id of the entity

Returns:

Appendix

1160

The sizing function name (constant, curvature, interval, inverse, linear, super, test,
exodus, none)

[int] get_small_and_narrow_surfaces ([int] target_ids,

 float small_area,

 float small_curve_size)

Get the list of small or narrow surfaces from a list of volumes.
Parameters:

target_volume_ids List of volume ids to examine.
small_area Indicate the area threshold
small_curve_size Indicate size for 'narrowness'

Returns:
List (python tuple) of small or narrow surface ids

[int] get_small_curves ([int] target_volume_ids,

 float mesh_size)

Get the list of small curves for a list of volumes.
'Small' is a function of the mesh_size passed into the routine. The mesh_size parameter
will act as the threshold for determining what 'small' is. A small entity is one that has an
edge length smaller than mesh_size.
Parameters:

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.
mesh_size Indicate the mesh size used as the threshold

Returns:
List (python tuple) of small curve ids

[int] get_small_loops ([int] target_volume_ids,

 float mesh_size)

Get the list of close loops (surfaces) for a list of volumes.
'Small' or 'Close' is a function of the mesh_size passed into the routine. The mesh_size
parameter will act as the threshold for determining what 'small' is. A small entity is one
that has an edge length smaller than mesh_size.
Parameters:

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Returns:
List (python tuple) of close loop (surface) ids

[int] get_small_surfaces ([int] target_volume_ids,

 float mesh_size)

Get the list of small surfaces for a list of volumes.
'Small' is a function of the mesh_size passed into the routine. The mesh_size parameter
will act as the threshold for determining what 'small' is. A small entity is one that has an
edge length smaller than mesh_size.

Cubit_15.5_User_Documentation

1161

Parameters:

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Returns:
List (python tuple) of small surface ids

get_small_surfaces_hydraulic_radius ([int] target_volume_ids,

 float mesh_size,

 [int] & small_surfaces,

 [float] & small_radius)

Get the list of small hydraulic radius surfaces for a list of volumes.
'Small' is a function of the mesh_size passed into the routine. The mesh_size parameter
will act as the threshold for determining what 'small' is. A small entity is one that has an
edge length smaller than mesh_size.
Parameters:

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold
small_surfaces User specified list where the ids of small surfaces will be

returned
small_radius User specified list where the radius of each small surface will

be returned. The order of the radius values is the same as the
order of the returned ids.

[int] get_small_volumes ([int] target_volume_ids,

 float mesh_size)

Get the list of small volumes from a list of volumes.
'Small' is a function of the mesh_size passed into the routine. The mesh_size parameter
will act as the threshold for determining what 'small' is. A small entity is one that has an
edge length smaller than mesh_size.
Parameters:

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Returns:
List (python tuple) of small volume ids

get_small_volumes_hydraulic_radius ([int] target_volume_ids,

 float mesh_size,

 [int] & small_volumes,

 [float] & small_radius)

Get the list of small hydraulic radius volumes for a list of volumes.
'Small' is a function of the mesh_size passed into the routine. The mesh_size parameter
will act as the threshold for determining what 'small' is. A small entity is one that has an
edge length smaller than mesh_size.
Parameters:

Appendix

1162

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold
small_volumes User specified list where the ids of small volumes will be

returned
small_radius User specified list where the radius of each small volume will

be returned. The order of the radius values is the same as the
order of the returned ids.

[int] get_smallest_curves ([int] target_volume_ids,

 int num_to_return)

Get a list of the smallest curves in the list of volumes. The number returned is specified
by 'num_to_return'.
Parameters:

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.
num_to_return Indicate the number of curves to return

Returns:
List (python tuple) of smallest curve ids

get_smallest_features ([int] target_ids,

 int & num_to_return,

 [int] & type1_list,

 [int] & type2_list,

 [int] & id1_list,

 [int] & id2_list,

 [float] & distance_list)

Finds all of the smallest features.
Parameters:

target_ids The entities to query
num_to_return number of small features to return
type1_list

type2_list

id1_list

id2_list

distance_list

str get_smooth_scheme (str geom_type,

 int entity_id)

Get the smooth scheme for a specified entity.
 str smooth_scheme;

 get_smooth_scheme("curve", 122, smooth_scheme);

 smooth_scheme = cubit.get_smooth_scheme("curve", 122)

Parameters:
geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:

Cubit_15.5_User_Documentation

1163

The smooth scheme associated with the entity

[[str]] get_solutions_for_blends (int surface_id)

Get the solution list for a given blend surface.
Parameters:

surface_id the surface being queried

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. Vector 3 will contain Cubit
preview strings. Note: If using python, vectors will be python tuples.

[str] get_solutions_for_decomposition ([int] volume_list,

 float exterior_angle,

 Bool do_imprint_merge,

 Bool tol_imprint)

Get the list of possible decompositions.
Parameters:

volume_list List of volumes to query
exterior_angle Threshold value for the exterior angle
do_imprint_merge Set to true (1) if you want the imprint and merge to be done
tol_imprint Set to true (1) if you want to do a tolerant imprint

[[str]]
get_solutions_for_forced_sweepability (int volume_id,

 [int] & source_surface_id_list,

 [int] & target_surface_id_list,

 float small_curve_size = -1.0)

This function only works from C++*** Get lists of display strings and command strings for
forced sweepability solutions.
Parameters:

volume_id id of volume source_surface_id_list list of source surface ids
target_surface_id_list list of target surface ids small_curve_size
optional paramtere to specify small curve size

Returns:
Vector of two string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. Vector 3 will contain Cubit
preview strings. Note: If using this function in python, returned vectors will be
python tuples.

[[str]] get_solutions_for_imprint_merge (int surface_id1,

 int surface_id2)

Get lists of display strings and command strings for imprint/merge solutions.
Parameters:

surface_id1 overlapping surface 1 surface_id2 overlapping surface 2

Appendix

1164

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

[[str]] get_solutions_for_near_coincident_vertex_and_curve (int vertex_id,

 int curve_id)

Get lists of display strings and command strings for near coincident vertices and curves.
Parameters:

vertex_id ID of the vertex
curve_id ID of the curve

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

[[str]]
get_solutions_for_near_coincident_vertex_and_surface (int vertex_id,

 int surface_id)

Get lists of display strings and command strings for near coincident vertices and
surfaces.
Parameters:

vertex_id ID of the vertex
surface_id ID of the surface

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

[[str]] get_solutions_for_near_coincident_vertices (int vertex_id1,

 int vertex_id2)

Get lists of display strings and command strings for near coincident vertices.
Parameters:

target_vertex_ids Vertex list
high_tolerance The upper threshold tolerance value

Cubit_15.5_User_Documentation

1165

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

[[str]] get_solutions_for_overlapping_volumes (int vol_id_1,

 int vol_id_2,

 float max_gap_tolerance,

 float max_gap_angle)

Get lists of display strings and command strings for overlapping volumes.
Parameters:

id of volume 1
id of volume 2

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

[[str]] get_solutions_for_small_curves (int curve_id,

 float small_curve_size,

 float mesh_size)

Get lists of display, preview and command strings for small curve solutions.
Parameters:

curve_id Small curve
small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. Vector 3 will contain Cubit
preview strings. Note: If using this function in python, returned vectors will be
python tuples.

[[str]] get_solutions_for_small_surfaces (int surface_id,

 float small_curve_size,

 float mesh_size)

Get lists of display, preview and command strings for small surface solutions.
Parameters:

surface_id Small surface

Appendix

1166

small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. Vector 3 will contain Cubit
preview strings. Note: If using this function in python, returned vectors will be
python tuples.

Bool
get_solutions_for_source_targe
t (int volume_id,

 [[int]] & feasible_source_surface_id_list,

 [[int]] & feasible_target_surface_id_list,

 [[int]] &
infeasible_source_surface_id_list
,

 [[int]] & infeasible_target_surface_id_list)

Get a list of suggested sources and target surface ids given a specified volume.

[[str]]
get_solutions_for_surfaces_with_narrow_regions (int surface_id,

 float small_curve_size,

 float mesh_size)

Get lists of display, preview and command strings for surfaces with narrow regions
solutions.
Parameters:

surface_id Small surface
small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. Vector 3 will contain Cubit
preview strings. Note: If using this function in python, returned vectors will be
python tuples.

[int] get_source_surfaces (int volume_id)

Get a list of a volume's sweep source surfaces.
Parameters:

volume_id Specifies the volume id

Returns:
List (python tuple) of surface ids

int get_sphere_count ()

Get the count of sphere elements in the model.
Returns:

Cubit_15.5_User_Documentation

1167

The number of spheres in the model

int get_sphere_global_element_id (int edge_id)

Given a sphere id, return the global element id.
 int gid = get_sphere_global_element_id(22);

Parameters:

sphere_id Specifies the id of the sphere

Returns:
The corresponding element id

str get_string_sculpt_default (str variable)

[int] get_sub_elements (str entity_type,

 int entity_id,

 int dimension)

Get the lower dimesion entities associated with a higher dimension entities. For example
get the faces associated with a hex or the edges associated with a tri.
 [int] face_id_list;

 face_id_list = get_sub_elements("hex", 221, 2);

 face_id_list = cubit.get_sub_elements("hex", 221, 2)

Parameters:
entity_type The mesh element type of the higher dimension entity
entity_id The mesh element id
dimension The dimension of the desired sub entities

Returns:
List (python tuple) of ids of the desired dimension

[int, int] get_submap_corner_types (int surface_id)

Get a list of vertex ids and the corresponding corner vertex types if the surface were
defined as submap surface. There are no side affects. This does not actually assign
corner types or change the underlying mesh scheme of the surface.
Parameters:

the id of the surface

Returns:
a vector of pairs of [id, corner_type] The corner_types are defined as follows

UNSET_TYPE = -1, END_TYPE = 1, SIDE_TYPE, CORNER_TYPE,
REVERSAL_TYPE, TRIANGLE_TYPE, NON_TRIANGLE_TYPE };

float get_surface_area (int surface_id)

Get the area of a surface.
Parameters:

surface_id ID of the surface

Returns:
Area of the surface

[float] get_surface_centroid (int surface_id)

Appendix

1168

Get the surface centroid for a specified surface.
Parameters:

surface_id ID of the surface

Returns:
surface centroid

get_surface_centroid (int surface_id,

 float & x,

 float & y,

 float & z)

This function only works from C++*** Get the surface centroid for a specified surface.
Parameters:

surface_id ID of the surface
x User specified variable where the x coordinate will be returned
y User specified variable where the y coordinate will be returned
z User specified variable where the z coordinate will be returned

int get_surface_count ()

Get the current number of surfaces.
Returns:

The number of surfaces in the current model, if any

int get_surface_element_count (int surface_id)

Get the count of elements in a surface.
Returns:

The number of quads, and triangles in a surface. NOTE: This count does not
distinguish between elements which have been put into a block or not.

[int] get_surface_nodes (int surf_id)

Get list of node ids owned by a surface. Excludes nodes owned by bounding curves and
verts.
 int surf_id = 5;

 vector int] surface_nodes = get_surface_nodes(surf_id);

Parameters:

surf_id id of surface

Returns:
List (python tuple) of IDs of nodes owned by the surface

[float] get_surface_normal (int surface_id)

Get the surface normal for a specified surface.
Parameters:

surface_id ID of the surface

Returns:
surface normal at the center

Cubit_15.5_User_Documentation

1169

get_surface_normal (int surface_id,

 float & x,

 float & y,

 float & z)

This function only works for C++*** Get the surface normal for a specified surface.
Parameters:

surface_id ID of the surface
x User specified variable where the x coordinate will be returned
y User specified variable where the y coordinate will be returned
z User specified variable where the z coordinate will be returned

[int] get_surface_quads (int surface_id)

get the list of any quad elements on a given surface
Parameters:

surface_id User specified id of the desired surface
Returns:

A list (python tuple) of the quad ids on the surface

str get_surface_sense (int surface_id)

Get the surface sense for a specified surface.
Parameters:

surface_id ID of the surface

Returns:
surface sense as "Reversed" or "Forward" or "Both"

[int] get_surface_tris (int surface_id)

get the list of any tri elements on a given surface
Parameters:

surface_id User specified id of the desired surface

Returns:
A list (python tuple) of the tri ids on the surface

str get_surface_type (int surface_id)

Get the surface type for a specified surface.
Parameters:

surface_id ID of the surface

Returns:
Type of surface

[int] get_surfs_with_narrow_regions ([int] target_ids,

 float narrow_size)

Get the list of surfaces with narrow regions.
Parameters:

Appendix

1170

target_volume_ids List of volume ids to examine.
narrow_size Indicate the size that defines 'narrowness'

Returns:
List (python tuple) of surface ids

[int] get_tangential_intersections ([int] target_volume_ids,

 float upper_bound,

 float lower_bound)

Get the list of bad tangential intersections for a list of volumes.
'Bad' is a function of the upper_bound and lower_bound threshold parameters. The id of
surfaces are returned when any tangential angle associated with a surface is less than
the lower_bound or greater than the upper_bound.
Parameters:

target_volume_ids List of volume ids to examine.
upper_bound Upper threshold angle
lower_bound Lower threshold angle

Returns:
List (python tuple) of surface ids associated with bad tangential angles

[int] get_target_surfaces (int volume_id)

Get a list of a volume's sweep target surfaces.
Parameters:

volume_id Specifies the volume id

Returns:
List (python tuple) of surface ids

int get_tet_count ()

Get the count of tets in the model.
Returns:

The number of tets in the model

int get_tet_global_element_id (int tet_id)

Given a tet id, return the global element id.
 int gid = get_tet_global_element_id(22);

Parameters:

tet_id Specifies the id of the tet

Returns:
The corresponding element id

float get_tetmesh_growth_factor (int volume_id)

Get the tetmesh growth factor.
Returns:

the volume gradation

Bool get_tetmesh_proximity_flag (int volume_id)

Cubit_15.5_User_Documentation

1171

Get the proximity flag for tet meshing.
Parameters:

volume_id the volume id

Returns:
Boolean value as to whether or not the proximity flag is set

int get_tetmesh_proximity_layers (int volume_id)

Get the number of proximity layers for tet meshing. This is the number of layers between
close surfaces.
Parameters:

volume_id the volume id

Returns:
Boolean value as to whether or not the proximity flag is set

[float] get_tight_bounding_box (str geom_type,

 [int] entity_list)

Get the tight bounding box for a list of entities.
 [float] vector_list;

 vector_list = get_tight_bounding_box("surface", entity_list);

 vector_list = cubit.get_tight_bounding_box("surface", entity_list)

Parameters:

geom_type Specifies the geometry type of the entity
entity_list List of ids associated with geom_type

Returns:
A vector (python tuple) of coordinates and axis (0-2) center (3-5, 6-8, 9-11) u, v,
x normalized coordinate axis of the box (12-14) length in u, v, w

[AssemblyItem] get_top_level_assembly_items ()

[float] get_total_bounding_box (str geom_type,

 [int] entity_list)

Get the bounding box for a list of entities.
 [float] vector_list;

 vector_list = get_total_bounding_box("surface", entity_list);

 vector_list = cubit.get_total_bounding_box("surface", entity_list)

Parameters:
geom_type Specifies the geometry type of the entity
entity_list List of ids associated with geom_type

Returns:
A vector (python tuple) of coordinates for the entity's bounding box. Twelve (12)
values will be returned in xyz set order repeated four (4) times per set.

float get_total_volume ([int] volume_list)

Get the total volume for a list of volume ids.
Parameters:

Appendix

1172

volume_list List of volume ids

Returns:
The total volume of all volumes indicated in the id list

int get_tri_count ()

Get the count of tris in the model.
Returns:

The number of tris in the model

int get_tri_global_element_id (int tri_id)

Given a tri id, return the global element id.
 int gid = get_tri_global_element_id(22);

Parameters:

tri_id Specifies the id of the tri

Returns:
The corresponding element id

float get_trimesh_surface_gradation ()

Get the global surface mesh gradation set for meshing with MeshGems.
Returns:

the surface gradation

float get_trimesh_volume_gradation ()

Get the global volume mesh gradation set for meshing with MeshGems.
Returns:

the volume gradation

Bool get_undo_enabled ()

/brief Query whether undo is currently enabled
/return True if undo is enabled, otherwise false

int get_valence (int vertex_id)

Get the valence for a specific vertex.
Parameters:

vertex_id ID of vertex

[str] get_valid_block_element_types (int block_id)

Get a list of potential element types for a block.
Parameters:

block_id The block id
Returns:

List (python tuple) of potential element types

str get_velocity_combine_type (int entity_id)

This function only available from C++*** Get the acceleration's dof values.

Cubit_15.5_User_Documentation

1173

/param entity_id Id of the acceleration /return Get the velocity's combine type which is
"Overwrite", "Average", "SmallestCombine", or "LargestCombine" /param entity_id Id of
the velocity /return The combine type for the given velocity

const int* get_velocity_dof_signs (int entity_id)

This function only available from C++*** Get the velocity's dof signs.
/param entity_id Id of the velocity /return

const float* get_velocity_dof_values (int entity_id)

This function only available from C++*** Get the velocity's dof values.
/param entity_id Id of the velocity /return

str get_version ()

Get the Cubit version.
Returns:

A string containing the current version of Cubit

int get_vertex_count ()

Get the current number of vertices.
Returns:

The number of vertices in the current model, if any

int get_vertex_node (int vert_id)

Get the node owned by a vertex.
 int vert_id = 22;

 int node_id = get_vertex_node(vert_id);

Parameters:

vert_id id of vertex

Returns:
ID of node owned by the vertex. returns -1 of doesn't exist

str get_vertex_type (int surface_id,

 int vertex_id)

Get the Vertex Types for a specified vertex on a specified surface. Vertex types include
"side", "end", "reverse", "unknown".
Parameters:

surface_id Id of the surface associated with the vertex
vertex_id Id of the vertex

Returns:
The type -- "side", "end", "reverse", or "unknown"

[float] get_view_at ()

Get the camera 'at' point.
Returns:

The xyz coordinates of the camera's current position

Appendix

1174

float get_view_distance ()

Get the distance from the camera to the model (from - at).
Returns:

Distance from the camera to the model

[float] get_view_from ()

Get the camera 'from' point.
Returns:

The xyz coordinates of the camera's from position

[float] get_view_up ()

Get the camera 'up' direction.
Returns:

The xyz coordinates of the camera's up direction

Bool get_vol_sphere_params ([int] sphere_id_list,

 int & rad_intervals,

 int & az_intervals,

 float & bias,

 float & fract,

 int & max_smooth_iterations)

get the current sphere parameters for a sphere volume
Parameters:

sphere_id_list list of volume ids (should be spheres)
rad_intervals number of radial intervals (around circle)
az_intervals number of intervals from inner mapped box to surface
bias bias from inner mapped box to surface (1 increases size

to boundary)
fract fraction of radius to use as size of interior mapped box
max_smooth_iterations max number of smooth iterations to perform after meshing

float get_volume_area (int volume_id)

Get the volume of a volume.
Parameters:

volume_id ID of the volume
Returns:

Volume of the volume

int get_volume_count ()

Get the current number of nodesets.
Returns:

The number of nodesets in the current model, if any

int get_volume_element_count (int volume_id)

Get the count of elements in a volume.

Cubit_15.5_User_Documentation

1175

Returns:
The number of hexes, tets, pyramids, and wedges in a volume. NOTE: This count
does not distinguish between elements which have been put into a block or not.

[[str]] get_volume_gap_solutions (int surface_id_1,

 int surface_id_2)

Get lists of display strings and command strings for gaps
Parameters:

id of surface 1
id of surface 2

Returns:
Vector of three string vectors. Vector 1 will contain display strings to be shown to
users. Vector 2 will contain Cubit command strings. This second set of strings
may contain concatenated strings delimited by '&&&'. In other words, one instance
of command string may in fact contain multiple commands separated by the '&&&'
sequence. Vector 3 will contain Cubit preview strings. Note: If using this function
in python, returned vectors will be python tuples.

get_volume_gaps ([int] target_volume_ids,

 [int] & surf_list_1,

 [int] & surf_list_2,

 [float] & distance_list,

 float max_gap_tolerance,

 float max_gap_angle)

This function only works from C++*** Get the list of gaps for a list of volumes.
For every occurance of a gap, two surfaces ids are returned. Those ids are returned in
the indicated lists and are aligned. In other words the first id in surf_list_1 overlaps with
the first id in surf_list_2. The second id in surf_list_1 overlaps with the second id in
surf_list-2, and so on.
Parameters:

target_volume_ids List of volume ids to examine.
surf_list_1 User specified list where the ids of the gap surfaces will be

returned
surf_list_2 User specified list where the ids of the gap surfaces will be

returned
distance_list User specified list where the distance between the gap

surface will be returned
max_gap_tolerance User specified tolerance used to find the gaps.

[int] get_volume_hexes (int volume_id)

get the list of any hex elements in a given volume
Parameters:

volume_id User specified id of the desired volume
Returns:

Appendix

1176

A list (python tuple) of the hex ids in the volume

[int] get_volume_nodes (int vol_id)

Get list of node ids owned by a volume. Excludes nodes owned by bounding surfs, curves
and verts.
 int vol_id = 1;

 vector int] volume_nodes = get_volume_nodes(vol_id);

Parameters:

vol_id id of volume

Returns:
List (python tuple) of IDs of nodes owned by the volume

[int] get_volume_tets (int volume_id)

get the list of any tet elements in a given volume
Parameters:

volume_id User specified id of the desired volume

Returns:
A list (python tuple) of the tet ids in the volume

[int] get_volumes_for_node (str node_name,

 int node_instance)

int get_wedge_global_element_id (int wedge_id)

Given a wedge id, return the global element id.
 int gid = get_wedge_global_element_id(22);

Parameters:
wedge_id Specifies the id of the wedge

Returns:
The corresponding element id

str get_wrt_entity (str source_type,

 int source_id,

 int sideset_id)

Get the with-respect-to entity.
 str wrt_entity;

 wrt_entity = get_wrt_entity("face", 332, 2);

 wrt_entity = cubit.get_wrt_entity("face", 332, 2)

Parameters:

source_type Item type - could be 'face', 'quad' or 'tri'
source_id ID of entity
sideset_id ID of the sideset

Returns:
'with-respect-to' entity of the source_type/source_id in specified sideset

group_list ([str] & name_list,

 [int] & id_list)

Cubit_15.5_User_Documentation

1177

Get the names and ids of all the groups (excluding the pick group) that are defined by
the current cubit session.
Parameters:

name_list User specified list where the active group names will be returned
id_list User specified list where the ids of all active groups will be returned

int has_valid_size (str geom_type,

 int entity_id)

Get whether an entity has a size. All entities have a size unless the auto sizing is off. If
the auto sizing is off, an entity has a size only if it has been set.

Bool heatflux_is_on_shell_area (CI_BCEntityTypes bc_area,

 int entity_id)

Determine whether a BC heatflux is on a shell area.
/param bc_area enum of CI_BCEntityTypes. Use 7 to check if on top, 8 to check if on
bottom /param entity_id Id of the BC /return true if BC heatflux is on specified shell area,
otherwise false

highlight (str type,

 int id)

Highlight the given entity.

init (const [str] & argv)

Use init to initialize Cubit. Using a blank list as the input parameter is acceptable.
Parameters:

argv List of start-up directives. A blank list such as [''] will suffice. See Cubit Help

for details

Bool is_acis_engine_available ()
Bool is_assembly_metadata_attached (int volume_id)

Determine whether metadata is attached to a specified volume.
Parameters:

volume_id ID of the volume

Returns:
True if metadata exists, otherwise false

Bool is_boundary_layer_id_available (int id)

Bool is_catia_engine_available ()

Determine whether catia engine is available.
Returns:

True if catia engine is available, otherwise false

Bool is_command_echoed ()

Check the echo flag in cubit.

Appendix

1178

Returns:
A Boolean indicating whether commands should be echoed in Cubit

Bool is_command_journaled ()

Check the journaling flag in cubit.
Returns:

A Boolean indicating whether commands are journaled by Cubit

Bool is_geometry_visibility_on ()

Get the current geometry visibility setting.
Returns:

True if scale is visible, otherwise false

Bool is_interval_count_odd (int surface_id)

Query whether a specified surface has an odd loop.
Parameters:

surface_id Id of the surface

Returns:
True if surface is/contains an odd looop, otherwise false.

Bool is_merged (str geom_type,

 int entity_id)

Determines whether a specified entity is merged.
 if (is_merged("surface", 137)) . . .

 if cubit.is_merged("surface", 137):

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool is_mesh_element_in_group (str element_type,

 int element_id)

Indicates whether a mesh element is in a group.
 if (is_mesh_element_in_group("tet", 445)) ...

 if cubit.is_mesh_element_in_group("tet", 445):

Parameters:
element_type Mesh type of the element
element_id ID of the mesh element return True if in a group, otherwise false

Bool is_mesh_visibility_on ()

Get the current mesh visibility setting.
Returns:

True if scale is visible, otherwise false

Bool is_meshed (str geom_type,

 int entity_id)

Determines whether a specified entity is meshed.

Cubit_15.5_User_Documentation

1179

 if (is_meshed("surface", 137)) . . .

 if cubit.is_meshed("surface", 137):

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool is_modified ()

Get the modified status of the model.
Returns:

A Boolean indicating whether the model has been modified

Bool is_multi_volume (int body_id)

Query whether a specified body is a multi volume body.
Parameters:

body_id Id of the body

Returns:
True if body contains multiple volumes, otherwise false.

Bool is_occlusion_on ()

Get the current occlusion mode.
Returns:

True if occlusion is on, otherwise false

Bool is_on_thin_shell (CI_BCTypes bc_type_in,

 int entity_id)

Determine whether a BC is on a thin shell. Valid for temperature, convection and heatflux.
/param bc_type_in enum of CI_BCTypes. temperature = 4, convection = 7, heatflux = 8
/param entity_id Id of the BC /return true if BC is on thin shell element, otherwise false

Bool is_opencascade_engine_available ()

Bool is_part_of_list (int target_id,

 [int] id_list)

Routine to check for the presence of an id in a list of ids.
Parameters:

target_id Target id
id_list List of ids

Returns:
True if target_id is member of id_list, otherwise false

Bool is_performing_undo ()

Check if an undo command is currently being performed.
Returns:

True or false.

Bool is_periodic (str geom_type,

Appendix

1180

 int entity_id)

Query whether a specified surface or curve is periodic.
 if (is_periodic("surface", 22)) . . .

 if cubit.is_periodic("surface", 22):

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Returns:
True is entity is periodic, otherwise false

Bool is_perspective_on ()

Get the current perspective mode.
Returns:

True if perspective is on, otherwise false

Bool is_playback_paused_on_error ()

Gets whether or not playback is paused when an error occurs.
Returns:

True if playback should be paused when an error occurs.

int is_point_contained (str geom_type,

 int id,

 const [float] & point)

Determine if given point is inside, outside, on or unknown the given entity. note that this
is typically used for volumes or sheet bodies.
Parameters:

geom_type string defining geometry type (volume or body) id ID of the geometric

entity point xyz triplet defining the point (note that it must be [float] (3)
Returns:

-1 failure, 0 outside, 1, inside, 2 on

Bool is_scale_visibility_on ()

Get the current scale visibility setting.
Returns:

True if scale is visible, otherwise false

Bool is_select_partial_on ()

Get the current select partial setting.
Returns:

True if partial select is on, otherwise false

Bool is_sheet_body (int volume_id)

Query whether a specified volume is a sheet body.
Parameters:

Cubit_15.5_User_Documentation

1181

volume_id Id of the volume

Returns:
True if volume is a sheet body, otherwise false

Bool is_surface_planar (int surface_id)

Bool is_surface_planer (int surface_id)

Query whether a specified surface is planer.
 if (is_surface_planar(22)) . . .

 if cubit.is_surface_planar(22):

Parameters:
surface_id Specifies the id of the surface

Returns:
True is surface is planer, otherwise false

Bool is_undo_save_needed ()

Get the status of the model relative to undo checkpointing.
Returns:

A Boolean indicating whether the model has been modified

Bool is_virtual (str geom_type,

 int entity_id)

Query virtualality for a specific entity.
 if (is_virtual("surface", 134)) . . .

 if cubit.is_virtual("surface", 134)):

Parameters:

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool is_visible (str geom_type,

 int entity_id)

Query visibility for a specific entity.
 if (is_visible("volume", 4)) . . .

 if cubit.is_visible("volume", 4)):

Parameters:
geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool is_volume_meshable (int volume_id)

Check if volume is meshable with current scheme.
Returns:

A Boolean indicating whether volume is meshable with current scheme

Bool is_working_dir_set ()

Create BCVizInterface for CompSimUI.
Returns:

was the -workingdir passed in from the command line
Boolean value indicating whether -working dir was set

Appendix

1182

journal_commands (Bool state)

Set the journaling flag in cubit.
Parameters:

state A Boolean that turns journaling on (1) and off (0)

int number_undo_commands ()

/brief Query whether there are any undo commands to execute
/return The number of commands in the undo stack

override_journal_stream (JournalStreamBase * jnl_stream)

Override the Journal Stream in CUBIT.
Returns:

[int] parse_cubit_list (str type,

 str int_list)

Parse a Cubit style entity list into a list of integers.
Users are allowed to input many variations of entities and IDs for any given command.
This routine parses the input and returns a regular list of valid IDs for the specified entity
type. For example: parse_cubit_list('surface', '1 to 12') parse_cubit_list('surface', 'with
name "myname*"') parse_cubit_list('surface', 'in volume 5 to 23')
Parameters:

type The specific entity type represented by the list of entities
int_list The string that contains the entity list

Returns:
A vector (python tuple) of validated integers

print_cmd_options ()

Used to print the command line options.

print_raw_help (str input_line,

 int order_dependent,

 int consecutive_dependent)

Used to print out help when a ?, & or ! is pressed.
Parameters:

input_line The current command line being typed by the user
order_dependent Is set to '1' if the key pressed is not &, otherwise '0'
consecutive_dependent Is set to '1' if the pressed is '?', otherwise '0'

print_surface_summary_stats ()

Print the surface summary stats to the console.

print_volume_summary_stats ()

Print the volume summary stats to the console.

process_input_files ()

Cubit_15.5_User_Documentation

1183

C++ only***.

[[float]] project_unit_square ([[float]] pts,

 int surf_id,

 int quad_id,

 int node00_id,

 int node10_id)

Given points in a unit square, map them to the given quad using the orientation info, then
project them onto the given surface, and return their projected positions.
Parameters:

pts The x,y (abstract u,v) coordinates of the input points. Should be in [0,1].
surf_id The surface.
quad_id The quad.
node00_id The id of the node of the quad corresponding to an input point with

coordinates (0,0)
node10_id The id of the node of the quad corresponding to an input point with

coordinates (1,0)
Returns:

Return the position on the surface of each input node, in the same order as the
input was given

Bool release_interface (CubitBaseInterface * instance)

Release the interface with the given name.
Parameters:

interface_name the name of interface

remove_entity_from_group (int group_id,

 int entity_id,

 str entity_type)

Remove a specific entity from a specific group.
 remove_entity_from_group(3, 22, "surface");

 cubit.remove_entity_from_group(3, 22, "surface")

Parameters:
group_id ID of group from which the entity will be removed
entity_id ID of the entity to be removed from the group
entity_type Type of the entity to be removed from the group. Note that only

geometric entities can be removed

reset_camera ()

reset the camera in all open windows this includes resetting the view, closing the
histogram and color windows and clearing the scalar bar, highlight, and picked entities.

set_cubit_interrupt (Bool interrupt)

This sets the global flag in Cubit that stops all interruptable processes.
Parameters:

Appendix

1184

interrupt Boolean set to TRUE if process is to be stopped

set_cubit_message_handler (CubitMessageHandler * hdlr)

redirect the output from cubit. C++ only***
Parameters:

Bool set_entity_name (str entity_type,

 int entity_id,

 str new_name)

Set the name of a specified entity.
 set_entity_name("vertex", 22, "new_name");

Parameters:
entity_type Specifies the type of the entity
entity_id Specifies the id of the entity
new_name Specifies what the name of the entity should be changed to

Returns:
true if entity was found and rename, otherwise false.

set_exit_handler (ExternalExitHandler * hdlr)

C++ only***.
Parameters:

set_label_type (str entity_type,

 int label_flag)

/brief make calls to SVDrawTool::set_label_type
/return none.

set_max_group_id (int max_group_id)

Reset Cubit's max group id This is really dangerous to use and exists only to overcome
a limitation with Cubit. Cubit keeps track of the next group id to assign. But those ids just
keep incrementing in Cubit. Some of the power tools in the Cubit GUI make groups 'under
the covers' for various operations. The groups are immediately deleted. But, creating
those groups will cause Cubit's group id to increase and downstream journal files may
be messed up because those journal files are expecting a certain ID to be available.
When using this call the user must ensure the group max_group_id is under their control.
Typically, a user will create a group, use it, then immediately delete it. This call will only
work if the max_group_id is the same as Cubit's max group id. If it is Cubit's max id will
be reset. If not, nothing will happen.
Parameters:

max_id ID of group to make 'max'

set_modified ()

Set the status of the model (is_modified() is now false). If you modify the model after you
set this flag, it will register true.

Cubit_15.5_User_Documentation

1185

set_overlap_max_angle (const float max_angle)

Set the max angle setting for calculating surface overlaps.
Parameters:

max angle

Returns:

set_overlap_max_gap (const float max_gap)

Set the max gap setting for calculating surface overlaps.
Parameters:

max gap

Returns:

set_playback_handler (ExternalPlaybackHandler * hdlr)

C++ only***.
Parameters:

set_playback_paused_on_error (Bool pause)

Sets whether or not playback is paused when an error occurs.
Parameters:

pause True if playback should be paused when an error occurs.

set_progress_tool (ProgressTool * progress)

Register a progress-bar callback handler with Cubit.
Parameters:

progress A pointer to a ProgressTool instance

set_rendering_mode (int mode)

Set the current rendering mode.
Parameters:

mode Integer associated with the rendering mode. Options are 1,7,2,8, or 5

set_undo_saved ()

Set the status of the model relative to undo checkpointin.

Bool silent_cmd (str input_string)

Pass a command string into Cubit and have it executed without being verbose at the
command prompt.
Passing a command into Cubit using this method will result in an immediate execution of
the command. The command is passed directly to Cubit without any validation or other
checking.
 silent_cmd("display");

 cubit.silent_cmd("display")

Parameters:

input_string Pointer to a string containing a complete Cubit command

Appendix

1186

Bool temperature_is_on_shell_area (CI_BCTypes bc_type,

 CI_BCEntityTypes bc_area,

 int entity_id)

Determine whether a BC temperature is on a shell area. Valid for convection and
temperature and on top, bottom, gradient, and middle.
/param bc_type enum of CI_BCTypes. temperature = 4, convection = 7 /param bc_area
enum of CI_BCEntityTypes. Use 7 for top, 8 for bottom, 9 for gradient, 10 for middle
/param entity_id Id of the BC /return true if BC temperature is on the shell area, otherwise
false

Bool temperature_is_on_solid (CI_BCTypes bc_type_in,

 int entity_id)

Determine whether a BC temperature is on a solid. Valid for convection and temperature.
/param bc_type_in enum of CI_BCTypes. temperature = 4, convection = 7 /param
entity_id Id of the BC /return true if BC temperature is on a solid, otherwise false

unselect_entity (str entity_type,

 int entity_id)

Unselect an entity that is currently selected.
Unselecting an entity will unhighlight it in the graphics window and remove it from the
global pick list.
 unselect_entity("curve", 221);

 cubit.unselect_entity("curve", 221)

Parameters:

entity_type The type of the entity to be unselected
entity_id The ID of the entity to be unselected

Bool volume_contains_tets (int volume_id)

Determine whether a volume contains tets.
Returns:

Bool

Bool was_last_cmd_undoable ()

Report whether the last executed command was undoable.
Returns:

true if the last executed command was undoable

Variable Documentation

const int CI_ERROR = -1

PyObserver
A base class to be extended to perform custom actions on Cubit events.

Cubit_15.5_User_Documentation

1187

Class Member Functions

 register_observable Register a PyObservable to be watched by this PyObserver.

 unregister_observable Unregister a PyObservable to be watched by this
PyObserver.

 notify_observers The function called when an event happens.

Member Function Documentation

register_observable(observable)

Register a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto be observed by this PyObserver

unregister_observable(observable)

Unregister a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto stop being observed by this PyObserver

notify_observers(observable, event_type)

The function called when an event happens.

Parameters

observable The PyObservableon/to which the event is occuring

event_type An integer representing a specific event type

PyObservable
The base class of everything in the CubitInterface.
The PyObservableclass allows a user to be able to 'observe' any entity in the
CubitInterface. Thus, a user would be able to handle events within Cubit appropriately.

Example

 import cubit

Appendix

1188

 class TestObserver(cubit.PyObserver):

 def notify_observers(self, obsvd, evt):

 if evt == 2:

 print 'Entity destroyed!'

 elif evt == 11 or evt == 12 or evt == 13:

 print 'Volume changed!'

 else:

 print 'Unknown event! '

 testobs = TestObserver()

 br = cubit.brick(1,1,1)

 testobs.register_observable(br)

 cubit.scale(br,2)

 cubit.cmd('delete body 1')

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions

 notify_observers Notify the observer of a event.

Member Function Documentation

notify_observers(event_type)

Notify the observer of a event.

Example

 import cubit

 class TestObserver(cubit.PyObserver):

 def notify_observers(self, obsvd, evt):

 if evt == 2:

 print 'Entity destroyed!'

 elif evt == 11 or evt == 12 or evt == 13:

 print 'Volume changed!'

 else:

 print 'Unknown event! '

Parameters

event_type The type of event

Entity

Cubit_15.5_User_Documentation

1189

The base class of all the geometry and mesh types.

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions

 destroy_cubit_entity

[
float
]

bounding_box Get the bounding
box of the Entity.

[
float
]

center_point Get the center point
of the Entity.

int id Get the id of the
Entity.

 is_visible Set the visibility state
of the Entity.

int is_visible Get the visibility
state of the Entity.

 is_transparent Set the tranparency
state of the Entity.

int is_transparent Get the tranparency
state of the Entity.

Member Function Documentation

destroy_cubit_entity()

[float] bounding_box()

Get the bounding box of the Entity.

Example

 b_box = entity.bounding_box()

Appendix

1190

Return

The bounding box as a vector (or list) where the indices correspond to the values as
follows: 0 - minimum x value 1 - minimum y value 2 - minimum z value 3 - maximum x
value 4 - maximum y value 5 - maximum z value

[float] center_point()

Get the center point of the Entity.

Example

 center = entity.center_point()

Return

The center point as a vector (or list) where the indices correspond to the values as follows:
0 - x value 1 - y value 2 - z value

int id()

Get the id of the Entity.

Example

 id = entity.id()

Return

The id of the Entity

is_visible(visibility_flag)

Set the visibility state of the Entity.

Example

 entity.is_visible(1)

Parameters

visibility_flag The flag that sets whether the Entityis visible (1) or not (0)

Cubit_15.5_User_Documentation

1191

int is_visible()

Get the visibility state of the Entity.

Example

 vis = entity.is_visible()

Return

The current visiblity state of the Entity(1 if visible, 0 if not)

is_transparent(transparency_flag)

Set the tranparency state of the Entity.

Example

 entity.is_transparent(1)

Parameters

transparency_flag The flag that sets whether the Entityis transparent (1) or not (0)

int is_transparent()

Get the tranparency state of the Entity.

Example

 trans = entity.is_transparent()

Return

The current transparency state of the Entity(1 if transparent, 0 if not)

GeomEntity
The base class for specifically the Geometry types (Body, Surface, etc.).

Inheritance

PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Appendix

1192

Class Member Functions

 mesh Mesh the
GeomEntity.

Bool is_meshed Return the
current mesh
state of the
GeomEntity.

 smooth Smooths the
mesh on the
GeomEntity.

 remove_mesh Removes the
mesh on the
GeomEntity.

str entity_name Return the first
name of the
GeomEntity.

 entity_name Assign a name
to the
GeomEntity.

[str] entity_names Return the all
the names of
the GeomEntity.

int num_names Return the
number of
names for the
GeomEntity.

 remove_entity_name Remove a
specific name
from the list of
names
assigned to the
GeomEntity.

 remove_entity_names Remove all the
names
assigned to the
GeomEntity.

int dimension Get the
dimensions of
the GeomEntity.

Cubit_15.5_User_Documentation

1193

[Body] bodies Get the bodies
in the
GeomEntity.

[
Volume]

volumes Get the
volumes in the
GeomEntity.

[
Surface]

surfaces Get the
surfaces in the
GeomEntity.

[Curve] curves Get the curves
in the
GeomEntity.

[Vertex] vertices Get the vertices
in the
GeomEntity.

Member Function Documentation

mesh()

Mesh the GeomEntity.

Example

 geomEntity.mesh()

Bool is_meshed()

Return the current mesh state of the GeomEntity.

Example

 mesh = geomEntity.is_meshed()

Return

Whether the GeomEntityis meshed or not

smooth()

Appendix

1194

Smooths the mesh on the GeomEntity.

Example

 geomEntity.smooth()

remove_mesh()

Removes the mesh on the GeomEntity.

Example

 geomEntity.remove_mesh()

str entity_name()

Return the first name of the GeomEntity.

Example

 name = geomEntity.entity_name()

Return

The first name of the GeomEntity

entity_name(name)

Assign a name to the GeomEntity.

Example

 geomEntity.entity_name("Brick1")

Parameters

name The name to be assigned to the GeomEntity

[str] entity_names()

Return the all the names of the GeomEntity.

Cubit_15.5_User_Documentation

1195

Example

 names = geomEntity.entity_names()

Return

A vector (or list) of all the names of the GeomEntity

int num_names()

Return the number of names for the GeomEntity.

Example

 num = geomEntity.num_names()

Return

The number of names for the GeomEntity

remove_entity_name(name)

Remove a specific name from the list of names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_name("Brick1")

Parameters

name The name to be removed from the list of names assigned to the GeomEntity

remove_entity_names()

Remove all the names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_names()

int dimension()

Appendix

1196

Get the dimensions of the GeomEntity.

Example

 dim = geomEntity.dimension()

Return

The dimension of the GeomEntity

[Body] bodies()

Get the bodies in the GeomEntity.

Example

 bodies = geomEntity.bodies()

Return

A vector (or list) of bodies contained within the GeomEntity

[Volume] volumes()

Get the volumes in the GeomEntity.

Example

 volumes = geomEntity.volumes()

Return

A vector (or list) of volumes contained within the GeomEntity

[Surface] surfaces()

Get the surfaces in the GeomEntity.

Example

 surfaces = geomEntity.surfaces()

Return

Cubit_15.5_User_Documentation

1197

A vector (or list) of surfaces contained within the GeomEntity

[Curve] curves()

Get the curves in the GeomEntity.

Example

 curves = geomEntity.curves()

Return

A vector (or list) of curves contained within the GeomEntity

[Vertex] vertices()

Get the vertices in the GeomEntity.

Example

 vertices = geomEntity.vertices()

Return

A vector (or list) of vertices contained within the GeomEntity

Body
Defines a body object that mostly parallels Cubit's Body class.

Inheritance

PyObservable
Entity
GeomEntity
Body

Class Member Functions

[
float
]

get_mass_props Get the mass properties of the
Body, specifically the center of
gravity.

int point_containment Get whether a point is in, on, or
outside the Body.

float volume Get the volume of the Body.

Appendix

1198

Bool is_sheet_body Get whether the Body is a sheet
body or not.

Member Function Documentation

[float] get_mass_props()

Get the mass properties of the Body, specifically the center of gravity.

Example

 props = body.get_mass_props()

Return

A vector (or list) of numerical data corresponding to the center of gravity of the body with
indices as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

int point_containment(loc_in)

Get whether a point is in, on, or outside the Body.

Example

 on_out_in = body.point_containment([0,0,0])

Parameters

loc_in

Return

Whether a point is unknown (-1), outside (0), in (1), or on (2) the Body

float volume()

Get the volume of the Body.

Example

 vol = body.volume()

Return

Cubit_15.5_User_Documentation

1199

The volume of the Body

Bool is_sheet_body()

Get whether the Body is a sheet body or not.

Example

 is_sheet = body.is_sheet_body()

Return

Whether the Bodyis a sheet body or not

Curve
Defines a curve object that mostly parallels Cubit's RefEdge class.

Inheritance

PyObservable
Entity
GeomEntity
Curve

Class Member Functions

 color Set the color of the Curve.

int color Get the color of the Curve.

[
float
]

tangent Get the tangent to the Curve at a
particular point.

[
float
]

curvature Get the curvature of the Curve at a
particular point.

[
float
]

closest_point Get the curvature of the Curve at a
particular point.

[
float
]

closest_point_trimmed Get the curvature of the Curve at a
particular point.

float length Get the length of the Curve.

Appendix

1200

[
float
]

curve_center Get the center point of the Curve.

[
float
]

position_from_fraction Get the position of the point a
specified fraction along the Curve.

float start_param Get the lowest value of the Curve
in uv space.

float end_param Get the highest value of the Curve
in uv space.

float u_from_position Get the u value of a particular
position on the Curve.

[
float
]

position_from_u Get the position of a particular u
value for the Curve.

float u_from_arc_length Get the u value for a point a
specified arc length away from a
specified root parameter on the
Curve.

float fraction_from_arc_length Get the fraction along the Curve a
specified arc length is away from a
given Vertex.

[
float
]

point_from_arc_length Get the position on a Curve that is
a specified arc length away from
the specified root parameter.

float length_from_u Get the length between two
specified parameters on a Curve.

Bool is_periodic Get whether the Curve is periodic
or not.

Member Function Documentation

color(value)

Set the color of the Curve.

Example

 curve.color(0)

Parameters

Cubit_15.5_User_Documentation

1201

value The color value that the curve will have

int color()

Get the color of the Curve.

Example

 col = curve.color()

Return

The color value associated with the curve's current color

[float] tangent(point)

Get the tangent to the Curve at a particular point.

Example

 tan = curve.tangent([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The tangent to the Curveat the location specified

[float] curvature(point)

Get the curvature of the Curve at a particular point.

Example

 curvature = curve.curvature([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

Appendix

1202

The curvature of the Curveat the location specified

[float] closest_point(point)

Get the curvature of the Curve at a particular point.

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The closest point to the Curvefrom the location specified

[float] closest_point_trimmed(point)

Get the curvature of the Curve at a particular point.

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

The closest point to the Curvefrom the location specified

float length()

Get the length of the Curve.

Example

 len = curve.length()

Return

Cubit_15.5_User_Documentation

1203

The length of the Curve

[float] curve_center()

Get the center point of the Curve.

Example

 center = curve.curve_center()

Return

A vector containing the coordinates of the Curve's center according to the following: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

[float] position_from_fraction(fraction_along_curve)

Get the position of the point a specified fraction along the Curve.

Example

 pos = curve.position_from_fraction(0.5)

Parameters

fraction_along_curve A decimal value between 0 and 1 to determine a particular
position along the Curve

Return

A vector containing the coordinates of the position a specified fraction along the Curve: 0
- x coordinate 1 - y coordinate 2 - z coordinate

float start_param()

Get the lowest value of the Curve in uv space.

Example

 start = curve.start_param()

Return

The beginning value of the parameter

Appendix

1204

float end_param()

Get the highest value of the Curve in uv space.

Example

 end = curve.end_param()

Return

The ending value of the parameter

float u_from_position(position)

Get the u value of a particular position on the Curve.

Example

 u = curve.u_from_position([0,0,0])

Parameters

position A vector containing the coordinates of the input position

Return

The u value of the position along the Curve

[float] position_from_u(u_value)

Get the position of a particular u value for the Curve.

Example

 position = curve.position_from_u(0.5)

Parameters

u_value The u value of the position along the Curve

Return

A vector containing the coordinates of the output position

Cubit_15.5_User_Documentation

1205

float u_from_arc_length(root_param, arc_length)

Get the u value for a point a specified arc length away from a specified root parameter on the

Curve.

Example

 u = curve.u_from_arc_length(0, 0.5)

Parameters

root_param The beginning parameter from which the arc length is added to

arc_length The length away from the root parameter of the output parameter

Return

The u value of the Curvethe arc length away from the root parameter

float fraction_from_arc_length(root_vertex, length)

Get the fraction along the Curve a specified arc length is away from a given Vertex.

Example

 fraction = curve.fraction_from_arc_length(vertex, 0.5)

Parameters

root_vertex The Vertexto start from (vertex object)

length The length along the Curveaway from the root Vertex

Return

The fraction of the Curvethat is the specified length away from the specified Vertex

[float] point_from_arc_length(root_param, arc_length)

Get the position on a Curve that is a specified arc length away from the specified root parameter.

Example

 position = curve.point_from_arc_length(0, 0.5)

Appendix

1206

Parameters

root_param The root parameter from which the arc length is added to

arc_length The arc length along the Curveaway from the root parameter

Return

A vector that contains the coordinates of a position a specified arc length away from the
root parameter

float length_from_u(parameter1, parameter2)

Get the length between two specified parameters on a Curve.

Example

 length = curve.length_from_u(0, 0.5)

Parameters

parameter1 The beginning parameter

parameter2 The ending parameter

Return

The length between the two specified paramters along the Curve

Bool is_periodic()

Get whether the Curve is periodic or not.

Example

 periodic = curve.is_periodic()

Return

Whether the Curveis periodic or not

Surface
Defines a surface object that mostly parallels Cubit's RefFace class.

Inheritance

Cubit_15.5_User_Documentation

1207

PyObservable
Entity
GeomEntity
Surface

Class Member Functions

 color Set the color of the surface.

int color Get the color of the surface.

[[Curve]] ordered_loops Get the ordered loops of the
Surface.

[float] normal_at Get the normal at a particular
point on the Surface.

[float] closest_point_trimmed Get the nearest point on the
Surface to point specified.

[float] closest_point_trimmed Get the nearest point on the
Surface to point specified.

int point_containment Get whether a point is on or off of
the Surface.

[float] principal_curvatures Get the principal curvatures of the
Surface.

[float] position_from_u_v Get the Cartesian coordinates
from the uv coordinates on the
Surface.

[float] u_v_from_position Get the uv coordinates from the
supplied Cartesian coordinates
on the Surface.

[float] get_param_range_U Get range of u for the Surface.

[float] get_param_range_V Get range of v for the Surface.

float area Get area of the Surface.

Bool is_planar Get whether the Surface is planar
or not.

Bool is_cylindrical Get whether the Surface is
cylindrical or not.

Member Function Documentation

color(value)

Appendix

1208

Set the color of the surface.

Example

 surface.color(0)

Parameters

value The color value that the surface will have

int color()

Get the color of the surface.

Example

 col = surface.color()

Return

The color value associated with the surface's current color

[[Curve]] ordered_loops()

Get the ordered loops of the Surface.

Example

 loops = surface.ordered_loops()

Return

A vector of vectors (or list of lists) of Curves in loops: 0, 0 - loop 1 curve 1 0, 1 - loop 1
curve 2 1, 0 - loop 2 curve 1 etc...

[float] normal_at(location)

Get the normal at a particular point on the Surface.

Example

 norm = surface.normal_at([0,0,0])

Parameters

Cubit_15.5_User_Documentation

1209

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of normal vector as follows: 0 - x value 1
- y value 2 - z value

[float] closest_point_trimmed(location)

Get the nearest point on the Surface to point specified.

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of nearest point as follows: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

[float] closest_point_trimmed(location)

Get the nearest point on the Surface to point specified.

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return

A vector (or list) of doubles representing values of nearest point as follows: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

int point_containment(point_in)

Get whether a point is on or off of the Surface.

Appendix

1210

Example

 on_off = surface.point_containment([0,0,0])

Parameters

point_in A vector containing three values that are the coordinates of a point

Return

A python boolean representing whether the point is off (0) or on (1) the Surface

[float] principal_curvatures(point)

Get the principal curvatures of the Surface.

Example

 curvatures = surface.principal_curvatures([0,0,0])

Parameters

point A vector containing three values that are the coordinates of a point

Return

A list of two floats representing the curvatures 0 - curvature 1 1 - curvature 2

[float] position_from_u_v(u, v)

Get the Cartesian coordinates from the uv coordinates on the Surface.

Example

 pos = surface.position_from_u_v(0, 0)

Parameters

u The u parameter

v The v parameter

Return

The Cartesian coordinates of the supplied uv coordinates as a vector: 0 - x coordinate 1
- y coordinate 2 - z coordinate

Cubit_15.5_User_Documentation

1211

[float] u_v_from_position(location)

Get the uv coordinates from the supplied Cartesian coordinates on the Surface.

Example

 uv = surface.position_from_u_v([0,0,0])

Parameters

location A vector containing the Cartesian coordinates

Return

The curvature values: 0 - The u parameter 1 - The v parameter

[float] get_param_range_U()

Get range of u for the Surface.

Example

 bounds = surface.get_param_range_U()

Return

The curvature values: 0 - The lowest value in the u direction 1 - The highest value in the
u direction

[float] get_param_range_V()

Get range of v for the Surface.

Example

 lower_bound, upper_bound = surface.get_param_range_V()

Return

The curvature values: 0 - The lowest value in the v direction 1 - The highest value in the
v direction

float area()

Appendix

1212

Get area of the Surface.

Example

 area = surface.area()

Return

The area of the Surface

Bool is_planar()

Get whether the Surface is planar or not.

Example

 planar = surface.is_planar()

Return

Whether the Surfaceis planar or not

Bool is_cylindrical()

Get whether the Surface is cylindrical or not.

Example

 cyl = surface.is_cylindrical()

Return

Whether the Surfaceis cylindrical or not

Vertex
Defines a vertex object that mostly parallels Cubit's RefVertex class.

Inheritance

PyObservable
Entity
GeomEntity
Vertex

Class Member Functions

Cubit_15.5_User_Documentation

1213

 color Set the color of the Vertex.

int color Get the color of the Vertex.

[float
]

coordinates Get the Cartesian coordinates of the
Vertex.

Member Function Documentation

color(value)

Set the color of the Vertex.

Example

 vertex.color(0)

Parameters

value The color value that the vertex will have

int color()

Get the color of the Vertex.

Example

 col = vertex.color()

Return

The color value associated with the vertex's current color

[float] coordinates()

Get the Cartesian coordinates of the Vertex.

Example

 position = vertex.coordinates()

Return

Appendix

1214

A vector containing the coordinates of the Vertexwith indices corresponding to the
coordinates as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

Volume
Defines a volume object that mostly parallels Cubit's RefVolume class.

Inheritance

PyObservable
Entity
GeomEntity
Volume

Class Member Functions

float volume Get the volume of the Volume.
color Set the color of the Volume.

int color Get the color of the Volume.

[float] principal_axes Get the principal axes of the Volume.

[float] principal_moments Get the principal moments of the Volume.

[float] centroid Get the centroid of the Volume.

Member Function Documentation

float volume()

Get the volume of the Volume.

Example

 vol = volume.volume()

Return

The volume of the Volume

color(value)

Set the color of the Volume.

Example

Cubit_15.5_User_Documentation

1215

 volume.color(0)

Parameters

value The color value that the volume will have

int color()

Get the color of the Volume.

Example

 col = volume.color()

Return

The color value associated with the volume's current color

[float] principal_axes()

Get the principal axes of the Volume.

Example

 axes = volume.principal_axes()

Return

A vector (or list) of the principal axes of the volume with the indices of the vector
corresponding to the values as follows: 0 - axis 1 x value 1 - axis 1 y value 2 - axis 1 z
value 3 - axis 2 x value 4 - axis 2 y value 5 - axis 2 z value 6 - axis 3 x value 7 - axis 3 y
value 8 - axis 3 z value

[float] principal_moments()

Get the principal moments of the Volume.

Example

Appendix

1216

 moments = volume.principal_moments()

Return

A vector (or list) of the principal moments of the volume with the indices of the vector
corresponding to the values as follows: 0 - x moment 1 - y moment 2 - z moment

[float] centroid()

Get the centroid of the Volume.

Example

 centroid = volume.centroid()

Return

A vector (or list) of the coordinates of the centroid of the volume with the indices of the
vector corresponding to the values as follows: 0 - x coordinate 1 - y coordinate 2 - z
coordinate

CubitFailureException
An exception class to alert the caller when the underlying Cubit function fails.

Class Member Functions

str what

Member Function Documentation

str what()

InvalidEntityException
An exception class to alert the caller that an invalid entity was attempted to be used. Likely
the user is attempting to use an Entity who's underlying CubitEntity has been deleted.

Class Member Functions

Cubit_15.5_User_Documentation

1217

str what

Member Function Documentation

str what()

InvalidInputException
An exception class to alert the caller of a function that invalid inputs were entered.

Class Member Functions

str what

Member Function Documentation

str what()

MeshImport

Class Member Functions

print_error Print a message into the cubit message system.

int add_nodes add nodes with a given dimension the start id of the first
node is returned this returned id can be used in other
functions

int add_elements add elements of a single type the start id of the first
element is returned this returned id can be used in other
functions

int create_block create a block with a preferred id the assigned id is
returned

Bool add_elements_to_block add a group of elements to a block

int create_nodeset create a nodeset with a preferred id the assigned id is
returned

Bool add_nodes_to_nodeset add a group of nodes to a nodeset

int create_sideset create a sideset with a preferred id the assigned id is
returned

Bool add_elements_to_sideset add a group of sides to a sidset sides are specified by
element ids and a side index

Appendix

1218

Member Function Documentation

print_error(err)

Print a message into the cubit message system.

Parameters

err

int add_nodes(dimension, num_nodes, nodes)

add nodes with a given dimension the start id of the first node is returned this returned id can be

used in other functions

Example

 mi = cubit.MeshImport()

 mi.add_nodes(3, 8,

[0,0,0,1,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,1,1,0,1,0])

Parameters

dimension

num_nodes

nodes

int add_elements(element_type, number_of_elements, elem_connectivity)

add elements of a single type the start id of the first element is returned this returned id can be

used in other functions

Example

 mi.add_elements(cubit.HEX, 1, [1,2,3,4,5,6,7,8])

Parameters

element_type

number_of_elements

Cubit_15.5_User_Documentation

1219

elem_connectivity

int create_block(dim, pref_id)

create a block with a preferred id the assigned id is returned

Parameters

dim

pref_id

Bool add_elements_to_block(block_id, start_index, end_index)

add a group of elements to a block

Example

 mi.add_elements_to_block(1, 1, 100)

Parameters

block_id

start_index

end_index

int create_nodeset(pref_id)

create a nodeset with a preferred id the assigned id is returned

Parameters

pref_id

Bool add_nodes_to_nodeset(nodeset_id, num, node_ids)

add a group of nodes to a nodeset

Example

 mi.add_nodes_to_nodeset(1, 4, [1,2,3,4])

Appendix

1220

Parameters

nodeset_id

num

node_ids

int create_sideset(pref_id)

create a sideset with a preferred id the assigned id is returned

Parameters

pref_id

Bool add_elements_to_sideset(sideset_id, num, elem_ids, side_indices)

add a group of sides to a sidset sides are specified by element ids and a side index

Example

 mi.add_elements_to_sideset(1, 4, [1,2,3,4], [1,1,1,1])

Parameters

sideset_id

num

elem_ids

side_indices

Navigation XML Files
The Cubit GUI includes a section referred to as the Command Panel. It is comprised of a
hierarchy of buttons used to navigate to panels that accept user input and generate Cubit
command strings. The following example shows the command panel used to create a
brick. The user navigates to the command panel by pressing the "Mode - Geometry"
button, then the "Entity - Volume" button, followed by the "Action - Create" button, then
finally selecting the "Brick" option from the pull-down menu.

Cubit_15.5_User_Documentation

1221

Before Cubit 14.0, this hierarchy was not modifiable by any third party. With the release
of Cubit 14.0, any user can modify the contents of the button hierarchy by adding,
deleting, or modifying buttons and command panels. The button hierarchy is expressed
in a series of XML files located in the directory 'bin/xml.'
The controlling XML file is named, "CubitNavigationRoot.xml." A snippet from the file is
shown below:

Appendix

1222

The first two levels of the hierarchy are managed in this file. Subsequent levels of the
hierarchy are managed in more specific XML files. For example, the remaining hierarchy
associated with geometry volumes is managed in the file named,
"GeometryVolumeNavigation.xml." A snippet from that file is shown below:

Users may modify the Label, ToolTip, or Icon url. Users may remove entire categories
if necessary. Users should not modify NavigationNode or NavigationReference tags.
Users may create their own command panels using Qt and add them to the hierarchy.

Periodic Space Filling Models (Tile)
This appendix describes commands for producing good-quality meshes of models that
tile space, such as polycrystalline materials models. Such models are often referred to as
"periodic", but since that term already has a different meaning in Cubit, the keyword "tile"
is used instead. Meshes may be smoothed across periodic boundaries. Periodic
boundary conditions can be automatically set up, according to ALEGRA conventions
(SAND99-2698).
Tile commands are alpha features and should be used with caution.

Initial setup

Cubit_15.5_User_Documentation

1223

First import the model and merge the surfaces. Then mesh it with any method that will
create meshes that match across the tile (periodic) boundary, say with scheme
polyhedron or sweep. Once the mesh is created, specify the "tile vectors", which lets Cubit
know that the nodes across the periodic boundaries are actually the same node:

Tile {x <period> | y <period> | z <period>}

[x <period>] [y <period>] [z <period>]

The 'period' you specify is actually the vector offset from one boundary to its match.
Specify one tile command for each coordinate axis that the model is periodic in. E.g.

Tile x 1
Tile y 1
Tile z 1

You can see which nodes are matched to a given node by some combination of tile
vectors with the following command: Tile Debug Node <id>
If you later need to delete these tile vectors, use the following command:

Tile Off

Creating Nodesets
Once the tile vectors are specified, you can set up periodic boundary conditions that meet
ALEGRA specifications. The command is:

Tile Nodeset <start_id>

This will create a nodeset for all combinations of tile vectors that actually connect nodes.
The nodesets created will be reported to you. The nodesets will be consecutive starting
with the given 'start_id', except that if there are no nodes for a particular combination there
will be no nodeset and the id space will have a hole. To delete these nodesets, use the

Tile Off

command rather than the usual commands to delete nodesets.

Smoothing
Once a mesh has been created and the tile vectors have been specified, you can smooth
the mesh and keep the periodic boundaries exactly offset by the tile vectors. Only hex
meshes are currently supported. A variety of 3d smoothing schemes are supported,
including laplacian, equipotential, untangle, and condition number.

Smooth Volume <volume_id_range> [Global [Float <dim>]]

Use "Global" if you are smoothing a collection of volumes. Use "float 3" if you want nodes
on surfaces, curves, and vertices to be able to move off of their geometric owner. Use
"float 2" if you want just nodes on curves and vertices to be able to move off of their owner

Appendix

1224

(but stay on an owning surface). It is often useful to specify that some of the nodes are
fixed using the "node position fixed" command.

Example

make the geometry

#{brick_size=500}

brick wid {brick_size}

brick wid {brick_size}

body 2 move {brick_size} 0 0

brick wid {brick_size}

body 3 move {brick_size} {brick_size} 0

brick wid {brick_size}

body 4 move 0 {brick_size} 0

brick wid {brick_size}

body 5 move 0 0 {brick_size}

brick wid {brick_size}

body 6 move {brick_size} 0 {brick_size}

brick wid {brick_size}

body 7 move {brick_size} {brick_size} {brick_size}

brick wid {brick_size}

body 8 move 0 {brick_size} {brick_size}

merge all

mesh it

vol all int 3

mesh vol all

set the tiling vectors

tile x {brick_size*2}

tile y {brick_size*2}

tile z {brick_size*2}

tile debug node 256

tile debug node 245

set the tiling nodesets

tile nodeset

mess up the mesh quality

volume all smooth scheme randomize

smooth volume all

surface all smooth scheme randomize

smooth surface all

draw hex all

fix the mesh quality

node in volume all position fixed

Cubit_15.5_User_Documentation

1225

node in surface all position free

volume all smooth scheme laplac

volume all smooth scheme untangle beta 0.08

smooth volume all global float 3

draw hex all

References
Attaway, Stephen W.; Mello, Frank J.; Heinstein, Martin W.; Swegle, Jeffrey W.; Ratner,
Julie A.; Zadoks, Rick Ian, "PRONTO3D users' instructions: a transient dynamic code for
nonlinear structural analysis," Sandia Report SAND 98-1361 Sandia National
Laboratories, Albuquerque, NM (1998)
Attaway S. W., unpublished, (1993)
Blacker, T. D., FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National
Laboratories, (1988)
Blacker, Ted D. "An Adaptive Finite Element Technique Using Element Equilibrium and
Paving", American Society of Mechanical Engineers, Annual Meeting Dallas Texas,
November 25-30, 1990, ASME, Nov 1990
Blacker, Ted D., "Paving: A New Approach To Automated Quadrilateral Mesh
Generation", International Journal For Numerical Methods in Engineering, John Wiley,
Num 32, pp.811-847, 1991
Blacker T.D. and Meyers R.J,."Seams and Wedges in Plastering: A 3D Hexahedral Mesh
Generation Algorithm", Engineering with Computers, Springer Verlag, Vol 2, Num 9,
pp.83-93, 1993
Brewer, M., L. Diachin, P. Knupp, T. Leurent, and D. Melander, "The Mesquite Mesh
Quality Improvement Toolkit", Proceedings, 12th International Meshing Roundtable, 2003
Brewer, M., "Geometry-Tolerant Meshing Using Advancing-Front Techniques", SAND
Report, (6-2008)
Butlin, Geoffrey and Clive Stops, "CAD Data Repair", 5th International Meshing
Roundtable, pp.7-12, 1996
Clark Brett W., "Removing Small Features with Real Solid Modeling Operations",
Submitted to 16th International Meshing Roundtable, 2007
Cook, W. A. and W. R. Oakes (1982) Mapping methods for generating threedimensional
meshes, Computers In Mechanical Engineering, CIME Research Supplement:67-72,
August 1982
Folwell, Nathan T. and Scott A. Mitchell, "Reliable Whisker Weaving via Curve
Contraction", Proceedings, 7th International Meshing Roundtable, Sandia National Lab,
pp.365-378, October 1998
Freitag, Lori A. and Patrick M. Knupp , "Tetrahedral Element Shape Optimization via the
Jacobian Determinant and Condition Number", Proceedings, 8th International Meshing
Roundtable, South Lake Tahoe, CA, U.S.A., pp.247-258, October 1999
George, P.L., F. Hecht and E. Saltel, "Automatic Mesh Generator with Specified
Boundary", Computer Methods in Applied Mechanics and Engineering, Vol. 92, pp. 269-
288, 1991
Hardwick, Mike, "DART System Analysis Presented to Simulation Sciences Seminar",
June 28, 2005

Appendix

1226

Jones, R.E., QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088,
Sandia National Laboratories, (1974).
Knupp, Patrick M., "Winslow Smoothing On Two-Dimensional Unstructured Meshes",
Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp.449-457,
October 1998
Knupp, Patrick M., "Matrix Norms & The Condition Number: A General Framework to
Improve Mesh Quality Via Node-Movement", Proceedings, 8th International Meshing
Roundtable, South Lake Tahoe, CA, U.S.A., pp.13-22, October 1999
Knupp, P., "Achieving Finite Element Mesh Quality via Optimization of the Jacobian
Matrix Norm and Associated Quantities, Part I", Int. J. Num. Meth. Engr.. 2000
Lovejoy, S. C. and R. G. Whirley, DYNA3D Example Problem Manual, UCRL-MA--
105259, University Of California and Lawrence Livermore National Laboratory, (1990).
Melander, Darryl J., Timothy J. Tautges, Steven E. Benzley "Generation of Multi-Million
Element Meshes for Solid Model-Based Geometries: The Dicer Algorithm" AMD-Vol. 220
Trends in Unstructured Mesh Generation, ASME, pp.131-135, July 1997
Mezentsev, Andrey A., "Methods and Algorithms of Automated CAD Repair For
Incremental Surface Meshing", Proceedings, 8th International Meshing Roundtable,
pp.299-309, 1999
Murdoch, Peter and Steven E. Benzley, "The Spatial Twist Continuum", Proceedings, 4th
International Meshing Roundtable, Sandia National Laboratories, pp.243-251, October
1995
Oddy, A., J. Goldak, M. McDill, and M. Bibby "A Distortion Metric for Isoparametric Finite
Elements" Transactions of the Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4,
1988.
Owen, Steven J. and David R. White, "Mesh-Based Geometry: A Systematic Approach
to Constructing Geometry from the Nodes and Elements of a Finite Element Mesh", 10th
International Meshing Roundtable, Sandia National Laboratories, pp. 83-96, October
2001
Owen, Steven J., Clark, B.W., Melander, D.J., Brewer, M.B., Shepherd, J.F., Merkley, K.,
Ernst, C., Morris, R., "An Immersive Topology Environment for Meshing", Accepted to
16th International Meshing Roundtable, 2007
Parthasarathy V. N. et al, "A comparison of tetrahedron quality measures", Finite Elem.
Anal. Des., Vol 15, 1993, 255-261.
Price, M.A. and C.G. Armstrong, "Hexahedral Mesh Generation by Medial Surface
Subdivision: Part I, Solids With Convex Edges, International Journal for Numerical
Methods in Engineering, Vol. 38, No. 19, pp. 3335-3359, 1995
W. Quadros, V. Vyas, M. Brewer, S. Owen, and K. Shimada, “A Computational
Framework for Generating Sizing Function in Assembly Meshing”, Proceedings, 14 th
International Meshing Roundtable, 2005
W. R. Quadros, K. Shimada, and S. J. Owen, “Skeleton-based computational method for
the generation of a 3D finite element mesh sizing function”, Engineering with Computers,
Springer Verlag, Vol 20, Num 3, pp.249-264, 2004
W. R. Quadros, S. J. Owen, M. Brewer, and K. Shimada, “Finite Element Mesh Sizing for
Surfaces using Skeleton”, Proceedings, 13 th International Meshing Roundtable, 2004
Robinson, J., "CRE method of element testing and Jacobian shape parameters, Eng.
Comput., Vol. 4 (1987).

Cubit_15.5_User_Documentation

1227

Ruppert, Jim , "A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation".
Technical Report UCB/CSD 92/694, University of California at Berkely, Berkely California
(1992)
Scott, Michael A., Matthew N. Earp, Steven E. Benzley, and Michael B. Stephenson,
"Adaptive Sweeping Techniques," Proceedings of the 14th International Meshing
Roundtable, Springer, pp. 417-432, 2005.
Schoof, L. A.and Victor R. Yarberry, "EXODUS II A Finite Element Data Model", SAND92-
2137, Sandia National Laboratories, (1995).
Sheffer, A., "Model simplification for meshing using face clustering", Computer-Aided
Design, Vol. 33, No. 13, pp. 925-934(10), 2001
Staten, Matthew L., Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and
Plastering: A New Idea for All Hexahedral Mesh Generation", Proceedings, 14th
International Meshing Roundtable, pp.399-416, 2005
Staten, Matthew L., Robert A. Kerr, Steven J. Owen, Ted D. Blacker, "Unconstrained
Paving and Plastering: Progress Update", Proceedings, 15th International Meshing
Roundtable, pp.469-486, 2006
Staten, Matthew L., Brian Carnes, Corey McBride, Clint Stimpson, Jim Cox, "Mesh
Scaling for Affordable Solution Verification", Proceedings, 25th International Meshing
Roundtable, pp. 46-58, 2016
Stimpson, CJ, Ernst, CD, Knupp, P, Pebay; P, and Thompson, D. "The Verdict Geometric
Quality Library", Sandia Report SAND2007-175, 2007
Tautges, Timothy J. and Scott A. Mitchell, "Whisker Weaving: Invalid Connectivity
Resolution and Primal Construction Algorithm", Proceedings, 4th International Meshing
Roundtable, Sandia National Laboratories, pp.115-127, October 1995
Tautges, Timothy J., Ted Blacker, Scott A. Mitchell, "The Whisker Weaving Algorithm: A
Connectivity-Based Method for Constructing All-Hexahedral Finite Element Meshes",
International Journal for Numerical Methods in Engineering, Wiley, Vol 39, pp.3327-3349,
1996
Tautges, Timothy J., "The Common Geometry Module (CGM): A Generic, Extensible
Geometry Interface", Proceedings, 9th International Meshing Roundtable, pp. 337-348,
2000
Tautges, Timothy J., "Automatic Detail Reduction for Mesh Generation Applications",
Proceedings, 10th International Meshing Roundtable, pp.407-418, 2001
Taylor, L. M. and D. P. Flanagan, "Pronto 3D--A Three-Dimensional Transient Solid
Dynamics Program", SAND87-1912, Sandia National Laboratories, (1989).
Tipton ,R. E., "Grid Optimization by Equipotential Relaxation", unpublished, Lawrence
Livermore National Laboratory, (1990)
Walton, D. J. and D. S. Meek, "A Triangular G1 Patch from Boundary Curves," Computer-
Aided Design, Vol. 28 No. 2 pp. 113-123 (1996)
Watson, David F. , "Computing the Delaunay Tessellation with Application to Voronoi
Polytopes", The Computer Journal, Vol 24(2) pp.167-172 (1981)
Wellman, Gerald W., "MAPVAR : a computer program to transfer solution data between
finite element meshes", Sandia Report SAND 99-0466 Sandia National Laboratories,
Albuquerque, NM (1999)

Appendix

1228

White, David R. and Paul Kinney, "Redesign of the Paving Algorithm: Robustness
Enhancements through Element by Element Meshing", Proceedings, 6th International
Meshing Roundtable, Sandia National Laboratories, pp.323-335, October 1997
White, David R. and Sunil Saigal (2002) Improved Imprint and Merge for Conformal
Meshing, Proceedings, 11th International Meshing Roundtable, pp.285-296
White, David R. and Timothy J. Tautges, "Automatic Scheme Selection for Toolkit Hex
Meshing", International Journal for Numerical Methods in Engineering, Vol. 49, No. 1, pp.
127-144, 2000
Whiteley, M., D. White, S. Benzley and T. Blacker, "Two and Three-Quarter Dimensional
Meshing Facilitators", Engineering with Computers, Springer-Verlag, Vol 12, pp.155-167,
December 1996
Yong Lu, Rajit Gadh, and Timothy J. Tautges, "Volume decomposition and feature
recognition for hexahedral mesh generation", Proceedings, 8th International Meshing
Roundtable, pp. 269-280, 1999

Available Colors
All color commands in CUBIT require the specification of a color name. The following
table lists the colors available in CUBIT at this time. The table lists the color number (#),
color name, and the red, green, and blue components corresponding to each color, for
reference.

Number Color Name Red Green Blue

0 black 0.000 0.000 0.000

1 grey 0.500 0.500 0.500

2 green 0.000 1.000 0.000

3 yellow 1.000 1.000 0.000

4 red 1.000 0.000 0.000

5 magenta 1.000 0.000 1.000

6 cyan 0.000 1.000 1.000

7 blue 0.000 0.000 1.000

8 white 1.000 1.000 1.000

9 orange 1.000 0.647 0.000

10 brown 0.647 0.165 0.165

11 gold 1.000 0.843 0.000

12 lightblue 0.678 0.847 0.902

Cubit_15.5_User_Documentation

1229

13 lightgreen 0.000 0.800 0.000

14 salmon 0.980 0.502 0.447

15 coral 1.000 0.498 0.314

16 pink 1.000 0.753 0.796

17 purple 0.627 0.125 0.941

18 paleturquoise 0.686 0.933 0.933

19 lightsalmon 1.000 0.627 0.478

20 springgreen 0.000 1.000 0.498

21 slateblue 0.416 0.353 0.804

22 sienna 0.627 0.322 0.176

23 seagreen 0.180 0.545 0.341

24 deepskyblue 0.000 0.749 1.000

25 khaki 0.941 0.902 0.549

26 lightskyblue 0.529 0.808 0.980

27 turquoise 0.251 0.878 0.816

28 greenyellow 0.678 1.000 0.184

29 powderblue 0.690 0.878 0.902

30 mediumturquoise 0.282 0.820 0.800

31 skyblue 0.529 0.808 0.922

32 tomato 1.000 0.388 0.278

33 lightcyan 0.878 1.000 1.000

34 dodgerblue 0.118 0.565 1.000

35 aquamarine 0.498 1.000 0.831

36 lightgoldenrodyellow 0.980 0.980 0.824

37 darkgreen 0.000 0.392 0.000

Appendix

1230

38 lightcoral 0.941 0.502 0.502

39 mediumslateblue 0.482 0.408 0.933

40 lightseagreen 0.125 0.698 0.667

41 goldenrod 0.855 0.647 0.125

42 indianred 0.804 0.361 0.361

43 mediumspringgreen 0.000 0.980 0.604

44 darkturquoise 0.000 0.808 0.820

45 yellowgreen 0.604 0.804 0.196

46 chocolate 0.824 0.412 0.118

47 steelblue 0.275 0.510 0.706

48 burlywood 0.871 0.722 0.529

49 hotpink 1.000 0.412 0.706

50 saddlebrown 0.545 0.271 0.075

51 violet 0.933 0.510 0.933

52 tan 0.824 0.706 0.549

53 mediumseagreen 0.235 0.702 0.443

54 thistle 0.847 0.749 0.847

55 palegoldenrod 0.933 0.910 0.667

56 firebrick 0.698 0.133 0.133

57 palegreen 0.596 0.984 0.596

58 lightyellow 1.000 1.000 0.878

59 darksalmon 0.914 0.588 0.478

60 orangered 1.000 0.271 0.000

61 palevioletred 0.859 0.439 0.576

62 limegreen 0.196 0.804 0.196

Cubit_15.5_User_Documentation

1231

63 mediumblue 0.000 0.000 0.804

64 blueviolet 0.541 0.169 0.886

65 deeppink 1.000 0.078 0.576

66 beige 0.961 0.961 0.863

67 royalblue 0.255 0.412 0.882

68 darkkhaki 0.741 0.718 0.420

69 lawngreen 0.486 0.988 0.000

70 lightgoldenrod 0.933 0.867 0.510

71 plum 0.867 0.627 0.867

72 sandybrown 0.957 0.643 0.376

73 lightslateblue 0.518 0.439 1.000

74 orchid 0.855 0.439 0.839

75 cadetblue 0.373 0.620 0.627

76 peru 0.804 0.522 0.247

77 olivedrab 0.420 0.557 0.137

78 mediumpurple 0.576 0.439 0.859

79 maroon 0.690 0.188 0.376

80 lightpink 1.000 0.714 0.757

81 darkslateblue 0.282 0.239 0.545

82 rosybrown 0.737 0.561 0.561

83 mediumvioletred 0.780 0.082 0.522

84 lightsteelblue 0.690 0.769 0.871

85 mediumaquamarine 0.400 0.804 0.667

Element Numbering

Appendix

1232

This appendix describes the element node and side numbering conventions used in Exodus II

files written by CUBIT. This information is located here for convenience, but is identical to the

information presented in the Exodus II manual; citation Schoof, 95

Node Numbering
The node numbering used for the basic elements is shown Figure 1. Specific element
types of lower order just contain the number of nodes needed for those elements; for
example, QUAD4 or QUAD elements use just the first four nodes shown for quadrilaterals
in Figure 1.

Figure 1. Local Node Numbering for CUBIT element types

Side Numbering
Element sides are used to specify boundary conditions that act over a length or area, for
example pressure- or flux-type boundary conditions. Each element side is represented in
the Exodus II format by an element number and the local side number for that element.
The local side numbering for the basic elements is shown in Figure 2.

Figure 2. Local side numbering for CUBIT element types

Triangular Shell Element Numbering
A three-dimensional shell element with triangular topology will have the element type
'TRISHELL'. This type can be modified for different element orders by appending the
number of nodes onto the end of the type. For example, a 6-node shell could have the
element type 'TRISHELL6'. However, any element whose type begins with the 8 letters
'TRISHELL' in upper, lower, or mixed case will refer to an element with a triangular
topology. The element can exist in either three-space or two-space.

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

Cubit_15.5_User_Documentation

1233

Attributes:
1. If the element exists in two-space, there are no required attributes.
2. If the element exists in three-space, there is one required attribute which is the
thickness of the shell.
3. If the number of attributes is equal to the number of nodes in the connectivity of the
element, then the attributes are assumed to specify the thickness of the element at each
of the elements nodes. The ordering of the attributes matches the ordering of the
elements nodes.

Node Ordering

The node ordering of the 3D triangle matches the node ordering of the 2D triangle as
shown in Figure 3.

Figure 3. Local Node Numbering for CUBIT triangular element types

Side Set Side Ordering

The sideset side ordering is different for the element in the 2D and 3D instances.
In 2D, the sideset side ordering matches what is shown in Figure 4.

Figure 4. Local sideset numbering for CUBIT triangular element types

In 3D, the sideset side and node ordering is the same as for a quad shell except that there
are only 3 or 6 nodes.

Appendix

1234

Then:
side 1 == {1,2,3}
side 2 == {3,2,1}
side 3 == {1,2}
side 4 == {2,3}
side 5 == {3,1}
If it is a higher order triangular shell (6 [or 7 nodes]), then the higher-order nodes are
added on to the end of the above:
side 1 == {1,2,3,4,5,6[,7]}
side 2 == {3,2,1,6,5,4[,7]}
side 3 == {1,2,4}
side 4 == {2,3,5}
side 5 == {3,1,6}

FASTQ
FASTQ is a program developed to create geometry and two-dimensional mesh. The user
may choose to upload FASTQ files and work with the files in an environment that accepts
a limited number of FASTQ commands.
Table 1. FASTQ Commands Executable in Cubit

Syntax Description

set fastq on Cubit is in FASTQ mode.

set fastq off Cubit exits FASTQ mode.

nine
Mesh will be generated using nine-node
quadrilateral elements.

eight
Mesh will be generated using eight-node
quadrilateral elements.

five
Mesh will be generated using five-node
quadrilateral elements.

import fastq "
*.fsq "

Imports FASTQ files into Cubit.

Table 2. Brief List of Importable FASTQ Commands Supported in Cubit

Syntax Description

point <point_id> <x-coord> <y-
coord> [<z-coord>]

This creates a point at the
specified coordinates with the id
given by the user. The z-
coordinate is optional because
FASTQ is a two-dimensional
meshing tool.

line <line_id> str <begin_pt>
<end_pt> 0 [interval] [factor]

This creates a straight line with
the given beginning and end
points and an id is assigned to the
line. The interval option

Cubit_15.5_User_Documentation

1235

determines the number of
intervals or subdivisions of the
line for mesh generation. The
factor option is the ratio of the
interval lengths as the intervals
progress towards the end point of
the line. For example, if a factor of
2 is specified, each interval will be
2 times longer than the interval
before it. If a factor is not
specified, the default factor is 1.

line <line_id> circ <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a circular
arc (or logarithmic spiral) about a
center point. The beginning and
ending points specify where to
position the circular arc. The third
point in the command specifies
the center of the circular arc.
Interval and factor are defined in
the explanation for the Line (STR)
Command.

line <line_id> cirm <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The CIRM line is similar to the
CIRC line. The difference
between the CIRM line and the
CIRC line is the function of the
third point. The third point on a
CIRM line is between the
beginning and end points and
becomes a part of the circular arc.
The arc will be drawn through all
three points.

line <line_id> cirr <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a circular
arc. The beginning and end points
function the same as the other
commands to create a circular
arc, but the third point is used
differently. The x value of the third
point will be used as the radius of
the arc to be created. If the x
value is positive, the center point
is placed on the left of a straight
line drawn through the beginning
and end points. If the x value is
negative, the center is placed on
the right side of the line.

Appendix

1236

line <line_id> para <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

This command creates the tip of a
parabolic arc. The third point is
the peak of the parabola. The
beginning and end points must be
equidistant from the third point.

line <line_id> corn <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a corner
formed by two line segments. The
first segment is created by
connecting the first and third
points. The second segment is
created by connecting the third
and second points. The line
segments can have their interval
size set as if the two lines were
one.

side <side_id> <list_of_lines>
This creates a group made up of
the given lines and assigns the id
given by the user.

region <region_id> <block_id>
<list_of_lines_or_sides>

A region is a list of lines/sides that
enclose an area to be meshed.
The region is formed from the list
of lines and/or sides; the region is
given the id specified by the user.

barset <barset_id> <block_id>
<inside> <list_of_lines>

The basis for two and three node
element generation is the barset.
The barset id is the identifying
number for the barset. The block
id is the id assigned to all
elements in the barset. The inside
point is a point on the inside of all
lines in the barset. All lines
specified at the end of the
command will be included in the
barset.

interval <interval> <list_of_lines>
This sets the number of intervals
on a given line or lines.

factor <factor> <list_of_lines>

This command sets the ratio of
the interval lengths as the
intervals progress towards the
end point of the line. For example,
if a factor of 2 is specified, each
interval will be 2 times longer than
the interval before it. If a factor is

Cubit_15.5_User_Documentation

1237

not specified, the default factor is
1.

poinbc <node_bc_id>
<list_of_points>

This command attaches boundary
conditions to the nodes that are
created at point locations.The first
number to be entered is the id of
the flag. After that a list of all
points to be flagged is entered.

linebc <node_bc_id>
<list_of_lines>

This command attaches boundary
conditions to nodes created along
certain lines. The first number
entered is the id of the flag.
Following the id, all lines to be
flagged should be entered.

sidebc <side_bc_id>
<list_of_lines>

This command attaches boundary
conditions to all nodes created on
certain lines. The first number
entered is the id of the flag. All
numbers entered after that point
are the ids of the sidesets
included in the flag.

scheme <region_id> {m|t|b|c|u}

The letters after the region id
indicate the meshing scheme.
Schemes specify a meshing
algorithm for mesh generation is a
regionThe letter 'm' indicates a
general rectangle primitive, 't'
indicates a triangle primitive, 'b'
indicates a transition primitive, 'c'
indicates a semicircle primitive,
and 'u' indicates a pentagon
primitive.

FullHex vs. NodeHex Representation
CUBIT has two different internal representations of hexes: FullHexes and NodeHexes.
The NodeHex is a lighter weight data structure, but occasionally nodeset and sideset
shortcomings can be overcome by using FullHexes. The user can select which type of
hexes get created when generating or importing a volume mesh with the following
command:

Set FullHex [Use] [on|OFF]

Using the FullHex representation increases the memory used to store a mesh by a factor
of approximately five.

Appendix

1238

Generating a Finite Element Mesh from Level-set
Data

This documentation will describe how to generate a finite element mesh from an Exodus
file that contains level-set data defined as nodal variables. This process was developed
to support mesh generation for geometric designs resulting from Adaptive Topological
Optimization (ATO). The output format from ATO in this case is an Exodus file containing
a tetrahedral mesh with a scalar nodal variable defining a level-set that represents the
bounding surfaces of the optimized volume. The process below extracts the bounding
surfaces of the optimized volume by evaluating the level-set at a value of zero. These
bounding surfaces are in the form of a triangulation that can then be used for generating
a finite element mesh. Three methods for generating the finite element mesh will be
described using a simple example model.

Hex Mesh Generation Using Sculpt

This section will describe the process for generating a sculpted hex mesh of the ATO
design.

1. This process utilizes beta capabilities in Cubit so activate the use of beta commands.

set dev on

2. Import the ATO Exodus file called “small_bracket.exo” into Cubit and use the import

option that tells Cubit to import the level-set nodal variable called “LSD” (level set data).

import mesh “small_bracket.exo” nodal_var “LSD” no_geom

3. Extract the boundary surface triangulations from the level-set data. Because this creates

triangles we use a variation of the “create tri …” command. We will use the “iso” option
telling the command to generate the iso-surfaces from the level-set data defined by the
nodal variable “LSD”. We will specify the tets to consider when doing the extraction. In
this case we use “tet all” meaning all of the tets in the model. When this command is
complete there will be two new blocks defined in Cubit. They will be the two blocks with
the highest IDs. One of these blocks (the larger of the two block IDs) contains triangles
that represent the optimized portions of the design and the other block (the smaller of
the two block IDs) contains triangles on the fixed portions of the design.

create tri iso tet all nodal_var “LSD”

4. Look at the extracted iso-surface triangulations by drawing the two new blocks (blocks 3

& 4) created in step 2.

https://cubit.sandia.gov/customers/documentation/help_manual/geometry_files/small_bracket.exo

Cubit_15.5_User_Documentation

1239

draw block 3 4

5. At this point we could smooth the new triangulations if desired but because the sculpting
process will have the same effect we will skip that step here. The smoothing will be
demonstrated in the next sections. We will now export the new blocks to an STL file that
can then be used by the sculpt algorithm. Specify only the triangles in the new
blocks. Also specify the “mesh free_mesh” options to tell the command that the triangles
are not owned by geometry.

export stl “small_bracket.stl” tri in block 3 4 mesh free_mesh

6. Exit Cubit and start a Linux command prompt from which to run sculpt.
7. From the command prompt load the sierra module (this will be used later).

module load sierra

8. From the directory where your new stl file is launch the sculpt program. See the sculpt
documentation for more details on the options for running sculpt. Here is an example of
a simple sculpt command that specifies the sculpt cell size and the number of
processors. The number or processors is 8 and the cell size is 0.0007.

sculpt –j 8 –cs 0.1 --stl_file “small_bracket.stl”

9. When sculpt finishes the resulting mesh will be spread across 8 files in our case since we
used 8 processors. In our example the files will be named something like
“small_bracket.stl_results.e.8.0” where the last number in the filename refers to which
processor the file came from. To concatenate all of the files into one use the “epu”
command from the Sierra suite of tools.

epu –auto small_bracket.stl_results.e.8.0

10. Start Cubit up and load the mesh file created by sculpt.

import mesh “small_bracket.stl_results.e” no_geom

Tet Mesh Generation by Remeshing Mesh Based Geometry (MBG)

This section will describe the process for generating a tet mesh by meshing a mesh based
geometry (MBG) representation of the optimized part.

1. This process utilizes beta capabilities in Cubit so activate the use of beta commands.

set dev on

Appendix

1240

2. Import the ATO Exodus file called “small_bracket.exo” into Cubit and use the import
option that tells Cubit to import the level-set nodal variable called “LSD” (level set data).

import mesh “small_bracket.exo” nodal_var “LSD” no_geom

3. Extract the boundary surface triangulations from the level-set data. Because this creates

triangles we use a variation of the “create tri …” command. We will use the “iso” option
telling the command to generate the iso-surfaces from the level-set data defined by the
nodal variable “LSD”. We will specify the tets to consider when doing the extraction. In
this case we use “tet all” meaning all of the tets in the model. When this command is
complete there will be two new blocks defined in Cubit. They will be the two blocks with
the highest IDs. One of these blocks (the larger of the two block IDs) contains triangles
that represent the optimized portions of the design and the other block (the smaller of
the two block IDs) contains triangles on the fixed portions of the design.

create tri iso tet all nodal_var “LSD”

4. Look at the extracted iso-surface triangulations by drawing the two new blocks (blocks 3

& 4) created in step 2.

draw block 3 4

5. Export the new blocks to an Exodus file so that they are disconnected from the original

tet mesh.

export mesh “small_bracket_iso.e” block 3 4

6. Reset Cubit.

reset

7. Load the new file that just contains the new blocks.

import mesh “small_bracket_iso.e” no_geom

8. Smooth the optimized part of the triangulation. This will be the triangles in the block with
the larger id (4 in our case). We will do this by first fixing the node positions of all of the
nodes in the non-optimized part of the triangulation and then smoothing the triangles in
the optimized portion. When smoothing we need to use the “target free mesh” option
to tell the command to project the smoothed results back to the original triangulation to
try to preserve volume. We use the “iteration” option to limit the number of iterations
the smoother does.

node in tri in block 3 position fixed

https://cubit.sandia.gov/customers/documentation/help_manual/geometry_files/small_bracket.exo

Cubit_15.5_User_Documentation

1241

smooth tri in block 4 target free mesh iteration 5

9. Create mesh based geometry from the triangulation. For small models this can be done
immediately with the commands below (first command creates surfaces and the second
command stitches them together to form a closed volume). For larger models it may be
faster to export the mesh to a file, reset Cubit, and then re-import the mesh with the
“geom” option on so that mesh based geometry is generated on import. Current
limitations in Cubit result in this performance difference.

create mesh geom tri all
create vol surf all

10. Set the size and scheme on the new volume and mesh it.

volume all size .5
volume all scheme tetmesh
mesh volume all

Tet Mesh Generation Using Level-set Triangulation

This section will describe the process for generating a tet mesh using the triangulation
from the level-set extraction.

1. This process utilizes beta capabilities in Cubit so activate the use of beta commands.

set dev on

2. Import the ATO Exodus file called “small_bracket.exo” into Cubit and use the import

option that tells Cubit to import the level-set nodal variable called “LSD” (level set data).

import mesh “small_bracket.exo” nodal_var “LSD” no_geom

3. Extract the boundary surface triangulations from the level-set data. Because this creates

triangles we use a variation of the “create tri …” command. We will use the “iso” option
telling the command to generate the iso-surfaces from the level-set data defined by the
nodal variable “LSD”. We will specify the tets to consider when doing the extraction. In
this case we use “tet all” meaning all of the tets in the model. When this command is
complete there will be two new blocks defined in Cubit. They will be the two blocks with
the highest IDs. One of these blocks (the larger of the two block IDs) contains triangles
that represent the optimized portions of the design and the other block (the smaller of
the two block IDs) contains triangles on the fixed portions of the design.

create tri iso tet all nodal_var “LSD”

https://cubit.sandia.gov/customers/documentation/help_manual/geometry_files/small_bracket.exo

Appendix

1242

4. Look at the extracted iso-surface triangulations by drawing the two new blocks (blocks 3
& 4) created in step 2.

draw block 3 4

5. Export the new blocks to an Exodus file so that they are disconnected from the original

tet mesh.

export mesh “small_bracket_iso.e” block 3 4

6. Reset Cubit.

reset

7. Load the new file that just contains the new blocks.

import mesh “small_bracket_iso.e” no_geom

8. Smooth the optimized part of the triangulation. This will be the triangles in the block with
the larger id (4 in our case). We will do this by first fixing the node positions of all of the
nodes in the non-optimized part of the triangulation and then smoothing the triangles in
the optimized portion. When smoothing we need to use the “target free mesh” option
to tell the command to project the smoothed results back to the original triangulation to
try to preserve volume. We use the “iteration” option to limit the number of iterations
the smoother does.

node in tri in block 3 position fixed
smooth tri in block 4 target free mesh iteration 5

9. Sometimes we will also want to smooth the edges on the “curves” in-between the

optimized and non-optimized regions. To do this we will first “un-fix” the node positions
we fixed in the previous step. Then we will create a group with all of the edges in the
optimized region and a group with all of the edges in the non-optimized region. Then we
will intersect these two groups to get the edges that are in-between these two
regions. Then we can smooth those edges. Finally, we will smooth the surfaces in the
optimized region again. You may also wish to smooth the tris in the non-optimized region
but this will require some more sophistication in fixing node positions so as not to lose
sharp features in the model. This example shows one specific smoothing sequence. You
may prefer other approaches.

node in tri in block 3 position free
group “opt_edges” add edge in tri in block 4
group “non_opt_edges” add edge in tri in block 3
group “int_edges” intersect opt_edges with non_opt_edges
smooth edge in int_edges target free mesh

Cubit_15.5_User_Documentation

1243

node in edge in int_edges position fixed
smooth tri in block 4 target free mesh iteration 5

10. Once we get a decent surface triangle mesh we can tet mesh the interior.

tetmesh tri all

1245

Credits

Credits

Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.
Manager

• Michael Skroch, Manager, Computational Simulation Infrastructure Department
(Org. 1543), Sandia National Laboratories

Project Board

• Principal Investigator: Roshan William Quadros, Org. 1543

Research and Development

Computational Simulation Infrastructure Department, Org. 1543, Sandia
National Laboratories, Albuquerque, NM

• Matthew L. Staten

• Steven J. Owen
• Roshan W. Quadros
• Byron Hanks
• Brett Clark
• Trevor Hensley
• Salome Rodriguez-Thorson

Elemental Technologies Inc., American Fork, UT

• Ray J. Meyers

• Corey Ernst
• Randy Morris
• Corey McBride
• Clinton Stimpson
• James Perry

Documentation

• Randy Morris, ETI, UT

1246

Administrative Assistant

• Ariana Rossi, 1543, Sandia National Laboratories

1247

Quick Reference

Quick Reference
Geometry | File Import | Meshing | Genesis | Program | Entity Parsing | Groups |
Graphics | Settings
The following is a brief overview of some of the most used command-line CUBIT
commands.
GEOMETRY
Primitives
Brick X <> [Y <> Z <>]
Cylinder Radius <> Height <>
Frustum Z <> Radius <> [Top <>]
Frustum Z <> Maj Rad <> Min Rad <>
Prism Z <> Sides <> Rad <> [Maj <> Min <>]
Pyramid Height <> Sides <> Radius <>
Sphere Rad <> [Xpos] [Ypos] [Zpos] [Inn <>]
Torus Major Rad <> Minor Rad <>
Booleans
Unite <> [With <>] [keep]
Subtract <> From <> [keep]
Intersect <> [With <>] [keep]
Transformations
Body <> [Copy] Move <dx> <dy> <dz>
Move {} <> location {} <> [except [x] [y] [z]]
Rotate {} <> About {x| y| z|<> <> <>} Angle <>
Rotate {} <> About Vert <> Vert <> Angle <>
Rotate {} <> About Nor Of Surf <> Angle <> Body <> [Copy] Scale <> Body <> [Copy]
Reflect {x| y| z|< x> <y> <z>}
Decomposition
Webcut {} <> Pla Vert <> [Vert]<> [Vert]<> ()
Webcut {} <> Plane Surf <> ()
Webcut {} <> Plane {xpla| ypla| zpla} [offs <>]
Webcut {} <> Tool [Body] <>
Webcut {} <> With Sheet {Body| Surf} <>
Webcut {} <> With Sheet Ext Fr Surf <>
Webcut {} <> Cyl Rad <> Axis {x| y| z| Vert <> Vert <>| <x><y><z>} [cent]
Options: [Noimprint| Imprint(default)], [Nomerge(default)| Merge], [group_ results]
Section {} <> {{ xpla| ypla| zpla} [offs <>]} | Surf <>} [keep] [normal(default)| reverse]
FILE IMPORT
Import Acis 'filename'
Export Acis 'filename' [Body <>]
Import Mesh Geometry 'filename' (options)
MESHING
Mesh {} <>
Delete Mesh {} <> [Propagate]

Quick Reference

1248

Intervals
{} <> Interval {<> | Hard | Soft | Default}
{} <> Size {<> | Auto}
Match Intervals {} <> [Ass Grou [Onl| Infea]] [Seed Cur <>] [Map| Pave]
Mesh schemes
{} <> Scheme ...
Curve: bias, copy, curvature, equal, stretch
Surface: auto, circle, copy, hole, map, mirror, pave, pentagon, qtri, submap, triprimitive,
trimap, trimesh, tripave
Volume: auto, copy, map, sphere, submap, sweep, tetmesh, tetprimitive, thex
Smooth {} <>
{} <> Smooth Scheme ...
Smooth schemes
Curves: laplacian, randomize
Surface: centroid area pull, equipotential, laplacian, condition number, randomize,
untangle, winslow
Volume: equipotential, laplacian, condition number, untangle, randomize
GENESIS
Block <> {Group| Vol| Surf| Curv} <> [Remove]
SideSet <> {Group| Curve} <> [Remove]
NodeSet <> {} <> [Remove]
Export Genesis 'filename'
Block <> Attribute <>
Block <> Element Type <type_>
Curves: bar[| 2| 3]| beam[| 2| 3]| truss[| 2| 3]
Surfaces: quad[| 4| 8| 9]| shell[| 4| 8| 9]| tri[| 3| 6| 7]
Volumes: hex[| 8| 20| 27]| pyr| tetra[| 4| 8| 10| 14] hexshell
SideSet <> Surf <> [Rem|[She][For| Rev| Both]]
SideSet <> Surf <> wrt Volume <>
Reset {Genesis | Nodesets | Sidesets | Blocks}
PROGRAM
Play 'filename'
Record {' filename' | stop}
Logging {off|on file <'filename'> [resume]}
Reset
Reset Genesis
Quit
ENTITY PARSING
Examples
Surface 1 2 3 4 to 6 by 2 ...
Curve all in Volume 2 ...
Draw Edge all in Hex 32
List Curve 1 to 50 except 2 4 6
Draw Sideset 1 2 3 Curve 3 to 5 Hex 2 4 6
GROUPS

Cubit_15.5_User_Documentation

1249

Group <> {add| equals| remove| xor} {} <>
Group <> {inters| unite} grou <> with grou <>
Group <> subtract group <> from group <>
GRAPHICS
Default mouse buttons (command line)
B1 - rotate; B2 - zoom; B3 - pan
Control-B1: pick entity (In graph win: 0,1,2,3,4 - Pick vert, curv, surf, vol, body)
Shortcuts (focus in Graphics Window)
a Add to selection group
b Toggle Bounding Box on Click
c Clear "picked" Group
d Display 'picked' group, make it the selection
e Echo ID of selection to command line
f Assign function to mouse button
g List geometry of selection
h Print help
i Toggle visibility of selection
j/k Move slicing plane down/up
l List current selection (as if you typed 'list ...')
control-l Give focus to the command prompt
m/n List picked group/selection contents
p Toggle Persistent Wireframe
q Quit Current Mode (Exit slicing if slicing)
r Remove from 'picked' Group
s Toggle save-mesh on slice move
u Toggle mouse circle visibility
v Reset view
w Toggle Wireframe on click
x/y/z Slice along x/y/z-axis
Shift-Z Zoom on current selection
F1 Save view 1 Numbers: set what you're picking.
ESC Cancel current Action
Tab Next possible selection
Shift-Tab Previous possible selection
Shift-SActivates graphics clipping plane controls

SETTINGS
Set AcisOption {string|double|integer} 'OptionName' <value>

Set Attribute <attrib_type> Auto {actuate|update} {on|off}

[Set] Auto Size Default

[Set] Auto Size Function [1|2]

Set AutoUniqueId {on|OFF}

Set Auto Sweep Scheme {Sw|Proj|Trans|Rot}

Set Boolean Regularize [ON|off]

Set Block Mixed Element Output {offset|degenerate|explicit}

Set Block Triangle Offset <value>

Set Block Tetrahedron Offset <value>

Quick Reference

1250

Set Block Pyramid Offset <value>

Set Catch Interrupt [on|off]

Set Cleanup Angle <val> (default = 179.0)

Set {curve|surface} Imprint Cleanup Tolerance <value>

Set Continue Meshing [ON|off]

Set Core [on|off]

set {Corner|End} Angle <degrees>

set Corner Weight <value>

Set Crash Save [on|off]

[set] Diagnostic {on|off}

[set] Geometry Version <> (1400, 1500, 1600, 1700, 1800, 1900)

[set] Debug <index> {on|off}

[set] Debug <index> File <'filename'>

[set] Debug <index> Terminal

set Default Blocks {on|off|Volumes|Surfaces}

set Default Names {on|off}

Set Default Element [tri|tet|QUAD|HEX|None]

Set Default Autosize [ON|off]

Set Digits [<number_to_list = -1>]

Set Deletion Off

Set Developer [commands] [on|off]

Set Detail Periodic Fraction <value>

Set Duplicate Block Elements {on|OFF}

[set] Echo [on|off]

Set Exodus Single Precision [on|off]

[Set] [Export Mesh] Nodeset Associativity [on|OFF]

[Set] [Export Mesh] Nodeset Associativity Complete [on|OFF]

[Set] Facet BBox [ON|off]

[Set] Facet_modify [ON|off]

Set Fastq {on|off]

Set File Overwrite [Check] [ON|off]

set FPE {divbyzero|invalid|underflow|overflow|all} [<toggle>]

set Fix Duplicate Names {on|off}

set FullHex [Use] [on|OFF]

[Set] Geometry Accuracy <value>

Set Geometry Engine {acis|catia|facet}

Set Group Edge Visibility [on|OFF]

Set Hex Relative Size Metric <value>

[set] Info {on|off}

set Interval Weight <value>

Set Import Mesh [vertex] [curve] [surface] Tolerance <distance>

[Set] Import Mesh NodeSet Associativity [ON|off]

Set Import Mesh NodeSet Order [On|Off]

Set Imprint Groups {ON|off}

Set Keep Invalid Mesh [on|off]

[set] Journal {on|off}}

Cubit_15.5_User_Documentation

1251

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]}

[set] Journal idless [on|off|reverse]}

set Keep Invalid Mesh {on|off}

[Set] Laminate Tolerance <double>

set Large Angle Weight <value>

Set Large Exodus [ON|Off]

Set Exodus NetCDF4 [On|OFF]

[set] Logging {off|on file <'filename'> [resume]}

[Set] Logging Errors {off|on file <'filename'> [resume]}

Set Mapping Constraint [ON|off]

set Match Intervals Rounding {on|off}

set Match Intervals Fast {on|off}

Set Match Intervals Delta <interval_difference = 0.0>

Set Maximum Arc_span {<angle>|default}

Set Maximum Interval <int>

Set Maximum Memory [on|off|value(in MB)]

Set Merge Test BBox {on|OFF}

Set Merge Test InternalSurf {on|OFF|Spline}

Set Merge Base Names [on|off]

Set Measure Small Tolerance <value>

Set Metrics [on|OFF]

Set Mesh Autodelete [ON|off]

[Set] Morph Smooth [ON|off]

Set Multisweep [ON|off]

Set Nastran Exporter Params Add '<param_string>'

Set Nastran Exporter Params Remove '<param_string>'

Set Nastran Exporter Params Clear

Set New Ids [on|off]

Set Node Coincident Tolerance [<value>]

set Node Constraint [ON|off]

Set Overlap [Facet] {Angle|Absolute} <value>

Set Overlap {Minimum|Maximum} {Gap|Angle} <value>

Set Overlap Normal {ANY|opposite|same}

Set Overlap Tolerance <value>

Set Overlap Group {on|OFF}

Set Overlap {List|Display} {ON|off}

Set Overlap [Within] {Body|Volume} {on|OFF}

Set Overlap Imprnt {on|OFF}

Set Parallel Meshing [on|OFF}

[Set] Paver Cleanup {ON|off|extend}

[Set] Paver Diagonal Scale <factor> (default = 0.9)

[Set] Paver Grid Cell <factor> (default = 2.5)

[Set] Paver Size Limits {default|minimum <value>|maximum<value>}

[set] Paver Smooth Method { Default | Smooth Scheme|Old}

[set] Paver Linearsizing {off|on}

Set Persistent Ids {off|ON}

Quick Reference

1252

set Patran Export Autogroups [on|OFF]

Set Patran Export Groups {ON|off]

Set Play History {on|OFF}

[set] Project Smooth {on|off}

Set Push Attribs {on|off}

Set Print Quality {WARNING|error|off}

Set QTri Test {angle|diagonal}

Set Qtri Split <2|4> (default = 2)

Set Quad Relative Size Metric <value>

Set Quality Threshold <double> (default = 0.2)

set Replacement character '.|_|@'

Set ReverseZoom [on|off]

Set Save [Exodus|Cubit] [backups <number>]

[set] Scheme Auto Fuzzy [Tolerance] <degrees>

Set Sculpt Refine {on|OFF}[set] Smooth Iterations {default|<value>}

Set Separate After Webcut [ON|off]

[set] Smooth Method {laplacian | isoparametric}

[set] Smooth Tol <value> (Default = 0.05)

set {source|target} surface pattern '<pattern>'

Set Split Surface Tolerance <value>

Set Split Surface Parametric {on|OFF}

Set Split Surface Auto Detect Triange {ON|off}

Set Split Surface Point Angle Threshold <value>

Set Split Surface Side Angle Threshold <value>

Set Split Surface Extend Gap Threshold <value>

Set Split Surface Extend Tolerance <value>

Set Split Surface Extend Normal {on|OFF}

Set Stop Error {on|OFF}

Set Submap CornerPicking {ON|off}

set Suffix character '.|_|@'

Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]

[Set] Tridelaunay Point Placement [{asp|gq}] (Advancing Steiner Point,Guaranteed Quality)

[Set] Trimesher Advancing Front

[Set] Tolerant Mesh Feature Size <value>

[Set] Tolerant Mesh MBG {OFF|on|only}

Set Tri Relative Size Metric <value>

Set Tet Relative Size Metric <value>

set Turn Weight <value>

Set Unite Mixed [ON|off]

[Set] Unmerge Duplicate_mesh {on|off}

[Set] Unmerge New Ids [{on|off}]

Set Verbose Errors [on|off]

Set Verbose Mesh [on|off]

[set] Warning {on|off}

Set WorkingDirectory 'directory_path'

1253

Index

#{abortloop} 1047
.
.cub 23
.sab 195
.sat 195
A
abaqus 668, 721
abort management 26
absolute value 1050
Acceleration 120
accuracy 301
acis 197, 364, 372
adaptive 681
adjust boundary 590
advancing front 410, 453
align 233
align mesh 623
alpha commands 1011
ambient intensity 158
analyze geometry 73, 268
angle 152

calculate 1050
mesh quality 598, 605
perspective 152
vertex type 427

appendix 1011
apply button 103
aprepro 1047

functions 1050
journal file 30
journaling 1059
loops 1047
variable 19

arc 216, 230
arc span 386
area 55, 598, 605
aspect ratio 591, 598, 600
Aspect Ratio Beta 600
Aspect Ratio Gamma 600
assembly 64, 355, 356, 359
Assembly Tool 59
associativity 669

attributes 346, 347, 348
block 731
metadata 356

Auto Bias 403
AutoCAD 197
autocenter 165
automatic curve biasing 384
automatic forced sweepability 293
automatic geometry cleanup 293
automatic geometry decomposition 1014
automatic scheme selection 578

general notes 580
surfaces 581
vertex types 578
volumes 581

automatic size assignment 386
autosmooth 430
axis 33, 120, 145, 160
B
background color 142
bar 748
batch 19
beam 738, 748
bend 281
bias 403, 589, 637, 681
biasing along curves 384
bitmap 158
blend surfaces 283, 990
block 731

attribute 731
curve 731
element type 731
repositioning 659
surface 731
volume 731

body 207
align 233
auto heal 269
copy 235
cut 1014
healer analyze 268
imprint 306
intersect 239

1254

list 55
merge 310
move 233, 236
reflect 237
rotate 233, 238
scale 238
section 266
separate 267
split 247
subtract 240
unite 240
webcut 247

boolean 239
intersect 239
subtract 240
unite 240

border 160
boundary condition 761
boundary condition sets 772
boundary conditions 8, 748

feature 8
Boundary Layer 775
brick 202
bug reports 9
buttons 101
C
CALCULATED 1062
camera 152
cancel 23
cd command 14
ceiling 1050
centroid area pull 614
cfd 762
CFD Boundary Conditions 120
cgm 158
chamfer 280, 283
changing preferences 98
chop 241
circle 405
cleanup 267, 412, 628, 990
clear 170
clip 140
closestpt 320, 1021
coarsening 635
cohesive element 1015
coincident nodes 588

collapse 318
angle 314
curve 316
mesh edges 624
surface 318

colors 142, 1228
Column Deletion 662
Column Groups 662
Column Insertion 662
Column Swapping 662
command 12
command echo 16
command line 11, 12
command syntax 12
command window 113
comment 27
Compare 62
Compare volume 62
component 96
composite 320

curves 319
surfaces 320

Condition No 600
condition number 591, 598, 600, 614
conductivity 745
Cone Surface 241
conformal 992
Constraint 731
Contact Pairs 120
Contact Regions 120
contact set 772
contact surface 763, 996
control skew 589
convection 120, 767
coordinates 1050
copy 235

body 235
mesh 395
scale 238
scheme 395

corner 427
cosine 1050
create 201

bottom-up 207
brick 202
curve 216

Cubit_15.5_User_Documentation

1255

cylinder 204
frustum 203
primitives 204
pyramid 203
sheet 222
sphere 207
surface 221
torus 204
vertex 230
volume 207

credits 1245
ctrl-c 23
cubit file 23
cubit file method 23
cubit_geom.save.g 23
cubit_geom.save.sat 23
CUBIT_OPT 17
cubit-dev 5
curvature 406, 681

sizing function 690
curve 216

bias 403
block 731
copy mesh 395
create 216
extrude 221
intervals 388
list 55
nodeset 750
partitioning 324
plane normal to 242
sideset 750
split 248
tangent 375
trim or extend 302
type 427
valence 90
vertex on 230

customize 98, 110
cut 1014

mesh 1021
cylinder 204
D
DART 354, 355, 356, 359
data filters 185
data structure 1237

date 1050
debug 19
decomposition 996

automatic 1014
geometry 996
partitioning 328
split periodic 249
web cutting 247

Default Block 731
defeaturing 1012

compositing 320
defeature tool 79
detail suppression 1012
surface removal 291
tweaking geometry 283

deformations 669
degrees 1050
Delaunay 451
delete 375
density 745, 1019
detail suppression 1012
development requests 9
diagonal ratio 591
dialog 103

command 103
options 98
property editor 117
tree view 64, 69

digits 16
dimension 721
direction 34
displacement 120, 769
display 170
display toolbar 121
distance 377
distortion 591, 598, 600, 605
Distributing 760
distribution 9
distribution factor 757
divergence 341
doubler 276
draw 145

color table 142
cylinder 248
detail 1012
drawing, locating, and highlighting 145

1256

edge 182
group 343
histogram 595
location 32
nodeset 182, 750
normal 145
picked 188
plane 51
vertex types 427

Drawing and Highlighting Entities 145
Drawing Columns 662
dualbias 403, 589
Duplicate Block Elements 731
duplicating 395
E
echo 52
edge collapse 624
edge length 616, 1050
elastic modulus 745
element block 731, 748
element numbering 1231
element types 8, 381, 748
Element Volume 600
enclosure 754
end 427
enhancement requests 9
entity 207

curve 216
drawing 145
highlighting 145
labels 151
names 351
picking 188
selecting 92, 188
selection mode 92
specification 182
surface 221
tree 64
vertex 230
virtual 313
visibility 170
volume 207

Entity ID Spaces 719
environment 11

user settings 17
equal 407

equal_to 384
equipotential 616
error count 1050
error logging 16
errors 16, 1050
examples 783, 865
execute 1050
execute button 103
execution 19

command syntax 19
Exhaust Fan 120
exit 25
exodus file method 743

element numbering 1231
exporting 724
file specification 743
importing 669
model title 744
sizing function 691

exodus II 669, 721
exotxt 721
expand 182
export 724, 730
extend 302
Extended Selection 173
Extended Selection Dialog 188
extraneous 292
F
facets 154, 373
factor 637
Fan 120
farfield pressure 120, 762
fastq 19, 1234

importing 369
FEA Boundary Conditions 120
feature angle 341, 367, 676
feature size 681, 1019
features 7
field function 691
file 23

acis 372
exodus II 743, 744
fastq 369
iges 374
initialization 23
input 19

Cubit_15.5_User_Documentation

1257

journal 19, 27, 30
filename 12

step 374
fillet 279, 280, 283
find mesh intersection 607
find surface overlap 298
finite element model definition 748
fire ray 40
firmness 390

interval 390
scheme 578
vertex type 427

Fixed_Imprints 430
flatquad 1015
flatshade 154
floor 1050
fluent 667, 728, 762
flush 170
fly-in 78
fonts 96
force 120, 293, 765, 998
free elements 669
free mesh 582, 667, 672, 703
from 152, 165
frustum 203
fullhex 1237
fuzzy 578
G
gamma 1050
geometric entities 207

curve 216
surface 221
vertex 230
virtual 313
volume 207

geometry 195
analyzing 268
attributes 346
boolean 239
bottom-up creation 207
clean up 267
creation 201
debug 297
decomposition 996
exporting 372
healing 270

importing 363
merging 310
modification 267
primitives 204
transformations 232
validating 304
virtual 313
visibility 170

geometry adaptive 694
geometry associativity 667, 672
geometry deletion 375
geometry groups 343
geometry representation 197
Geometry Selection Filters 120
geometry tweaking 272, 280, 283
Geometry/Mesh Comparison 62
Global Element ID 719
Global Element IDs 719
GlobalElement IDs 719
grafting 1028
graphical user interface 58
graphics 8, 139

camera 152
clipping plane 140
colors 142
display 170
draw 145
hardcopy 158
labels 151
mesh slicing 159
modes 154
no graphics option 19
options 160
selection 188
views 169
window size 157

graphics clip 140
graphics lighting 158
group 333

graphical selection 346
operations 343
picked 191
propagated hex 334
quality 346

groups 333, 436
sweep 436

1258

xor 343
H
hammer icon 6
hard interval 390
hardcopy 158
hardware platforms 6
healing 270

analyzing geometry 268
attributes 270
automatic 269
failure 271

heat flux 766
Heatflux 120
help 11, 19, 96, 110
hiddenline 154
highlight 145, 160

drawing, locating, and highlighting 145
histogram 593, 595
history command 14
hole 277, 407
htet 397
hypotenuse 1050
I
id input field 103
id maps 722
idealize 272
ideas 724
i-deas 679
i-deas 724
idless journal file 30
ids 349, 1050
iges 302, 370, 374
import 363, 364, 365, 369, 370, 371, 666,

667, 668, 669, 679, 680, 982
imprint 307

mesh 323
improve 369
info 52, 1247
initialization file 19, 23
Inlet Mass Flow 120
inlet massflow 762
inlet pressure 120, 762
Inlet Velocities 120
inlet velocity 762
Inlet Vent 120
input 730

input file 19
input window 113
Inradius 600
inria 441
installation 9
Intake Fan 120
Interface 120
interior mesh elements 140
Interiors 120
interrupt 23, 110
intersect 239
intersecting 607
interval 383

automatic specification 386
explicit specification 385
firmness 390
matching 388
periodic 392
relative 391

Interval equal_to 384
Interval same 384
isoparameter 145
isoparametric 145
J
jacobian 591, 598, 600
journal file 19

APREPRO 1059
automatic creation 27
creation and playback 30
editor 115
playback 27
recording 27

K
key icon 6
key press commands 91
Kinematic 760
L
label 151
laplacian smoothing 616
length 1050
license 9, 17
light intensity 158
lighting model 158
limit plane 272, 283
line width 160
listing information 51

Cubit_15.5_User_Documentation

1259

environment 52
geometry 55
mesh 57
model summary 57
special entities 58
vertex types 427

load set 772
loads 765
Local refinement 637
locate 78

drawing, locating, and highlighting 145
Locate command 145
location 38
location on curve 43
loft 213
logarithm 1050
logging 52
lowercase 1050
ls command 14
ls-dyna 724
M
magic mesh 973
mailing lists 5
make solid 207
mapping 408
material 356, 742, 745
mathematical functions 1050
mean ratio smoothing 617
measurement 377
memory usage 1237
menu 96, 102
merge nodes 679
merge tolerance 308, 1000
merging 310

examining merged entities 307
tolerance 309
using to verify geometry 312

mesh 381
and BC Entity Visibility 170
collapse element 624
copy 395
creation 381, 1018
deletion 1018
density 681
import 666
interval 383

modification 611
procedure 382
quality 70, 140, 592, 593, 595
scheme 392
tools 68

mesh based geometry 197
adaptive 395, 681
algorithms 392
deletion 713
export 721
feature 7
import 669
interval assignment 383
meshedit 624
preview 392
process 381
quality 592
remesh 382
sizing function 681
slicing 159
smoothing 618
transform coordinates 730
validity 714
visibility 170

Mesh Column Operations 662
Mesh Scaling 651
Mesh Selection Filters 120
mesh topology 602
meshing in item 983
metadata 354
Metadata Attributes 59
metric 592
metric name 595

algebraic 595
allmetrics 595
robinson 595
traditional 595

middle mouse button 92, 94, 98
midplane 221
min_through_thickness 637
mod 1050
model axis 145, 160
morph smooth 395
mouse 94, 165

customization 98
right click 91

1260

selecting entities with 92, 188
view navigation 94, 165

move 233, 236
msc 441, 453
multisweep 430
N
name 351
narrow regions 294
nastran 724
navigation 94, 165
ncdump 721
negative Jacobians 621
Neighbor 681
netcdf 721
new 23, 24
next 29
node 659

coincident 588
fix position 618
nodehex 1237
nodeset 750
numbering 1231
repositioning 659
selection 188

Node Constraint 731
Node Redistribution 430
nodeset 120, 750

importing 669
repositioning 659
size 160
smoothing 618
visibility 170

nogui 19
non-manifold topology 7, 602
normal 145, 375
NOT_SET 1062
notation 12
numbering 1231
numeric 12
NumInGrp 1050
O
offset 207, 219, 221, 272, 284
open 23, 24
openGL 96
optimize jacobian smoothing 1032
options 98

orthogonal 612
Outflows 120
outlet pressure 120, 762
Outlet Vents 120
output 730
output window 113
Overconstrained 453
Overconstrained Edges 453
overlap 298
P
painters 154
pan 94, 165, 172
parallel 637, 722
Parallel Meshing 497
parse 38
part 354, 355, 356, 359
partition 322, 328

curves 324
surfaces 325
volumes 327

patch 753
patran 680, 724
pause 23
pave 410
pentagon 414
periodic 762, 1222
Periodic Shadows 120
Periodics 120
perspective 152
Pick Extended 173
pick toolbar 92
picked group 66, 191
picking 188
pict 158
pillow 660, 1042
pinpoint 415
planar 185
plane 45
playback 30
point 160
poisson ratio 745
polygonfill 154
polyhedron 416
Porous Jump 120
postscript 158
ppm 158

Cubit_15.5_User_Documentation

1261

preselection 92
pressure 120, 765
preview 32, 248, 392

axis 32
direction 32, 38
imported mesh 990
location 32
mesh 392
plane 51

primitive 204
brick 202
cylinder 204
frustum 203
prism 206
pyramid 203
sphere 207
torus 204

print error 1050
prism 206
problem reports 9
project 220
propagate curve bias 590
property editor 117
pwd 14
pyramid 203
python 1061
Q
QA_Records 25
qtri 399
quality 592

controlling skew 589
groups 346
hexahedral 591
higher order 1044
quadrilaterals 598
tetrahedral 600
tools 70
triangles 605
wedge 606

quick reference 1247
quit 25
quote 1050
R
radialmesh 582
radians 1050
Radiator 120

radius 1050
random 1050
randomize 1032
ray 40
rebar 736
record 30
references 1225
refine 637, 1033
Refine Mesh Sheet 637
Refine Mesh Volume 637
Refine min_through_thickness 637
Refine Tet_edge 637
reflect 237
regularize 302
relative size 591, 598, 600, 605
remesh 382
removal 271, 272, 291, 292, 293
remove 328, 430
Remove Tiny Edge Length 1034
remove topology 288
renumber ids 350
Renumbering Element Blocks 731
Renumbering Nodesets and Sidesets

750
repositioning nodes 659
rescan 1047, 1050
reset 25
respect tetmesh 441
restart 23
restore 23
restraint 769
restraint set 772
resume 23
reversal 427
Reverse 375
right click options 91
rotate 94, 165, 172, 233, 238
rotation 238
S
same 384
save 23, 24
save as 23, 24
scale 238
Scale Mesh 651
scaled jacobian 591, 598, 600, 605
scheme 392

1262

automatic selection 578
bias 403
circle 405
curvature 406
delaunay 453
dualbias 403
equal 407
featuresize 1019
firmness 578
hole 407
htet 397
mapping 408
multisweep 430
parallel 497
pave 410
pentagon 414
pinpoint 415
polyhedron 416
qtri 399
sculpt 461
selection 578
sphere 418
stransition 422
stretch 424
submap 424
sweep 430
tetinria 441
tetmesh 441
tetmsc 441
tetprimitive 450
thex 400
transition 1038
triadvance 453
tridelaunay 451
trimap 452
trimesh 453
tripave 459
triprimitive 459
whisker weave 1042

Sculpt 461
Sculpt Application 490
Sculpt Installation 461
Sculpt Parallel Command 461
Sculpt Technical Description 485
section 266
seed 341

selection 92, 182
separate 267
session control 11
session id 1050
Set Default Block 731
Set Duplicate Block Elements 731
set Node Constraint 731
shape 591, 598, 600, 605
shear modulus 745
sheet 207
sheet body 185, 221, 267, 302
shell 749
side 427
sideset 120, 750
Sierra 724
silhouette 160
simplify 288, 330
simulog 441
sine 1050
size 160, 637

auto 386
feature 1019
interval 385

sizing function 589, 681
bias 683
constant 689
curvature 690
exodus II 691
field 691
interval 700
inverse 701
linear 702
super 1036
test 1036

skeleton sizing 681, 694
skew 265, 589, 591, 598
skew control 589
skinning 224, 714
sliver surface 292, 308
slot 277
small curves 295, 1002
small feature 1002, 1007
small surfaces 296, 1002
smart laplacian 621
Smart_Smooth 430
smoothing 618

Cubit_15.5_User_Documentation

1263

centroid area pull 614
edge length 616
equipotential 616
facets 199
laplacian 616
optimize condition number 614
optimize jacobian 1032
optimize untangle 621
randomize 1032
winslow 623

smoothshade 154
soft interval 390
solid model 19
SolidDesigner 197
SolidWorks 197
sort 349
specific heat 745
sphere 207, 418
spider 738
spline 185, 218
split 266

body 247
curve 248
periodic 249
surface 249

Split Overconstrained 453
Split Overconstrained Edges 453
sqrt 1050
statelist 1042
step 302, 371, 374
stitch 302
stop 23
stransition 422
stray 292
stretch 424, 591, 598
string 12, 1050
sub-assembly 354, 359
submap 424
subtract 240
SUPERELEMENT_TOPOLOGY_XX

731
SUPERELEMENT_TOPOLOGY_XX.

731
suppression 1012
surface 207, 221

creation 221

normal 375
overlap 298
removal 291
vertex type 427

surface area 1050
sweep 207, 221, 430
sweep group 436
sweep surface 207
Symmetries 120
symmetry 762
syntax 12
T
tangent 375
taper 591, 598
target 273
temperature 120, 771
Tet_edge 637
tetdice 441
tetmesh 441
tetmsc 441
tetprimitive 450
text size 160
thex 400
thicken 207
threshold 587
Tie 760
tile 1222
Timestep 600
Tiny Edge 1034
title 744
toggle 12
tolerance 301
tolerant imprinting 308
toolbars 120
topology 7
torus 204
tquad 402
transform 730
transformations 232
transition 1038
transition map 422
translation 236
translators 724
transparent 154
triad 160
triadvance 453

1264

triangle coarsening 1040
triangle visibility 145
tridelaunay 451
trim 302
trimap 452
trimesh 453
tripave 459
triprimitive 459
tutorial 783

gui 922
non-gui 950
power tools 813

tweak 283
curve 283
remove topology 288
surface 272
vertex 280
volume bend 281

U
unite 240
units 1050
unmerge 312
untangle 621
up command 152, 165
uppercase 1050
usage 19
user environment settings 17, 19
USER_SET 1062
users manual 1
V
valence 90
validation 304
variable 19, 1047
Velocity 120
verify 312
version 16, 372
vertex 230
vertex size 384
Vertex Sizing 384
vertex type 427
view 152, 159, 160, 165
virtual geometry 313

collapse 318
composite 320
deleting 328
partition 328

simplify 330
visibility 170
void 378
volume 207

curve type 427
draw 145
in volume 1050
measurement 377
partitioning 327
quality metrics 591, 600

VRML 724
W
Walls 120
warning 19, 52
warning count 1050
webcut 247

chop 241
options 248
sweep 244
with arbitrary surface 241
with planar or cylindrical surface 241
with tool body 246

where 29
whisker weave 1042
window 110

application 110
command 113
control panel 102
drop-down menu 96
entity tree 64
graphics 89, 139
input 113
journal file editor 115
output 113
property 117
query select 92
toolbar 120

windowlocation 157
winslow smoothing 623
wireframe 154
word count 1050
workbook mode 96
working directory 14
Z
zoom 165, 172

1265

