SAND2016-1649 R
Unlimited Release
Printed June 2016

CUBIT

Geometry and Mesh Generation Toolkit
15.2 User Documentation

Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks,
Brett Clark, Ray J. Meyers, Corey Ernst, Karl Merkley, Randy Morris, Corey McBride,
Clinton Stimpson, Michael Plooster, Sam Showman

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

U.S. DEPARTMENT OF I a1

JENERGY IV A a2

National Nuclear Security A dmmlstra tion

Table of Contents

CUBIT 15.2 USer DOCUMENTALIONoiviiiieiieiieieiie ettt st 1
T T [N o1 A o] o PSSP RRTOPRPS 3
T oo [0 Tod o] o T OSSR TP PR 3
CUBIT MaIING LISES ..ttt ettt beenneeneeeneeneas 3
Hardware REQUITEMENTS.iiiiieiie it eie ettt ste et ae s ettt esbeetesnaesreenesnnesreenaeas 4
HOW t0 USE THhiS MANUALocuiiiiiieice ettt sre e 4
KBY FRATUIES ..ttt ettt e ettt e ettt e e bt e et e e snb e e nn e e e sbbe e e nbbeeebneeen 5
Geometry Creation, Modification, and Healing...........cccccevvriiiieniniieniee e 5
NON-Manifold TOPOIOGYeceeieiiecie e e 5
Geometry DECOMPOSITION.ciiiiieieieiieite sttt ere s 5

IMESH GENEIALIONeviiiieieie ettt nee bbb nne e 5
BouNdary CondItIONS...........ooiiiiiiieieie e 5
et T=T O Y 0TSO 6
Graphics Display Capabilities..........cooiiiiiiiiiiieee e 6
Graphical USer INTErfaceccoovveiieiiicce e 6
Command LiNe INTEITACEcui et st 6
Licensing and DiStrIDULION.........cc.oiiiiiee et 6
Problem Reports and Enhancement REQUESTS..........c.viiiiiieiiiercisesesee e 6
TrademMark NOTICEc.oiviiiiiiieee bbbt sb ettt benne e 6
ENVIFONMENT CONTIOLoieee e ettt reenre et eeneenns 9
ENVIFONMENT CONIOL ...ttt bbbttt srenneas 9
ST eESES] o] I @0 11 £ PSSR 9
SESSION CONTIOL.....iiiiiieieieecce et bbbt s et e et st reeneereas 9
Starting and EXiting @ CUBIT SESSION........c.ciiiiiiiieieiesie st 9
Execution Command SYNAXcceeciiiieiieiieie et sre e 10
INIGIANZALION FIIES ..o e 14
ENVIronmMent VariabIeS.........cvoiiiieii s 14
COMMANT SYNTAX ...ttt bbbttt besne e 16
Command LINE HEIP .o e 18
ENVIronment COMMANGScc.voiiiieieeie ettt ee e e sreenee s 18
Saving and Restoring a Cubit SESSION..........ccviiiiieii e e 21
Interrupting RUNNING TASKS........cviiiiiieieie e 22
Recording and PIAYDACKcoiiiiiiiii et 23
Command Recording and PIaybhackccoiiiiiiiiiiin e 23
Journal File Creation and Playback............cccccceiviiiicieee e 23
Controlling Playback of Journal Filesccccooiiiiiiiiie e 23
Automatic Journal File Creationccoeeiieiieiiiie e 24

1A1€SS JOUN@AI FIIES ... e 26
Location Direction SPeCIfiCatIONcoviiiiiiii e 27
Location, Direction and AXiS SPECITICALIONcccvevieiiieriiie e 27
Drawing a Location, DIreCtion, OF AXISccveiiieiiieiiieeieesieesee e sies e 27
SPECITYING AN AXIS .ttt bbb s 28
SPECITYING @ DIFECLIONcviiiiicciie et era e 29

Table of Contents

SPECITYING @ LOCALION.....ccueiiiieieiie it 32
Specifying a LoCation 0N @ CUINVEccueiieiiee e 36
SPECITYING @ PIANE ... 38
LiSting INFOrMALIONeciiiiciece et r e ae e ns 44
Listing INFOrMALION.ccviiieiiee e e 44
List MOdel SUMMANYooiiiice e 44
LISE GROIMELIY ..ttt ettt b e 45
LISE IMIBSI ...t 46
LiSt SPECIAL ENITIES........oviiiiieiiiiee e 46
List CUDIT ENVIFONMENToiviiiiiiiieieie et 47
GUI 49
Graphical USer INTErfaCecccvcveiieiice e 49
CUBIT Application WINGOWcoueiiiiiiiiniiieseeiee e 50
CONIOI PANEL ... ettt 53
GrapNiCS WINGOW ..ottt 57
THEEE WIBW ..ttt bbbttt bbbt e et e benbesbenbenre s 63
PrOPEITY EQITON ...t 89
Command LiNE WOIKSPACEcueiuieiiere ettt se ettt sre et saeanaesne e 92
JOUMNAL FIlE EQITONecviiiiieiiee et 94
TOOIDAIS ...ttt benre e 96
Drop DOWN IMEBNUSoooiiiiiieiieeee et 97
Graphics WINAOW CONLIOL..........ooiiiicecc e 103
Graphics WINAOW CONEIOL........c.ooiiiiieii s 103
Graphics CHPPING PIANE.........cviiiiiicc et 104
Colors 106
Drawing, Locating, and Highlighting ENntitiesccccooceiviiiiiii i 109
Drawing Locations, Lines and POIYQONS.ccoiiiiiieiinineneceeeee e 112
ENLILY LADEIS. ..o 113
GraPNICS CAMEBIA ...ttt bbb enes 115
(C] 1o T Tt 1Y (oo L= USROS 117
Graphics WIndow Size and POSITIONcoiiiiiiiiieciese s 119
HArdCOPY OULPUL ..ottt e be e nnaennas 119
Graphics Lighting MOdel ..o 120
MESH VISUBHZALION ...t 121
Miscellaneous GraphiCs OPLIONS.........coeieiiiiiiiinieiee e 122
Mouse Based View Navigation: Zoom, Pan and Rotate...............ccccceevvevieieecieseene. 126
SAVING GraphiCS VIBWScc.iiuiiiiiiiiieiiesie ettt 129
Updating the DISPIaYcccveiieiiic et 130
Geometry, Mesh, and BC Entity VisiDilitycccccooeiiiiiiiie 131
Command Line View Navigation: Zoom, Pan and Rotate..............ccccceeevveviecvieenen. 132
Entity Selection and FITEIINGccooiiiiiiiieieee e 133
ENtItY SEIECHION ... 133
Command Line Entity SPeCIfiCAtIONcoiiiiiiiiiees s 133
Extended Command Line Entity Specificationc.cccocvveviiiiie i, 136
Selecting Entities With the IMOUSEcociiiiiiiiicee s 139
LCTeTo] 0 1=] (YRR 145

Cubit 15.2 User Documentation

(€T] 011 YT TSRO UP TR PUPOPR 145
MOl DEFINITIONS ... et sbe bbb eneas 145
ACIS GEOMELIY KEIMEL ...t 145
MESN-BaSed GEOMELIYciveieiieieerie ettt sraenteeneesneenas 146
CUBIT GEOMELIY FOIMALS......ccitiiiieieiieiie ettt ettt 149
(€T a0 [= 1 O (T 4 o] TSP 150
GEOMELIY CrEALION ...ttt ettt 150
PrIMITIVE GEOMELIY ..ottt et e be et eareesreeeeenee e 151
BOLOM UP CreatiONc.eeiiiiiiiiiieiieiei et 155
THANSTOIMS ..t b bbbt s et e b et e bbb ens 179
GEOMELIY TIaNSTOMMS.ciiiiiiiieii e 179
F N T [O] .13 4= T OSSR 179
COPY COMMANG......c.eiiiiiitiitieiiee bbbttt nn e 179
MOVE COMMEANG ...ttt bbbttt b b nrenreas 180
RefleCt COMMANG........ccoiieiie et 181
ROtate COMMEANTuiiiiiiiieieie bbb bt srenneas 182
SCalE COMMANG.......ciiiieiieeee ettt reenreeneeenee e 182
BOOIBANS. ...ttt bbbttt nae bbb n e reas 182
GEOMELIY BOOIBANS ..ottt 182
INEEISECT ...ttt b e b e et e e n e nne e 183
Subtract183
Unite 183
DECOMIPOSITION ..ttt bbbttt ettt bbb eneas 184
Geometry DECOMPOSITION.ciiieiieieiiesie et re e 184
WWED CUTTING .ttt 184
SPHItING GEOMELIY ...t re e 190
SECtION COMMANGeieeieiieeee ettt esreeeeenee e 207
Separating Surfaces from BOAIEScccucviiiiiiiiece e 207
Separating Multi-Volume BOGIES...........cooiiiiiiiiiiieie s 207
Cleanup and DefeaturiNgccvecuiiieiieie et sre e 208
Geometry Cleanup and Defeaturing..........coocvriririeieieiese s 208
TWEAKING GROMELIY ...ttt ettt et et e et e s e s teenesreesreenee s 208
Removing GeOMELriC FEATUIEScccoiiiiiiiiecee e 226
Healing 228
(0 1O [T T oSS 231
DebUgQING GEOMELIYvieieiieee et re e sre e 234
Finding SUrface OVErIAPc..ooviiiiiii e 235
(CTeTo] g 1= (Y N ool U - To YRR TRRP 237
Regularizing GEOMELIYccuiiiiiieiee e 237
Stitching SHeet BOGIES.ccviiiie et 238
Trimming and EXtENdING CUIVESccoiiiiiiiiiiieeee e 238
Validating GEOMELIYc.viiiiece et e e e ne e 240
IMNPIINT IMIBIGE . bbbttt bbb bt 241
Geometry Imprinting and MEIQINGcocvveiieiieeiieiie e 241
Examining Merged ENTITIES........cccooiiiiiiiiiiieieiee e 241
IMPrINTING GEOMEBLIY ...t et re e 241

Table of Contents

MEIGE TOIBIANCE. ... ettt sttt et et neenre e 243
METFGING GEOMELIYcvieieceiecte ettt e e st e e ste e e sre e teeneesneenns 244
Using Geometry Merging to Verify GEOMELIYocovviiieniiinicene e 245
(00 T=T (o] T SO PS 246
A AT (0 U ©T=To] o= 1 YRS PR 246
VITTUAL GEOMELIY ...ttt te e et e e nbe e nneenns 246
COllaPSE GROMELIY ...ttt 247
(Of0] 0] o To 1] | (=N C1-To] 14 [-1 1 YRS 251
Partitioned GEOMELIYcoiiiiiiieieeee bbb 254
Deleting Virtual GEOMELIYcviiiiiiece et 259
SIMPITY GEOMELIY ...ttt sre et enee e 260
(C1:To 00 [=1 1 A O 1] 0] - LA o] o SR 263
AJUSEING OFTENTALION ... e 263
LT (01U] o J U RUPRTPRT 264
GEOMELIY GIOUPS ...ttt ettt ettt ettt e e 264
Propagated GrOUPSceciueiieiieeieiiesteeste st e steeste e e s e e s teeseessaesteeaesseesbeenbesseesreennesnne e 265
BasiC Group OPEIAtIONSceiuieieieiesiesie sttt nie s 274
(C] 0T oL [] o]] [0t USSP 276
QUANITY GIOUPS ...t bbbttt 276
ATIDULES. ..ttt et et bbb e st e e bbbt renrenre s 277
GEOMELIY ATITDULES ...t 277
PersiSteNt AITOULEScoviiiiieiiie et 277
ENTIEY IDS .ottt 279
ENLILY NAMES ...t be et re e reenteenne e 281
ENLItY IMEASUIEIMENT ...ttt ettt 283
MEASUIE BEIWEEN ...ttt ne e 283
MEASUIE SMAIL ..ottt enneenes 284
MEASUIE ANGIE ... st e et re e nas 284
LT U Y o Lo OSSR 284
L] = To = L SR U RSSO 285
Parts, Assemblies, and Metadata...........covviiiieiiii i 285
Importing and EXporting Metadatac.cceevieieeiie i 285
Metadata ALIIDULEScveeieiiee et nneeeas 287
Working With Parts and ASSEMDIIES..........cccecveiiiiiiie e 289
GEOMELIY DIBTION ...ttt 292
18] 00 o SO 293
IMPOItING GEOMELIY ...t bbbt 293
IMPOITING ACIS FIIES ..ot 293
IMPOrting FaCEL FIlES.. ..o 295
IMPOrting FASTQ FIlES....ceieie e 298
IMPOrting Granite FIleSooiiiiiiie e 298
IMPOItING IGES FIIES ..ot 298
IMPOItING STEP FIlES ..ot 299
b d 1 OSSPSR 300
EXPOITING GROMELIYviiiiiiiiiieiee et bbb nne s 300
EXPOItiNG ACIS FIlES ..ot 300

Cubit 15.2 User Documentation

EXPOrting FACEE FIlES......c.eiieieieee e e 301
EXPOrtiNG IGES FIIESocuviieieceee ettt 301
EXPOItiNg STEP FIIES ..o 302
MBS GENEIALION ...ttt b b bbbt et et e ettt enbeanes 303
MESN GENEIALIONovieiiieiie ettt sttt e st eteese et e et e sneesbeeneenneesbeaneeas 303
T 1= o N Y 0TSSP 303
MESN GENEIALION PIOCESSovveuviiiieitieiesiiesieeieeee sttt et enee b e sbesneesneeeas 303
MESNING the GEOMELIYc.ei ettt e s e s raeeesneesneeee s 304
Default Scheme and Interval SEIECtiONcccooviiiiiiiiiere e 305
Continuing Meshing After a Mesh Failure..........cccooviveii i 305
INEEIVAl ASSIGNMENT ... oottt st e re e beebeaneesreeneeenee e 305
INtErval ASSIGNMENTc.viiiiiieie et sra e e sreaneeas 305
Automatic Specification of Interval SIZe ... 306
Explicit Specification of INtervals............cccooveiiiii i 308
Explicit Specification of Intervals Using Interval Size.........c.ccooovveiiiiiiniiniinnnns 308
Additional Interval CONSIIAINTSoiiiiiiiiiieiee e e 309
Vertex Sizing and Automatic CUrve BiaSiNgcccoceveririreninieieeeee e 309
INTEIVAL FINTMINESS ...ttt bbb 310
Interval MatChinNgoooiiii e 311
MESH INTEIVAL PIEVIBW.......c.viiiiiiiiiieiieiee et 312
PeriodiC INTEIVAIS........oiieieiie et re e 312
REIALIVE INTEIVALSo bbb ene s 312
MESNING SCNEIMES ...t b bbb 313
Automatic SCheme SeleCtiON. ...t 313
MESHING SCNEIMES ... 316
D01 o] [ToF: 4 o] USROS 318
(@00 £17=] 6] o] o 1SS 321
LI L6 L] - SRS 326
Parallel MESNING.........coiiii e 373

Free 420
MeSh QUAIITY ASSESSIMENT.........eiuieiieieiete ettt bbbttt bbb 424
Mesh QUality ASSESSIMENTcviiieieeie ettt 424
Automatic Mesh Quality ASSESSIMENTccuiiiiiriiieriere e 425
CoiNCIdent NOUE ChECK.........cuiieiiieiesie ettt 426
Controlling Mesh QUAITTYcoeiiiiiiiiiiii s 426
Metrics for EAdge EIBMENTSc.ooviiiee et 427
Metrics for Hexahedral EIBMENTS........c.oovviieiiie s 428
Mesh Quality Example OULPUL..........coooui i 429
Mesh Quality CommMAaNd SYNTAXcccoieiiiiiiiiiiiieiee e 431
Metrics for Quadrilateral EIEMENtSc..cooiiiiiiii e 434
Metrics for Tetrahedral EIBMENTS..........cooviiieiiie e 436
Mesh TOPOIOgY CRECKcveiiiii e e 437
Metrics for Triangular EIBMENTSc.ooiiiiiiiiiice e 440
MESN MOTITICATION ...ttt sbe et e sbe e 441
MESN MOUITICALION ...t es 441
MESN SMOOTNING.veiiiieiie e re e 442

Table of Contents

ALIGN MESI .. et ns 452
Collapsing MeSh EAQESccvveieiieiie e 453
Creating and Merging Mesh EIements..........ccoceviiiiieniiie e 453
o] (IO 1= T o OSSR 456
REMESNING ... 458
EdQE SWaPPINGcueeiieiece et re e 460
Matching Tetrahedral MEShesS ..o 461
MESN COAISENING ...evvevieieeieeste ettt et e e s e et e e esreesteeneesteenteeneesneenes 462
MESN REFINEIMENT ...t 463
BIOCK REPOSIIONINGeovviiiccieee ettt 476
Node and Nodeset REPOSITIONINGccueiviriiiiiiiiiieiee e 476
MESN PHIOWING......eiiieieicece sttt 477
Mesh Column OPEIatiONS..........ccviiiieieierie e 479
Scaling the Number of Elements in a Hexahedral Mesh.............cccccovveiiiiiiicieenen, 483
MESN VAITAITY ...t b et 489
Adaptivity and Sizing FUNCHIONS..........coiiiiiie e 489
Mesh Adaptivity and Sizing FUNCLIONSccooviiiiiiiieieseseeee e 489
Bias SiZiNG FUNCLIONcviiiiecc et 491
Constant SiZING FUNCLIONcoviiiiieieee e s 496
Curvature Sizing FUNCHION.........ccoiiiic e 497
Exodus I1-based Field FUNCHIONccoveiiiiiiiece e 498
Geometry Adaptive Sizing Function (Skeleton Sizing)ccccovveveiieeiisie e, 500
Interval SIZING FUNCHIONcuviiiiiiccc e 505
INVErSe SIZING FUNCLION ..o 506
Linear SiziNg FUNCHION ..ot 507
Geometry Adaptive Sizing for TriMesh and TetMesh Schemesccccoveivenee. 508
MESN DIBTION ...ttt et et se e reeteeneesteeneeaneesreeneeeneenneaneeas 509
AUtomMAtiC MeSh DEIBLIONc.veieiiiiie e 509
FPEE IMIBSNIES ...ttt ettt et e e st e s teeteene e s beenteaneenreeeeeneenneaneeas 509
Creating a free MESNcoiie e 510
Creating Mesh-Based Geometry to fit a Free Mesh ... 510
MErging @ fre€ MESNcvi et 511
Free Mesh Transformation OPErations.............cceeiuerrerierereseniseeeeee e 511
SMOOthING @ frEE MESNc.oeeiece e 514
Mesh quality 0N @ fre€ MESH........ooiiii e 515
Mesh refinement 0N a free MESHooviiiiiii e 515
Cleaning UpP @ TrEE8 MESI ..o 515
Assigning boundary CONAItIONSccveiiiiiiie i 516
SKINNING @ Fre@ MESN ..o s 517
Deleting free mesh elemMENtSc.ooiviiiiiiiic e 517
Bottom-up element Creationccooieiiiiii i 518
EXPOrting fre€ MESHESvviiiie s 518
SKINNING 8 MESN ... bbb 518
V= o [0] 1o RSP PPRSR 519
IMPOITING 8 IMESH ... bbbt 519
IMporting 2D EXOAUS FIIESooiveiie et 519

Vi

Cubit 15.2 User Documentation

IMPOrting ADAQUS FIIES ... e 520
IMPOrting EXOAUS T FIIES.......eeiiiie et 521
IMPOrting 1-DEAS FIES ... 529
IMPOrting NAStraN FIlES........cvoiiiiiiiiee e 529
IMPOrting Patran FIlES ..o 529
IMPOItING FIUBNT FIIES ... 530
Finite EIEMENt MOGEIoiiiieie ettt 531
Finite EIEMent MOElcoooiiiieee e 531
EXOTUS. ..ttt ettt nt b et ane e b e e eenne e reente s 531
Element BIOCK SPECITICALIONcccveiiieieiie e 531
Exodus 11 File SPeCifiCation ... 541
EXOAUS T MOEI THEIE .. 542
EXOdUS COoOrdinate Framesccooiueiieiieiieiiesie ettt 542
Defining Materials and Media TYPESccciveiiiiieiieeii et 543
Exodus Boundary Conditions. ..o 544
Nodeset and Sideset SPECITICALIONccciveiiiiieiicce e 545
INON EXOUUS. ..ottt sttt ettt e et e st et e s e te e e aseesbeeaeeneesbeenbeaneesreeneesneenneaneeas 552
Cubit Boundary CONAItiONS..........covveieiieieaie e sreesre e 552
CUBIT INitial CoNGItIONSccviiieiiieieiiesieee et 554
Using CFD Boundary ConditionScceiveiiiiieiie e 554
USING CONLACE SUIMACESvevieiiiieieesie sttt 555
(O LY [o T I T U SO PS 556
Miscellaneous Boundary Condition COMMANGS...........cccoeririnininieeieiene e 559
USING CONSIIAINTSveivicieciie et e re e seesreereenne e 560
USING RESIIAINTS ...ttt bbb ene s 560
Boundary Condition SEtS..........cciiiiiieii it 563
010 1 TP PRR TR 564
EXPOrtiNg SIEITA FIlES.....c.viiieie et 564
Defining PARAMS fOr NASTRANcoiiiii e 564
Instancing Parts With ABAQUSc.ooiiiiii et 564
Exporting an EXOdUs T File ..o 565
Exporting the Finite Element Model ..o 567
EXporting FIUEBNT Grid FIlES.....c..ooviiiiiie e 571
Transforming Mesh COOrdiNAtES..........eiveiieiiiieie e 572
Export Mesh and Its Geometry ASSOCIALION.c.coerireiirerireeieee e 573
StEP DY STEP TULOTIAISeeiieie et e e sre e ae s e e s ree e 575
StEP-BY-STEP TULOTIAIS. ... 575
AddItioNal TULOMTALSoviiiieiicieee e 575
Geometry Cleanup ProCesS FIOW..........couiiiiiiiiiiiiiiieee e 577
ITEM579
ITEM TULOITAL ...t nrn e e nne e e 579
ITEM TULOTIAL ..ot 580
ITEM TULOTTAL ..ot srn e e nne e 581
ITEM TULOTIAL ..ot 583
ITEM TULOITAL ..oeeieeeee ettt sra e e nnn e 589
ITEM TULOTTAL ..o e 592

vii

Table of Contents

NI\ B UL (0T £ - | SRR 596
I =Y IV (0T - 601
I\ B UL (o] £ - | TR 602
I =Y IV (0T - 606
(01T 0T £ ORI 608
PoWer TOOIS GUI TULOTIAL.......cveiiiiie it 608
Power TOOIS GUI TULOIIAL.......cociiiiiiei e 609
PoWer TOOIS GUI TULOTIAL.......cueiiiviei it 613
Power TOOIS GUI TULOTIAL.......ooiiiiiiiei e 617
PoWer TOOIS GUI TULOTIAL.......cveveiviei it 620
Power TOOIS GUI TULOTIAL.......oociiiiiiei e 621
PoWer TOOIS GUI TULOTIAL......ccuvieirie it 625
Power TOOIS GUI TULOTIAL.......oooiiiiiei e 632
PoWer TOOIS GUI TULOTIAL.......cvvieiiiiiiiie e 637
Power TOOIS GUI TULOTIAL.......coiiiiieiee e 640
Power TOOIS GUI TULOTIAL.......cuuiiiiiec e s 642
Power TOOIS GUI TULOIIAL.......coiiiiieiec et 651
= Tot] T o Lo 1571 £ o] PSSRSO 657
Decomposition TULOMIAL...........ccuiiiiiieiee e 657
Example 1. Sweeping multiple adjacent VOIUMES...........cccccevveviiicie e 662
Example 2. INterloCKing MNGScoveiiiiiiiieieieiee e 665
Example 3. Webcutting using the SWeep Optioncccccevveiveieiieceese e 667
Example 4. Using the LOft COMMANd.............ccoieiiiininineeee e 669
Example 5. Multiple sweep direCtionscccveveiieii e 671
Example 6. EMpIoyiNg SYMMELIYcccoiiiiiiiiiieeesc e 674
Example 7. Using virtual geometry in geometry decomposition..............cccccvevveennene. 687
Example 8. Sweeping volumes with narrow angles and surfaces............c.ccoceeevrvnenne 698
GUI 712
UL = F: S (o I (o - 712
(10 I T T (o IV (o] (- | R 713
GO =TS (o I (o - R 715
(10 I T T (o IV (o] - R 717
UL = F: S (o I (o - 718
(10 I T T (o IV (o] - R 719
UL =T (o I (o - R 721
(G0 I T T (o IV (o] £ - R 724
GO =TS (o I (o - R 727
(10 I T T (o IV (o] - R 729
GO = F S (o I (o - R 731
UL = F T (o V(o - L SR 733
(700414 F= V[0 I T T TR 734
Command Line BasiC TULOIIAlccuvviiiiiiiiii et 734
Command Line BaSiC TULOIIALccvveiieiiiiiie ettt 736
Command Line BasiC TULOIIAlccuveiiiiiiiiie e 736
Command Line BaSiC TULOIIALccvveiieiiiiiie ettt 737
Command Line BasiC TULOIIAlccuvviiiiiiiiii e 738

viii

Cubit 15.2 User Documentation

Command Line BasiC TULOMAlcceiiiiiiieiieieee e 739
Command Line BasiC TULOMAlccoooieiiiiiiceeee s 740
Command Line BasiC TULOMAlccoiiiiiiieiieicee e 742
Command Line BasiC TULOMAlccoooiiiiiiiiceeee s 743
Command Line BasiC TULOMAlcceiiiiiiieiieicee e 745
Command Line BasiC TULOMAlccoooiiiiiiiiiieee s 750
Command Line BasiC TULOMAlccoiiiiiiieiiecce e 750
ITEM et bbb bbb bRt bR bR Rt Rt R Rttt et bbb ne e 751
Immersive Topology Environment for Meshing (ITEM) ... 751
Guiding the user through the WOrkflow.cccooviiiiiii e 751
Providing the user With Smart OPLIONS.cooveieieieieie e 752
Automating geometry and meshing tasks.ccccvveveiiiiiiieie s 752
HOW t0 USE the ITEM WIZAIU.......cciiiiiieciieiece e 753
The ITEM WOTKFIOW........ocviiiiiiiicice e 753
UsSING an ITEM PaNElcooiiiiiiie e 754
UNCO BULTON <.ttt bbb ene s 758
MaAGIC MESH BULTON ...ttt 758
GEUING HEIP .ot esre e re e 758
Setting up the Finite Element MOdEelccooiiiiiiiiii e 759
Defining the GEomMEtric MOELcc.ooiiiiii e 760
Generating @ Mesh IN ITEMooiiiii e 761
ITEM MeShiNg SUGQESTIONSccviiiieiecieii et sre e 762
Validating the Mesh iN ITEM ..o 766
(O 1T 1o T o TSRS 766
Clean Up the GEOMELIYeiiiieieieieesee e 766
BIENU SUIMACES ... vt eneas 767
Resolving Problems with Conformal ASSemblies...........ccooviiiiiiiiiie e 768
CONLACT SUIMACES ..ottt ettt nee e 772
Geometry DECOMPOSITION.ccuiiiiiiiiiteite sttt 772
FOrced SWEEPADITILYccviiieiicie et 774
Bad geometry repreSENationcccoereieieieiisieee e 775
Determining an Appropriate Merge TOIErancCecceveveeieeiecie s 776
Building a Sweepable TOpology ... 778
Small details in the MOUELooiiiiiii s 778
Determining the Small FEature Size..........cccooiiiiiiiiiie e 782
Recognizing Nearly Sweepable REGIONScccocoveivieiiiieiic e 784
Y 0] o 1=] 16) TSROSO PP PP PRURPRON 787
N o 01T 0 L SRS 787
Alpha787
AIPha COMMEANGScviiiiice e ne e 787
Automatic Detail SUPPIESSION......cc.iiiiiiiiiiiieeee e 787
Automatic Geometry DeCOMPOSITION........ccueiiiiiiieiieeiie et 789
CONESIVE EIBMENTSeceiciiee ettt e esneeeeenee e 790
Deleting Mesh EIBMENLScooiiiiieiic e 792
FRALUIESIZE ...ttt ettt e e te et eere e teenteaneenreeneeenee e 793
IMpPOrting ADAQUS FIIESeeiiieiecee e 794

Table of Contents

IMESIN CULLING ..ttt ettt sttt st b e e e nreens 794
MESN Grafting........ccieiieie et 801
OPLIMIZE JACODIAN ... 804
RANAOIMIZE ... bbb sb bbb ene s 805
Refine Mesh BOUNAAIYooiiiiiiiiiee e e 805
SUPEr SIZING FUNCLION ...t 806
TeSt SIZING FUNCHION......c.viiiiiiiieee e 807
LI 1o PO USSP PR 808
Triangle Mesh COArSENINGcccoviieieriirierie i 810
AVAIHADIE COIOIS .. bbb bbb b 812
E1ement NUMDEIINGocuiiii e 815
AN oTo L=l AN [T o] o<] oSSR 816
SIAE NUMDEIINGt 816
Triangular Shell Element NUMDEIINGcocveiiiiiiiie e 816
FullHex vs. NodeHeX RepreSENtation.ccoviiiirieieiienie s 818
APREPRO.....coi ittt bbbt b ettt nnenre s 818
APREPRO ...ttt et ettt ae e reene e 818
Using APREPRO iN CUBIT ...coooiiiiieseee e 818
APREPRO FUNCLIONS ..ottt ettt nnee e 820
APREPRO JOUMNAIINGeiivieieiie ettt sttt 829
PYENON <.t 830
Importing Cubit iNt0 PYENON..........oiiii e 830
PYENON INEEITACE ... 831
CUDITINEEITACE ...ttt enes 831
PYODSEIVADIE. ...t 918
PYODSEIVEL ...ttt ettt et e s te et et e be e e e e nre e reenne e 919
CUDITFAITUTEEXCEPTION. ...ttt 920
Body 920
Curve 922
Entity 928
GEOMENTILY ...ttt bbb 931
INValiIdENTItYEXCEPLION.......c.eiiice e 936
INValIAINPUEEXCEPTION ...t 936
Surface 937
Vertex 942
Volume 943
NaVIGatioN XIML FHIES ..ot bbb 945
NS I SO SU S US PP TPPRPRPRPRI 947
Periodic Space Filling Models (Tile)cco i 951
LT Ee U= (U] o PP UPPR 951
Creating NOUESELS.oiveiiiiiiiiieieeiete ettt e bbb enes 951
SMOOTNING ..o e e e aneas 952
EXAMPIE ..o 952
RETEIBNCES ...ttt b et r e bt e b ne e te e 953
(O 1= 1 £ SSPRRSSRSS 957
(OF 1< 0 1 TSRS PR 957

Cubit 15.2 User Documentation

QUICK RETEIBINCE.eeiiii ettt et et e e s ab e e be e s te e e be e saeeanbeeareas
QUICK RETEIENCE.veiitie ettt ettt et st et e e b e s be e sae e s be e s beeenbeesaeeenns

Xi

SAND2016-1649 R
Printed June 2016

Introduction | Environmént | Geometrv | Meshing | FE Model | ITEM | Tutorials | Appendix

CUBIT 15.2 USER DOCUMENTATION
@Introduction - A quick overview of some of the main features and goals of the CUBIT Mesh
Generation Toolkit, licensing and distribution, hardware requirements, and where to go for help.
®Environment Control - A description of the CUBIT user environment, including using the
graphical user interface, session control, command line syntax, journal files, graphics, entity
picking, saving and restoring etc..
@Geometry - A description of CUBIT's geometry features including building geometry from
scratch, manipulating geometry in CUBIT, importing and exporting geometry formats, etc...
®Mesh Generation - A description of CUBIT's mesh generation capabilities, including how to
mesh geometry, meshing and smoothing schemes, setting sizes and intervals, importing a mesh,
etc...
@rFinite Element Model - How to set up the finite element model for analysis, including
defining boundary conditions, material properties, exporting the finite element model, etc.
@Immersive Topology Environment for Meshing (ITEM) - A description of Cubit's
interactive meshing wizard including how to use the wizard, and a guide to geometry clean-up,
setting up the finite element model, mesh generation in ITEM, etc.
@®Step-By-Step Tutorials
@ Appendix
ElCredits
ElQuick Reference
@ Official CUBIT Web Page

@ Sandia National Laboratories

U.S. DEPARTMENT OF e

ENERGY MVA &4

National Nuciear Security A dmlmstra tion

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

http://cubit.sandia.gov/

CUBIT 15.2 User Documentation

INTRODUCTION
Introduction

o Key Features
e Hardware Requirements

e Licensing and Distribution

e Trademark Notice

e How to Use this Manual

e Cubit Mailing Lists

e Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT
is a full-featured software toolkit for robust generation of two- and three-dimensional finite
element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate
meshes, particularly large hex meshes of complicated, interlocking assemblies. It is a solid-
modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex
sweeping and multi-sweeping, tetrahedral meshing, and various special purpose primitives.
CUBIT contains many algorithms for controlling and automating much of the meshing process,
such as automatic scheme selection, interval matching, sweep grouping, and also includes state-
of-the-art smoothing algorithms

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element model.
Many CUBIT users want to experiment with capabilities as soon as possible. Hence, CUBIT
releases often contain algorithms which are not quite ready for production use. These features are
listed in the Appendix, and are accessible to the user by specifying a developer flag.

The overall goal of the CUBIT project is to reduce the time it takes a person to generate an
analysis model. Generating meshes for complex, solid model-based geometries requires a variety
of tools. Many CUBIT tools are completely automatic, while others require user input. Usually,
the automatic choices can be over-ridden by the user if necessary. Most meshing capabilities are
integrated into the common CUBIT framework; there are also stand-alone tools like Verde. The
user is encouraged to become familiar with all of the available tools, so that he can choose the
right one for the job.

CUBIT Mailing Lists

The CUBIT team maintains a couple of mailing lists to help our users.

1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of
new releases and other items of major importance. To subscribe to this list, send a message to:
majordomo@sandia.gov

with the body of the message being:

subscribe cubit-announce

2) The cubit users mailing list is a medium-volume mailing list intended for our users to
communicate with each other and ask help of the user community. It also contains the same
announcements as the cubit-announce mailing list. To send questions or comments to this list,
send email to:

mailto:majordomo@sandia.gov

Introduction

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a
message body consisting of the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct communication
with the CUBIT developers. These messages won't reach other users. This list should be used for
topics that are not of general interest to others, including some bugs.

Note: The recommended use of an electronic mailing list to

report bugs and request enhancements is not intended to

discourage face-to-face discussion with CUBIT developers,

@ but rather to minimize response time. Users are encouraged
to discuss bugs, enhancements or general meshing issues
with the CUBIT production meshing and development teams.

Hardware Requirements
Cubit is available on the following platforms:

e Red Hat 6 64 bit (or similar system with at least glibc 2.5 and libstdc++ 4.4)
e Windows Vista/7/8/8.1/10, 64 bit
e Mac 10.9+, 64 bit only

The Graphical User Interface version is available on all platforms.
For best results, local displays supporting OpenGL 1.5 or newer is recommended.

How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters, which roughly follow the process in which a finite element model is
created, from geometry creation to mesh generation to boundary condition application. Examples
are provided in the tutorial chapter. Appendices contain advanced topics, alpha commands,
summary of APREPRO functions, FASTQ reference, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-

@ beware state. As they are further tested (often with the assistance
of users) and improved, the tool becomes more stable and
production-worthy. Since documentation of the tool is necessary
for actual use, we have included the documentation of all available
tools. However, a "hammer" icon is placed next to some
capabilities as a warning.

Certain portions of this manual contain information that is
@5 vital for understanding and effectively using CUBIT. These
portions are highlighted with a "key" icon.

mailto:cubit@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit-help@sandia.gov

Cubit 15.2 User Documentation

Key Features

Geometry Creation, Modification, and Healing

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported or
created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT can also
read STEP, IGES, and FASTOQ files and convert them to the ACIS kernel. SolidWorks,
AutoCAD, and some other commercial CAD systems can write SAT files directly.

Once in CUBIT, an ACIS model is modified through Booleans, or tweaking curves and surfaces.
Without changing the geometric definition of the model, the topology of the model may be
changed using virtual geometry. For example, virtual geometry can be used to composite two
surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.

Non-Manifold Topology

Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT
accomplishes this by taking the two touching surfaces of neighboring volumes, and merging
them into a single surface. There will be only one mesh of the surface, and both volume meshes
will share that surface mesh. (In contrast, some meshing packages keep two surfaces, and take
steps to ensure their mesh connectivity and positions match.)

These shared surfaces are called non-manifold topology. Geometric models are usually imported
into CUBIT as manifold (non-shared) models; then, surfaces which pass a geometric and
topological comparison are "merged”. A similar technique is used to merge model edges and
vertices across parts. These comparisons are performed automatically, and can optionally be
restricted to subsets of the model (to allow representations of such features as slide lines).
Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing.
CUBIT contains a wide variety of tools for interactive geometry decomposition, and a capability
for performing automatic geometry decomposition is also under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions.
While the primary focus of CUBIT is on generating unstructured quadrilateral and hexahedral
meshes, algorithms are also available for structured mesh generation and triangle/tetrahedral
mesh generation. Several algorithms for generating mixed hex-tet meshes are also being
developed.

Boundary Conditions

CUBIT uses different boundary conditions for EXODUS-II format and Non-Exodus formats
such as ABAQUS, for importing and exporting mesh data. EXODUS represents boundary
conditions on meshes using Element Blocks, Nodesets, and Sidesets. Element Blocks are used to
group elements by material type. Nodesets are used to group nodes. Other analysis programs can
apply nodal boundary conditions to these sets, such as enforced displacement or nodal
temperature values. Sidesets are used to group sides of elements, such as faces of hexes or edges
of quads. Other analysis programs can apply face-based and edge-based boundary conditions to
these sets, for example pressure or heat flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified
in an analysis-independent manner. Typically this specification is combined with an additional

Introduction

data file which designates the specific type of boundary condition (temperature, displacement,
pressure, etc.), along with boundary condition values.

Non-Exodus export formats such as Abaqus support more specific boundary condition sets.
These sets may include displacements, temperatures, forces, heatflux, pressure, or contact pairs.
Element Types

CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various
orders. Each block has a unique element type. The element type is specified after the block is
created, and after mesh generation (recommended). Higher order nodes are generated when the
element type is specified. Higher order nodes are projected to curved geometry, depending on the
user-settable node constraint flag.

Graphics Display Capabilities

CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display
geometric and mesh entities in several modes, including hidden line, shaded, transparent or
wireframe modes. CUBIT supports screen picking of geometric and mesh entities, as well as
mouse-controlled view transformations like rotate, pan, and zoom. VTK takes advantage of
hardware acceleration on most supported platforms. Image files of any displayed image can also
be generated. CUBIT can also be run without graphics, to allow execution in batch mode or over
slow network connections.

Graphical User Interface

A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions
create and play back identical journal files, making it easier to switch from one environment to
the other.

Command Line Interface

In the command line interface, commands are specified by text rather than mouse clicks.
Commands can be entered interactively or in batch mode by playing back a journal file. The
command line interface is available in the GUI through a window. The non-GUI version
supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes
support the APREPRO preprocessor, which allows parameterization of input. The non-GUI
version is available on all platforms, including Windows.

Licensing and Distribution

Please refer to https://cubit.sandia.gov/public/licensing.html for information on licensing and
distribution.

Problem Reports and Enhancement Requests

CUBIT bugs, problem reports and enhancement requests should be sent to cubit-
help@sandia.gov or cubit-dev@sandia.gov. The CUBIT production meshing team or
development team will review the email quickly. Users should expect some type of response
within two days. Bugs are usually entered by a developer into CUBIT's bug tracking system.

Trademark Notice
ACIS™ s a proprietary format developed by Spatial Corporation.
Granite™ is a proprietary format developed by Parametric Technology Corporation

https://cubit.sandia.gov/public/licensing.html
mailto:cubit@sandia.gov
mailto:cubit@sandia.gov
mailto:cubit-dev@sandia.gov
http://www.spatial.com/

Cubit 15.2 User Documentation

All other trademarks are the property of their respective owners.

ENVIRONMENT CONTROL
Environment Control

e Session Control

e Graphical User Interface

e« Command Recording and Playback

e Graphics Window Control

o Entity Selection and Filtering

o Location, Direction, and Axis Specification
e Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to
analysis process. The user interface options include a full graphical user interface, a modern
command line interface as well as no-graphics and batch mode operation. This chapter covers the
interface options as well as the use of journal files, control of the graphics, a description of
methods for obtaining model information, and an overview of the help facility.

Session Control
Session Control

o Starting and Exiting a CUBIT Session
o Execution Command Syntax

o Initialization Files

e Environment Variables

e« Command Syntax

e Command Line Help

e Environment Commands

e Saving and Restoring a CUBIT Session
o Interrupting Running Tasks

This section provides an overview to session control in CUBIT. This includes information on
starting and exiting a CUBIT session, running CUBIT in batch mode, initialization files, how to
enter commands, file manipulation, changing the working directory, memory manipulation and
more. Much of your ability to use CUBIT effectively depends on mastery of concepts in this
section. Even experienced users will find it useful to review this section periodically.

Starting and Exiting a CUBIT Session

The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing
"cubit" at the command prompt from within the CUBIT directory. If you have not yet
installed CUBIT, instructions for doing so can be found in Licensing, Distribution and
Installation. A CUBIT console window will appear which tells the user which CUBIT
version is being run and the most recent revision date. A graphics window will also
appear unless you are running with the -nographics option. For a complete list of

Environment Control

startup options see the Execution Command Syntax section of this document. CUBIT
can also be run with initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means
that double-clicking on one of these files will open it automatically in CUBIT. This option is
available during the installation process

Exiting the Session

The CUBIT session can be discontinued with either of the following commands

Exit
Quit
Resetting the Session
A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model,

allowing the user to begin a new session without exiting CUBIT. This is accomplished with the
command

Reset [Genesis | Block | Nodeset | Sideset | QA _Records]

A subset of portions of the CUBIT database to be reset can be designated using the qualifiers
listed. Advanced options controlled with the Set command are not reset.

QA Records are stored in exodus, genesis, or cub files. If your file contains an excessive amount
of ga records and you don't need them, it is beneficial to reset them for faster file I/O.

You can also reset the number of errors in the current Cubit session, using the command

Reset Errors <value>

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub™ in the
current working directory just before it exits.

To disable saving of the crashbackup.cub file set an environment variable
CUBIT_NO_CRASHSAVE equal to true. Or, use the following command:

Set Crash Save [On|Off]

This command will turn on or off crashbackup.cub creation during a crash on a per-instance
basis. To minimize the effects of unexpected aborts, use Cubit's automatic journaling feature,
and remember to save your model often.

Execution Command Syntax
To run CUBIT from the command line:

cubit [options and args] [journalFile(s)]
claro [options and args] [journalFile(s)|python historyFile(s)]

Claro is the GUI version of CUBIT, which includes a python interpreter. To run a python script
in CUBIT from the command line, run claro instead of cubit.
Command options for the command line are:

cubit
-help (Print this summary)

10

Cubit 15.2 User Documentation

-Include <$val> (Specify a journal file)

-workingdir <$val> (Directory to use as working directory)
-input $val (Playback commands in file $val)

-solidmodel <$val> (Read .sat or .cub from file $val)

-fastq <$val> (Read FASTQ file $val)

-initfile <$val> (Read $val as initialization file instead

of SHOME/.cubit)

-batch (Batch Mode - No Interactive Command Input)
-nographics (Do not display graphics windows)

-nogui (Do not display graphical user interface)

-noinitfile (Do not read .cubit file)

-noecho (Do not echo commands to console)

-nojournal (Do not write journal file)

-nodeletions (Do not allow file deletions)

-journalfile <$val> (Name of journal file, will be overwritten)
-restore [$val] (Name of restore file (default = cubit_geom.save.sat))
-maxjournal [$val] (Maximum number of journal files to write)
-warning [$val] (Warning Messages On/Off)

-information [$val] (Informational Messages On/Off)

-debug <$val> (Set specified flags on, e.g. 1,3,7-9

enables 1,3,7,8,9))

-display <$val> (Specify display to be used for

graphics window)

-driver <$val> (Specify the type of driver to be used for
graphics display)

-nooverwritecheck (Do not perform file export overwrite check)
-nobanner (Suppress printing of startup information)

-version (Prints version information)

-log <$val> (Copy all output to specified file)

APREPRO variable pair (Quoted name value pair)

Each of these is optional. If specified, the quantities in square brackets, [$val], are optional and
the quantities in angle brackets, <$val>, are required.
Options are summarized in more detail below:

-help Print a short usage summary of the
command syntax to the terminal and exit.

-workingdir Set the working directory to be used at
startup. Journal files will be written to this
directory.

-initfile <$val> Use the file specified by <$val> as the

11

initialization file instead of the default set of
initialization files. See Initialization Files

-noinitfile

-solidmodel <$val>

-batch

-nographics

-nogui

-display

-driver <type>

-nojournal

-journalfile <file>

-maxjournal <$val>

-nodeletions

-nooverwritecheck

Environment Control

Do not read any initialization file. This
overrides the default behavior described in
Initialization Files

Read the ACIS solid model geometry or
.cub file information from the file specified
by <$val> prior to prompting for interactive
input.

Specify that there will be no interactive
input in this execution of CUBIT. CUBIT
will terminate after reading the initialization
file, the geometry file, and the
input_file_list.

Run CUBIT without graphics. This is
generally used with the -batch option or
when running CUBIT over a line terminal.

Run CUBIT without the graphical user
interface.

Sets the location where the CUBIT graphics
system will be displayed, analogous to the -
display environment variable for the X
Windows system. Unix only.

Sets the <type> of graphics display driver to
be used. Available drivers depend on
platform, hardware, and system installation.
Typical drivers include X11 and OpenGL.

Do not create a journal file for this
execution of CUBIT. This option performs
the same function as the Journal Off
command. The default behavior is to create
a new journal file for every execution of
CUBIT.

Write the journal entries to <file>. The file
will be overwritten if it already exists.

Only create a maximum of <$val> default

journal files. Default journal files are of the
form cubit#.jou where # is a number in the

range 01 to 999.

Turn off the ability to delete files with the
delete file '<filename>' command.

Turn off the file overwrite check flag. Files
that are written may then overwrite (erase)

12

Cubit 15.2 User Documentation

-restore

-noecho

-debug <$val>

-information {on|off}
-warning {on|off}
-Include <path>

-fastq <file>

<input_file_list>

-log <file>
<variable=value>

13

old files with the same name with no
warning. This is typically useful when re-
running journal files, in order to overwrite
existing output files. See the set File
Overwrite Check [ON|off] command.

Restore the specified filename (or
"cubit_geom™) mesh and ACIS files, e.g.
cubit_geom.save.g and cubit_geom.save.sat.

Do not echo commands to the console. This
option performs the same function as the
Echo Off command. The default behavior is
to echo commands to the console.

Set to "on" the debug message flags
indicated by <$val>, where <$val> is a
comma-separated list of integers or ranges
of integers, e.g. 1,3,8-10.

Turn {on|off} the printing of information
messages from CUBIT to the console.

Turn {on|off} the printing of warning
messages from CUBIT to the console.

Allows the user to specify a journal file
from the command line.

Read the mesh and geometry definition data
in the FASTQ file <file> and interpret the
data as FASTQ commands. See T. D.
Blacker, FASTQ Users Manual Version 1.2,
SAND88-1326, Sandia National
Laboratories, (1988). for a description of the
FASTQ file format.

Input files to be read and executed by
CUBIT. Files are processed in the order
listed, and afterwards interactive command
input can be entered (unless the -batch
option is used.)

Copies all output to the specified file.

APREPRO variable-value pairs to be used
in the CUBIT session. Values can be either
doubles or character type (character values
must be surrounded by double quotes.).
Command options can also be specified
using the CUBIT_OPT environment
variable. (See Environment Variables .)

Environment Control

Passing Variables into a CUBIT Session
To pass an aprepro variable into a CUBIT Session, start cubit with the variable defined in quotes
i.e. cubit "'some_var=2.3"

Initialization Files

CUBIT can execute commands on startup, before interactive command input, through
initialization files. This is useful if the user frequently uses the same settings.

On Unix or Windows, the following files are played back in order, if they exist, at startup:

<$CUBIT_DIR/.cubit.install
$HOMEDRIVE$HOMEPATH/.cubit
$HOME/.cubit

$(current working directory)/.cubit

Where $(current working directory) is determined by the program itself and words starting
with '$" are environment variables.

If the -initfile <filename> option is used on the command that starts cubit, then the other init
files are skipped and only the specified filename is played back.

The $CUBIT_DIR file is installation specific. The SHOME file is user specific. The $PWD file
is run-specific, read when starting up cubit from a particular meshing problem'’s subdirectory.
These files are typically used to perform initialization commands that do not change from one
execution to the next, such as turning off journal file output, specifying default mouse buttons,
setting geometric and mesh entity colors, and setting the size of the graphics window.

Environment Variables

CUBIT can interpret the following environment variables. These settings are only applicable to
the Command Line Version of CUBIT and do not apply to the Graphical User Interface. See also
the CUBIT_STEP_PATH and CUBIT_IGES_PATH environment variables. See also the
CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the
specified X-Window display. This is useful for
running CUBIT across a network, or on a machine
with more than one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any
option that is valid from the command line may be
used in this environment variable. See Execution
Command Syntax.

CUBIT _Journal Specifies path and name to use for journal file. The
specified path may contain the following %-escape
sequences:

%a - abbreviated weekday name
%A - full weekday name

%b - abbreviated month name

%B - full month name

%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]

14

Cubit 15.2 User Documentation

15

%I - hour (12-hour clock) [01,12]

%j - day of the year [1,366]

%m - month number [1,12]

%M - minute [00,59]

%n - replaced with the next available number between
01 and 999.

%p - "a.m." or "p.m."

%S - seconds [00,61]

%u - weekday [1,7], 1 is Monday

%U - week of year [00,53]

%w - weekday [0,6], O is Sunday

%y - year without century [00,99]

%Y - year with century (e.g. 1999)

%% - a'%' character

The default value is "cubit%n.jou". This creates journal
files in the current directory named "cubit00.jou",
"cubit0l1.jou", "cubit02.jou", etc. To keep the same
naming scheme but create the files the /tmp directory,
set CUBIT_JOURNAL to "/tmp/cubit%n.jou"

To create journal files in directories according to the day
of the week, first create directories named "Mon",
"Tues", etc. CUBIT will not create them for you. Next
set CUBIT_JOURNAL to

"%a/%n.jou". This will create journal files named
"01.jou" through "999.jou" in the appropriate directory
for the current day of the week.

Environment Control

Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or
by reading them in from a journal file. Throughout this document, each function or process will
have a description of the corresponding CUBIT command; in this section, general conventions
for command syntax will be described. The user can obtain a quick guide to proper command
format by issuing the <keyword> help command; see Command Line Help for details.

CUBIT commands are described in this manual and in the help output using the following
conventions. An example of a typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target
[Surface] <range>] [Rotate {on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax
conventions.

1. Case is not significant.

2. The "#" character in any command line begins a comment. The "#" and any characters
following it on the same line are ignored. Although note that the "#" character can also be
used to start an Aprepro statement. See the Aprepro documentation for more information.

16

Cubit 15.2 User Documentation

3.

4.

Commands may be abbreviated as long as enough characters are used to distinguish it
from other commands.

The meaning and type of command parameters depend on the keyword. Some parameters
used in CUBIT commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may
be in any legal C or FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer
parameter may be in any legal decimal integer format (for example, 1, 100, 1000, but not
1.5, 1.0, OX1F).

String: A string parameter is a literal character string contained within single or double
quotes. For example, 'This is a string'.

Filename: When a command requires a filename, the filename must be enclosed in single
or double quotes. If no path is specified, the file is understood to be in the current
working directory. After entering a portion of a filename, typing a '?" will complete the
filename, or as much of the filename as possible if there is more than one possible match.
A filename parameter must specify a legal filename on the system on which CUBIT is
running. The filename may be specified using either a relative path (../cubit/mesh.jou), a
fully-qualified path (/home/jdoe/cubit/mesh.jou), or no path; in the latter case, the file
must be in the working directory (See Environment Commands for details.) Environment
variables and aliases may also be used in the filename specification; for example, the C-
Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.

Toggle: Some commands require a "toggle" keyword to enable or disable a setting or
option. Valid toggle keywords are "on", "yes", and "true" to enable the option; and "off",
"no", and "false" to disable the option.

Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For
example:

Mesh Volume 1

Here Mesh is the verb and Volume 1 is the parameter.
* or a selector keyword or "noun™ followed by a name and value of an attribute of the
entity indicated. For example:

Volume 1 Scheme Sweep Source 1 Target 2

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are
parameters to the Scheme keyword.

The notation conventions used in the command descriptions in this document are:

17

The command will be shown in a format that looks like this:

A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter.
The value can be an integer, a range of integers, a real number, a string, or a string
denoting a filename or toggle. The valid value types should be evident from the
command or the command description.

Environment Control

o A series of words delimited by a vertical bar (choicel | choice2 | choice3) signifies a
choice between the parameters listed.

o Atoggle parameter listed in ALL CAPS signifies the default setting.

e A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}
) signifies required input.

o A word enclosed in square brackets ([optional]) signifies optional input which can be
entered to modify the default behavior of the command.

o A curly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required
if that optional modifier is used.

Command Line Help

In addition to the documentation you are currently viewing, CUBIT can give help on command
syntax from the command line. For help on a particular command or keyword, the user can
simply type help <keyword>. In addition, if the user has typed part of a command and is
uncertain of the syntax of the remainder of the command, they can type a question mark ? and
help will be printed for the sequence of keywords currently entered. It is important to note that if
the user has typed the keywords out of order, then no help will be found. If the user is not sure of
the correct order of the keywords, the ampersand & key will search on all occurrences of
whatever keywords are entered, regardless of the order. The results of this type of command are
shown in the following listing.

CUBIT> volume 3 label ?

Completing commands starting with: volume, label.

Help not found for the specified word order.

CUBIT> volume 3 label &

Help for words: volume & label

Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge | firmness]
CUBIT> label volume 3 ?

Completing commands starting with: label, volume.

Label VVolume [on|offl[name [only|ids]|ids|interval|size|scheme|merge|firmness]

Environment Commands

Working Directory
File Manipulation
CPU Time
Comment

History

Error Logging
Determining the CUBIT Version

Echoing Commands
Digits Displayed

Working Directory
The working directory is the current directory where journal files are saved. To list the current
directory type

18

Cubit 15.2 User Documentation

pwd

The current path will be echoed to the screen. By default, the current directory is the directory
from which CUBIT was launched. The command to change the current directory is

cd ""<new_path>"

The new path may be an absolute reference, or relative to the current directory. The <TAB>
key will complete unique file references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for this is

Is ['<file_name>']
or
dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is
Delete File ['<file_name>"]

The file name may include the wildcard character *, but not the wildcard character ?, since the ?
is used for command completion. File deletion from the command line can also be disabled. If
deletions are set to off files cannot be deleted from the cubit command line.

Set Deletions [ON|Off]
The mkdir command is used to create a new directory. The syntax for this command is:
Mkdir "'<directory_name>""

This creates a new directory with the specified name and path. The command accepts an absolute
path, a relative path, or no path. If a relative path is specified, it is relative to the current working
directory, which can be seen by typing '‘pwd' at the cubit command prompt. If no path is
specified, the new directory is created in the current working directory.

The command succeeds if the specified directory was successfully created, or if the specified
directory already exists. The command fails if the new directory's immediate parent directory
does not exist or is not a directory.

CPU Time

At times it is important to see how much cpu time is being used by a command. One function
available to do this is the timer command. The syntax for this command is:

Timer [Start|Stop]

The start option will start a CPU timer that will continue until the stop command is issued. The
elapsed time will be printed out on the command line. If no arguments are given, the command
will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]

The comment command can take multiple arguments. If an argument is an unquoted word, it is
treated as an aprepro variable and its value is printed out. Quoted strings are printed verbatim,
and numbers are printed as they would be in a journal string. For example:

CUBIT> #{x=5}
CUBIT> #{s=""my string"'}

19

Environment Control

CUBIT> comment "x is" x "and s is"" s
User Comment: x is 5 and s is my string

Journaled Command: comment ""x is"" X "and s is"" s

History
This command allows you to display a listing of your previous commands.

History <number_of lines>

For example, if you type history 10, the most recent 10 commands will be echoed to the input
window.
Error Logging

[set] Logging Errors {Off | On File '<filename>'[Resume]}

This setting will allow users to echo error messages to a separate log file. The resume option will
allow output to be appended to existing files instead of overwriting them. For more information
on CUBIT environment settings see List Cubit Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This command
reports the CUBIT version number, the date and time the executable was compiled, and the
version numbers of the ACIS solid modeler and the VTK library linked into the executable. This
information is useful when discussing available capabilities or software problems with CUBIT
developers.

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of commands
is controlled with the command:

[Set] Echo {On | Off}

Digits Displayed

CUBIT uses all available precision internally, but by default will only print out a certain number
of digits in order for columns to line up nicely. The user can override that with the "set digits"
command:

Set Digits [<num_to_list=-1>]

If the digits are set to -1, then the default number of digits for pretty formatting are used. If the
digits are set to a specific number, such as 15, more digits of accuracy can be displayed. This
may be useful when checking the exact position and size of geometric features.
The number of digits used for listing positions, vectors and lengths can be listed using the
following command:

List Digits
Examples:
CUBIT> set digits 6
Coordinates and lengths will be listed with up to 6 digits.
CUBIT> set digits 20
For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.
CUBIT> set digits -1

20

Cubit 15.2 User Documentation

To reset digits to default, use 'set digits -1'
The number of coordinate and length digits listed will vary depending on the context.

Saving and Restoring a Cubit Session

There are currently two ways to save/restore a model in CUBIT. A file can be saved with either
the Exodus or CUBIT File method. The method of choice is determined by a set command. The
CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]
CUBIT File Method

CWZ
@
g2

e o o o o
=)
<
@D

~—+

m
X

o

r
r

m
o
-

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is
compact in size and efficient to access. It includes both the geometry and the associated mesh,
groups, blocks, sidesets, and nodesets. Mesh and geometry are restored from the Cubit file in
exactly the same state as when saved. For example, element faces and edges are persistent, as
well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

New

Creates a new blank model with default name, closing the current model. The
New command essentially acts like the reset command.

Open '<filename>'
Opens an existing *.cub file, closing the current model.

Save

A default file name is assigned when CUBIT is started (in very much the same
way the journal files are assigned on startup) in the form cubit01.cub, for
example. The current model filename is displayed on the title bar of the CUBIT
window. Typing save at any time during your session will save the current model
to the assigned *.cub file. The *.cub file includes the *.sat file and the mesh.
Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To
change the name of the current model, or to save the model's current geometry to
a different file, use the save as command. Note that 'save <file.cub>'is NOT a
valid command.

Save
Save As 'filename.cub’ [Overwrite]

21

Environment Control

The set file overwrite command can be toggled on and off to allow overwriting
when using the save as command. The command is defaulted to not allow
overwriting.

Set File Overwrite [On|OFF]

A backup file is created by default, allowing access to previous states of the
model. The backup files are named *.cub.1, *.cub.2... The user can set the total
number of backups created per model with the following command (the default
number of backups is 99,999):

Set Save Backups <number>

As soon as the number of model backups reaches the maximum, the lowest
numbered backup file will be removed upon subsequent backup creation.
To check on the status of a 'set' command, type in the command in question
without any options. For example, to check which save method is currently
toggled, type:

Set Save

Import
Appends a *.cub file to an existing model.

Import Cubit *filename.cub’ [merge globally]

Export

In addition to saving an entire model, one can use the export command to save
only a portion of a model. The geometry and associated mesh, groups, blocks,
sidesets and nodesets are exported. Only bodies or free surfaces, curves or
vertices can be exported to a Cubit file.

Export Cubit ‘filename.cub® entity-list

Interrupting Running Tasks

Many operations in the command line version of CUBIT can be interrupted using <Control>-C.
Pressing <Control>-C will attempt to interrupt the running process as soon as feasible, returning
the user back to the command line. Not all operations may be interrupted, and many can only be
interrupted at certain stages. Any current tasks are canceled as soon as it is feasible to do so,
including playback of journal files. The playback of a journal file is always stopped, even if the
current running task cannot be interrupted. The journal file will stop at the next opportunity,
when the current task is completed. Interrupted journal files may be resumed at the next
command. See the section titled Controlling Playback of Journal Files for more information on
controlling playback of journal files.

The GUI has a cancel button that can be used to interrupt the current command. The cancel
button will turn red when a command can be interrupted. The cancel button has an X' on it, and is
located on the status bar, which is at the bottom of the application.

22

Cubit 15.2 User Documentation

Recording and Playback

Command Recording and Playback

Sequences of CUBIT commands can be recorded and used as a means to control CUBIT from
ASCII text files. Command or "journal™ files can be created within CUBIT, or can be created and
edited directly by the user outside CUBIT.

Journal File Creation & Playback
Controlling Playback of Journal Files
Automatic Journal File Creation
IDless Journal Files

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a text
editor. CUBIT commands can be read directly from a file at any time during CUBIT execution,
or can be used to run CUBIT in batch mode. To begin and end writing commands to a file from
within CUBIT, use the command

Record '<filename>"
Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.
Replaying a Session
To replay a journal file, issue the command

Playback '<filename>’

Journal files are most commonly created by recording commands from an interactive CUBIT
session, but can also be created using automatic journaling or even by editing an ASCII text file.
Commands being read from a file can represent either the entire set of commands for a particular
session, or can represent a subset of commands the user wishes to execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal
files. Playback from a journal file can be terminated by placing the Stop command after the last
command to be executed; this causes CUBIT to stop reading commands from the current journal
file. Playback can be paused using the Pause command; the user is prompted to hit a key, after
which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the
parameterization available through the APREPRO capability in CUBIT. Journal files are also
useful when a new finite element model is being built, by saving a set of initialization commands
then iteratively testing different meshing strategies after playing that initialization file.

Controlling Playback of Journal Files
The following commands control the playback of Journal Files:

Stop

Pause

Sleep <duration_in_seconds>
Resume [<n>]

Where

23

Environment Control

Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal
file is playing will halt playback of the journal file. (This only works in the command line
version of CUBIT. See Interrupting Running Tasks for more information). Alternately, if the
stop or pause commands are encountered in the journal file and CUBIT is reading commands
from a terminal (as opposed to a redirected file), playback of the journal file will halt after that
command.

The sleep command pauses execution for the specified number of seconds. It can be used to
build a delay into journal files during presentations.

In the command line version of CUBIT you can resume playback of a journal file with the
resume command. If playback was interrupted because ctrl-c was pressed, it will resume at the
next command after the one that was interrupted. If playback stopped because of a stop or pause
command in the journal file, it will resume at the next line after the stop or pause command. If
the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.

If journal files that are playing back contain playback commands themselves, there may be
multiple current journal files. The where lists all current journal files and where the journal files
have paused. Each line contains the stack position (a number), the filename and the current line
in the file. Unless CUBIT is running in batch mode, the first line is always <stdin>. This just
means that CUBIT will return to the command prompt after the top-most journal file has
completed.

The remaining portion of any active journal file may be skipped by specifying the stack position
(first number on each line of the output from the where command) of the file where you want to
resume. Any remaining commands in active journal files with lower stack positions will be
skipped.

The next command steps through interrupted journal files line-by-line. The argument to the next
command is the number of lines to read before halting playback again. If no number is specified,
the command will advance one line.

Journal playback can also be set to stop automatically when it encounters an error during
playback. The command syntax is:

Set Stop Error {On|OFF}

Setting the stop error to "on" will cause the file to halt for each error. The setting is turned off by
default.

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is
created in the current directory, and its name begins with the word "cubit " or "history",
depending on the version of CUBIT, followed by a number starting with cubit01.jou and
continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To
that end, when the journal name increments to more than cubit99.jou, a warning will be given on
startup telling the user that there are at least 99 journal files, and to please clean out unused files.
If the user has up through cubit999.jou, then the user is warned that there are too many journal
files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.

24

Cubit 15.2 User Documentation

When starting cubit, the choice of journal file name to be used depends on whether it is creating
a historyXX_.jou file, or a cubitXX.jou file. For historyXX.jou files, it will look for the highest
used number in the current directory and increment it by one. For example, if there are already
journal files with names history01.jou, history02.jou, and history04.jou, Cubit will use
history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting
with the lowest number. For example, if there are already journal files with names cubit01.jou,
cubit02, jou, and cubit04.jou, then Cubit will use cubit03.jou as the current journal file.

Journal file names end with a ".jou™ extension, though this is not strictly required for user-
generated journal files. If no journaling is desired, the user may start CUBIT with the -nojournal
command line option or use the command :

[Set] Journal {Off | On}

Turning journaling back on resumes writing commands to the same journal file.

Most CUBIT commands entered during a session are journaled; the exceptions are commands
that require interactive input (such as Zoom Cursor), some graphics related commands, and the
Playback command.

Recording Graphics Commands

All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled using
the entity name, or by using the corresponding entity type and id. The method used to journal
commands using names is determined with the command:

Journal Names {On | Off}

The default is Journal Names On .

If an entity is referred to using its entity type and id, the command will be journaled with the
entity type and id, even if the entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

See APREPRO Journaling for more information.

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute successfully.
To turn this mode off and echo all commands to the journal file, regardless of the success status,
use the following command:

Journal Errors {On|OFF}

If a command did not execute successfully and the journal errors status is ON, then the
unsuccessful command will be written as a comment to the file. For example an unsuccessful
command might look like the following in the journal file

create brick x 10 x 10z 10

25

Environment Control

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is
issued, but will still write the command to the journal file as a comment, prefixing the command
with "##".

This option may be useful when tracking or documenting program errors.

Idless Journal Files

Journal files can also be created without reference to entity IDs. The purpose of this command is
to enable journal files created in earlier versions of CUBIT to be played back in newer versions
of CUBIT. Using the "IDless" method, commands entered with an entity 1D will be journaled
with an alternative way of referring to the entity. Changes in CUBIT or ACIS often lead to
changes in entity I1Ds. For example, a webcut may result in volume 3 on the left and volume 4 on
the right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on
the right). Playing an IDless journal file makes the actual ID of an entity irrelevant. The syntax
for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity IDs.
For example, "mesh volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".
Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as
they are entered).

The reverse option allows you to convert idless journal files back into an 1D-based journal file
where the new journal file will reflect current numbering standards for IDs.

If you issue the command Journal IDless without any additional options, then the current status
of ID journaling is printed. At startup, this should be "off".

The most likely scenario for converting older journal is to use the record command during

playback. The following is an example.
journal idless on

record "my idless.jou"

playback "my journal.jou"
record stop

journal idless off

To record an idless journal file back into an id-based journal file you might use the following

sequence.

journal idless reverse
record "new id based.jou"
playback "my idless.jou"
record stop

journal idless off

Note: IDless conversions of APREPRO expressions are partially supported.

When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as an
argument, are converted to use (X, v, z, ord) as arguments such as Vx(x, y, z, ord), where (X, y,)
is the center point coordinates and ord is the ordinal value. The ordinal values, 1..n, identifies
each entity in a set of n entities that have a common center point. An entity's ordinal value is
based on its creation order with respect to the other entities within the same set.

When IDless mode is set to REVERSE (using the above example) Vx(x, y, z, ord) will be
converted to Vx(id). Outside these APREPRO functions, APREPRO expressions are not
modified when converting a journal file to or from its IDless form. Hence, expressions reduced
to an entity ID, such as in the command "volume {x} size 10," are not modified. Therefore,

26

Cubit 15.2 User Documentation

when moving a journal file from one version of CUBIT to another, it may be necessary to
manually update IDs in APREPRO expressions.

Location Direction Specification
Location, Direction and Axis Specification

o Specifying a Location

e Specifying a Location on a Curve

o Specifying a Direction

e Specifying an Axis

e Specifying a Plane

o Drawing a Location, Direction, or Axis

Many commands require that a location or a direction be specified. Although entering the three
floating point numbers required to uniquely define a vector is perfectly acceptable, it may be
more convenient to specify the direction or location with respect to existing entities in the model.

For example, the following commands might be used for creating straight curves using location
and direction specification described here:

Create Curve [From] Location {options} Location {options}
Create Curve [From] Location {options} Direction {options} Length <val>

Drawing a Location, Direction, or Axis
Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). This location can be previewed with the following options:

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. Adistance along the curve from the start of the curve, or optionally, from a specified

vertex on the curve.

An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

w

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position
<xval><yval><zval> | Close_To Vertex <vertex_id>} [[From] Vertex
<vertex_id> (optional for 'Fraction® & 'Distance")]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. To draw a preview of an axis use the
following command:

Draw Axis {options}

Some commands require a specified location or point (such as create curve spline) and it is
sometimes advantages to view a location before modifying or creating geometry. To draw a
preview of a location use the following command:

Draw Location {options} [color <color_name>][no_flush]

27

Environment Control

Similar commands for drawing lines and polygons may also be useful.

Specifying an Axis

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. An axis is simply a vector with a
specified origin. The following options determine an axis specification:

e Last
« Specify a direction and a location
e Revolve an axis about an axis

Last
Last

The last option recalls the last axis used in an axis command. The last axis does not carry over
from CUBIT session to CUBIT session.
Specify an origin and a vector

{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle
<val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the
command requires the axis direction first because the origin defaults to 0 0 0 when not specified.
An example of specifying an axis to draw a location using the swing command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

(final)

Ity

{1,0,0

Figure 1 - Swinging a point about the z-axis
The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and
anoriginat 00 0.
Revolve an axis about an axis

[Axis {options} Revolve [About] Axis {options} Angle <val>]

To revolve one axis around another use the revolve keyword. The following example revolves
the first axis (defined by the y-axis and origin) around the second axis (defined by the z-axis and
origin) by 45 degrees and draws the result.

28

Cubit 15.2 User Documentation

draw axis direction y revolve axis direction z angle 45

As"
¥

fina

axis .
2000

Figure 2 - Revolving an axis about another axis
Previewing an Axis
Sometimes it is helpful to preview an axis before using it in a command. An axis may be
previewed using the Draw command. The options for previewing an axis are the same as the
ones described above.

Draw Axis {options}

Specifying a Direction
Some commands require a specified a direction or vector for the command. A direction is
basically a xyz vector in the model. The following options determine a direction specification:

« [Vector] <xval yval zval>

o Last

o X|Y|Z|NX|Ny|Nz

e [On]|[Tangent] [At] Curve <id> {location on curve options}

e [On] | [Normal] [At] Surface <id> [Location {options}]

e [From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} |
[Entity] {Node|Vertex|Curve|Surface} <id> }

o [Rotate {options}]

e [Cross [With] Direction {options}]

[Reverse]

Vector (XYZ values)
[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of the
direction. The given vector need not be a unit vector. The following three commands simply
draw a direction in the x-direction (1, 0, 0) as the Vector keyword is optional and unit vectors are
not required:

draw direction vector 100
draw direction100
draw direction 1000

29

Environment Control

Last Direction Used
Last

The last option recalls the last direction used in a command. For example, if the following
command is entered after the above vector commands a direction location would be drawn in the
x-direction (1, 0, 0).

draw direction last
Last directions do not carry over from CUBIT session to CUBIT session. The last direction
defaults to (1, 0, 0) if no direction has been used during the session.
Positive or Negative X,Y,Z Direction Vectors

X|Y|Z|Nx|Ny|Nz

The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction,
negative y direction and negative z direction respectively.
On Curve Tangent

[On] | [Tangent] [At] Curve <id> {location on curve options}

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at
keywords are optional, as well as the location on the curve. If no location is specified, the tangent
at the start vertex of the curve is found. See the section above, Specifying a Location on a Curve,
for details on how to specify where along the curve the tangent vector is found.

draw direction curve 1

draw direction on curve 1

draw direction tangent at curve 1

draw direction tangent at curve 1 distance 3

draw direction tangent at curve 1 fraction .5

draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve
On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal” and
"at" keywords are optional, as well as the location on the surface. If no location is specified, the
normal vector at the center of the surface is found. If a location is specified, the location is
projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 120

30

Cubit 15.2 User Documentation

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options}
| [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location
to an entity. If the second specification is an entity, the first location is projected to the entity to
find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are
generally optional. However, it is sometimes necessary to remove ambiguity from the previous
location specification. For example, the following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3

In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the
desired behavior is to find the location on curve 1 as a distance of 2.0 along the curve from the
start of the curve, and project it to surface 3 to find the direction. The following commands (all
equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3
draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

Rotate
[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together
as many rotations as necessary. For example:

draw direction 1 0 0 rotate about z 135 rotate about curve 1 angle 50
Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction
{options} Angle <val> } [Rotate (options)] [Origin (location)]

AXx, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another
rotate keyword in the options indicated that multiple nested rotations are permitted.
Cross

[Cross [With] Direction {options}]

The cross option allows you to find the vector cross product of the direction with another
direction.
Reverse

[Reverse]
This keyword simply reverses the direction specification.

31

Environment Control

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction may be
previewed using the Draw command. The direction options are described above. See Specifying
a Location for a list of location options.

Draw Direction {direction_options} [Location (location_options)]

Specifying a Location

Some commands require a specified location or point (such as create curve spline) for the
command. A location is basically an x-y-z position in the model. The following options
determine a location specification:

o [Position] <xval yval zval>

o Last

o [At] {Node|Vertex} <id_list>

e [On] Curve <id_list> [location on curve options]

e [On] Surface <id_list> [Close_To | At Location {options} | CENTER]

e [On] Plane <options> [Close To | At Location {options}]

e Center Curve <id_list>

o Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction
{options}] [Direction {options}]

o Fire Ray Location {options} Direction {options} At
{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray Radius <val>]

« Between { Location <options> Location <options>} | { Location <options> Project
{Curve|Surface} <id> } [Stop] [Fraction <val>] }

o [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance
<val>}]

e [Swing [all] [About] Axis {options} Angle <ang>]

e Multiple Location Specification

Position (XY Z values)
[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case
the following two commands both draw a location at the coordinates (1, 2, 3), as the Position
keyword is optional:

draw location position 1 2 3
draw location 12 3

Last Location Used in a Command
Last

The last option recalls the last location used in a command. For example, if the following
command is entered after the above position commands a location would be drawn at the
position (1, 2, 3).

draw location last

32

Cubit 15.2 User Documentation

Last locations do not carry over from CUBIT session to CUBIT session. The last location
defaults to (0, 0, 0) if no location has been used during the session.
Node or Vertex

[At] {Node|Vertex} <id_list>

Referring to a node or vertex simply returns the coordinates of that node or vertex. The
command can also handle multiple locations where multiple locations are needed to complete the
command string. The following draws a location at the coordinates of Vertex 5:

draw location vertex 5

On a Curve

Various options are available to specify a location on a curve. See the section Specifying a
Location On a Curve for details.

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

If a surface is used to specify a location without other options, the geometrical center of the
surface is found (the center keyword is optional - the default). Otherwise, you can specify
another general location and that location is projected to the surface. For example, the following
command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 500

Any valid location options listed on this page can be used to specify the location that is projected
to the surface.
On a Plane

[On] Plane <options> [Close_To | At Location {options}]

A location can be defined at the closest point on a plane to a location. See Specifying a Plane for
plane options.
Center

Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.
Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options}
[Direction {options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group,
in the specified direction. For example, the following places a vertex on a surface at the point of
maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object by
firing a ray at the object and determining the intersections. A ray can be fired at a list of bodies,
volumes, surfaces, curves, or vertices. The fire ray command is:

33

Environment Control

Fire Ray Location {options} Direction {options} At
{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray
Radius <val>]

The location options are described on this page. The direction options are described under
Specifying a Direction. The user can specify the maximum number of hits that he wishes to
receive back from the command. If this value is omitted, the command will return all
intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is the
distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the
geometry engine default is used.

Between

Between {Location <options> Location <options> } | {Location <options>
Project {Curve|Surface} <range>} [Stop] [Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An
optional fraction can be given to specify the fractional distance from the first location to the
second location or entity. For example, the following will draw a location at (5, 0, 0):

draw location between location 0 0 0 location 1000

The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):
draw location between location 0 0 0 location 10 0 0 fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 O surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0,
0, 0) and the projected location is found.

Of course, any valid location can be used in the command. In the following example a location at
the top center of the brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and
5.

Note: you can "swing" a location about an axis, "rotate” a direction about another direction,
"revolve" an axis about another axis and "spin™ a plane about an axis. The only reason Cubit
needs to use different keywords for each entity type is because the Cubit command language
does not support expressions (as in using parentheses). The keyword stop is also used in the
location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop
keyword will aid in parsing out extended location specifications. Insert a stop after the first
location to let the parser know that where the specifications begin and end.

Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
Distance <val>}

34

Cubit 15.2 User Documentation

Any location can be optionally moved either a xyz distance or a certain distance in a given
direction. As many moves as desired can be strung together. For example, the following will
return a location at (5, 0, 0):

draw location 00 0 move 500

These examples add another move that basically moves the location (5, 0, 0) in a direction 45
degrees up and to the right a distance of 10 (all three commands are equivalent - see sections on
directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} 0

draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10

draw location 0 0 0 move 5 0 0 move direction 1 0 O rotate about 0 0 1 angle
45 dist 10

Swing

Swing [All] [About] Axis {options} Angle <ang>
Any location can be "swung" (rotated) about an axis by a certain angle. (See the section on
specifying an axis for the axis syntax). As with moves, multiple swings can be strung together.
The following example rotates the location (2.5, 5, 5) thirty degrees about an axis defined by

Curve 11. Note that the right-hand rule is used to determine the direction of the swing about the
axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Axis = Curve 11

C (star) (25,5, 5

Figure 1 - Swinging a Location
Multiple Location Specification

Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the following
command uses several locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and
(7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9
Previewing a Location
Sometimes it is advantageous to preview a location before using it in a command. A location can
be previewed with the Draw command. All of the options that can be used to specify locations in

a command can be used to preview locations as well. See above for a description of these
options. The command syntax is:

35

Environment Control

Draw Location {options}

Specifying a Location on a Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). The following are the options for specifying a location (or locations in the
case of the segment option) on a curve:

o {MIDPOINT|Start|[End}

o Arc Center

o Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]

o Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]

o« {{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex}
<id>}

o Extrema [Direction] {options} [Direction {options}] [Direction {options}]

e Segment <num_segs>

e Crossing {Curve|Surface} <id list> [Bounded|Near]}

e Previewing a Location

Arc Center
arc_center
The arc center option helps in identifying the location at the center of a given arc. Example:
create vertex location on curve 3 arc_center
Start, Midpoint, or End

{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve. By
default, the midpoint is the understood location unless another location is specified.
Fraction

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve. By
default, the fraction references the start of the curve; however, you can optionally specify which
vertex to reference from.

Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |

The distance option not only can find a location that is a certain distance along the curve from
the start or end of the curve, but can also find a location (or locations if there is more than one
solution) on a curve that is a specified distance from another curve or a surface. If the From
Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

36

Cubit 15.2 User Documentation

Churve 2

Curve 13
Distarice = 7.0 ¢

¥ Resultant
Location

Figure 1 - Location on a Curve a Distance from Another Curve
{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval>
[{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.
Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option finds the maximum value location along a curve in a specified direction. For
example:

create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.
Segment

Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the curve into
equal length "segments™ (of course the curve is not modified). You must specify a minimum of
two segments (if two segments were specified a location would be found at the center of the
curve). The following example results in 4 locations:

draw location on curve 1 segment 5
create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve
Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near]}

The crossing option finds locations at the intersection of the curve and another curve or surface.
By default, the curve(s) and surface are extended to infinity and the intersections are calculated;

37

Environment Control

if the bounded option is specified only intersections that lie on the bounded entities will be
returned. The near option is valid only for two linear curves. If near is specified the nearest
location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that can be
used for specifying a location on a curve can be used to preview a location on a curve. See above
for a description of these options. The command syntax is:

Draw Location On Curve <curve id> {options}

Specifying a Plane
Some commands require a specified plane (such as sweep curve target) for the command. The
following options determine a plane specification:

o {Location|Vertex|Node} <origin> Direction <normal>

o {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>
o {Location|Vertex|Node} <2 locations> Direction <vector on the plane>
o {Location|Vertex|Node} <3 locations>

e Surface <id> [at location <loc>]

o [Normal To] Curve <id> [loc on curve options]

o Direction <Normal> Coefficient <val>

e Arc Curve <id>

e Linear Curve <id> <id>

o X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy[Y X

o Last

The following options apply to all of the plane specifications listed above:

[Offset <val>]

o [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance
<val>]]

e [[To] Location {options}]

o [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector
{Location|Vertex|Node} <origin> Direction <normal>
The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction01 1
draw plane vertex 1 direction tangent at curve 1

38

Cubit 15.2 User Documentation

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be
found at Specifying a Direction.

Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on
plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

Figure 2. Specifying a plane with a point and 2 in-plane vectors
Two Locations and Vector on the Plane

{Location|Vertex|Node} <2 locations> Direction <vector on the plane>
You can also specify 2 locations and 1 direction on the plane to define the plane.
draw plane vertex 1 2 direction01 1

39

Environment Control

Figure 3. Specifying 2 locations and 1 direction on the plane
Three Points on the Plane

{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified using
Location Specification.

draw plane vertex 1 2 3
draw plane vertex 1 2 location 34 5

Figure 4. A plane specified by three points
Plane defined by a Surface

Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the
optional location specifier can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 400

40

Cubit 15.2 User Documentation

Figure 5. Specifying a Tangent plane to a Surface
Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

The Normal to Curve option allows you to define a plane by using an existing curve. The
direction of the curve will define the surface normal of the new plane. The optional location
argument specifies which point to use on the curve if it is not a straight curve. If no location is
specified the plane will originate at the midpoint of the curve. See Specifying a Location on a
Curve for more information on location options.

brick x 10

cylinder radius 3z 12

subtract body 2 from 1
webcut body 1 xplane

draw plane normal to curve 30

41

Environment Control

Figure 6. Draw Plane Normal to Curve
Plane Defined by a Non-linear curve

Arc Curve <id>
A plane can be defined by a single curve, provided that curve is not linear.

cylinder height 12 radius 3
draw plane arc curve 2

Plane Defined by a two linear curves
Linear Curve <id> <id>
A plane can be defined by a two linear curves, provided that the curves are not co-linear.

brick x 10
draw plane linear curve 2 3

Normal Vector and Coefficient
Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and an offset
from the origin. The Coefficient argument specifies how far to offset the plane from the origin

draw plane direction 1 2 3 coefficient 3
Coordinate Plane
X|Xplane|Yz|Zy|Y|Y plane|Zx|Xz|Z|Zplane|Xy|Y X

A plane can be defined from any coordinate plane or combination thereof. The coordinate planes
will pass through the origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used
Last

42

Cubit 15.2 User Documentation

The last option will return the plane most recently used in a command. Last locations do not
carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no
location has been used during the session.

The following options apply to all of the plane specification methods described above.

o [Offset <val>]

o [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
[Distance <val>]]

e [[To] Location {options}]

e [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.

The move option will displace the plane in the specified directions by the specified distance. The
direction options are outlined on Specifying a Direction.

The location option will move the plane to a specified location without rotating it. See
Specifying a Location for location options.

The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.
Previewing a Plane

The ability to preview a plane prior to creating the plane or using it in a command is possible
with the following commands:

Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>]
[[Extended] {Percentage|Absolute} <val>]}] [Color *color_name’]

The options for specifying a plane are described above in the section on Plane Specification. By
default, the commands draw the plane just large enough to intersect the bounding box of the
entire model with minimum surface area. Optionally, you can give a list of bodies to intersect for
this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.
Preview a Cylindrical Plane

The ability to preview a cylindrical plane is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz
values>} [Center <x_val> <y val> <z_val>] [[Intersecting] Body <id_range>]
[Extended Percentage|Absolute <val>] [Color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line
corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points, or an
arbitrary point and the origin. The center point through which the cylinder axis passes can also
be specified.

By default, the commands draw the cylinder just large enough to just intersect the bounding box
of the entire model. Optionally, you can give a list of bodies to intersect for this calculation. You
can also extend the length of the cylinder by either a percentage distance or an absolute distance
of the cylinder length. The default color is blue, but you can specify a different one. See the
Appendix of the CUBIT Users Guide for available colors in CUBIT.

43

Environment Control

Listing Information

Listing Information

The List commands print information about the current model and session. There are five
general areas: Model Summary, Geometry, Mesh, Special Entities, and CUBIT Environment. The
descriptions of these areas includes example output based on the model generated by a journal
file listed below. The model consists of a 1x2x3 brick meshed with element size 0.1.

List Model Summary
List Geometry

List Mesh

List Special Entities

List CUBIT Environment

Journal File Used for List Examples
brickx1y2z3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group "my_surfaces" add surface 1 to 3
surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"

surface 5 name "RightSurface"
surface 6 name "TopSurface"

List Model Summary
The following commands print identical summaries of the model: the number of entities of each
geometric, mesh, and special type

List Model
List Totals

The following output is generated from the list model command.
CUBIT> list model
Model Entity Totals:
Geometric Entities:
0 assemblies
0 parts
2 groups
1 bodies
1 volumes
6 surfaces
12 curves
8 vertices
Mesh Entities:

44

Cubit 15.2 User Documentation

6000 hexes
0 pyramids
0 tets
7876 faces
0 tris
9854 edges
7161 nodes
Special Entities:
1 element blocks
1 sidesets
1 nodesets
Journaled Command: list model

List Geometry
The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> [Ids]
List {geom_list} [Geometry|Mesh [Detail]]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to each name.
Specifying all lists names for all types; other options list names for a specific entity type. The
names for an individual entity can be obtained by listing just that entity. Sample output from the
list names surface command is shown below. This output shows that, for example, Surface 2 has
the name ~ BackSurface ".

Name __Type__ Id _Propagated
BackSurface Surface 2 No
BottomSurface Surface 3 No
FrontSurface Surface 1 No
LeftSurface Surface 4 No
RightSurface Surface 5 No
TopSurface Surface 6 No

List Names Example
The second command provides information on the number of entities in the model and their
identification numbers. If a range is given then detailed information is given on each entity in
that range, unless the ids option is also given. If the ids option is used, just a list of ids is printed.
This list can be very useful for large models in which several geometry decomposition operations
have performed. Sample output from the list surface command is shown below.
CUBIT> list surface ids
The 6 surface ids are 1 to 6.
CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a <range> gives
a brief synopsis of the local connectivity of the model, e.g. one can list the ids of the surfaces
containing vertex 2; as shown in the listing below.. An intermediately detailed synopsis can be
obtained by placing the range of entities in a group, then listing the group.

45

Environment Control

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.
CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
Name Type Id +is meshed Count Size

FrontSurface Surface 1 map+ 1H 0.1

TopSurface Surface 6 map+ 1H 0.1
RightSurface Surface 5 map+ 1H 0.1

Using "List" for Querying Connectivity.

The third command provides detailed information for each of the specific entities. This
information includes the entity's name and id, its meshing scheme and how that scheme was
selected, whether it is meshed and other meshing parameters such as smooth scheme, interval
size and count. The entity's connectivity is summarized by a table of the entity's subentities and a
list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.
Specifying geometry will additionally list the extent of the entity's geometric bounding box, the
geometric size of the entity, and depending on entity type, other information such as surface
normal. See also the list {entities} x command below. If multiple volumes, surfaces, or curves
are selected, it will list the total volume, area, or length of all entities, and the total geometric
bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid
of the all of the volumes.
Specifying mesh will additionally list the number of mesh entities of each type interior to the
entity and on bounding subentities. Mesh detail will list the ids of the mesh entities as well,
following the format of the list ids command above.
The fourth command lists the entities sorted by either the X, y, or z coordinate of their geometric
center. For example, in a large, basically cylindrical model centered around z-axis, it is useful to
list the surfaces of a volume sorted by z to identify the source and target sweeping surfaces.

List Mesh
The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>

List {Hex|Face|Edge|Node} <id_range> IDs
For both of these commands, the range can be very general, following the general entity parsing
syntax. The first command provides detailed information. For an entity, the information includes
its id, owning geometry, subentities and superentities. For a hex, the Exodus Id is also listed. For

a node, its coordinates are listed. The second command just lists the entity ids, and is usually
used in conjunction with complex ranges.

List Special Entities
List {special_type} <range>

Special entities include (element) blocks, sidesets and nodesets (representing boundary
conditions). Like the list geometry and list mesh commands, if no range is specified then the

46

Cubit 15.2 User Documentation

number of entities of the given type is summarized. Otherwise, listing a special entity prints the
mesh and geometry it contains.

(Some special entities are of interest mainly to developers and are not described here, e.g.
whisker sheets, and whisker hexes.)

List Cubit Environment

The user may list information about the current CUBIT environment such as message output
settings, memory usage, and graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

o Info (Information) messages tell the user about normal events, such as the id of a newly
created body, or the completion of a meshing algorithm.

e Warning messages signal unusual events that are potential problems.

« Error messages signal either user error, such as syntax errors, or the failure of some
operation, such as the failure to mesh a surface.

o Echo messages tell the user what was journaled.

o Debug messages tell developers about algorithm progress. There are many types of
Debug messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not
printed. Information, Warning, Debug, and Echo message printing can be turned on or off (or
toggled) with a set command; error messages are always printed. Debugging output can also be
redirected to a file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug}
Set Echo [On|Off]

Set {Info|Warning} [On|Off] [logging]
[Set] Debug <index> [On|Off]

[Set] Debug <index> File <'filename'>
[Set] Debug <index> Terminal

Message flags can also be set using command line options:

-warning {on|off}
-information {on|off}

Debug flags can be enabled from the command line with
-debug <setting>

where <setting> is a comma-separated list of integers or ranges of integers denoting which flags
to turn on. E.g., to set debug flags 1, 3, and 8 to 10 on, the syntax is -debug 1,3,8-10.

Logging Output to a File

Output from CUBIT can be redirected to a log file, and the current state of logging can be listed.

[Set] Logging {Off|On File <*filename'™> [Resume]}
List Logging

If logging is enabled, by default any output to the console or command window will also go into
the logging file. The resume option will append to the logfile, if it exists, instead of emptying the
file. If the logfile doesn't already exist, it will be created.

47

Environment Control

Output of information and warning messages to the logging file can be controlled independent of
console output settings by adding the logging option to the set {infolwarning} [on|off] logging
command.

Default Block Creation

Set Default Block {ON|off|\Volume|Surface|Curve]}
List Default Block

The set Default Block command will toggle whether or not default blocks are written during the
export operation if no other blocks have been specified. The List Default Block command lists
the geometric entity types for which blocks will automatically be generated at export.
Journaling Settings

List Journal

The List Journal command lists which types of CUBIT commands will be journaled and the file
to which the journaled commands are being written.
Exodus Export Title

List Title
Title "<title_string>"'

The List Title command will list the title to be written to an Exodus file on export. To assign a
title to an Exodus file, use the Title command.
Listing Current Settings

List Settings

The List Settings command lists the value of all the message flags, journal file and echo settings,
as well as additional information. The first section lists a short description of each debug flag and
its current setting. Other message settings are listed next, followed by some flags affecting
algorithm behavior.

Sample output

CUBIT> list settings
Debug Flag Settings (flag number, setting, output to, description):

1 OFF terminal Debug Graphics toggle for some debug options.
2 OFF terminal Whisker weaving information
3 OFF terminal Timing information for 3D Meshing routines.
4 OFF terminal Graphics Debugging (DrawingTool)
5 OFF terminal FastQ debugging
6 OFF terminal Submapping graphics debugging
7 OFF terminal Knife progress whisker weaving information
8 OFF terminal Mapping Face debug / Linear Programming debug
9 OFF terminal Paver Debugging
echo = On
info = On
journal = On
journal graphics = Off
journal names = On
journal aprepro = On
journal file = 'cubitll.jou'
warning = On

48

Cubit 15.2 User Documentation

logging = Off

recording = Off

keep invalid mesh = Off

default names = Off

default block = Volumes

catch interrupt = On

name replacement character = ' ', suffix character = '@'

Matching Intervals is fast, TRUE;

multiple curves will be fixed per iteration.

Note in rare cases 'slow', FALSE, may produce better meshes.
Match Intervals rounding is FALSE;

intervals will be rounded towards the user-specified intervals.

Graphical Display Information
List View

List view prints the current graphics view and mode parameters; See Graphics Window .
Memory Usage Information

Users are encouraged to use Unix commands such as "top' to check total CUBIT memory use.
Developers may check internal memory usage with the following command:

List Memory [<object type>']
Without an object type, the command prints memory use for all types of objects.

GUI
Graphical User Interface

o« CUBIT Application Window
e Control Panel

e Graphics Window

e Tree View

e Property Editor

e« Command Line Workspace

e Journal File Editor

e Toolbars

e Drop-Down Menus

The graphical user interface (GUI) can improve user productivity. It provides an easy way to
control CUBIT without learning command syntax. Many geometry commands are faster and
easier with the GUI. The underlying GUI components are constructed using a cross-platform
development environment. As such, the GUI will behave similarly across all platforms supported
by Cubit, yet each GUI will make use of platform specific widgets.

The GUI is built on top of the CUBIT command line. This means that GUI actions are translated
to a CUBIT command-line string and journaled. Users familiar with command-line syntax can
enter the same text in the GUI command-line window. Journal files can be created and played
back in both environments with the same results. Although many things are faster and easier in
the GUI, experienced users often use a combination of command line text and GUI button
operations.

49

Environment Control

The discussion of the Graphical User Interface and its features is based on the basic windows
contained within the CUBIT GUI Application Window. These are outlined in the subtopics listed
above.

A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions

create and play back identical journal files, making it easier to switch from one environment to
the other.

CUBIT Application Window
The default CUBIT Application Window is shown in the following image.
_~ Drop Down Menus

Fis [Ve Duplyy ook el

LY MNENHI P FPTIFIOLOELEQQAQENID?

LOds iR AHNANEDN » +-nass DHE eolow /-
= o= Command Panal LR
i ® (D |« Toolbarsﬂ = —
Curranl view | Ful Tres i l&|m@ﬂla|
Y | =} Proge i Enbiy - Surface
%o Assembles - [|
B b @]+ |

S (=] em]a]-]+]
‘ Power Tools ’ Graphics Window "

o 2 s [=[2]x]
Progeartien Pags 5 x ‘E’EE.E]
RPYEERE X

i

Properties Page

Commard Lirm & % [Chek For Creerlapping Surfaces
daleving LI0D adpes from dacalass -~ Sock 1
coodelevieg 131 medes from databade. .. —
Datsult CUBIT modsl file iz "C:yFrogras Fils () Mesh
SACURIT B, ZuaubinOl, oub’ 1= I—I
Command Line Command Panels
cumITe | o
_Commard [\ Ereer i Herory |
Wrkineg Doty (C-[Froogra FhesJCLEIT 182 [9

Figure 1. The CUBIT Application Window
Graphics Window- The current model will be displayed here. Graphical picking and view
transformations are done here.
Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool,
meshing quality tool, and ITEM Wizard.
Property Editor - The Property Editor lists attributes of the current entity selection. Some of
these properties can be edited from the window.
Command Panel - Most Cubit commands are available through the command panels. The
panels are arranged topologically, by mode.

50

Cubit 15.2 User Documentation

Command Line Workspace - The command line workspace contains both the cubit command
and error windows. The command window is used to enter cubit commands and view the output.
The error window is used to view cubit errors.

Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and
other functionality is available in the pull-down menus.

Toolbars - The most commonly used features are available by clicking toolbar icons.

Context Sensitive Help in the GUI

The Graphical User Interface has a context-sensitive help system. To obtain help using a specific
window or control panel, press F1 when the focus is in the desired window. It may be necessary
to click inside a text box to switch focus to a particular window. If no context specific help is
available, it will open the cubit help documentation where you can search for a particular topic.
Customizing the Application Window

All windows in the CUBIT Application can be Floated or Docked. In the default
configuration, all windows are docked. When a window is docked the user can click on
the area indicated below.

CTIBIT= |

g——— Click and drag from here

Y Command A Ermor A Histoy

Figure 2. A docked window. Click and drag to float.
By dragging with the left mouse button held down, the window will be un-docked from the
Application Window. Dragging the window to another location on the Application Window and
releasing the mouse button will cause it to dock again in a new location. The bounding box of the
window will automatically change to fit the dimensions of the window as it is dragged. Releasing
the mouse button while the window is not near an edge will cause the window to Float. To stop
the window from automatically docking, hold the CONTROL key down while dragging.

51

Environment Control

o £V =N I B % b

Command Panel
Mode - Geometry:

R

Enkity -

o5

Ackion - Create

| =
B @

Brrick:
Birick. Dirnensions
% (wideh) | 10
i (height)
Z (depth)

Presvigw Apply

Floating Window

Figure 3. A Floating Window
When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the
title bar of the window and dragging it to its new docked location.

52

Cubit 15.2 User Documentation

Note: Double clicking on the title bar of an floating window will cause the window to
redock in its last docked position.

Control Panel

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by
task. All of the geometry related tasks, for instance, can be found under the Geometry mode.
When a mode is selected, a second row of buttons becomes available. The second row of buttons
shown depends on the selected mode. For example, if Geometry, Meshing, or Materials and BCs
is selected, the second button row will show entity types. Entities are those specific to the mode.

o Geometry panel entity level buttons include Volumes, Surfaces, Curves, Vertices, and
Groups.

e Meshing panel entity level buttons include VVolumes, Surfaces, Curves, Vertices, Groups,
Hexes, Tets, Quads, Tris, Bars, and Nodes.

« Materials and BCs entity level buttons include Exodus Nodesets, Exodus Sidesets,
Exodus Blocks, Create Boundary Conditions, Modify Boundary Conditions, List
Boundary Conditions, Draw Boundary Conditions, Make a Boundary Condition current,
and Delete Boundary Conditions.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity.
Rather, the buttons show specific capabilities.

The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The
following shows an example of Geometry/Volume actions.

Control Panel e <!

tode - Geometmy

32924E®

E nitity

3o |

Selecting an Action will display a command panel. The Geometry/VVolume/Create command
panel is shown below.

53

Environment Control

Control Panel B

Mode - Geometiy

392D

Eﬂtit_l;l -Wolurme

Achion - Create

e, = s O
m Al s = 23‘
| Brick -l
-Brick Dimensions
® [width] |10
Y [height) |
Z [depth] |
_563' Apply

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options
are selected using checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI
widgets. Each command panel includes an Apply button. Pressing the Apply button will generate
a command to Cubit. Nothing happens until and unless the Apply button is pressed.

Note: The edit fields are free form, which means the user may enter any valid
string into the fields. Any string that is valid for the command line is valid
for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed
over a blank portion of the command panel, the user may right-click to select Reset Data which
will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric IDs, required for the current command,
can be entered. IDs can be entered in several ways:

Simple Keyboard entry

ID numbers can be entered directly in the field. Each ID must be separated with a space. Select
the field first before typing.

Graphical selection

IDs can be entered automatically by selecting entities directly in the Graphics Window. The
current entity available for selection is based on the current entity selection mode. In some cases,
not all entities of the current entity selection mode will be available for picking. The program
may automatically filter the applicable entities based on the context of the current command
Geometry Tree selection

54

Cubit 15.2 User Documentation

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To
select multiple entities use the <ctrl> key.

Ranges

A range of IDs may be typed into the field. For example:

1to5

will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and
except can also be used. Any range that can be entered directly on a CUBIT command line can
also be used in the ID input field. See Command Line Entity Specification for a description of
the syntax.

As Part of Other Entities

Syntax can be entered in the ID Input field that will specify an entity based upon its topological
relationship to other entities For example, if a Vertex Selection Type Button was highlighted,
entering

insurfl

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of
syntax rules for specifying entities based upon topology relationships. See Command Line Entity
Specification for a description.

In Groups

Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex
Selection Type Button is highlighted, entering:

in picked

will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped
Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an ID Input Field, the following menu options
will appear:

o Done Selecting - Enters current selection and removes cursor from selection window

o Select Other - Displays selection dialog

o Select All - Selects all available entities and puts "select all" in input window

« Highlight - Highlight the current selection

e Zoom To - Zooms to current entity in the selection field within the graphics window

o Rotate About - Change center of rotation to the center of selected entity

o Draw - Draws the entities listed in the input field within the graphics window

o Isolate - Turns visibility off for all entities other than the selected entities. Similar to
draw command, but entities remain hidden with a graphics refresh. Select All Visible in
the graphics window to turn visibility back on.

« Visibility Off - Removes the current entity from the input window and hides it on the
graphics screen

e Mesh - Mesh the listed entities using either an assigned scheme or a default scheme
where none is assigned

e Delete Mesh - Deletes mesh on all entities listed in the input window

55

Environment Control

« Reset Entity - rehighlights the entities listed in the input field within the graphics
window

e List Info - Displays a sub menu of choices including basic, geometry, and mesh.
Selecting the basic option will list schemes, visibility, and interval assignments. The
geometry option will add information about the geometry and geometry engine. The
mesh option will list information about mesh entities.

o Delete - Deletes the current geometric object in the input window.

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed in
parenthesis { } will be evaluated when the command is executed. For example:

{10%0.02}

is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including
mathematical functions and boolean operations. See the section, APREPRO for a description of
syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel. A
convenience feature implemented for such panels is an advancing pickwidget feature. Pressing
the middle mouse button after selecting an entity will advance to the next id input field.

Command Panels

The Command Panels provide a graphical means of accessing almost all of the CUBIT
functionality. The main CUBIT Command Panel is divided into six modes. Each of these modes
pertains to a major component of the CUBIT application. To view information about each of the
tools in the Control Panel select the help icon on each panel to access context specific help.

Meshing
Access to mesh
creation and
modification
commands

Ancess to boundary]

condition commands Analysis Setup
1 Arcess to mesh

export control

Fost Processing
Arcess to external
post-processing
software

Seometry
Acoess to geometry
related commands

56

Cubit 15.2 User Documentation

Figure 1. The CUBIT Control Panel
A brief description of the functionality of the Control Panel window follows.

Control Panel Functionality

Graphics Window

Viewing Curve Valence

To view your model based on a color-coded curve valence scale, click on the curve valence
button on the Display Toolbar. Curve valence refers to the number of surfaces attached to each
curve. Curves with exactly two surfaces attached are shown in blue. Curves with exactly one
surface are shown in red. Curves with more than two attached surfaces are shown in white.
This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will
usually have a valence > 2, while unmerged curves typically have a valence of 2. Curves with a
valence of 1 may indicate a floating surface.

Graphics Window

Fle Edt Wew Cuplyy Took Heb
YIS NEEHN P @@ﬂ]'ﬂﬂiﬂp Qa;'ﬂ'ﬂﬂ’)"
=|=|"?:\-'=la@ "“-Eu.—nllEcrﬂa'"‘ T - A 5 Hﬂiﬁﬂ[ﬂ/‘
P Bocle [Comrrard Parel (. B4
R WL BE WL L ——
e — (X ECE
u;.:e 0 Propeites ok
w Assenbles .
i g::nw-:nm . Ia <o [x|a
g v Graphics
(, Window OLIOGEE
— & B @)%
Priopesstss Fage [rick ~
B — T
PR WERE ® o
Properky L=] I (deptd)
Command Lne # x £4 E
W commard N\ Emor [\ bistory |
Wiorking Directory: CProgram FlesoUBIT 11.2 J

Figure 1. Graphics Window
The graphics window is used to view and select entities. Select one of the options
below:

« View Navigation
o Selecting Entities
o Key Press Commands

57

Environment Control

¢ Right Click Commands for the GUI Graphics Window
o Viewing Curve Valence

Key Press Commands for the GUI
Several commands have a key press shortcut. These commands will be executed with
respect to the currently selected entities; see the following table:

Shortcut

Command
Key
| List information about the current entity to the output
window.
i Toggle the visibility of the selected entity (make invisible or
visible).
e Echo entity id to command line.
Tab Select the next entity.

Tab | |Select the previous entity.

Toggle picking of vertices.
Toggle picking of curves.
Toggle picking of surfaces.
Toggle picking of volumes.
Toggle picking of groups.

0 Toggle picking of mesh nodes
1 Toggle picking of mesh edges.
2 |Toggle picking of mesh faces.
3 Toggle picking of mesh hexes.
F5 Refresh graphics window
5 Activate/inactivate graphics clipping plane

AW N PR O

Right Click Commands for the GUI Graphics Window
Clicking the Right mouse button in the graphics window will bring up a menu. One of two
menus will appear, depending on whether an entity is currently selected.

With Entity Selected

o Select Other- Brings up a dialog with alternate entity selections
e Zoom To - Zoom to the selected entity

58

Cubit 15.2 User Documentation

Rotate About - Changes the center of rotation to the centroid of this entity

Draw - Draw the selected entity

Isolate - Turn all but the selected entities invisible

Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an
existing boundary condition, group, or part.

Remove from BC/Group/Part - Opens a dialog box where you can remove the selected
entity from an existing boundary condition, group, or part.

Add to Picked Group - Add this entity to the picked group.

Remove from Picked Group - Remove this entity from the picked group

Visibility Off - Turn selected entities invisible

Mesh - Mesh the selected entities

Measure - Measures between two entities, or two vertices on a curve.

Delete Mesh - Delete the mesh on selected entities (but not interval or scheme
information)

Reset Entity - Reset selected entities by deleting mesh and interval information

List Info - Show the menu of additional list commands

Delete - Delete selected entities

Without Entity Selected

Reset Zoom - Reset zoom to original configuration
Refresh- Refresh the graphics display

All Visible - Make all entities visible

Display Options - Opens Options Menu to display options

Selecting Entities in the GUI

Geometry, mesh entities, and boundary conditions can be selected with the left mouse button
directly in the graphics window. Before selecting any entity, however, the correct selection mode
must be chosen. This dictates which entity types will be available for selection in the graphics
window. The Select Toolbars, which are located above the graphics window by default, are used
to change the entity selection modes.

59

Toggle
Selact Selected Toodle
Groups Enclosedd Bebween
of Select Geometry Select Mesh Extended Folyoonf

Entfies Entities ~. - Enfities —____ \ EID}{EeIect
@@rﬁiuﬂ/ 0+Hﬂﬁ$” "”=iﬁf=-+;i\

- |
‘Bodies Uertn:es I::!uad Selecl
H-Ra

Volurmes CURES Elerment’ Elements Elementa I

Mades | OF Faces
Surfaces Tet
Element Triangle Elements
Edges Elements
orFaces

Figure 1. The Selection Toolbar for Geometry and Mesh Entities

Environment Control

Select melect Select
Select Select Select Inlet Mass Inlet Fairfield Select
Forces Heatfluxes Temperatures F|IZI'-.-'-{S ‘v’ell:li:ities Fressures Symmetries

LOPps [RIAEHAE R &% B
oS | y NN

Select . elect Select Select Select Select
Pressures Displacements Convections Inlet Cutlet Periodics
Fressures Pressures

Figure 2. The Selection Toolbar for Boundary Conditions
Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes will
only permit selection of that particular entity type within the graphics window. These selections
will not override a Pick Widget in the command panel.
If both volume and surface entities are picked on the select toolbar, a single click will select the
surface while a double click will select the volume. More detailed information on selecting and
specifying entities can be found in Entity Selection and Filtering .

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that
entity will become highlighted. This is called pre-selection and is used as a graphical guide to
show which entity will be picked when the mouse button is clicked.

Graphics pre-selection may slow down your graphics speed for large models. You can disable
pre-selection from the Tools->Options dialog box.

Polygon and Box Select

The polygon/box selection feature allows you to select entities by drawing a box or polygon on
the screen. To draw box on the screen press and hold the <CTRL> button* while clicking and
dragging the left mouse button. Release the left mouse to complete the box select. To create a
polygon selection, press and hold the <CTRL>* button while clicking and dragging the left
mouse button. Click the left mouse button to create another side for the polygon. Press either of
the other buttons to close the polygon and complete the selection. Only entities that are in active
selection mode will be selected. To change between the polygon or box method, press the Toggle
Between Polygon/Box Select button on the Select Toolbar. Clicking the Toggle Selected
Enclosed/Extended button will toggle between Enclosed Selection and Extended Selection.
Enclosed selection will only select entities that are fully enclosed within the bounding box or
polygon. Extended selection will select entities that are either fully OR partially enclosed within
the bounding box. Toggling the the Select X-Ray will select entities that are hidden behind other
entities. X-ray selection will only apply to smoothshade and hiddenline graphics modes.

*Note: For Mac computers use the command (or apple) button for polygon or box select.

View Navigation in the GUI

There are two different default paradigms for view navigation: Cubit command line and Cubit
GUI. The user is allowed to customize the mouse settings as desired. Mouse settings in the GUI

60

Cubit 15.2 User Documentation

are modified by accessing the Tools pull-down menu, then select Options. The Mouse Settings
dialog is shown below (See Mouse-Based Navigation for the command line version).

& Options
".C','mtm“ Tools Mouse Button Function
— Drigplay
- Ganaral Lak Button Select
""3?':'“"5*'? Defauts Left Button + Control Mukiple Select
=+ History Middle Butkar T ab DI Pickes
Cuba Right Button Conbext Menu
Label Delaults
= Lapout Leit Bution + Drag | Fiolate |
-~ Cuiat Layout Iiddle Button + Dirag | Zoom _'J
-~ Mech Detaults
- (ETTY o Buton + Drag [=l
~ Post Processor | Mote; Uge Zoom + Control b select & 2oom o |
- Wuabty Defauls

| MNote: Mac users substibute "Command” for "Control”, |

Emudate Command Line Setings |

Save Cloze

Figure 1. Mouse Settings Dialog

Rotations

Where the cursor is in the graphics window will dictate how the view will be rotated. If the
cursor is outside of an imaginary circle, shown in Figure 2, the view will be rotated in 2d, around
an axis normal to the screen. If it is inside the circle, as in Figure 3, the rotations will be in 3d,
about the current view spin center. The spin center can be changed to any x-y-z location. The
most common way is by zooming to an entity, which changes the spin center to the centroid of
that entity. The "view at" command will change the spin center without zooming:

View at vertex 3

61

Environment Control

po-
-

& oo [

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal
to the screen

Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin
center

Zooming
To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in
Figure 4. The wheel on a wheel mouse will also zoom.

62

Cubit 15.2 User Documentation

-

i el |

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as

shown in Figure 5.

-

N

N

[T
// /

S G

&*'I—I N

S doiiesl

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

Tree View
Power Tools

The power tools contain useful tools to help users through the mesh generation process. The
Immersive Topology Environment for Meshing, also known as ITEM. This panel contains a

wizard-like environment which guides the user through the mesh generation process through a
series of panels and diagnostics. The geometry tree tab contains a hierarchy of all the entities in
the model. It includes assemblies, boundary conditions, groups, and geometry entities. The
geometry tool allows users to create new boundary conditions/assemblies/groups, add entities to
existing boundary conditions/assemblies/groups, make entities visible/invisible, and rename
entities. The geometry repair and analysis tools contains diagnostics and tools for analyzing and

63

Environment Control

repairing geometry, although many of these can now be found in the ITEM environment as well.
The mesh quality and meshing power tools aid in mesh generation and verification. The
geometry and mesh comparison tool identifies correlation between existing geometry and mesh.
The defeaturing tool assists users with defeaturing geometry in a more automated fashion.

Geometry
Fepair Meshing
Toal Toal

Geometry |Power Tools
Tree)

Current Wiew [Full Tree

Mame 1D
P2 Assemblies

£ 85 Boundary
+ L Groups
i Materials
£ Volures

& @ |2

hesh
Cluality |T_EM
Tool YWizard
<«
Properties

Figure 1. Power Tools Window

o Geometry Tree

o Geometry Analysis and Repair Tools
e Meshing Tools

e Mesh Quality Tools

e Immersive Topology Environment for Meshing (ITEM)

e Defeaturing Tool

B X

To familiarize yourself with the power tools environment (excluding ITEM), we recommend that

you try the power tools tutorial.

To familiarize yourself with ITEM wizard, we recommend that you try the ITEM tutorial.

64

Cubit 15.2 User Documentation

Geometry Tree

The geometry tree provides a complete graphical hierarchical representation of the parent child
relationship of all geometric entities. The tree is populated as the model is constructed by Cubit.
In addition to showing a hierarchy of geometric entities, the tree also shows Assembly Data,
active Groups, and active Boundary Condition entities.

The tree works directly with the graphics window and picking. Selecting an entity in the tree will
select the same entity in the graphics window. Selecting an entity in the graphics window will
highlight the tree entry if that entry is currently visible. If an entity's visibility is turned off, the
icon next to that entity in the geometry tree will disappear.

If the tree entry is not visible the user may press the Find button located at the bottom of the tree.
The first occurrence of the selected entity will be shown on the tree.

Virtual entities have a small (v) after the name to indicate that they are virtual entities.

65

Environment Control

Power Tools

Current Yigw |Fu|| Tree W |

Mame D Properties A

ﬁ fissernblies
= % Boundary Conditions
&n CFD
= =3 FE&
ﬂ Blocks
BB side Sets
}j Mode Sets
4 Forces
H pressures
R Tempuratures
=g Displacements
85 Corvections
B> Heat Fluxes
=) 554 Eroups
= pitkﬂd 1
= 43 Materials
3} Material 1
= @ Volumes
B Yolume 1 (v) 1
B Yolume 2 2
B Yolume 3 3
Ef valume 4 (v) 4
E@ Yolume 5 5
E@ Volume 6 &
@ violume 7 7
Bl Volume 13 {v) 13
B Volume 14 14
@ volume 15 15
B Volume 16 {v) 16
& volume 17 17
& volume 15 18
& Yolume 19 19
B Yolurme 20 20
Bl Yolume 21 21
Ef volume 24 24
@ Yolume 25 25
@ Yolume 26 26 ~

Makerial

Figure 1. Geometry Tree Window

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing boundary
condition sets. To create boundary conditions, see the Materials and Properties menu on the main
control panel, or right-click on one of the boundary condition labels and select the "Create New"

66

Cubit 15.2 User Documentation

option from the context menu. Geometric entities or groups can be added to blocks, nodesets, or
sidesets by dragging and dropping inside the tree view window. Assembly data may also be
organized in the geometry tree window through drag and drop.

Picked Group

The current selections in the graphics window can be added to a "picked group™ by selecting the
"Add to Picked Group™ from the Right click menu. Selections can also be added to the picked
group by dragging and dropping onto the group from the geometry tree window. The picked
group can be substituted into any commands that use groups. To remove an item from the picked
group, use the "Remove from Group™ option in the right click menu in the geometry tree or from
the graphics window.

va

| e|®| 2

Full Tree
M ame | 0 | Properties ﬂ
T TEPERCRE 0]
b3 Modesets (0)
L Cidesets (0]
-1 A Groups
= picked Y
[lj Surface 1 1
-l Surface 2 2
[Ij Surface 3 3
[Ij Surface 4 4
1S Y olumes ﬂ
Surface 5 ﬂ

Figure 2. Picked Group

Right-Click Menu Functions

The geometry tree's context menu is sensitive to the type of item and the number of items
selected. Functions that apply to the item type and number of selected items are available
from the context menu. These include the following:

e Zoom To - Available for all geometric entities

o Rotate About - Change the center of rotation to the centroid of the entity without
zooming

Fly-In - Animated zoom feature

Locate - Labels the selected entity in the graphics window

Draw - Draw this entity by itself.

Isolate - Similar to Draw command, but the display will not be refreshed with a graphics
reset. To redisplay the model, select All Visible from the graphics window right-click
menu.

e Transparency On/Off - Toggles transparency mode

e Visibility On/Off - Toggles visibility

67

Environment Control

Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity
in the tree will do the same thing. This will also work for boundary condition entities
(blocks, nodesets and sidesets)

Mesh - Mesh selected entity at current settings.

Delete Mesh - Available for meshed entities

Reset Entity - Deletes mesh, and returns all settings to default values.

Delete - Available when VVolumes and Groups are selected.

Create New Assembly/Sub-assembly/Part - You must specify the absolute path to
create a new assembly, sub-assembly or part (e.g. /al/pl). It may also be necessary to
refresh the full tree before viewing changes.

Add Selected to Part- Add the selected volume in the graphics window to the selected
part on the geometry tree.

Remove from Metadata - Deletes the selected part or assembly metadata information.
An assembly must be empty to remove it

View Metadata - List metadata in the command line workspace

Rename Metadata - Allows you to rename a part or assembly

Clean Metadata - Removes all parts and assemblies that are not associated with any
geometric entities.

List Volumes Without Parts - Lists all volumes that are not associated with a part in the
output window

Show Part Name/Description -Toggles the display of the part name/description in the
tree.

Goto Part - Finds the associated metadata part when a volume is selected.

Measure - Available when two entities are selected or 1 curve is selected

Refresh Full Tree - Used to return to main tree

Collapse Tree - Available when entities are selected.

View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh
Full Tree option to return to main tree view.

View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the
main tree view.

Create New Volume - Available when the user right-clicks over the VVolumes (parent)
label. Opens the geometry-volume-create panel

Import Geometry - Available when the user right-clicks over the Volumes (parent)
label. Opens import dialog.

Create New Group - Available when the user right-clicks over the Groups (parent) label.
Clean Out Group - Available when groups are selected. Removes all entities from
group.

Remove from Group - Available when groups are selected. Removes selected entity
from the group.

Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window
to the chosen block, nodeset, or sideset in the geometry tree.

Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics
window from the chosen block, nodeset, or sideset in the geometry tree.

Create New Block/Sideset/Nodeset - Available when the user right-clicks over the
respective Boundary Conditions (parent) label.

68

Cubit 15.2 User Documentation

e Create New <boundary condition> - Available when highlighting desired boundary
condition in the tree including CFD and FEA boundary conditions.

o Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of
existing entities

o Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other
entities

e Delete Selected Boundary Condition - Deletes any selected boundary conditions

o Draw Selected Boundary Condition - Draws selected boundary condition by itself

o Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions

o List Selected Boundary Condition - Lists information about selected boundary
conditions in the command line window

o Remove from Block/Sideset/Nodeset - Removes selected entity from the specified
block, sideset or nodeset

e Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks
composed of tet elements

o Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks
composed of tet elements

o List Info - List information about selected entity in the output window.

Meshing Tools
The meshing power tool provides a tool for determining whether a geometry can be meshed
using autoscheme, or if it requires its scheme to be set explicitly. This tool is designed to help
guide users through geometry decomposition process by providing a convenient way to see
which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools
Entity Specification- The meshing power tool works for volumes or surfaces.
Options Button - Opens the Tools>Options dialog to change the visualization colors of surface
schemes for the meshing tool
Analyze Button - The Analyze button issues the autoscheme command for all selected volumes
and surfaces.
Output Tree - The output from the meshing tool is displayed in tree format. Geometry is
divided into "Scheme Set" and "Scheme Not Set" divisions. The geometry is listed under these
nodes. If autoscheme was successful, its assigned scheme is also displayed.
Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics
window. Green means that they are currently meshable using the autoscheme. Red means that
they require their scheme to be set explicitly. Turning this capability off will return the volumes
and surfaces to their original colors.
Meshing Tools Buttons - Several meshing tools are available to the user from this window.
Depending on the entity selected, these are also available from the right-click context menu, and
they are described below.

Right Click Context Menu

e Zoom To - Zoom in on this element in the graphics window
« Draw - Draw this entity by itself in the graphics window

69

Environment Control

o Locate - Locates and labels entity in the graphics window

o Rotate About - Issues Rotate about command for selected entity

e Visibility On/Off - Toggle visibility

o Reset Graphics- Reset graphics display

e Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can set
interval sizes for the selected geometry

e Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set
a scheme for the selected entities

o Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh
panel to set vertex types.

e Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you
have entities selected in the tree window it will input them to the imprint/merge
command.

e Webcut - Opens the Geometry/VVolume/Webcut panel on the control panel. If a volume is
selected in the meshing tool window it will input it in the webcut panel.

o Color Surfaces - Color surfaces based on their schemes. You can change the default
colors by selecting the Options button.

o Restore Colors - Restores colors on selected entity or entity type

e Mesh - Meshes the selected entities (bypassing control panel)

e Delete Mesh - Deletes the mesh on selected entities

e Unmerge - Unmerges selected entities

e View Descendants - Opens a list of child entities and their meshing schemes. Press
Analyze to return.

e View Ancestors- Opens a list of parent entities and their meshing schemes. Press
Analyze to return.

o View Neighbors- Opens a list of bordering entities and their meshing schemes. Press
Analyze to return.

Mesh Quality Tools

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh
Quality Tool works on meshed entities to analyze mesh quality based on selected metrics. Output
from the mesh quality analysis can be visualized using color-coded scales. The mesh quality tool
also contains tools to improve mesh quality including smoothing, refinement, node merging,
mesh validation, deleting mesh elements, and repositioning nodes.

70

Cubit 15.2 User Documentation

S IDCIEE
&@ | Volume +| fall

@ Elptinns| Yizual | Analyze |

Paoaor Elements

Results | Clualiby |

315hape
“MNo bad elements found

QEO{})E—\}‘O
]| R

Figure 1. Mesh Quality Tools
Entity Type - The mesh quality tools can only be applied to mesh entities including volumes,
surfaces, hexahedra, quadrilaterals, triangles, or tetrahedra.
Help Button - Opens context specific help for this topic.
Options Button - Clicking on this button will show the Tools>Option menu dialog that allows
users to manually enter metric range settings. The settings are persistent between sessions. For a
description of quality metrics and default ranges click on one of the following links:

o Metrics for Hexahedral Elements

e Metrics for Quadrilateral Elements
e Metrics for Tetrahedral Elements

e Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel
specific to the entity selected. To visualize elements in the graphics window based on a color-
coded quality scale, you must select the entities to visualize and check the "Display Graphical
Summary" check box. Once that box is selected, you must also make sure the "Draw Mesh
Elements™ option is selected. Then press the Apply button

Analyze Button - This button starts the quality processing based on the metrics/filters selected.
Output Window/Tree - The failed elements are shown in the tree under the heading "Poor
Elements"”. For each metric/filter the output will be listed in a tree format with the following
nodes.

1. The top node on the tree is the name of the metric.

71

Environment Control

2. The next node under is the owning volume or surface when volumes or surfaces are
analyzed.
3. The next node will be categories or groups of elements. Possible categories are:
o All Above Threshold - represents all mesh elements above the quality threshold
upper range
o All Below Threshold - represents all mesh elements below the quality threshold
lower range
o Top"n" - This will expand into a list, up to 50 elements long, of the worst
offending elements above the upper threshold range.
o Bottom "n" - This will expand into a list, up to 50 elements long, of the worst
offending elements below the lower threshold range.

4. At the lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way items are
sorted, click on the headings. The right-click or context menu will show various remedies
depending on what is selected. Performing an operation on a parent node will perform the same
operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may use to
improve mesh quality and include.

« Smooth Button - Opens the Mesh>Entity>Smooth panel

« Refine Button - Opens the Mesh>Entity>Refine panel

e Move Node - Opens the Mesh>Node>Move Node panel

e Merge Node - Opens the Mesh>Node>Merge Node panel

o Delete Mesh Element - Deletes selected mesh entity

o Validate Mesh - Issues the validate mesh command

e Check Coincident Nodes - Issues the check coincident nodes command.
o Refresh Graphics

Right-Click Context Menu Items

e Draw - issues a draw command for any tree node below the metric name.

e Color Code - Issues a 'quality draw mesh' command for any tree node below the
metric name

o Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will
draw and label selected entities in the graphics window.

e Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an
animated zoom feature.

e Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri

« Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri

e Vis on/off - Issues visibility on/off for volume/surface

e Smooth - Issues generic smooth command for volume/surface/hex/tet

e Smooth Surface Parent - issues a smooth surface command for the surface parents of
selected quads and tris.

72

Cubit 15.2 User Documentation

o Delete Mesh - issues delete mesh propagate command for vol/surf

o Delete Elements - issues delete element command for mesh entities in all categories
except ‘all'

o Validate mesh - validates selected volume or surface

o Check Coincident Nodes - checks for coincident nodes on volume or surface

e Smooth Panel - brings up the correct smooth panel depending on what's selected

e Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for
selected quads and tris

e Merge Node Panel - brings up the panel to merge nodes

e Move Node Panel - brings up the panel to move nodes

o Reset Graphics - resets the display

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry tab. In
many cases, a model will fail to mesh because of problems with the geometry. Since the range of
geometry problems is so wide, and because these problems can be hard to diagnose, the
Geometry Power Tool has several built-in tools designed to analyze and repair these problems.
The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing
capability. It also contains a powerful toolkit of geometry modification methods to fix these
problems. All of the common geometry clean-up tools are now in one place on the GUI menu. In
addition, there is a window that lists results from geometry analysis in a tree format, making it
easier to find, diagnose, and solve geometry problems. And Cubit will save your settings, so you
can run the same diagnostic tests each time you use the geometry power tools.

73

Environment Control

PoverTools Q|
3 & |@|2|¥
& Volume ID(z) |al

Shartest Edge Length |1
[Show Options

ﬂ Analyze

Entity ID | Entity Data

oM E
Lk B

| | S| A

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to diagnose
potential problems for mesh generation. To display a list of tests, click on the Show Options
check box. By default all tests are selected and run on geometry. Some tests may not apply to
specific geometry, or may only need to be run once per geometry (i.e. bad geometry definition
test). Clicking on the box by each test will deselect it.

The geometry analysis inputs and tests are summarized below:

Shortest Edge Length -The shortest edge length is a value that is input by the user. It
determines the minimum allowable threshold for small features. It is used as an input to test for
small curves, small surfaces, small volumes and close loops. The default value for this is 1. This
value should be changed relative to the size of the model. In a very broad sense, it represents a
desired mesh edge length. Curves and surfaces which are smaller than this size, and which may
be troublesome to mesh with the desired granularity, will be flagged and they can be removed or
modified.

Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the
user to determine the definition of small or large angles. The default values are set at 350 degrees
for the large angle and 10 degrees for the small angle. These values are used to test for angles
between curves, surfaces, and at tangential intersections.

74

Cubit 15.2 User Documentation

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and
at tangential intersections. The test will only look for curves or surfaces that are adjacent.

Tangential Intersection - A tangential intersection is formed when two parallel
surfaces share an edge and have a 180 degree angle between them. The tangential
intersection test is looking for the condition where two surfaces that meet
tangentially share a common edge, and each of the surfaces has another edge
which resides on a third face and forms a small angle as shown in the following
example. Surface 1 and Surface 2 are tangential to each other and share a
common edge. Both Surface 1 and 2 have another edge which resides on Surface
3 and forms a small angle at the vertex common to all three surfaces.

Figure 2. Tangential Intersection
Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that
can be merged. Pressing the "Merge all" button on the Power Tools will automatically merge all
entities flagged by the merge test.
Overlap Check - The overlap tests look for geometry that are either overlapping or coincident
(exactly on top of each other). Keep in mind that some of these problems may disappear with
imprinting and merging.
Small Features Check - Small features may be necessary and desirable in a model, but many
times they are the result of poor geometry translation or import, or they may just not be
important to the analysis. The small features tests look for small curves, small surfaces, and
small volumes. These tests rely on the user-defined short edge length parameter. Small curves,
including zero-length curves such as hardpoints, are compared directly against the defined
parameter, and flagged if they less than or equal to the given parameter. Small surfaces and
volumes, on the other hand, are compared against their hydraulic radius. For surfaces the
hydraulic radius is 4*surface_area/perimeter. For volumes the hydraulic radius is
6*volume/surface_area.

75

Environment Control

Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from Spatial,
Inc. for much of its geometric modeling capabilities. The bad geometry definition check calls
internal validation routines in these libraries, when available, to check for errors in geometry
definition. If the third party library does not provide validation capabilities, this check will not
return anything. Note: ACIS is a trademark of Spatial.

Blend Surface Check - A blend surface is a transition surface between two orthogonal planes,
such as a fillet. The blend surface check identifies the surfaces which meet this criterion. Many
times these surfaces are candidates for the split surface command or the remove surface
command. The split surface command allows you to split these blend surfaces into two surfaces,
making it easier to mesh the volume. The remove surface command removes the surface and
extends the adjoining surfaces until they intersect.

Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single
surface for which the shortest distance between loops is less than a user specified tolerance. The
tolerance for close loops is the square of the shortest edge length parameter. Close loops are
common around holes and fillets, and are usually found where one loop is entirely within the
other loop. These surfaces are often candidates for removal, or tweaking.

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable
command panels on the Control Panel. You must press the Apply button on the Control Panel to
execute the command.

@Split Surface Button

The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces,
for example, where splitting a surface may facilitate sweeping. To select a surface for splitting,
click on the surface in the tree view. To select multiple surfaces in the window, hold the CTRL
key* while selecting surfaces (surfaces must be attached to each other). Then press the split
surface button to bring up the Control Panel window with the ids of selected surfaces in the text
input window. The split surface menu is located on the Control Panel under Geometry-Surface-
Modify. You must press the Apply button for the command to be executed. You can also bring
up the Split Surface menu by selecting surfaces in the tree view and selecting Split from the right
click menu.

*Note: For Mac computers, use the command key (or apple key) to select multiple entities

JHeal Button

The healing function in Cubit is used to improve ACIS geometry that has been corrupted during
file import due to differences in tolerances, or inherent limitations in the parent system. These
errors may include: geometric errors in entities, gaps between entities, and the absence of
connectivity information (topology). To heal a volume, select the volume in the geometry repair
tree view. Then press the heal button. You may also press the heal button without a geometry
selected in the window, and enter it later. The Control Panel window will come up under the
Geometry-Volume-Modify option with the selected volume id highlighted. If no entity is
selected, or if another entity type is selected, the input window will be blank. You can also open
the healing control panel by selecting Heal from the right click menu in the geometry power
tools window.

Tweak Button

76

Cubit 15.2 User Documentation

The tweak command is used to eliminate gaps between entities or simplify geometry. The
tweaking commands modify geometry by offsetting, replacing, or removing surfaces, and
extending attached surfaces to fill in the gaps. Tweaking can be applied to surfaces, and it can be
applied to curves with a valence no more than 2 at each vertex. It can also be applied to some
vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify
control panel will appear with the selected surface id in the input window.

Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge
between two orthogonal surfaces. The curve option is located on the Geometry-Curve-Modify
panel under the Blend/Chamfer pull-down option.

Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted
corner between three orthogonal surfaces. The vertex option is located on the Geometry-Vertex-
Modify panel under the Tweak pull-down menu.

Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any
other curve will cause the Geometry-Surface-Modify menu to appear.

@Merge Button

The merge command is used to merge coincident surfaces, curves, and vertices into a single
entity to ensure that mesh topology is identical at intersections. Unlike other buttons on the
geometry repair panel, the merge button acts as an "Apply" button itself. All geometry that is
listed under "mergeable entities” will be merged.

| 32 |Remove Button

The remove button is used to simplify geometry by removing unnecessary features. To use the
remove feature, click on the surface(s) in the Tree View. Right click and select the Remove
Option, or click the Remove icon on the toolbar. The Control Geometry-Surface-Modify control
panel will appear, with the surface ids in the input window. The Remove control panel can also
be accessed from the right-click menu in the Geometry Power Tools window. Select options and

press apply.

g Regularize Entity Button
The regularize button is used to remove unnecessary topology. Regularizing an entity will
essentially undo an imprint command.

ﬁ|Remove Slivers

The remove slivers button is used to remove surfaces with less than a specified surface area.
When ACIS removes a surface it extends the adjoining surfaces to fill the gap. If it is not
ossible to extend the surfaces or if the geometry is bad the command will fail.

5’ Auto Clean Geometry

The auto clean button is used to perform automatic cleanup operations on selected geometry.
These automatic cleanup operations include forcing sweepable configurations, automatically
removing small curves, automatically removing small surfaces, and automatically splitting
surfaces.

<
i Composite Button
The composite button is used to combine adjacent surfaces or curves together using virtual
geometry . Virtual geometry is a geometry module built on top of the ACIS representation.
Surfaces may be composited to simplify geometry in order to facilitate sweeping and mapping

77

Environment Control

algorithms by removing constraints on node placement. It is important to note that solid model
operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual
geometry. Both curves and surfaces may be composited.

‘ﬂCollapse Angle Button

The collapse angle button uses virtual geometry to collapse small angles. This is accomplished
by partitioning and compositing surfaces in a way so that the small angle gets merged into a
larger angle. Pressing the collapse button on the geometry power tools will open the collapse
menu under Geometry-Vertex-Modify control panel. This panel can also be opened by selecting
Collapse from the right click menu in the Geometry Tools window.

”Ei|Collapse Surface Button

Pressing this button will open the collapse surface panel on the main control panel. The collapse
surface function uses virtual geometry to eliminate small surfaces on the model to improve mesh
quality. It is most useful for blend surfaces.

@‘Collapse Curve Button
Pressing this button will open the collapse curve panel on the main control panel. The collapse
curve command is used to eliminate small curves using virtual geometry.

=

“ Reset Graphics Button

The reset graphics button will refresh the graphics window display.

Right Click Menu

The following right click menu is available from the geometry power tools. Specific options
depend on the type of entity selected.

e Zoom To- Zoom to selected entity in the graphics window

e Reset Zoom - Reset graphics window zoom

e Fly-in - Animated zoom

o Locate - Labels the selected entities in the graphics window. Refresh screen to hide.

o Draw - Displays only selected entities by themselves.

« Highlight - Highlights selected entities.

o Draw with Neighbors - Displays only selected entities with all attached neighbors

« Clear Highlights - Clears all highlighted entities and reset graphics

o Reset Graphics - Reset graphics window

e Tweak - Opens the tweak menu in the main control panel

o Remove - Opens the remove menu in the main control panel

« Remove Slivers - Opens the remove sliver menu in the main control panel

e Remove all - Available when the clicking on an item in the "small surfaces" list. Opens
the remove menu in the main control panel with all surfaces in the category as inputs.
The individual option will be selected on the panel by default.

e Split - Opens the split surface or split curve menu in the main control panel, depending
on the type of entity selected.

e Auto Clean - Opens the auto clean menu in the main control panel.

e Regularize - Issues the regularize command on selected entity.

e Merge Selected - Merge selected entity from mergeable entities list

78

Cubit 15.2 User Documentation

Merge All - Merge all entities listed in the mergeable entities list

(Virtual) Composite - Opens the composite menu in the main control panel

(Virtual) Collapse - Opens the collapse angle menu the main control panel

Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

e Analyze Geometry - Similar to pushing the Analyze button.
« Highlight All - Highlight all members of this category.

o Draw All - Display only members of this category.

o Locate All - Label all members of this category.

Defeature Tool

The Defeature Tool is capable of removing small irrelevant curves and surfaces. These small
curves and surfaces are one of the main sources of low quality elements and meshing
failures. Sliver surfaces and curves generally exist at fillets, chamfers, and sliver surfaces at
misalignments in imprinted assembly models.

Defeaturing small curves and surfaces involves three main steps:

1. Analyze the model to automatically detect small curves and surfaces.
2. Manually deselect, if needed, detected small curves and surfaces.
3. Execute the defeature tool to remove small curves and surfaces.

Step 1 requires specifying volume ids (e.g. all) and a tolerance (e.g. 0.6) as shown in Figure

1. Clicking “Analyze” button will automatically find small curves and surfaces in the volumes
specified. Figure 2 shows the highlighted small curves and surfaces with the label

information. Figure 3 shows a zoom view of a small surface.

In Step 2 the user is allowed to deselect entities by unchecking entities from the list “Entities to
be Defeatured”. Users can also use “Highlight”, “Draw”, and “Locate” buttons to examine the
automatically detected entities (see Figure 2).

In Step 3 actual defeaturing is performed by clicking the “Execute” button (see Figure 5). Figure
4 shows the zoom view of a defeatured volume. Defeatured volumes are created in a new user
specified group (by default in “defeature_group”) as shown in Figure 6. Only the volumes that
have small curves and surfaces will be defeatured. Also, by default old original volumes are
deleted and new defeatured volumes (child entities) will use the corresponding old ids. Please
use the option “Keep Originals” if you want to have both old original and new defeatured
volumes.

NOTE:

1. The new defeatured volumes are in MBG format. That is defeatured volumes are facet
based instead of NURBS based ACIS volumes. Therefore, it is highly recommended to
perform NURBS based operations such as webcut and imprint before calling defeature.

Command Syntax:
Set tolerant mesh mbg only

79

Environment Control

This command forces the mesh to associate with new defeatured volume. Currently, this
command must be called before calling the defeature command below.
Defeature curve_length <value> [Curve <ids>] [Curve <ids>] surface_prox2d
<value> [Surface <ids>] [group <id>] [keep]
curve_length <value>: Curves with length less than or equal to <value> are automatically
detected as candidate for defeaturing if auto_identify is specified. Otherwise, [Curve <ids>]
must be specified.
surface_prox2d <value>: Surfaces with narrow region between opposing bounding curves are
automatically detected as candidate for defeaturing if auto_identify is specified. The 2d
proximity <value> specified in detecting surfaces containing narrow regions. If auto_identify is
not specified, then [Surface <ids>] must be specified.
group <id>: Defeatured volumes are added to the group id specified.
keep: If keep argument is specified original entities are kept along with new defeatured
volumes. If keep argument is not specified, then original entities are deleted and new defeatured
volumes and its subentities (surfaces, curves, and vertices) will use the ids of original volumes.

Preserving Critical Geometric Entities

Before defeaturing the geometry, the user may wish to specify geometry that will be preserved
during defeaturing. The below given "Fix" keyword is used to preserve any entity. The user may
specify a volume, surface, curve, or vertex to fix.

Mesh Tolerant Fix [Volume|Surface|Curve|Vertex] <range>

To reverse the effects of fixing a geometric entity, the user may "free" an entity using the
following syntax

Mesh Tolerant Free [Volume|Surface|Curve|Vertex] <range>

Example for fixing geometric entities:

reset

brick x 10

brick x .1

move vol 2 x 5

unite all

mesh tolerant fix surf all

mesh tolerant fix curve all

Defeature curve_length .2 curve 31 29 27 26 24 32 13 30 17 28 22 25
surface_prox2d .2 surface 13 14 15 16 12

Sample Journal File:

Even though the defeature tool is mainly intended to driven by the GUI, it can be used via
command line. Without the GUI, it will be harder to provide the list of small curves and surfaces
to the defeature command. Here is a sample journal file:

import simple assembly

import acis 'assemblylla.sat'

perform any ACIS based operations such as webcutting and imprinting first

imprint all

merge all

enable the developer only command

80

Cubit 15.2 User Documentation

set developer on

force the mesh to associate with defeatured MBG volumes

set tolerant mesh mbg only

create a new group to store defeatured volumes

group 'defeatured_vols' add volume all

perform actual defeaturing by specifying the volume ids, tolerance, and small curve/surf ids.
defeatured volumes will be placed in the user specified group id and original entities can be

kept along with new defetured volume using “keep” option.

defeature volume all curve_length 0.3 curve 107 103 102 10088 85828096 4 2 214 212 211
210203 200 199 197 188 187 185 183 170 167 164 162 234 232 227 225 254 253 252 251 249
248 243 242 272 271 270 269 265 264 259 258 288 287 286 285 281 280 275 274 304 303 302
301 297 296 291 290 312 311 307 306 surface_prox2d 0.3 surface 47 48 50 51 41434042241
3111112118 120121122 124126 128 129 130 132 134 135 136 138 140 141 142 144 81 82
8384 88899091 94 95 96 97 100 101 102 103 group 2 keep

del any old original volumes if you don’t want it anymore

delete vol 1 to 11

enable visibility of only defeatured vols

vol all vis off

vol all in group 2 vis on

set scheme to tetmesh

vol all in group 2 scheme tetmesh

set mesh size

vol all in group 2 size 1

mesh defeatured vols

mesh vol all in group 2

disable developer only command

set dev off

Figures

81

Environment Control

i Cubin 1216 =R EoR

Eile Edit Miew Display Jools Help

DNE NENEN Pr 999000921 ELQQ¢EH - -

[*3 [& ™ (@]]

volume D{s) all

Toleranoe .6

Analyze

Entities to be Defeatured

Item Size

Deteatisred Group Rame
deleatune_group

Kiep Originsis

A,

Command Ling 5 x

Aprieprs Eddar L

CUBTT> import aois “C:CUBIM cubf_best' defestura’ assambly] 1a.5at" sttributes_on separate_bodies
Geomabry anging sat to: ACTS Werson 21.0.1.0
1 Rebd 11 ACES Enntses fnom the input fite

fanable Mam: Current Value

Congbrocted 11 Violurses: Lo 13
Journaked Cormmbnd: impert pad "CHCUBIT cubkt_test defeabare’ assmblyl Lacsal™ aitnbubes_on separate_bodies

Current antity is Volume §1.

CUBIT= -
|\ command Y Eer ﬂl]_l":,l'
Working Directory: CACUBIT build/claro/main o

Figure 1: Specify Volume ID and Tolerance before clicking “Analyze”

82

Cubit 15.2 User Documentation

0 Cubit 1216 == Fo= ™
Eile Edit Miew Display Tools Help

DYE NEEHN Pr @399090RF2LELQLIE -

Bowetr Tools 8
8.8 = (@[]
velume Dis) B Curve 210
Toleranoe .6
. P
Entities to be Defeatured Curve 15?
Item Size w - N

Small Curv.. Length e 'GUNE- 144
4 Namow Su. Area

o Surfa.. 02500000

| Surfa.. 012500000 -

) i 2
ghigh | Drew | | Locate || Citer |

Dalentiered Group Rame
dﬁeame_group

Kieep Originals

Aprapro Edbor & x
Geomatry enging sel to: ACIS Versen 21,0.1.0

Jariable Nami Cugrent Value Read 11 ACES Entities: from the input fike

- Corratnoeted 11 Welumes: 1 o 11
Journaled Command: impart acs “C:CUBITcubit_test|defeabure’ sssemblyl Lacsat™ attributes_on separate_bodies

CUBIT >
Commanid Errar

Working Directory: CACUBIT Buld/claro fmain

Figure 2: Use “Highlight”, “Draw”, and “Locate” to visualize small curves and surfaces

a

83

Environment Control

W cubit 1210

file Edit View Display Jools Help

DB NENN P 99990R09F24Q0H - - B
Power Tools 8 =

(e8] = @[]
volume D{s) il

Tolerance .46
Analyze

Entities to be Defeatured

Item Size

Small Curv.. Length
4 Namow Su... Area Curvec?14

| Surfa... 012500000 v
| Burfa... 012500000 -

q i ¥
(ighigh| | Drem | [Locate | | Gieae |
Defiatisrid Group Mame
MEG[LI’!_Q:W#

Keep Originals
Exeoufte

Perform Action

e ? NS ®

“

= Comenand Ling
Aprepro Bdgor =
Rebd 11 ACES Enbties fnom the input file

fanable Nam: Current Value

1 Conebrocted 11 Violurrss: Lo 13
Journaked Commbnd: imgsrt bas "COCUBIT cubkt_testdefeabore’ adsemblyl Lacsal™ altnbubes_on separata_bodies

Current gntity is Surface 1046,
CUBTT =
_Command /N Emer _Hesoey [

Wrking Directory; C/CUBIT build/clare/main

s mem X

Figure 3: Zoom view of a small curve and surface

84

Cubit 15.2 User Documentation

0 Cubit 1218

Eile Edit- View Display Tools Help
CRNE NEEND Pr@9999Rh92E 26 oH -
Powver Tools 8 =

(e8] = (@[]
volume D{s) Bl

Toleranoe .6
Analyze

Entithes to be Defeatured

Item Size

Small Curv.. Length
4 Namow Su.. Area
o Surfa... 012500000
| Surfa., 0127500000 -

) i ¥
(ighigh | Drem | Locate | | Cieae |
Dafiaatisringd Group Hame
dr!eau.re_g:wa

Keep Originals
Expoufte

Perform Action

e ? NS z

“

Comemand Ling
Aprepro Edeor L
-

Jariable Nami Curvent Value e mesh-based geometry creabed: Wolume 11, Vobone §, Volume 1
Journaled Command: defesture curve_length 0.6 core 107 103 102 100 85 85 82 80 96 4 2 214 212 211 210 203 200 199 157 1

1 BB 157 185 153 170 167 164 167 suface_proodd 0.6 surface 47 48 50 51 41 43 40 42 24 1 3 81 82 83 B4 B8 &9 90 91 94 95 96
ST 100 101 102 103 group 2

CUBTT> draw vol o
CUBIT> i
_Command /N Emer [\ Hestoey [

Waorlking Directory, C/CUBIT/busld/clanomain
Figure 4: Zoom view of defeatured volume

85

Environment Control

i Cubit 1216 = N
File Edit View Display Jools Help

DNE NN Pr 399993 FELLE - -

Power Toolks [
N8 " @[]
volume D{s) Bl

Toleranoe .6

Analyze

Entithes to be Defeatured

Item Size

Small Curv.. Length
Wamow Su.. Area

ighigh | Drew | Locate| | ciear |

defeabure_group

Keep Origarisls *_.-hv
Execute -

Comenand Line &5 %
Defeatane the candidate entities |

CUBRIT > Defenture curve_bength .6 cunve 107 103 102 100 &6 A5 82 80 9 6.4 7 214 X12 211 210 203 200 199 197 184 187 185 18 1
3170 167 164 162 surface_proshd 6 surface 47 48 50 51 41 4340 42 24 1 381 A2 &3 B4 28 80 5091 54 95 94 97 100 101 102
103 group 2
Crepting defestured volumes from Wolumse 11, Voleme 1, Volumse &
Ui defestunng toleranoes:
Fesfure Sge = 0LODDDO0
Aprepro Edtor L Curve Length = 0, 500000
Curve Curvatre Radivg = 0000000
Surface Curvabure Radms = 0.0005500

lanable Nam: Current Value 0 Procamity = 0.600000

Kew mesh-based geometry created: Volume 11, Voleme 1, Volumse &

Journaked Command: defesture curve_length 0.6 e 107 103 102 100 83 B5 82 B0 954 7 214 212 211 210 203 200 199 197 1
BE 18T 185 183 170 167 164 162 sufaoe_picodd 0.6 sumface 47 48 50 51 41 434042 24 1 DB B2 A B4 BRI B2 D0 91 04 9506 |
4 100 101 102 163 group 2 T

CUBIT > il
Command \Ervar

Working Directory. CACUBIT/ build/clanemain i

Figure 5: Click Execute button to Defeature automatically/manually selected entities

86

Cubit 15.2 User Documentation

0 Cubit 1316 [o | = e
Eile Edit Miew Diplay Jools Help
DY@ YNEEN P 9990900024 FE2Q9H
Porweer Tools [-
g . Bl
i e A @]
Current View | Full Tres -
.
Hame [} Prope
6 Assemiblies
B Boundary Cond...
Q Materials
4 5 Grougs
£ picked 1
A5 defeature_gro.. 2
& Yolume 1 1
& Volume 6 6
@ Volume 11 11
A6 Volumes
@ Volume 1 1
& Voleme 2 2
@ Volume 1 3
& Volume 4 @
@ Volume 5 5
@ Volume & 6
& Volume 7 7
@ Volume & 8
& Volume 9]
& Volume 10 10
@ Volume 11 11
Comamand Line -
-
CUBIT> Defabare curve_length 6 curve 107 103 J0F 100 £8 85 52 80 96 4 2 214 20Z 211 210 203 200 199 197 188 167 185 18
3170 167 U4 162 surface_prosdd .6 surfede 47 8 50 51 41 434042 24 1 381 62 &3 B4 8% 69 9091 54 95 96 57 100 101 102
103 group 2
4 L] ¥ || | Cresting defeatured volumes from Yolums 11, Violume &, Solumse 1
— sy dafeaiunng folaranoes:
dufeature_group) Feature Sire = L0000
Curve Length = 0600000
Aprapre Edenr & % | Curve Convature Rads = QLO00000
Surface Cureabure Rades = 0000000
20 Procamity = 0600000
fanable Name Current Value il y =0
1
lebw mesh-based geometry creabed: Wolume 11, Volene §, Volume 1 |
Journaked Command: defesture curve_liength 0.8 conve 107 103 102 100 55 85 52 50 9 6 4 2 214 212 211 210 203 200 199 157 1| ©
BA 157 185 153 170 167 164 167 swface_preocd 0U6 surface 47 48 50 51 41 434042 74 1 3 81 B2 B3 54 B8 59 00 91 D4 95 06
97 100 104 102 103 group 2
CUBIT> dra wol 2l
Current entity is Surface 106, -
\ Command Y _Eer 1\ m:.l'
Working Directory: C/CUBIT build/clarefmain i |

Figure 6: New defeature_group contains defeatured volumes in MBG format
Geometry/Mesh Comparison Tool
The Geometry/Mesh Comparison Tool tries to find geometry and mesh that do not correspond.
The typical use is to import a geometry file and then import a mesh file that is associated with
the geometry. The comparison tool will locate mesh that does not correspond to the geometry.
The tool will also show geometry that does map to any mesh.

87

Environment Control

i Tets 71 Hexes/Tets
[Tolerance 126

Block ID(s) all

|-____| Draw in Context

Compare Results

B
E i
I Valume ID() &l
! Compare Against . . .
| —_ -
| | @ Blocks) Hexes
I
|
|
i
|
|
|
|
|
I
| Unassociated Entities

Clean Up

The user selects the volumes for the comparison, then selects the mesh entities for the
comparison. A default comparison tolerance value of 1e-6 will be used unless otherwise
specified. No additional setup is required. Select the "Compare™ button to generate results.
Unassociated entities will be displayed in one of two categories:
1) Mesh elements not associated with any volume
2) Partially meshed volumes
Clicking on the labels in the tree will cause the entities to be drawn in the graphics window. If
"Draw Without Refreshing" is selected, the draws will be additive. If "Draw Without
Refreshing™ is not selected, the previous draw will be removed when the current drawn entities
are shown.
The underlying Cubit command for the tool is the following:
Compare volume <id range> {block <id range> | hex <id range> | tet <id range>
[tolerance <value>]
The command will create three types of groups that contain non-corresponding mesh and/or
geometry. The group named "mesh_with_no_volume" contains hexes or tets that cannot be

88

Cubit 15.2 User Documentation

associated with any volume. The groups named "No_meshed_Volume_*" contain the curves of
a volume (for display purposes) that is completely void of any hexes or tets. Lastly, the groups
named "Partially_meshed_Volume_*" contain hexes or tets, faces or tris, and curves of
volumes that could only be partially associated with mesh. The group is created with these
entities so that the user can see the partially meshed regions of the volume.

Property Editor

The Property Editor is a window that lists properties about the current entity selection. Some of
the properties, like CUBIT ID, entity type, or geometry engine, are listed for reference only.
Other attributes, like name, or mesh intervals, color, mesh scheme, or smooth scheme can be
edited from the window. The Property Editor is located on the left panel in the GUI. The
highlighted entity/entities in the graphics window are listed in the property editor window. The
Property Editor also lists information about selected mesh entities, boundary conditions, and
assemblies. Selecting an object from the Tree View will also open the object in the property
editor.

Wew Diplyy Took Help

DY NEMN PrdIPIIAIESRQAGQENDD 2
L m

Mipeg | @ AEHEDY =+ ~pans IHE 00(es s -
st Tosiks LR Cowaarel Fared LR
i 2 - [] Mok - Mpcbareg
r;
S : LXE BN
w': L Fropstes . Erdhy - Sufeo
Aeserbbes
T i e ™
B Pty [|
= N (o[> [= [=]
. Action - Inbarvals
: ! N (m[w]e]o]a]x]
Properties Pag® — _
JPropeee et Pge o x . E e |E
Pavlests Adtatn i - . T
)] 2 Mi=(E) (%]
Frigesty s - Mo -
Puyra ok | h
Celor | — et Fire J Cowrse
] imoary
rgre ; Fo—— T 8 3| Cument S 0T
. . . T [=] it Far Oveslapping Surtaces
] Reshing st 180 ko k. Falin 1 gWAlmms L9 .
Te Mshencd Wolums ! (Yalume 1} ssshing coapleted msing schams
Rlurrer of Eemeris | ¢ me
Phuvias of Modes 1331 :lo:.lrn::d Commaad: merh voluss § |I,|
ek L Currsas sacity ir Voluss §.
e ol CUmETE -
Mested iime : il I e
Werking Dinsctery: :Program FleiCUBIT 11.2 [b

Figure 1. Property Editor Window
The row of buttons on the top of the editor are shortcuts to common commands. These
include:

>
i Meshes the selected entity/entities at their current interval
1] and scheme settings

' Smooth selected entity using the current smoothing scheme

|| Preview mesh intervals on selected entity

Delete mesh on specified entity (do not propagate to lower
=41 order entities)

Environment Control

@i Reset entity to default settings and delete mesh
_ Calculates volumes and surface areas

$ Delete current entity

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some of the
fields cannot be changed, some can be edited from an input field, and others are edited by
selecting from a list, or by opening the corresponding window from the Control Panel.

If multiple entities are selected, the attributes that are similar to both entities will be shown.
Changing an attribute from the property editor will change that attribute on both entities. If
multiple entities are selected the total volume, surface area, and length of all entities will be
shown.

Below is a summary of properties listed for each attribute type.

General Attributes

o Entity ID - CUBIT ID for geometry or boundary condition element

« Entity Type - Geometric type such as VVolume, Surface, Curve, Vertex

o Name - Name by which the entity can be referred to from within CUBIT instead of using
its ID. The entity name can be edited from this window.

e Color - Opens a dialog box with available colors. A color name can also be input directly
into the text field. See Appendix for a list of available colors.

Geometry Attributes

e Is Merged - Returns "Yes" if this entity is merged

e Is Virtual - Returns "Yes" if this entity is a virtual entity

o Location - Returns the location of specified vertex.

e Geometry Engine - ACIS or Mesh-Based Geometry

e Volume - The volume of the specified body

o Surface Area - Surface area of selected surface

o Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
e Length - Length of selected curve

Meshing Attributes

e Is Meshed - Returns "Yes" if the entity is already meshed

e Number of Elements - Similar to "List Totals" command

o Intervals - Number of mesh intervals on element. This can be edited from this window.
The number must be an integer

« Interval Size - Interval size for element. Clicking on box will open the interval
specification panel on the control panel. The interval size can also be entered manually in
the text box.

e Meshed Volume - The meshed volume may be slightly different than the actual element
volume due to the mesh approximation on curved surfaces.

90

Cubit 15.2 User Documentation

Meshed Area - The meshed area may be slightly different than the actual surface area
due to mesh approximation on curved edges.

Length of Meshed Edges - Combined total of mesh edge lengths on curve

Mesh Scheme - The mesh scheme for this entity. This can be changed from the property
editor by selecting from the drop-down list.

Smooth Scheme - The smooth scheme for this entity. This can be changed from the
property editor by selecting from the drop-down list.

Boundary Condition Attributes

1D - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the
finite element model. This value can be edited from the property editor

Name - A user-defined name that is included in the metadata for that object. This value
can be edited from the property editor.

Description - A user-defined description that is included in the metadata for that object.
This value can be edited from the property editor.

Color - Opens a dialog box with available colors. A color name can also be input directly
into the text field. See Appendix for a list of available colors.

Element Type - The finite element type for this block, nodeset, or sideset.

Element Count - The total number of elements for this block or sideset

Node Count - Total number of nodes (available for nodesets only)

Attribute Count and Attributes- The attributes represent material specification data that
is associated with the element block. These values can be changed in the property editor.
You can specify up to 10 attributes per block.

Metadata Attributes

Type - The metadata type: Assembly, Sub-Assembly or Part

Name - The name for the assembly or part. This can be edited from the property window.
Instance - The numeric value associated with the part or assembly

Path - The absolute path of the part or assembly.

Description - The description of the part or assembly. This can be edited from the
property editor

Material Description - The name or description of the material of which this part is
composed. Applies only to parts. This can be edited from the property window.
Material Specification - The formal specification number of the material of which this
part is composed. This can be edited from the property window.

File Format - The name of the file system containing the original version of this entity.
This can be edited from the property editor

Units - The unit system of this part or assembly. This can be edited from the property
editor

The part name, description and material description are available when the associated volume is
selected, and not just when the part is selected.

91

Environment Control

Command Line Workspace

Command Line Workspace x|
CUBIT> br = 10 ﬂ

Euccessfully created brick wolume 1
Journaled Command: brick x 10

CUEIT= E'

Y Command A A4y Emor i History [

The Command Line Workspace is the interface for command interaction between the user and
the CUBIT application. The user can enter commands into this window as if they were using the
command line version of CUBIT. Journaled commands will be echoed to this screen, even if
they were not typed in manually. Thus, if the user wants to know what the command sequence
for a particular action on the GUI is, they can watch for the "Journaled Command:" line to
appear. In addition, this screen will contain important informational and error messages. The
command window has the following four tabs:

Command
Error
History
Script

el A

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check
the "Show Script Tab under Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of Cubit.
Commands can be entered directly by typing at the CUBIT> prompt. This window also prints
out error messages, informational messages, and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be active.
Activate the command window by clicking anywhere inside the window. Commands are typed in
at the CUBIT> prompt. If you do not remember the specific command sequence you can type
help and the name of the command phrase. The input window will show all of the commands
that contain that word or phrase. Alternatively, if you know how a command starts, but do not
remember all of the options, you can type ? at the end of the command to show all possible
command completions. See Command Syntax for an explanation of command syntax rules.

Repeating Commands

Use the Up and Down arrow keys on the keyboard to recall previously executed commands.
Commands can be repeated in other ways as well.

« Hitting the enter key while the cursor is on a previous command line will copy that

command to the current prompt.
e The command window supports copy and paste for repeating commands.

92

Cubit 15.2 User Documentation

Focus Follows Cursor

Beginning with version 13.0, Cubit includes a "focus follows cursor' option for the command
window. The option can be enabled and disabled from the Tools/Options/General options panel.
The setting is persistent between sessions and is disabled by default.

Please note, the focus follows cursor behavior is available only in the command window. All
other windows or widgets require the user to click the mouse in order to grab focus.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there are
errors, a warning icon will appear on the tab. The icon will disappear when you open the window
to view errors. The error window only displays the error output, which can make it easier to find
and read the error output. The command that caused the error will be printed along with the error
information. If the command was from a journal file, the file name and number will be printed
next to the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be
configured in the options dialog on the History page. You can re-run the commands in the
history window using the context menu. You can also clear the history using the context menu.
Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a
Python script using the Script tab, start typing at the "%>" prompt. At the end of each line, hit
Enter to move to the next line . To execute the script, press Enter at a blank line. Scripts may
also be written in the Journal File Editor.

The Claro Python interpreter works as though you were entering lines from the Python command
prompt. This means that a blank line is interpreted as the end of a block. If you want to add
whitespace for clarity you have to add a # mark for a comment on any white line that is in a loop
or aclass.

One possible solution to this problem is to create two Python files. The first file can contain the
complex set of Python instructions(program.py) including blank lines. The second file will read
and execute the first file. An example syntax for the second file is given below.

f = file("program.py")
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.

The interface between cubit and python is the "cubit™ object. This object has a method called
cmd which takes as an argument a command string. Thus, the following command in the script
window:

cubit.cmd(*'create brick x 10™)

will create a cube with sides 10 units long. The following script is a simple example that
illustrates using loops, strings, and integers in Python.
%>for i in range(4):
. X=1*3
.. for j in range(4):
y=j*3
for k in range(4):

93

Environment Control

z=k*3
mystr=""create vertex x "+str(x)+" y "+str(y)+" z ""+str(z)
cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced, even
creating customized windows and toolbars. For a complete list of python/cubit interface
commands see the Appendix.

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is floating it
can be redocked by double-clicking the solid blue bar. By default, it will always be redocked in
the bottom of the application window. To change the size of the floating window, click and drag
the edge of the window. To change the height of the docked window, click and drag the top edge
or right edge.

Journal File Editor
The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and

translate CUBIT journal files and Python Scripts. To open the journal file editor, select the E
icon on the File Tools toolbar, or from the Tools Menu.

& Journal Editor ~=1of x|
File Edit Tools
IDNE KO ® >R
S Unuicled
Vi

Figure 1. The Journal File Editor
The Journal File Editor can be used to create a new Python or Cubit command script. By default,
a new journal file will be in Cubit command syntax. You can change the default in the options
dialog. On the "General" options page, under the Journal Editor heading, you can select the
default syntax. You can change the new journal file's syntax using the translation buttons as well.
When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can
also play a few commands at a time. Select the commands you want to play. Then, right click
and select the "Play Selected” menu item.

94

Cubit 15.2 User Documentation

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open
menu item to open the file you want to edit. You still have all the command play options with an
existing journal file.

You can import commands entered in the Command Line Workspace. The File > Import menu
item contains a list of available imports. Select the tab you want to import from. Only the current
commands will be imported from the command line. Some of the commands you previously
entered might not show up if you have the recommended text trimming turned on. Text trimming
improves the application's performance for speed and memory. It will trim off the oldest text in
the window when a size limit is reached. To get all the command from your current session,
make sure that command journaling is turned on.

The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate
between the two forms. Translating from Python to Cubit commands can cause commands to be
lost. The Journal File Editor will warn you when doing so.

The Journal File editor can be used to edit multiple files at the same time. Each document is
displayed in its own tab. The tab shows the journal file's syntax and name. If you close the
Journal File Editor with unsaved data, it will prompt you to save changes for each of the
modified journal files you have open.

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.

NNE KD D >R

New - Creates a new journal file. The new journal file is placed in a new tab.
Open - Used to select a journal file to open.

Save - Saves the current journal file.

Undo - Undo the last text change.

Redo - Redo the last text change, after Undo.

Cut - Standard text cut operation

Copy - Standard text copy operation

Paste - Standard text paste operation

Play Journal File - Plays the entire journal file

Translate to Python - Translates the current Cubit commands in the journal file to
Python scripts.

Translate to Cubit - Translates the current Python script in the journal file to Cubit
commands.

Other Functionality Available in the Journal Editor
The context (‘right-click’) menu in the journal editor includes several additional functions,
including:

95

Comment Selected Lines - Highlight any text, select ‘comment selected lines', and the
highlighted lines will be commented.

Uncomment Selected Lines - Highlight any text, select 'uncomment selected lines’, and
the highlighted lines will be uncommented.

Clear - select this menu item to clear the contents of the journal file.

Environment Control

e Find - Selecting 'find' from the context menu, or from the edit menu, will bring up a
dialog enabling the user to find text in the journal file. Options are available to do case-
sensitive searches, change search direction, and so forth.

Toolbars

The CUBIT toolbars provide an effective way for accessing frequently used commands.

Below is a brief description of each of the available toolbars. To view a description of the
function of each tool, hold the mouse over the tool in the CUBIT Application to display tool tips.
File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Save - Stare Flay Journal

current model File - Choose a
Mew - Delate and settings to CUBIT journal
SRR e 2 CUBIT (cub) file to play Fause Journal
and S‘tar‘t ower datahaSE ﬁlE FIlE - PEUSE

execution of a

\\B \- E ELlljrBERtl_y runnling
JJ % EE E E Hifﬁle journa

Open- Read & Journal Editar - Flay ID-less
CLUBIT |:.|:L||:I:| Bring up interactive Journal File -
database file text editar far Choose an

running and editing 1D-less CUBIT
CUBIT journal files joumnal file to play

Figure 1. File Toolbar
Display
Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve
valence display options in the Graphics Window.

] Show

Unda Last Toggle Perspective Curve

Ty opy CReration Display Made Valence
“heckpoint / Display Gsomelry Zoom LELIE
: u up nde Entities Display In Zoom Clipping
e ,"I Mesh \\ Dut P'I?‘\ne

P @@@90&@%@@&@@5 99°)|
Wweframe/ Transparent / \ N

T|:| le
MoeE Mode Show L ciﬁt?ar cnﬁé’mg
Cotted Composites the Plane
Hidden Display . .
Line Hidden Salid Smoath ngglle Manipulation
Maode Line Shading cale
Mode Mode

Figure 2. Display Toolbar

96

Cubit 15.2 User Documentation

Select
Controls the Entity Selection Mode for picking or selecting entities. Also controls options for
box/polygon selection.

Tooole
Select Selected Toggle
Groups Enclogeds Between
of Select Geametry Select Mesh Extended Folygon/d

En}ities’// EntitiES\ _— Entities ~—___ \ Elni}ciae_lfct
@@ﬁp/wwmm$3¢Mﬁ

-
‘Bodies Uemcea I::!uad SE|EC1
#-Ra
Wolurmes Cures Element Elements Elements ¥
Modes ar Faces ot
Surfaces Element Triangle Elements
Edges Elements
orFaces
Select Select Select
Select Select Select Inlet Wass Inlet Fairfield Select

Forces Heatfluxes Temperatures F|EI'-.-'-{S “elocities Fressures Symmetries

Np=s | A AE RSB
//l\\\

Select _ Selact Select Select Select Select
Pressures Displacements Convections Inlet Dutlet Periodics
Fressures Pressures

Figure 3. Select Toolbars

Drop Down Menus

Drop Down Menus

The Cubit Drop-Down Menus, located at the top of the Cubit Application Window provide
access to capabilities such as file management, checkpoints, display manipulation, journaling,
system setup, component management, window management, and help.

Cubit (Mac Only)

This menu contains the Preferences dialog box, also called the Options dialog box on other
platforms. It also contains the About Cubit menu and the Quit Cubit option. It is only available
on Mac computers.

File

This menu provides common file operations, including importing and exporting of geometry and
meshimport and export. A list of recently saved or imported files is also provided, allowing a
quick way to import current or recent work. Non-Mac users can also exit and reset the program
from this menu (These options are found under the Cubit tab for Mac Users).

97

Environment Control

Edit
This menu only provides a way to enable the Undo feature of the system. If Undo is enabled, one
level of Undo is available to the user.

View

The View Menu lists all available toolbars and windows in the current CUBIT session.
Selecting a toolbar or window will make it visible. Deselecting a toolbar or window will
hide it. You can also hide an undocked window or toolbar by clicking on the small "x" in
the upper right corner. For more information on docking and undocking toolbars, see
CUBIT Application Window.

Display
The Display Menu controls display options for the graphics window. These options are
explained below:

« View Point - Controls the camera view point. Choices are front, back, top, bottom, right,
left and isometric views.

o Render Mode - Controls visibility modes, including: wireframe, true hidden, hidden line,
transparent, and shaded.

e Geometry - Controls geometry visibility

e Mesh - Controls mesh visibility

o Graphics Composite - Controls the visibility of composited entities in the graphics

window.

Refresh - Updates the graphics display

Background - Changes the background color

Zoom In - Enlarges the model in graphics window

Zoom Out -Shrinks the model in graphics window

Zoom To Fit - Enlarges or shrinks model in the graphics window so it fills the whole

screen

e Toggle Perspective - When this option is selected, the entities in the graphics display
window are drawn in perspective mode.

e Toggle Scale - Turns on or off a graphical scale that can be drawn in the graphics
window to obtain a bearing on model or part sizes.

e Toggle Clipping Plane - Turns on or off the graphics clipping plane

« Toggle Clipping Plane Manipulation - Turns on or off manipulation of the graphics

clipping plane
« Show Curve Valence - Turns on or off the curve valence highlighting

Tools

The Tools Menu contains access to GUI-specific tools and options. These options are explained
below.

« Journal Editor - Opens journal file editor. The Journal Editor is used to write, edit, play,

and save journal files. It can also be used to create and edit Python scripts. A built-in
translator will convert between the two files types.

98

Cubit 15.2 User Documentation

Play Journal File - Plays a specified journal file. You can browse through files and
folders on your computer to select the journal file to play.

Options - Opens the Option dialog box. This dialog box controls all of the preferences
for the GUI including display colors and widths, mouse settings, journal file options,
mesh and geometry defaults, and general layout preferences. MAC users can find this
menu under the Cubit tab.

Components - Opens the Components dialog box. This window is used to load and
unload external and internal components.

Tip of the Day - Open the tip of the day box.

Cubit Tutorials - Opens a menu of step-by-step tutorials for Cubit.

Cubit Manual - Menu to bring up on-line searchable documentation (this document).
About - Menu to show the current version number and trademark information. Mac users
can find the version number under the About Cubit menu in the Cubit drop-down.

Creating Custom Toolbar Buttons

If you have a string of commands that you use frequently, it can be beneficial to make a custom
toolbar button. To create a custom toolbar button open the Tools->Options menu. You can
create up to 10 custom buttons. See Figure 1 for an example toolbar button.

& Options

= Custom Toals Bfton o

DL Button Two

i General

- Geametry Defaults v Enabled

+-Higtory Tool Tip |Create a perforated brick and mesh

i Label Defaults

- Lapaut Fizrnap d:s |default image Browse ..
0SS Cubit Commands brick « 100

----- Mouze - .

 PostP cylinder radiuz 32 12

[oSt Fncessor subtract volume 2 from vaolume 1
i Quality Defaults mesh wal 1

Save Cloze

Figure 1. Making a custom toolbar button to create and mesh a perforated brick

The button can have Python or Cubit commands. These commands will be executed in
consecutive order when the button is pushed. You must click the Enabled check box to activate
your custom button.

99

Environment Control

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool
tip.

The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled
button.

Options Menu
To change program preferences in the Graphical User Interface select: Tools > Options . The
options menu includes:

e Custom Tools

o Display
e General

o Geometry Defaults

e History and Cubit Journalling
o Label Defaults

o Layout

e Mesh Defaults

o Mouse Settings

e Post Processor

e Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools
This menu controls the creation of Custom Toolbar buttons.

Display Preferences
This menu controls entity display features for the graphics window which include the following:

o Display Triad in Graphics Window
e Enable Pre-Selection

o Background Color

o Perspective Angle

e Line Width
e Highlight Line Width
e TextSize

« Ambient Intensity
« Ambient Color

o Light Intensity

e Light Color
General Preferences

This menu controls general program options including the following:

100

Cubit 15.2 User Documentation

e Prompt for Unsaved Application Data - When this is checked and the user opens a new
.cub file or exits the application with unsaved changes, a dialog box will pop up asking if
they want to save changes first. The user can uncheck this option to prevent that dialog
box from appearing. This is checked by default.

e Prompt for Unsaved Journal Data - When this button is checked and the user closes
the journal file editor with unsaved changes the program will prompt to save the changes.
The user can uncheck this button to prevent the dialog box from appearing. It is checked
by default.

e Change to Script Directory for Playback - When this option is checked, Claro will
change the working directory to the directory the script is in when the script/journal file is
run. When the script is finished, Claro will change the directory back to the previous one.
This is useful when using relative paths in a journal file. When the option is unchecked,
Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

e Prompt When Translating from Python - When checked, if the user translates a python
script to a cubit journal file, the journal editor will warn them that commands may be lost.
When unchecked, the journal editor will not issue the warning. There is a checkbox on
the warning dialog that sets this option as well.

o Default Syntax - Sets the default syntax to use when creating a new journal file in the
editor. The Cubit option is only available when the cubit component is loaded.

e Show Startup Splash Screen - Option to hide the startup splash screen on opening
Claro.

Geometry Defaults
This menu controls the geometry defaults.

e Vertex Size
e Use Silhouette on Geometry
o Silhouette pattern

The user can also change the default geometry engine to one of the following:

e ACIS
o Facets

The faceting tolerance can also be controlled from this menu to change the way facets are drawn
in the graphics window.

History Preferences
This menu controls the input window history and journal file options. These include:

e Maximum Number of Commands - The max number of commands kept in the current
command history.

e Comment Line Filtering - Whether to count comments in command history.

e Maximum Number of Lines - Maximum number of lines in input window.

101

Environment Control

e Journal Command History - Whether to use a journal file to save command history.
Default is to use a journal file.

o Journal File Directory - Where the journal file will be saved. Default is the starting
directory.

o Journal File Name - The name of the journal file. A name will be given by default if
one is not specified. The default name for the GUI version of cubit is historyxx.jou with
xx as the highest used number between 01 and 999 incremented by 1.

Cubit History Preferences

e Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By
default it is checked.

o Output Log - When this option is checked, you can save error log to a separate output
file.

Label Defaults
This menu controls the geometry and mesh entity labels in the graphics window.

o Text Size
o Label Geometry and Mesh Entities Toggles- Choose label visibility for each type of
geometry or mesh entity

Layout Preferences
This menu option controls input window formatting and control panel docking options.

e Font for command line workspace
e Font size for command line workspace
e Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to
show/hide each window.

Cubit Layout Settings
This menu controls the layout of Cubit specific buttons and tabs on the GUI.

e Show script tab - Shows the script tab on the command line window
e Use Labels on Buttons- Option to apply a label to each button on the control panel
o Preferred Location (currently under construction)

Mesh Defaults
« Node Size
¢ Element Shrink
¢ Mesh Line Color - The same as "Color Lines" command.
e Default Element Type - Tet/Tri or Hex/Quad

102

Cubit 15.2 User Documentation

e Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to
select different colors for surface schemes when visualized using the meshing power
tools.

Mouse Settings

This menu controls mouse button controls. Pressing the Emulate Command Line Settings
button will cause all of the settings to simulate mouse controls in the command line version of
CUBIT. For a detailed description of mouse settings see the View Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable
directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the
different quality metrics see the respective pages:

o Hexahedral metrics
e Quadrilateral metrics
o Tetrahedral metrics
e Triangular metrics

@ Undo Button
Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo" button on
the Toolbar.

2 Enable Undo Button
Alternatively to turn undo on and off, the following command may be used in the command line:

undo {on|off}
The Undo capability is implemented for geometry commands including webcutting, geometry
creation, transformations, and booleans. Multiple undos are also allowed. The commands will be
undone in reverse order of their execution.

Limitations

e The undo button is not currently enabled for most meshing commands

Graphics Window Control

Graphics Window Control

The graphics display windows present a graphical representation of the geometry and/or the
mesh. The quality and speed of rendering the graphics, the visibility, location and orientation of

103

Environment Control

objects in the window, and the labeling of entities, among other things, can all be controlled by
the user.

Unless the -nographics option was entered on the command line, a graphics window with a
black background and an axis triad will appear when CUBIT is first launched. The geometry and
mesh will appear in this window, and can be viewed from various camera positions and drawn in
various modes (wire frame, hidden line, smooth shade, etc.). This section will discuss methods
for manipulating the graphics with the mouse and for controlling the appearance of entities
drawn in the graphics window.

Graphics in CUBIT operates on the principle of a "display list", which keeps track of various
entities known to the graphics. All geometry and mesh objects created in CUBIT are put into the
display list automatically. The visibility and various other attributes of entities in the display list
can be controlled individually. In addition, CUBIT can also optionally display entities in a
temporary mode, independent of their visibility in the display list. Drawing of items in temporary
mode can be combined with the display list to customize the appearance. The overall display is
controlled by various attributes like graphics mode, camera position, and lighting, to further
enhance the graphics functionality.

The following items discuss the various graphics capabilities available in CUBIT:

Command Line View Navigation: Rotate Zoom and Pan
Mouse Based View Navigation: Rotate Zoom and Pan
Updating the Display

Graphics Modes

Drawing and Highlighting Entities

Drawing Locations, Lines and Polygons

Mesh Visualization

Graphics Clipping Plane

Entity Labels

Colors

Geometry and Mesh Entity Visibility

Graphics Camera

Graphics Lighting Model

Graphics Window Size and Position

Saving Graphics Views

Hardcopy Output

Miscellaneous Graphics Options

Graphics Clipping Plane
The graphics clipping plane feature allows the user to temporarily cut parts of the model away to
help visualize the interior of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Location <location>] [Direction <direction>]
Graphics Clip Manipulation {On|Off}

The GUI tool bar buttons to enable and manipulate the Graphics Clipping Plane are shown
below:

104

Cubit 15.2 User Documentation

The first command activates the graphics clip manipulation tools in the graphics window. The
keyboard shortcut "Shift-S" while the graphics window is active will also activate the clipping
plane. The manipulation of the clipping plane is controlled as follows:

Red Line - Clicking and dragging the left mouse on plane bounded by a red tube moves
the plane along the arrow

Center Ball - Clicking and dragging the left mouse on the center ball moves the origin of
the rotation plane

Arrow - Clicking and dragging the left mouse button on the arrow head or tail changes
the direction on which the plane moves

Right Mouse Button - Clicking and dragging the right mouse button on any part of the
window resizes it

Middle Mouse Button - Clicking and dragging the middle mouse button on the red plane
moves both the center of rotation and the cutting plane

White Bounding Border - Clicking and dragging the left mouse on the white bounding
border moves the whole widget

Figure 1. Graphics Clipping Plane
The second command turns on/off the visibility of manipulation widget in the graphics window.
The clipping plane is still active, but the controls are hidden. The normal mouse-based view

navigation controls apply.

Examples

brick x 10

sphere rad 1

graphics clip on location -2 0 0

105

Environment Control

rotate -45 about y

#shows the sphere inside the brick

brick x 10

cylinder rad 2z 12

subtract 2 from 1

mesh vol 1

quality vol 1 draw mesh

graphics clip on

#shows the mesh quality on interior elements

. .00

0.240

v.aal

0.41%

0,739
Figure 2. Viewing mesh quality of interior elements

Colors
Specifying Colors in Commands
There are five ways to refer to a color in a command. They are

<Color_Name>
User ""name"’
ID <id>
Default
Highlight

agkrownE

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix.
This option may not be used for user-defined colors. An example of a pre-defined color
assignment is given below:

color volume 1 lightblue

The second option is used with user-defined colors only. Include the name of the user-defined
color in quotes. Pre-defined colors will not work with this command.

106

Cubit 15.2 User Documentation

color volume 1 user ""mycolor™

The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed
in the Available Colors appendix. This option is rarely used.

color volume 1id 5

The default option is used to set an entity's color to its default value. The default color may also
be specified in drawing commands, but the command's behavior will be the same as if the color
option had not been included at all.

color volume 1 default
The fifth option refers to the current highlight color.
draw curve 1 tangent color highlight

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors.
Users may also define their own colors in addition to those defined by CUBIT. Each color is
defined by a name and by its RGB components, which range from 0 to 1.

To define an additional color, use either of the commands

Color Define ""<name>"" RGB <r g b>
Color Define ""<name>"" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear
a color definition. This is done with the command

Color Release "<color_name>"
Color names can be listed with the command
Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To view a
chart of color names and IDs, including those for user-defined colors, use the command

Draw Colortable

Assigning Colors
Colors may be assigned to all geometric entities, and to some other objects as well. To assign a
color to an entity or other object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}

Color Background {<color_name>| id <color_id>} [<color_name2>|id
<color_id2>]

Color Block <block_id_range>{<color_name> | id <color_id>}

Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Highlight {<color_name>| id <color_id>}

Color Lines <color_name>

Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

107

Environment Control

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }
Color Surface <surface_id_range> [Geometry|Mesh]
{<color_name>|Default}

Color Title {<color_name>|id <color_id>}

Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified entity,
without changing the color of the entity geometry itself. Conversely, including the Geometry
keyword will change the geometry color without changing the mesh color. Including both
keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all
of its surfaces will also be drawn in that color. Once you assign a color to an entity, however, it
will remain that color and will no longer follow color changes to parent entities. To make an
entity follow the color of its parent after having explicitly set another color, use Default as the
color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take
effect, however, unless the nodeset, sideset, or element block is drawn with a Draw command.
The background color and the color used to draw highlighted entities can be changed to any
color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate
directions. If the background is changed to white, these labels are impossible to read; the color
used to draw axis labels can be changed to any color. Changing the axis label color will change
the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels apply to
which entities. To help distinguish which entities are being referred to by the labels, you may
want to change the color of labels for specific entity types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the
same color as the surface. This is to prevent confusion between mesh edges and geometric
curves, and to make the mesh edges more visible. The color used to draw mesh edges in this
situation is known as the line color, and is gray by default; this color can be changed to any
color.

Assigning Global Colors

Colors may be assigned globally also. To assign a global color, use one of the following
commands. Global color assignment is useful if one desires all entities to appear the same.

Color Global {<color_name>| id <color_id> | default}

Color Global Surface {<color_name>| id <color_id> | default} Curve
{<color_name>| id <color_id> | default} Vertex {<color_name>| id <color_id>
| default}

The first command assigns the desired color to all geometry entities. The color may be enter by
color name or color id. The default option resets colors to the default value.

The second command assigns the desired colors to surfaces, curves and vertices. All three value
must be entered. For example, users my select global colors for surface and vertex and specify
that curves have default colors.

108

Cubit 15.2 User Documentation

Drawing, Locating, and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itself, or
several entities as a group. This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]

where Entity specification is an entity list as described in Command Line Entity Specification.
This command clears the display before drawing the specified entity or entities. Specification of
a color will draw those entities in that color. This will not permanently change the color of the
entity. The zoom option will zoom in on the selected entities after drawing them in the graphics
window. If the add option is specified, the display is not cleared, and the given entity is added to
what is already drawn on the screen. The entities specified in this command are drawn regardless
of their visibility setting (see Geometry and Mesh Entity Visibility for more details about
visibility).

Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the
mouse is in the graphics window. This will clear the screen and then draw only those entities that
are currently selected.

Entities can be highlighted using the command

Highlight {Entity specification}
This command highlights the specified entities in the current display with the current highlight
color. Highlighting can be removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, type Display.
The Locate command will label and point to the specified entity or location in the graphics
window. The command syntax is:

Locate <entity list>
Locate <location options>

For example, suppose you have an idless reference to a curve of:
Curve (at550ordinal 1)

You can find the curve with the following command:
locate location 550

Additionally, the visibility of individual entities, or sets of entities, can be controlled with the
following visibility commands.

{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh]
Visibility {on|off}

Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be drawn with
variations of the Draw command. As with the other Draw commands, typing Display after
drawing these objects will restore the scene to its normal display.

Displaying Entity Orientation

109

Environment Control

The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the
command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face |
Tri] Color <color> [Add]

Surface normal command colors the surfaces using two different colors. The surface exposed to
the positive half space (i.e, along the direction of normal), will always be colored black. The
surace exposed to the negative half space will be colored using the specified <color>.

If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or
tris that belong to the specified surface are drawn.

Arrow representing the normal will be displayed if "Length" is specified

f] 7
[[]
[]]

[/
|

R EEE.
NEEEEE,

Lo]

\\
\\
H.“\“--‘.
\
]
N

The forward, or tangent, direction of a curve can be drawn with the command:
Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]
If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with the
sweep algorithm, the source and target may be visually identified with the command

110

Cubit 15.2 User Documentation

Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If the Source keyword is included, the normal of the source surface or surfaces will be drawn in
green into the specified volume. If the Target keyword is included, the normal of the target
surface or surfaces will be drawn in red into the specified volume.

Model Axis
The model axis may be drawn with the command

Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three
coordinate directions. The length of those lines is determined by the length parameter, which
defaults to 1.

Surface Isoparameter Lines
Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u
<number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal.
You may specify instead a number of lines for each of the u and v parameters. The u-parameter
lines will be drawn in red and the v-parameter lines will be drawn in blue.

Surface Overlap
The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]

This command will draw the curves of each of the surfaces in green, and the portion of the
surfaces that overlap in red. The Add keyword will draw the overlapping surfaces on top of the
current graphics display. Without the Add keyword, the display will only show the specified
surfaces and their overlapping regions.

Volume Overlap

The overlapping region between two volumes may be drawn with the command

Draw Volume <id> <id> Overlap [Add]
This command will draw the input volumes in transparent mode and draw the volume(s) of
intersection as red, shaded solids. The Add keyword will draw the results on top of the current
graphics display. Without the Add keyword, the display will only show the specified volumes
along with the intersection volume(s).

Geometry Preview

Several options are available for previewing geometry without actually generating it. This is
typically used in conjunction with webcutting and surface creation. The following Draw
commands can be used for previewing geometry:

Draw Location On Curve
Draw Location

111

Environment Control

Draw Direction
Draw Line
Draw Polygon
Draw AXis
Draw Plane

Draw Cylinder

Drawing Locations, Lines and Polygons

In some cases it may be useful to simply draw a location, line or polygon to the screen to help
visualize some aspect of the model. Locations, Lines and polygons are not geometry or mesh
entities and are only visible until a refresh or display command is issued.

Drawing Locations

Draw Location {options}... [color <color name>][no_flush]

A single point or series of points may be drawn to the graphics window using this command.
Any number of locations may be specified that will be drawn to the graphics window as single
points. Options for specifying a location are described in the section Specifying a Location. The
optional color argument allows for a custom color to be used. The available color definitions are
located in the appendix. Other options for drawing locations and directions are also available
dscribed in the section Drawing a Location, Direction, or Axis.

Drawing Lines

Draw Line Location {options} Location {options} ... [color
<color_name>][no_flush]

A straight line or series of segments may be drawn to the graphics window using this command.
Any number of locations may be specified that will be connected with a line. Options for
specifying a location are described in the section Specifying a Location. The optional color
argument allows for a custom color to be used. The available color definitions are located in the

appendix.
Drawing Polygons

Draw Polygon Location {options} Location {options} Location {options} ...
[color <color_name>][no_flush]

A filled polygon may be drawn to the graphics window using this command. Any number of
locations may be specified as vertices. At least three locations must be specified. Locations for
vertices can be described using any of the standard location options described in Specifying a
Location. The optional color argument allows for a custom color to be used for the fill. The
available color definitions are located in the appendix.

Buffered Drawing

The optional no_flush argument for both the draw location, draw line and draw polygon
commands may also be used when many simultaneous draw commands are being issued. This
prevents the graphics from being drawn after each command is issued, which can be very
inefficient. Instead the draw commands are buffered and sent all at once to be drawn. The
following command:

graphics flush
can be used to force a draw following a series of commands that use the no_flush option.

112

Cubit 15.2 User Documentation

Example
The following is a simple example that will draw the figure below using cubit commands

draw polygon location pos -1 -1 0 location pos 1 -1 0 location pos 1 1 0
location pos -1 1 0 color yellow no_flush

draw line location pos -1 0 0 location pos 1 0 0 color blue no_flush
draw line location pos 0 -1 0 location pos 0 1 0 color blue no_flush
draw location pos 0 0 0 color red no_flush

graphics flush

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Element ID. Element ID labels
are only valid after putting the mesh entities into a block.

Geometric entities can be labeled with their ID number or with other information.

Labels for groups of entity types can be turned on or off.

The following commands will accomplish this.

Label [On|Off|[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]
Label All [On|Off|[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

113

Environment Control

Label Body [On|Off| Name [Only|ID] |[ID|Interval|Size| Merge |Firmness]
Label Curve [On|Off|[Name [Only|ID] [ID]| Interval| Size| Merge| Firmness]
Label {Hex|Tet|Face|Tri|Edge} [On|Off|[Elementid]

Label Element [On|Off]

Label Geometry [On|Off|[Name [Only|ID] |ID| Interval| Size| Merge|
Firmness]

Label Mesh [On|Off]

Label Node [On|Off|Elementid|Sphereld]

Label Surface [On|Off|[Name [Only|ID] |ID| Interval| Scheme| Size| Merge|
Firmness]

Label Vertex [On|Off[Name [Only|ID] |ID|Interval| Size| Merge| Firmness]
Label Volume [On|Off|[Name [Only|ID] |ID |Interval| Size [Scheme |Merge
|Firmness]

The meaning of each of each label type is listed below. Note that some label types don't
make sense for every entity type.

On - The same as IDs.

Name - Name of the entity, if the entity has been named. Default name
otherwise.

Name Only - If the entity has been hamed, use the name as the label.
Otherwise, don't use a label.

Name IDs - If the entity has been named, use the name as the label.
Otherwise, use the ID as the label.

Interval - The number of intervals set on the entity.

Firmness - Same as interval, but followed by a letter indicating the
firmness of the interval setting (see the Mesh Generation chapter for
description of firmness settings.)

Merge - Whether or not the entity is mergeable. Note that this is
sometimes not clear, because, for example, a curve may show that it isn't
mergeable because one of its owning surfaces may be unmergeable,
while another owning surface may be mergeable.

Size - The mesh size set on this entity.

Elementld - The Global Element Id of each element. Will only be labeled
for hexes, tets, tris, etc. which are in a block.

Sphereld - The id of the sphere element associated with this node, if there
is one. A sphere element is only associated with a node if the node (or it's
geometry owner) is put into a block.

Note: Three dimensional entity types such as body will have their labels displayed in
the center of the entity. Thus, in the smooth shade and hidden line graphics modes
the labels will be hidden

The GUI includes command panels to manipulate the labels settings for any given entity type.
The command panel for the Volumes labels settings is shown below as an example:

114

Cubit 15.2 User Documentation

Command Panel B X
Mode - Geometry

39 2=

Entity - Volume

S| | |dp

Action - Preferences

al || %
B @ X

[Label -

L

Volume Label Type

@ MNone () Interval
i ID (7) Firmness
i) Mesh Size i) Mergeable
(") Mesh Scheme () Mame Only
71 Mame

~1 Mame ID

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to
generate the scene. A scene camera has attributes described below, and depicted graphically in
Figure 1. The values of these camera attributes determine how the scene appears in the graphics
window.

These view settings may be accessed in the GUI via the Display/View Point menu.

Position (From) - The location of the camera in model coordinates.

View Direction (At) - The focal point of the camera in model coordinates.

Up Direction (Up) - The point indicating the direction to which the top of the camera is
pointing. The Up point determines how the camera is rotated about its line of sight.

Projection - Determines how the three-dimensional model is mapped to the two-dimensional
graphics window.

Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion
of the scene.

115

Environment Control

4 iew Up
|-
Perspectwve Angle
Wiew From - Wiegr Ar .

Figure 1: Schematic of From, At, Up, and Perspective Angle
At any time, the camera can be moved back to its original position and view using the command

View Reset
To see the current settings of these attributes, use the command
List View

The current value of the view attributes will be printed to the terminal window, along with other
useful view information such as the current graphics mode and the width of the current scene in
model coordinates.

Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as
follows.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-
Based View Navigation) or using the rotate, pan and zoom commands. However, the camera
attributes can also be modified directly with the following commands:

From <xy z>

At<xyz>

At
{Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>
Up <xyz>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an
orthographic projection is used. With a perspective projection, the scene is drawn as it would
look to a real camera. This gives a three-dimensional sense of depth, but causes most parallel
lines to be drawn non-parallel to each other. If an orthographic projection is used, no sense of
depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changing the
angle from the line of sight to the edge of the visible scene. The effect is similar to a telephoto
zoom with a camera. A smaller perspective angle results in a larger zoom. This command has no
effect when graphics perspective is off.

The GUI tool bar button for changing the graphics perspective mode is as follows:

116

Cubit 15.2 User Documentation

Graphics Modes

By default, the scene is viewed as a smoothshaded model. That is, only curves and edges are

drawn, and surfaces are transparent. Surfaces can be drawn differently by changing the graphics

mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent }
[Geometry | Mesh]

The GUI tool bar buttons for manipulating the graphics modes are as follows:

> Raskuke [l

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This
mode can also be accessed by typing

¢ 'wireframe' at the command prompt.)

HiddenLine - Surfaces are not drawn, but they
obscure what is behind them, giving a more
realistic representation of the view. (This

¢ mode can also be accessed by typing

‘hiddenline' at the command prompt.)

SmoothShade - Surfaces are filled and
shaded. Shaded colors are interpolated
across the entire surface using the graphics
lighting model. This produces the most
realistic results. (This mode can also be
accessed by typing 'shaded' at the command
prompt.)

Transparent - Renders surfaces as semi-
transparent shaded images, allowing objects
to shine-through from behind. Is not supported
on all platforms, and generally requires
advanced graphics hardware. (This mode can
also be accessed by typing ‘'transparent' at
the command prompt.)

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click
here for a list of valid line patterns).

117

Environment Control

Displaying Using the Element Facets
There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are meshed. If
Graphics Use Facets is on, the mesh facets (element faces) are used to render the model. This is
particularly helpful for curved surfaces which may cut through some of the mesh faces. A
comparison of graphics facets on and off is shown below.

ar N /

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right);
note how geometry facets on the curved surface obscure mesh edges when facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry. By

default, the underlying surfaces are marked with dashed lines. To toggle this setting so that
underlying surfaces are not shown, use the following command:

Graphics Composite {On|Off}

(a) (b)
Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not

displayed
The GUI tool bar button for toggling the display of graphics composites is as follows:

118

Cubit 15.2 User Documentation

Graphics Window Size and Position

By default in the command line version, CUBIT will create a single graphics window when it
starts up (to run CUBIT without a graphics window, include -nographics on the command line
when launching CUBIT.) The graphics window position and size is most easily adjusted using
the mouse, like any other window on an X-windows screen. However, the size of the graphics
window can also be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum
Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum
commands, the previous window size can be restored by using the command

Graphics WindowSize Restore

The position of the graphics window can also be controlled using the Graphics
WindowLocation command.

Graphics WindowLocation <x> <y>

The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner of
the monitor.

In addition, on Unix workstations, the graphics window size and position can be controlled by
placing the following line in the user's .Xdefaults file:

cubit.graphics.geometry XxY+xpos+ypos

where the X and Y are window width and height in pixels, respectively, and xpos and ypos are
the offsets from the upper left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view.
Each window has an ID, from 1 to 10, shown in the title bar of the window. Commands that
control camera attributes apply to only one window at a time, the active window. Currently, the
display lists of all windows are identical.

The following commands are used to create, delete, and make active additional graphics
windows. These commands are also valid in the GUI (by typing at the command line prompt.)

Graphics Window Create [ID]
Graphics Window Delete <ID>
Graphics Window Active <ID>

Hardcopy Output

CUBIT's Graphical User Interface provides the capability to print the contents of the graphics
window directly to a printer. Use File/Export/Screen Shot to access this functionality.

In addition, a command line option is provided for dumping the contents of the graphics window
to postscript or image files.

The command for generating hardcopy output files is:

Hardcopy '<filename>" {jpg | gif | bmp | pnm | tiff | eps} [Window
<window_id>]

119

Environment Control

Each of these options saves the view in the specified window (or the current window), to the
specified file, in the format indicated. The file can then be sent to a printer or inserted into
another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing screen
images. In many cases, these applications may be more convenient for interactively capturing
and saving a portion of the screen than the Hardcopy command discussed above. On UNIX
platforms, the XV utility written by John Bradley is a good choice. In some cases this utility or
its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint
program.

Graphics Lighting Model

For shaded graphics display modes, the lighting model controls the intensity of the highlights
and shadows for objects displayed in the graphics window. CUBIT offers two commands for
controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}
Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular direction
to the light source. In contrast, the light intensity is the effect of a simulated light source placed
at the viewer's line of sight. The light intensity affects the intensity of the highlights and
shadows, while the ambient intensity affects the brightness of the objects in the overall scene.
An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents
maximum. Alternatively r g b color components can be used. This changes the color of the
directional or ambient light source, affecting the resulting color of the objects in the model.
The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

120

http://www.trilon.com/

Cubit 15.2 User Documentation

il ™
E L e
i

Command Panels Graphics Window
Custem Tools Display Triad
Display Enable Pre-Selection
General Highlight Surfaces when Highlighting Volume
Geometry Defaults Perspective Angle I
» History Line Width 1 2
Label Defaults Highlight Line Width 3 2
+ Layout i =
Mesh Defaults Text Size 1 =
Mouse Background Color
Post Processor |§| Sereen Top
» Quality Defaults |:| Screen Botham
Lighting
Ambient Intensity Qg =
|§| Ambient Color
Light Intensity El-
|i| Light Calor
Graphics Axis
) Axis
i) Origin
@ Mone

Reset All Graphics Options

[Save] [Close]

Mesh Visualization

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh
slicing. This tool divides the elements of one or more volumes into axis-aligned layers, and then
allows the mesh to be displayed one layer at a time. Mesh slicing is especially useful to view the
quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge
length is used to determine the thickness of each layer, a layer may be more than one element
deep. Unstructured meshes, meshes with large variations in edge length, and non-axis-aligned
meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which slices
the mesh of the entire model, or by entering the command

121

Environment Control

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.
Key presses in the graphics window which control mesh slicing are summarized in the following
table.

Key Action
X,Y or Z |Initiate mesh slicing using the X, Y or Z plane
K Move the slicing plane in the positive coordinate direction
J Move the slicing plane in the negative coordinate direction
S Toggles drawing single or multiple slice layers in the view

Q Exit from mesh slicing mode

See Graphics Clipping Plane for instructions on clipping the graphics using the GUI clipping
plane.

Miscellaneous Graphics Options

In addition to the commands discussed above, there are several other graphics system options in
Cubit that can be controlled by the user.

They include:

Silhouette Lines

Line Width

Highlight Line Width
Text Size

Point Size

Graphics Status
Graphics Scale
Model Axis

Corner AXxis
Resetting the Graphics
Shrink

Facet Tolerance

Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true
geometric curves, but help visualize the shape of a surface. Silhouette lines can be turned on or
off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

122

Cubit 15.2 User Documentation

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot |
Dash_3dot | Long_dash | Phantom]

Line Width

This option controls the width of the lines used in the wireframe, shaded, transparent,
hiddenline and truehiddenline displays. The default is 1 pixel wide. The command to set the
line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to a
width greater than the global line width often makes it easier to locate highlighted entities. If this
setting has not been changed, the line width set in the command above is used. After using this
command, it is necessary to refresh the graphics by either typing "display" or clicking the
Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this
command is the desired size relative to the default size. After using this command, it is necessary
to refresh the graphics by either typing "display" or clicking the Refresh Graphics button. The
command to set the text size is

Graphics Text Size <size>

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads of
vectors; alternatively, the size of points representing nodes or vertices can be set independently
of the global point size. The commands to set the point sizes are

Graphics Point Size <size>
Graphics [Node|Vertex] Point Size <size>

Graphics Status
All graphics commands can be disabled or re-enabled with the command

Graphics {On|Off}

While graphics are off, changes in the model will not appear in the graphics window, and all
graphics commands will be ignored. When graphics are again turned on, the scene will be
updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain a
bearing on model or part sizes. The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]

Model Axis
The model axis may be drawn in the scene at the model origin. The axis is controlled with the
command

Graphics Axis [Type <AXIS | Origin>] [On|Off]

123

Environment Control

The command is used to specify whether the model axis is visible, and to determine how the axis
is drawn. If you include Type Axis , the axis will be drawn as three orthogonal lines; if you
include Type Origin, the axis will be drawn as a circle at the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called the
triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics
Many of the graphic options can be reset back to default values with the command:

Graphics Reset
The graphic options set to defaults are:

« ambient and spot light intensity
e background color

o textsize

e graphics mode

« silhouetting

e point size

e Vview type (Perspective)

In addition, this command also:

« centers the view on all visible entities (Zoom Reset)

e turns all labeling off

o turns vertex visibility off

« turns mesh and geometry visibility on

e moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their centroid. This
is useful for viewing 3D meshes, permitting viewing of interior elements. It may also be useful
for visually inspecting the mesh for missing elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>

draw tet <range>

etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero
(0) will not shrink the elements. The following figures illustrate the effect of element shrink on a
hex mesh.

124

Cubit 15.2 User Documentation

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance

The graphics tolerance commands change the way that facets are drawn in the graphics window.
It does not affect the underlying geometry, just the graphics display. It can be useful to change
the facet tolerance on large models if the refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]

Specifying an angle will change the maximum allowable angle between neighboring facets. The
distance option will set a maximum distance between adjacent facets. Increasing either of these
numbers will result in coarser facets. The default option will return values to their default
settings.

125

Environment Control

The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

i "I
fiil Options . ‘ &Iﬂ—hj

Command Panels Graphics Window
Custem Tools Display Triad
Display Enable Pre-Selection
General Highlight Surfaces when Highlighting Volume
Geometry Defaults Perspective Angle I
» History Line Width 1 2
Label Defaults Highlight Line Width 3 2
+ Layout i =
Mesh Defaults Text Size 1 =
Mouse Background Color
Post Processor |§| Sereen Top
» Quality Defaults |:| Screen Botham
Lighting
Ambient Intensity Qg =
|§| Ambient Color
Light Intensity El-
|i| Light Calor
Graphics Axis
) Axis
i) Origin
@ Mone

Reset All Graphics Options

[Save] [Close]

Mouse Based View Navigation: Zoom, Pan and Rotate

The mouse can be used to navigate through the scene using various view transformations. These
transformations are accomplished by clicking a mouse button in the graphics window and
dragging, sometimes while holding a modifier key such as Shift or Control. When run with
graphics on, CUBIT is always in mouse mode; that is, mouse-based transformations are always
available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics
window and then either holding down a mouse button and dragging, or by clicking on a location
in the graphics window. Some functions also require one or more modifier keys to be held down;

the modifier keys used in CUBIT are Shift and Control . Each of the available view
transformations has a default binding to a mouse button-modifier key combination. This binding

126

Cubit 15.2 User Documentation

can be changed by the user if desired. Transformations and button mappings are summarized in
the following table.

Note: These settings are applicable only to the UNIX command line version of CUBIT. For a
description of the Graphical User Interface Mouse Operations see GUI View Navigation.

The bindings are based on the following mouse button definitions:

B? B3

B1

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate
Function Description Binding

Rotate Rotates the scene about the camera axis.
Dragging the mouse near the center of the
graphics window will rotate the camera's X-
or Y-axis; dragging near the edge of the
window will rotate about the Z-axis (i.e.
about the camera’s line of sight). Type a u in
the graphics window to see the dividing line
between the two types of rotation.

Zooms the scene in or out by clicking the
mouse in the graphics window and dragging
up or down. If the mouse has a wheel, the
wheel will also zoom.

Zoom
B2

Pan "Drags" the scene around with the mouse B3

Navigational [Zooms the scene by moving both the
Zoom camera and its focal point forward. BZ

Telephoto [7Zooms the scene by decreasing the field of | [fisnitt]
Zoom view. B2

Pan Cursor Click on new center of view BB

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse Function
Mappings table above, can be modified. There are two ways to assign a function to a
button/modifier combination.

First, you can use the command

Mouse Function <function_id> Button <1|2|3> [Shift][Control]

127

Environment Control

Type Help Mouse Function to see a list of function IDs that may be used in this command.
Second, you can assign functions interactively. To do so, first put the pointer into a graphics
window and then hit the F key. On-screen instructions will lead you through the rest of the

process.

The GUI Options panel for managing the mouse bindings can be found at
Tools/Options/Mouse, and is as follows:

i© '
fiil Options l L@ 2|
Command Panels Mouse Button Function
Custom Tools
Display Left Button Select
General Left Button + Control Multiple Select
Geometry Defaults Middle Button Tab Off Picker

+ History Right Buttan Context Menu
Label Defaults Left Button + Drag |Rotate -

+ Layout " []
Mesh Defaults Middle Button + Drag Zoom b
Mouse Right Button + Drag [F‘an b]
Post Processor

+ Quality Defaults Mote: Use Zoom + Control to select a zoom box,

Mote: Mac users substitute "Command” for "Control™.
Emulate Command Line Settings
[Save] [Close

A

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view is
restored by setting the graphics camera attributes to a given set of values. The following keys,
pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last time Display was entered.

128

Cubit 15.2 User Documentation

F1 to F12 - These function keys represent 12 saved views. To save a view, hold
down the Control key while pressing the function key. To restore that view later,
press the same function key without the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate
form of dynamic viewing, therefore the ability to save views is not currently supported in the
GUL.

You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is specified,
the view can be restored by pressing V in the graphics window. If a position is specified, the
view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1
refer to a front view of the model, the following commands could be entered into a .cubit file:

FromO01

At0

Up010

Graphics Autocenter On
View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that the
model will be centered each time the view is restored. The final command saves the view
parameters in position 1. The view can be restored by pressing F1 while the cursor is in a
graphics window.

Additionally, you can change the ‘gain’ on the mouse movements by changing the mouse gain
setting, via the command:

Mouse Gain <value>

where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be
half as sensitive.

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be ‘flipped',
by toggling the reversezoom setting.

Saving Graphics Views
The current graphics view can be saved and restored using the following commands:

View Save Position <n>
View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command is issued.
When you restore the view, the camera is returned to the saved position, orientation, and field of
view.

If autocenter is on at the time you save the view, then restoring the view will automatically adjust
the camera settings to center on the entire model and fit the entire model on the screen, a lot like
"zoom reset.” You turn autocenter on by typing “graphics autocenter on."

129

Environment Control

Example of how to save a top view:

ato

from010

up10

graphics autocenter on
view save position 3

Use this command to restore that view:
view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the
right. The model will be centered in the view and zoomed so that everything just fits into the
graphics window. This is true even if the model is not centered on the origin.

If autocenter is off when the "view save" command is issued, the camera is not adjusted to fit the
scene into the graphics window. Instead, it is placed exactly where it was at the time the "save"
command was issued.

Note that many graphics commands, such as "at", "from", and "up", do not change what appears
in the graphics window until a "display" command is issued. They do, however, take immediate
effect internally, and they do affect what is saved by the "view save" command.

In the command line version of CUBIT, you can save a view by holding down the shift key and
pressing one of the function keys (F1-F12). Each function key corresponds to a different saved
view. A total of 12 views can be saved. A view can be restored at a later time by pressing the
appropriate function key WITHOUT holding down the shift key.

It may be useful to save views in your cubit file so that they are available every time you run
CUBIT. Use CUBIT to save front, top, and side views in positions 1, 2, and 3. If views are saved
in your cubit file, it is convenient to add a "view reset” command after the views have been
saved. Then the graphics will initially appear as they would if the view commands had not been
included in your cubit file.

Updating the Display
Among the most common graphics-related commands is:

Display

This command clears all highlighting and temporary drawing, and then redraws the model
according to the current graphics settings. The GUI tool bar button for executing this command

is:
Two related commands are:

Graphics Flush
Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary drawing.
Graphics Flush is useful when a previously executed command modified the graphics and didn't
update the screen and the user wishes to update the display. The Graphics Clear command
clears the graphics window without redrawing the scene, leaving the window blank.

130

Cubit 15.2 User Documentation

NOTE: Although most changes to the model are immediately reflected in the graphics display,
some are not (for graphics efficiency). Typing Display will update the display after such
commands. Ctrl-R will also update the display as long as the mouse is in the graphics window.
Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an action has
been performed. To prevent the graphics from automatically updating, use the following
command:

Graphics Pause

This command prevents the graphics window from being updated until the next time the Display
command is issued.

NOTE: The Plot command is synonymous to the Display command, and either can be used with
identical results.

Geometry, Mesh, and BC Entity Visibility

The visibility of geometry, mesh, BC and Genesis entities can be turned on or off, either
individually or globally. After visibility is turned off, the associated entities will remain invisible
until visibility is turned on again.

The command to control global visibility is:
{Mesh|Geometry|BC} { [Visibility] [on|off] }

This command sets the global visibility on or off for all mesh, geometry, or BC entities,
respectively. Turning off BC visibility also affects Genesis entities such as blocks, sidesets, and
nodesets. Global visibility settings take precedence over the visibility set on individual entities.
By default, Mesh and Geometry visibility is on, and BC visibility is off.

Global visibility of geometry, mesh, and BC entities can also be controlled from these tool bar
buttons in the GUI (from left to right):

&9 =

The command to control the individual visibility of geometry entities is:

{{Body|Curve|Surface|Volume|Vertex} <range> } [Mesh][Geometry]
Visibility [On|Off]

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified
geometric entity is affected. Similarly, if the Geometry keyword is included, only the visibility
of the geometry is affected. If neither keyword is included, the command is identical to including
both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its
surfaces are also invisible unless they also belong to some other visible volume. As another case,
if the volume is visible, but a surface is set to invisible, the surface will not follow its parent's
visibility setting, but will remain invisible.

If vertex visibility is turned on, the vertices of the geometry become visible. The default for
vertex visibility is off. The default for all other geometry entities is on.

The commands to control visibility of edges and nodes are:

131

Environment Control

Edge [Visibility] [On|Off]
Node [Visibility] [On|Off]

These commands set the global visibility on or off for all edges or nodes, respectively. If edge
visibility is off, mesh edges will not be drawn when mesh faces are drawn. Edge visibility is on
by default; node visibility is off by default. Face visibility is always on when mesh visibility is
on.

The command to control the individual visibility of genesis entities is:
{Block|Nodeset|Sideset} <range> visibility [{on|off}]

Genesis entities and boundary conditions are best viewed with geometry and mesh visibility off

and BC visibility on.

Entity visibility for individual geometry and Genesis entities can also be controlled via context
(right-click) menus in the Tree and in the graphics window.

Entities that are not visible can still be drawn temporarily using the "draw™ command to display
one or more specific entities.

Command Line View Navigation: Zoom, Pan and Rotate

Commands used to affect camera position or other functions are listed below. All rotation,
panning, and zooming operations can include the Animation Steps qualifier, makes the image
pass smoothly through the total transformation. Animation also allows the user to see how a
transformation command arrives at its destination by showing the intermediate positions.
Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation
Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]
Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_ 2> [Animation
Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the
camera’s "At" point, or about the camera itself. Additionally rotations can be specified about any
general axis by specifying start and end points to define the general vector. The right hand rule is
used in all rotations.

Plain degree rotations are in the Screen coordinate system by default, which is centered on the
camera's At point. The Camera keyword causes the camera to rotate about itself (the camera'’s
From point). The World keyword causes the rotation to occur about the model's coordinate
system. Rotations can also be performed about the line joining the two end vertices of a curve in
the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World]
[Animation Steps <number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the
From point and At point are translated equal distances and directions, while the perspective
angle and up vector remain unchanged. The scene can also be panned by a factor of the graphics
window size.

132

Cubit 15.2 User Documentation

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the
default), <factor> is in screen coordinates, in which the width of the screen is one unit. If World
is indicated, <factor> is expressed in the model units.

Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <x_min> <y _min> <x_max> <y_max> [Animation Steps
<number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face |
Tri | Edge | Node} <id_range> [Animation Steps <number_steps>] [Direction
{options}]

Zoom cursor [click|drag][animation steps <number>]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that
objects on the focal plane will appear <factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in
screen coordinates; for example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the
screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type and ID
after entering Zoom. The image will be adjusted to fit bounding box of the specified entity into
the graphics window, and the specified entity will be highlighted. You can specify a final
direction to look at when zooming by using the direction option.

To center the view on all visible entities, use the Zoom Reset command.

The GUI tool bar buttons for controlling zoom in, zoom out, and zoom reset are as follows:

Qe

Entity Selection and Filtering
Entity Selection

¢ Command Line Entity Specification
¢ Extended Command Line Entity Specification
o Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be
selected from the command line using entity specification parameters, or directly in the graphics
window using the mouse. This chapter describes these methods of entity selection.

Command Line Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and
sometimes names. IDs and names are used in most commands to specify which objects on which
the command is to operate.

These objects can be specified in CUBIT commands in a variety of ways, which are best
introduced with the following examples (the portion of each command which specifies a list of
entities is shown in blue):

General ranges: Surface 12 4 to 6 by 2 3 4 5 Scheme Pave

Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6

133

Environment Control

Geometric topology traversal: Vertex in Volume 2 Size 0.3

Mesh topology traversal: Draw Edge in Hex 32

All keyword: ListBlock all

Expand keyword: my_curve_group expand Scheme Bias Factor 1.5

Except keyword: List Curve 1 to 50 except 24 6

In addition to the examples above, there is an extended parsing capability that allows entities to
be specified by a general set of criteria. See Extended Entity Specification for details. The
following is a simple example of an extended entity specification:

By Criteria: Draw Curve With Length > 3

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges
(volume 3 to 7), and in stepped ranges (volume 3 to 7 step 2). The word all may also be
used to specify all entities of a given type.

An ID range has the form <start_id> to <end_id>. It represents each ID between start_id
and end_id, inclusive.

A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It
represents the set of IDs between start_id and end_id, inclusive, which can be obtained
by adding some integer multiple of step to start_id. For example, 3 to 8 step 2 is
equivalentto 35 7.

The various methods of specifying IDs can be used together. For example:

draw surface 1 2 4 to 6 vertex all

2. Topological traversal

Topological traversal is indicated using the "in" and "common_to" identifiers, can span
multiple levels in a hierarchy, and can go either up or down the topology tree. For
example, the following entity lists are all valid:

vertex in volume 3

volume in vertex 24 6

surface common_to volume 2 3

curve common_to surface 2 3

curve 1to 3in body 4 to 8 by 2

If ranges of entities are given on both sides of the "in" identifier, the intersection of the
two sets results. For example, in the last command above, the curves that have ids of 1, 2
or 3 and are also in bodies 4, 6 and 8 are used in the command.

Topology traversal is also valid between entity types. Therefore, the following commands
would also be valid:

draw node in surface 3

draw surface in edge 362

draw hex in face in surface 2

draw node in hex in face in surface 2

draw edge in node in surface 2

134

Cubit 15.2 User Documentation

draw face common_to volume 1 2
3. Exclusion

Entity lists can be entered then filtered using the "except” identifier. This identifier and
the ids following it apply only to the immediately preceding entity list, and are taken to
be the same entity type. For example, the following entity lists are valid:

curve all except24 6

curve 1251050 except234

curve all except 2 3 4 in surface 2 to 10

curve in surface 3 except 2 (produces empty entity list!)

Entity names can also be used to specify the exclusion list. For example:

curve all except pivot_1

When using mulitple names to specify the exclusion list it is necessary to use the "in"
keyword with parentheses. For example:

curve all except curve in (pivot_1 top_left)

In the above example, all curves are in the entity list except the curve named "pivot_1"
and the curve named "top_left".

4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be
of different type (vertex, curve, etc.). Operations on groups can be classified as
operations on the group itself or operations on all entities in the group. If a group
identifier in a command is followed immediately by the “expand' qualifier, the contents of
the group(s) are substituted in place of the group identifier(s); otherwise the command is
interpreted as an operation on the group as a whole. If a group preceding the “expand'
qualifier includes other groups, all groups are expanded in a recursive fashion.
For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1
and 2 are bounded by curves 2, 3, 4 and 5. The commands in Table 1, illustrate the
behavior of the “expand' qualifier.
Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1;
Surfaces 1 and 2 are bounded by Curves 2-5.

Command Entity list produced
Curve in Group 1 Curve 1
Curve in group 1 expand Curves 1, 2,3,4,5

The “expand' qualifier can be used anywhere a group command is used in an entity list; of
course, commands which apply only to groups will be meaningless if the group id is followed by
the “expand' qualifier.

Precedence of ""Except™ and "'In""

Several keywords take precedence over others, much the same as some operators have greater
precedence in coding languages. In the current implementation, the keyword "Except" takes
precedence over other keywords, and serves to separate the identifier list into two sections. Any
identifiers following the "Except" keyword apply to the list of entities excluded from the entities
preceding the "Except”. Table 2 shows the entity lists resulting from selected commands.

135

Environment Control

Table 2. Precedence of ""Except" and "'In"" keywords; Group 1 consists of Surfaces 1-2 and
Curve 1.

Command Entity list produced
Curve all except 1 in Group 1 (All curves except curve 1)
Curve all except 2 34 in Surf 2 to 10 (All curves except 2, 3, 4)

In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in Group
1", that is the intersection of the lists "Curve 1" and "Curve in Group 1"; since the only curve in
Group 1 is Curve 1, the excluded list consists of only Curve 1. The remaining list, after removing
the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the lists "Curve 2 3 4"
and "Curve in Surf 2 to 10"; this intersection turns out to be just Curves 2, 3 and 4. The
remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be used.
However, there can be exceptions to this general rule, because of ambiguities this syntax would
produce. Currently, the only exception to this rule is the command used to define a sideset for a
surface with respect to an owning volume.

Extended Command Line Entity Specification

In addition to basic entity specification, entities may be specified using an extended expression.
An extended expression identifies one or more entities using a set of entity criteria. These criteria
describe properties of the entities one wishes to operate upon.

Extended Parsing Syntax

The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}

Entity_Type is the name of any type of entity that can be used in a command, such as Curve,
Hex, or SideSet. Criteria is a combination of entity properties (such as Length), operators (such
as >=), keywords (such as Not), and values (such as 5.3) that can be evaluated to true or false for
a given entity. Here are some examples:

curve with length <1
surface with is_meshed = false
node with x_coord > 10 And y_coord >0

Keywords
These are the keyword defined by extended parsing
Keyword Description

These keywords are used the same way as in basic entity

specification. For example:
All, To, Step, By, draw surface all

Except, In, draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to 8 by
Common_To, 5
Expand

draw hex in face in surface 2
draw face common_to volume 1 2

136

Cubit 15.2 User Documentation

draw node in hex in face in surface 2 curve 1 2 5 to 50
except234

Not flips the logical sense of an expression - it changes true
Not to false and false to true. For example:
draw surface with not is_meshed

The "of" operator is used to get an attribute value for a
single entity, such as "length of curve 5". Only attributes
that return a single numeric value may be used in an "of"
expression. There must be only one entity specified after
the "of" operator, but it can be identified using any valid
entity expression. An example of a complete command
which includes the "of" operator is:

list curve with length < length of curve 5 ids

These logic operators determine how multiple criteria are
And, Or combined.
draw surface with length > 3 or with is_meshed = false

These relational operators compare two expressions. You

may use = or == for "equals"”. <> means "not equal”. For
<><=>==<> example:

draw surface with x_max <=3

draw volume with z_max <>12.3

Of

These arithmetic operators work in the traditional manner.
draw surface with length * 3+ 1.2 > 10

Parentheses are used to group expressions and to override
precedence. When in doubt about precedence, use

() parentheses.
draw surface with length > 3 and (with is_meshed =
false or x_min>1)

Functions
The following functions are defined. Not all functions apply to all entities. If a function does not
apply to a given entity, the function returns 0 or false.

Keyword Description

ID the ID of an entity

Length The length of a curve or edge
Area The area of a surface.
Volume The volume of a volume.

Works for curves with an exterior angle greater than (>),
less than (<), or equal to (=) a given angle in degrees. This

Exterior_Angle is used if you want to do some operation, such as
refinement, on all the reentrant curves or curves with
surfaces that form a certain angle.

Is_Meshed Whether a geometric entity has been meshed or not

137

Is_Spline

Is_Plane

Is_Periodic

Is_Sheetbody

Element_Count

Dimension

X_Coord,
Y _Coord, Z_Coord

X_Min, Y_Min,
Z Min

X_Max, Y_Max,
Z_Max
Is_Merged
Is_Virtual
Has_Virtual

Is_Real

Num_Parents

Block Assigned

Has_ Scheme

Environment Control

Whether a geometric entity is defined using a NURBS
representation. Otherwise the entity has an analytic
representation.

Whether a geometric surface is planar.

Whether a geometric surface is periodic, such as a sphere
or torus.

A geometric entity is a sheetbody if it is a collection of
surfaces that do not form a solid.

The number of elements owned by this geometric entity.
Only elements of the same dimension as the entity are
counted (number of hexes in a volume, number of faces on
a surface, etc.)

The topological dimension of an entity (3 for volumes, 2
for surfaces, etc.).

The X, y, or z coordinate of the point at the center of the
entity's bounding box.

The X, y, or z coordinate of the minimum extent of the
entity's bounding box

The X, y, or z coordinate of the maximum extent of the
entity's bounding box

Whether a geometry entity has a merge flag on. All
geometric entities have one set by default.

A flag that specifies whether an entity is virtual geometry.
An entity is virtual if it has at least one virtual
(partition/composite) topology bridge.

An entity "has_virtual” if it is virtual itself, or has at least
one child virtual entity

An entity "is_real™ if it has at least one real (non-virtual)
topology bridge.

Used to specify geometry entities with a specified number
of parent entities. May be used to find "free curves" where
num_parents=0 or non-manifold curves where
num_parents>2.

Used to specify elements which have been assigned to a
block. This is also useful to find elements NOT assigned to
a block by using "not block_assigned".

Used to specify geometry entities which have been
assigned a specified scheme. The scheme name is specified
with the keyword string used when setting the scheme.
Wildcards can also be used when specifying the scheme

138

Cubit 15.2 User Documentation

name. For example, draw surface with has_scheme
"*map’ will draw surfaces with scheme map or submap.

Precedence

For complicated expressions, which entities are referred to is influenced by the order in which
portions of the expression are evaluated. This order is determined by precedence. Operators with
high precedence are evaluated before operators with low precedence. You may always include
parentheses to determine which sub-expressions are evaluated first. Here all operators and
keywords listed from high to low precedence. Items listed together have the same precedence
and are evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >= <> = And, Or Except In Of With
Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group
expand(curve with (((length + (2*2)) > 10)and(length <= 20))) in (
my_group expand)

Selecting Entities with the Mouse

The following discussion is applicable only to the command line version of CUBIT. See GUI
Entity Selection for a description of interactive entity selection with the Graphical User Interface.
Many of the commands in CUBIT require the specification of an entity on which the command
operates. These entities are usually specified using an object type and ID (see Entity
Specification) or a name. The ID of a particular entity can be found by turning labels on in the
graphics and redisplaying; however, this can be cumbersome for complicated models. CUBIT
provides the capability to select with the mouse individual geometry or mesh entities. After
being selected, the ID of the entity is reported and the entity is highlighted in the scene. After
selecting the entities, other actions can be performed on the selection. The various options for
selecting entities in CUBIT are described below, and are summarized in Table 1:

Table 1. Picking and key press operations on the picked entities

Key Action

Cg'; Pick entity of the current picking type.

shift + . : _ .

ctrl Adc_i plpked entity of the current picking type to current picked
B1 entity list.
tab Query-pick; pick entity of current picking type that is below

the last-picked entity.
n |Lists what entities are currently selected.

Lists basic information about each selected entity. This is
similar to entering a List command for each selected entity.

139

Environment Control

Lists geometric information about the selection. As if the List
Geometry command were issued for each entity. If there are

g |multiple entities selected, a geometric summary of all
selected entities is printed at the end, including information
such as the total bounding box of the selection.

Makes the current selection invisible. This only affects entities
i that can be made invisible from the command line (i.e.
geometric and genesis entities.)

Draws a graphical scale showing model size in the three
s |coordinate axes. This is a toggle action, so pressing the 's’
key again in the graphics window will turn the scale off.

ctrl + .)
Zoom in on the current selection.

e Echo the ID of the selection to the command line.

Add the current selection to the picked group. Only geometry
will be added to the group (not mesh entities). If a selected
entity is already in the picked group, it will not be added a
second time.

Remove the current selection from the picked group. If a
r selected entity was not found in the picked group, this
command will have no effect.

ctrl + Redisplays the model.

Clear the picked group. The picked group will be empty after
this command.

m |Lists what entities are currently in the picked group.
d |Display and select the entities in the picked group.

ctrl +

d Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

o Entity Selection

e Query Selection

o Multiple Selected Entities

o Information about the Selection

e Picked Group
o Substituting the Selection into Commands

140

Cubit 15.2 User Documentation

Entity Selection

Selecting entities typically involves two steps:

1. Specifying the type of entity to select

Clicking on the scene can be interpreted in more than one way. For example, clicking
on a curve could be intended to select the curve or a mesh edge owned by that curve.
The type of entity the user intends to select is called the picking type. In order for CUBIT
to correctly interpret mouse clicks, the picking type must be indicated. This can be done
in one of two ways. The easiest way to change the picking type is to place the pointer in
the graphics window and enter the dimension of the desired picking type and an
optional modifier key. The dimension usually corresponds to the dimension of the
objects being picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick
0 vertices nodes

1 curves edges

2 surfaces all 2D elements

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the
mesh entity of corresponding dimension, otherwise the geometry entity of that
dimension is set as the picking type. For example, typing 2 while the pointer is in the
graphics window sets the picking type so that geometric surfaces are picked; typing
Shift-1 sets the picking type so that mesh edges are picked. To differentiate between
picking "tris" or "quads" use "pick face" or "pick tri"

The picking type can also be set using the command

Pick <entity type>

where entity type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex
, Tet, Face, Tri, Edge , Node , or DicerSheet .

2. Selecting the entities

To select an object, click on the entity (this command can be mapped to a different
button and modifiers, as described in the section on Mouse-Based View Navigation).
Clicking on an entity in this manner will first de-select any previously selected entities,
and will then select the entity of the correct type closest to the point clicked. The new
selection will be highlighted and its name will be printed in the command window.
Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to
the next closest entity. You can continue to press tab to loop through all possible selections that
are reasonably close to the point where you clicked. Shift-Tab will loop backwards through the
same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the control
key while clicking on an object. You can select as many objects as you would like. By changing
the picking type between selections, more than one type of entity may be selected at a time.

141

Environment Control

When picking multiple entities, each pick action acts as a toggle; if the entity is already picked, it
is "unpicked", or taken out of the picked entities list.

To select entities using rubberband, hold the control key, click and drag to enclose the entities to
select. Different rubberband shapes are available to use: box, circle and polygon. A toolbar
button is provided to toggle between the different shapes.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window.
There are several other actions which can then be performed on the picked entity list. These
actions are initiated by pressing a key while the pointer is in the graphics window. Table 1
summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is named
picked , and is automatically created by CUBIT. Other than its relationship to interactive
picking, it is identical to other groups and can be operated on from the command line. Like other
groups, both geometric and mesh entities can be held in the picked group. Table 1 lists the
graphics window key presses used with the picked group.

Note: It is important to distinguish between the current selection and the picked group
contents. Clicking on a new entity will select that entity, but will not add it to the picked
group. De-selecting an entity will not remove an entity from the picked group.

Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.

1. The Selection Keyword

You may refer to all currently selected entities by using the word selection in a command; the
picked type and ID numbers of all selected entities will be substituted directly for selection . For
example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue
is identical to typing
Color Volume 1 Curve 5 Blue

Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.

2. Echoing the ID of the Selection

Typing an e into a graphics window will cause the 1D of each selected entity to be added to the
command line at the current insertion point. This is a convenient way to use entities of which you
don't already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the command
line using the ~ key. Note that this is not the apostrophe key, but rather the left tick mark, usually
found at the upper-left corner of the keyboard on the same key as the tilde (~). For example, a
convenient way to set the meshing scheme of a cylinder to sweep would be as follows:

Volume (hit °, select cylinder, hit) Scheme Sweep Source Surface (hit °,
select endcap, hit e) Target (select other endcap, hit e)

The result will be something similar to
Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ~ will not select the correct

picking type.
3. Using the Picked Group in Commands

142

Cubit 15.2 User Documentation

Like other groups, the picked group may be used in commands by referring to it by name. The
name of the picked group is picked. For example, if the contents of the picked group are Volume
1 and Volume 2, the command

Draw picked
is identical to
Draw Volume 1 Volume 2
Note that picked is case sensitive, and must be entered as all lowercase letters.

143

GEOMETRY
Geometry

CUBIT Geometry Formats
Geometry Creation

Geometry Transforms

Geometry Booleans

Geometry Decomposition
Geometry Cleanup and Defeaturing
Geometry Imprinting and Merging
Virtual Geometry

Geometry Orientation

Geometry Groups

Geometry Attributes

Entity Measurement

Parts, Assemblies, and Metadata
Geometry Deletion

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported or
created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT imports
ACIS SAT files. CUBIT can also read STEP, IGES, and FASTQ files and convert them to the
ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD systems can write SAT
files directly.

Once in CUBIT, an ACIS model is modified through booleans. Without changing the geometric
definition of the model, the topology of the model may be changed using virtual geometry. For
example, virtual geometry can be used to composite two surfaces together, erasing the curve
dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.

Model Definitions

ACIS Geometry Kernel

ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS
third party libraries directly within the program. The ACIS third party libraries are used
extensively within CUBIT to import, export and maintain the underlying geometric
representations of the solid model for geometry decomposition and meshing. There are many
ways to get geometry into the ACIS format. ACIS files can be exported directly from several
commercial CAD packages, including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third
party ACIS translators are also available for converting from native formats such as Pro
Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.
Importing and creating geometry using the ACIS geometric modeling kernel currently provides
the widest set of capabilities within CUBIT. All geometry creation and modification tools have
been designed to work directly on the ACIS representation of the model.

145

http://www.spatial.com/

Geometry

Mesh-Based Geometry

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has
been developed specifically for use with CUBIT. Most of CUBIT's mesh generation tools require
an underlying geometric representation. In many cases, only the finite element model is
available. If this is the case, CUBIT provides the capability to import the finite element mesh and
build a complete boundary representation solid model from the mesh. The solid model can then
be used to make further enhancement to the mesh. While the underlying ACIS geometry
representation is typically non-uniform rational b-splines (NURBS), Mesh-Based Geometry uses
a facetted representation. Mesh-Based Geometry can be generated by importing either an Exodus
Il format file or a facet file.

o Creating Mesh-Based Geometry Models

o Improving Mesh-Based Geometry Models for Meshing
e Meshing Mesh-Based Models

e Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done
with mesh-based geometry. While all mesh generation operations are available, only some of the
geometry operations can be used. For example, the following can be done with geometric entities
that are mesh-based:

e Geometry Transformations

e Merging
o Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

e Booleans
o Geometry Decomposition
¢ Geometry Clean-Up

Creating Mesh-Based Geometry Models
Mesh based geometry models can be created in one of two ways

o Importing Exodus Il files
o Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant
differences:

Exodus Il files

Exodus Il contains a mesh representation that may include 3D elements, 2D elements, 1D
elements and even 0D elements. It may also contain deformation information as well as
boundary condition information. The import mesh geometry command is designed to decipher
this information and create a complete solid model, using the mesh faces as the basis for the
surface representations. Exodus Il is most often used when a solid model that has previously
been meshed requires modification or remeshing. Importing an Exodus 11 file will generate both

146

Cubit 15.2 User Documentation

geometry and mesh entities, assigning appropriate ownership of the mesh entities to their
geometry owners. Deleting the mesh and remeshing, refining or smoothing are common
operations performed with an Exodus Il model.

Facet files

The facet file formats supported by CUBIT are most often generated from processes such as
medical imaging, geotechnical data, graphics facets, or any process that might generate discrete
data. Importing a facet file will generate a surface representation only defined by triangles. If the
triangles in the facet file form a complete closed volume, then a volume suitable for meshing
may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing
tools provided in CUBIT, it is also possible to use the triangle facets themselves as the basis for
an FEA mesh.

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging processes
are not of sufficient quality to use as geometry representations for mesh generation. As a result,
CUBIT provides a limited number of tools to assist in cleaning up or repairing triangulated
representations.

1. Using tolerance on STL files

Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL
provides a tolerance option to merge near-coincident vertices.

2. Using the stitch option on AVS and facet files

The stitch option on the import facets|avs command provides a way to join triangles that
otherwise share near-coincident vertices and edges. This is useful for combining facet-based
surfaces to generate a water-tight model.

3. Using the improve option on facet files.

The improve option on the import facets command will collapse short edges on the boundary of
the triangulation. This option improves the quality of the boundary triangles.

4. Smoothing faceted surfaces.

Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh
elements may be smoothed, facets may also be smoothed in CUBIT using the following
command

Smooth <surface_list> Facets [Iterations <value>] [Free] [Swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a simple
Laplacian smoothing algorithm which has additional logic to make sure it does not turn any of
the triangles in-side out. It also determines a local surface tangent plane and projects the triangle
vertices to this plane to ensure the volume will not "shrink™. The iterations option can be used to
specify the number of Laplacian smoothing operations to perform on each facet vertex (The
default is 1).

The free option can be used to ignore the tangent plane projection. Used too much, the free
option can collapse the model to a point. One of two iterations of this option may be enough to
clean up the triangles enough to be used for a finite element mesh.

The swap option can be used to perform local edge swap operations on the triangulation. The
quality of each triangle is assessed and edges are swapped if the minimum quality of the triangles
will improve.

5. Creating a thin offset volume

147

Geometry

Offset surfaces may be generated from an existing facet-based surface. This would be used in
cases where a thin membrane-like volume might be required where only a single surface of
triangles is provided. This command may be accomplished by using the standard create body
offset command

The result of this command is a single body with an inside and outside surface separated by a
small distance which is generally suitable for tet meshing. This command is currently only useful
for small offsets where self-intersections of the resulting surface would be minimal. It is most
useful for bodies that may be initially composed of a single water-tight surface.

6. Creating volumes from surfaces

A mesh-based geometry volume can be created from a set of closed surfaces. This can be
accomplished in the same manner as the standard create body surface command

Create Body Surface <surface_id_range>

This command is limited to surfaces that match triangles edges and vertices at their boundary.
The command will internally merge the triangles to create a water-tight model that would
generally be suitable for tet meshing.

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a
scheme, defining a size and using the mesh command. This standard method of mesh generation
can be somewhat time consuming and error prone for complex facet models with thousands of
triangles. CUBIT also provides the option of using the facets themselves as a surface triangle
mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> From Facets

This command will generate triangular finite elements for each facet on the surface. If the
entity_list is composed of one or more volumes, then the tetrahedral mesh will automatically fill
the interior. This method is useful when further cleanup and smoothing operations are needed on
the triangles after import.

Import Facets <filename> Make_elements

The make_elements on the import facets command will generate the triangular finite elements on
the surface at the time the facets are read and created. This option is useful if no further
modifications to the facets are necessary.

Creating triangular finite elements in this manner can greatly speed up the mesh generation
process, however it is limited to non-manifold topology. If the triangular elements are to be used
for tetrahedral meshing (i.e. all edges of the triangulation should be connected to no more than
two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following methods:

o Exporting to an Exodus Il File
¢ Exporting to a facet file

Exodus 11
Exporting to an Exodus Il file saves the finite element mesh along with any boundary conditions
placed on the model. It will not save the individual facets that comprise the mesh-based

148

Cubit 15.2 User Documentation

geometry surface representation. Importing an Exodus 11 file saved in this manner will regenerate
the surfaces only to the resolution of the saved mesh.

Facet files

CUBIT also provides the option to save just the surface representation to a facet or STL file. The
following commands can be used for saving facet or STL files:

Export Facets 'filename' <entity_list> [Overwrite]
Export STL [ASCII|Binary] 'filename’ <entity_list> [Overwrite]

These commands provide the option of saving specific surfaces or volumes to the facet file. If no
entities are provided in the command, then all surfaces in the model will be exported to the file.
The overwrite option forces a file to overwrite any file of the same name in the current working

directory.

CUBIT Geometry Formats

e ACIS
o Mesh-Based Geometry

Setting the Geometry Kernel
The geometry kernel can be switched between ACIS and Mesh-Based Geometry from the
command line using the following command:

Set Geometry Engine {Acis|Facet}

The geometry engine will automatically be set when importing a model.

Terms

Before describing the functionality in CUBIT for viewing and modifying solid geometry, it is
useful to give a precise definition of terms used to describe geometry in CUBIT. In this manual,
the terms topology and geometry are both used to describe parts of the geometric model. The
definitions of these terms are:

Topology: the manner in which geometric entities are connected within a solid model;
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.
Geometry: the definition of where a topological entity lies in space. For example, a curve may
be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element of topology
(vertex, curve, etc.) can have one of several different geometric representations.

Topology

Within CUBIT, the topological entities consist of vertices, curves, surfaces, volumes, and bodies.
Each topological entity has a corresponding dimension, representing the number of free
parameters required to define that piece of topology. Each topological entity is bounded by one
or more topological entities of lower dimension. For example, a surface is bounded by one or
more curves, each of which is bounded by one or two vertices.

Bodies and Volumes

A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfaces
and volumes. The use of Body is not required, and is in fact deprecated in favor of using
Volume. Bodies may still be used for grouping volumes, but it is suggested to use Groups
instead.

149

Geometry

Although a Body may contain groups of Surfaces or Volumes, for most practical purposes within
the CUBIT environment, a single Volume or Surface will belong to a single Body. For typical
three-dimensional models, this means that there should be one Body for every Volume in the
model, where the default Body ID is the same as the Volume ID. For this reason, in many
instances the term Volume and Body are used interchangeably, although it is more consistent to
always refer to Volumes and VVolume IDs, and only use Bodies when absolutely necessary.

Non-Manifold Topology

In many applications, the geometry consists of an assembly of individual parts, which together
represent a functioning component. These parts often have mating surfaces, and for typical
analyses these surfaces should be joined into a single surface. This results in a mesh on that
surface which is shared by the volume meshes on either side of the shared surface. This
configuration of geometry is loosely referred to as non-manifold topology.

Bounding Box Calculations

Bounding box calculations are used for many routines and subroutines in Cubit. These
calculations are done using a faceted representation by default. To use the default modeling
engine for more accurate (and longer) calculations change the Facet Bbox setting.

Set Facet BBox [ON|Off]

There are also various settings to control the accuracy of bounding box calculations based on
point lists.

Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]

If surfaces are used, surface facet points will be included in the point list used to calculate the
tight bounding box. This will include vertices and points on the curves. This is the default
implementation.

If curves are used, curve tesselation points will be included in the point list used to calculate the
tight bounding box. This includes the vertices on the ends of the curves. One use for this is to
find a more accurate tight bounding box, since curve tessellations are typically more fine than
surface tessellations. However, in practice, it is recommended to just use surface tessellations.
One special case is if the user sends in a list of curves as the criteria for the tight bounding box,
the curve tessellations are always used, even if this parameter is false.

If vertices are used, vertex points will be included in the point list used to calculate the tight
bounding box. In extremely large models, it could be advantageous to just use vertices. So the
user would turn off both the surface and curve flags. One special case is if the user sends in a list
of curves as the criteria for the tight bounding box, the curve tessellations are always used, even
if the curve parameter is false and this parameter is true.

Geometry Creation

Geometry Creation

There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT
provides many geometry primitives for creating common shapes (spheres, bricks, etc.) which can
then be modified and combined to build complex models. Secondly, geometry can be imported
into CUBIT. Finally, geometry can be defined by building it from the "bottom up", creating
vertices, then curves from those vertices, etc. Two of these three methods for creating geometry
in CUBIT will be described in detail in this section.

150

Cubit 15.2 User Documentation

All of these geometry creation commands have been expressed in the GUI's command panels. To
navigate to the volume creation command panels, for example, select "Mode-Geometry", then
"Entity-Volume", then "Action-Create", as shown below. Other geometry creation command
panels are available for each geometry type.

Command Panel g X
Mode - Geometry

294D

Entity - Volume

’ @ | * &

Action - Create

o A
=&
|Brick - |

Brick Dimensions

X {width) | 10|
¥ (height)
7 (depth)

£l
]
%)

e Bottom-Up Geometry Creation
o Geometric Primitives

Primitive Geometry
Geometric Primitives
The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by providing
values to the parameters associated with the chosen primitive. Primitives available in CUBIT
include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Each primitive, along
with the command used to generate it and the parameters associated with it, are described next.
For some primitives, several options can be used to generate them, and are described as well.
The following Primitives can be generated with CUBIT:

Brick

151

Geometry

Cylinder

Frustum

Pyramid

Sphere

152

Cubit 15.2 User Documentation

Torus

General Notes

« Primitives are created and given an 1D equal to one plus the current highest body ID in
the model.

« Primitive solids are created with their centroid at the origin or the world coordinate
system.

« For primitives with a Height or Z parameter, the axis going through these primitives will
be aligned with the Z axis.

« For primitives with a Major Radius and a Minor Radius, the Major Radius will be along
the X axis, the Minor Radius along the Y axis.

o For primitives with a Top Radius, this radius will be that along the X axis; the Y axis
radius will be computed using the Major, Minor and Top Radii given.

Creating Bricks
The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z}
<height>] [Bounding Box {entity type} <id_range>] [Tight] [[Extended]
{Percentage| Absolute} <val>]]

Notes

e A cubical brick is created by specifying only the width or x dimension.

e A brick can be specified to occupy the bounding box of one or more entities, specified on
the command line.

o If the Tight option is specified with Bounding Box, the result is the smallest brick that
can contain the entities specified, which is the default behavior of the Bounding Box
option.

« If the Extended option is specified with Bounding Box, the result is a brick that is
extended from a "tight" brick by the input percentage or absolute value.

« If a bounding box specification is used in conjunction with any of the other parameters
(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Frustums
A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right
elliptical cone.

153

Command

[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top
<top_radius>]

[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor
Radius <radius> [Top <top_radius>]

Notes

o If used, Major Radius defines the x-radius and Minor Radius the y-radius.
o If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is
calculated based on the ratio of the major and minor radii.

Creating Pyramids
A pyramid is a general n-sided prism.
Command

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius>
[Top <top-x-radius>]

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-
radius> Minor [Radius] <y-radius>] [Top <top-x-radius>]

Creating Toruses

The torus command generates a simple torus
Command

[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-
radius>

Notes

e Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius

of the spine of the torus.
e The minor radius must be less than the major radius.

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.
Command

[Create] Cylinder [Height|Z] <val> Radius <val>
[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

e A cylinder may also be created using the frustum command with all radii set to the same

value.

154

Cubit 15.2 User Documentation

e Specifying major and minor radii can produce a cylinder with an oval cross section.

Creating Prisms
The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.
Command

[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>
Notes

e The radius defines the circumradius of the n-sided polygon on the end caps.

o If amajor and minor radius are used, the end caps are bounded by a circum-ellipse
instead of a circumcircle.

e The number of sides of a prism must be greater than or equal to three. A prism may also
be created using the pyramid command with all radii set to the same value.

o If the Extended option is specified with Bounding Box, the result is a brick that is
extended from a "tight" brick by the input percentage or absolute value.

« If a bounding box specification is used in conjunction with any of the other parameters
(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an
annular sphere.

Command

[Create] Sphere Radius <radius> [Xpositive]|[Xnegative]
[Ypositive]|[Ynegative] [Zpositive]|[Znegative] [Delete] [Inner [Radius]
<radius>]

Notes

o If Xpositive/Xnegative, Ypositive/Ynegative, and/or Zpositive/Znegative are used, a
sphere which occupies that side of the coordinate plane only is generated, or, if the delete
keyword is used, the sphere will occupy the other side of the coordinate plane(s)
specified. These options are used to generate hemisphere, quarter sphere or a sphere
octant (eighth sphere).

« If the inner radius is specified, a hollow sphere will be created with a void whose radius
is the specified inner radius.

Bottom Up Creation

Bottom-Up Geometry Creation

CUBIT supports the ability to create geometry from a collection of lower order entities. This is
accomplished by first creating vertices, connecting vertices with curves and connecting curves
into surfaces. Currently only ACIS bodies or volumes may not be constructed by stitching a set
of surfaces together, and only in a certain number of cases; however surfaces may also be swept

155

or rotated to create bodies or volumes. Existing geometry may be combined with new geometry
to create higher order entities. For example, a new surface can be created using a combination of
new curves and curves already extant in the model. Commands and details for creating each type
of geometry entity are given below.

The following describes each of the basic entities that can be generated with CUBIT using the
bottom-up approach

Creating Vertices
Creating Curves
Creating Surfaces
Creating Bodies

Creating Volumes
Currently, CUBIT can create volumes:

Noogok~whPE

from surfaces by sweeping a single surface into a 3D solid,
by offsetting an existing volume,

by extending one or more surfaces or sheet bodies

by sweeping a curve around an axis,

by stitching together surfaces that can form a closed volume,
by lofting from one surface to another surface, or

by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed,
and some non-planar faces can be swept successfully, although not all are supported at this time.
The following methods for generating volumes are described:

Sweep Surface Along Vector
Sweep Surface About Axis
Sweep Surface Along Curve
Sweep Surface Perpendicular
Sweep Surface to a Volume
Offset

Sheet extended from surface
Sweep Curve About Axis
Stitch Surfaces Together
Loft Surfaces Together
Thicken Surfaces

Sweep Surface

Sweep Surface along Direction
Sweep Surface along Helix

There are five forms of the sweep command; the syntax and details for each are given below.
Common options for first four forms are:

156

Cubit 15.2 User Documentation

draft_angle: This parameter specifies the angle at which the lateral faces of the
swept solid will be inclined to the sweep direction. It can also be described as the
angle at which the profile expands or contracts as it is swept. The default value is
0.0.

draft_type: This parameter is an ACIS-related parameter and specifies what
should be done to the corners of the swept solid when a non-zero draft angle is
specified. A value of 0 is the default value and implies an extended treatment of
the corners. A value of 1 is also valid and implies a rounded (blended) treatment
of the corners.

anchor_entity: The default behavior for the sweep command is to move the
source surface along a path to create a new 3D solid. The anchor_entity option
instructs the sweep to leave the source surface in its original location.
include_mesh: This option will sweep the source surface and existing mesh into a
meshed 3D solid. The mesh size is automatically computed using the Default auto
interval specification.

The sweep operations have been designed to produce valid solids of positive volume, even
though the underlying solid modeling kernel library that actually executes the operation, ACIS,
allows the generation of solids of negative volume (i.e., voids) using a sweep.

1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector.
Specifying the distance of the sweep is optional; if this parameter is not provided, the face is
swept a distance equal to the length of the specified vector. The include_mesh option will create
a volumetric mesh if the surface is already meshed as shown below. The keep option will keep
the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Vector <x_vector y_vector z_vector> [Distance
<distance_value>] [switchside] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface mesh swept along a vector
2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a
specified angle. The axis of revolution is specified using either a starting point and a vector, or
by a coordinate axis. This axis must lie in the plane of the surfaces being swept. The steps
parameter defaults to a value of 0 which creates a circular sweep path. If a positive, non-zero
value (say, n) is specified, then the sweep path consists of a series of n linear segments, each
subtending an angle of [(sweep_angle) / (steps-1)] at the axis of revolution. The include_mesh
option will create a volumetric mesh if the surface is already meshed as shown below. The keep
option will keep the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Axis {<xpoint ypoint zpoint xvector
yvector zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [switchside] [Steps

157

<number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

o

Surface swept around an axis of 50 degree angle

i Specifying multiple surfaces that belong to the same body will not work as expected, as
ACIS performs the sweep operation in place. Hence, if a range of surfaces is provided, they
ought to each belong to different bodies.

3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along
a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle
<degrees>] [Draft_type <0 | 1 | 2>][rigid][anchor_entity][include_mesh]
[keep] [individual] [merge]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be
tangential to the surface. Sweep along curve also supports an additional draft type "2" which
implies a "natural” extension of the corners from their curves.

The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.

Volume generated by sweeping a surface along a reference curve
4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface
perpendicular to the surface:

158

Cubit 15.2 User Documentation

Sweep Surface <surface _id_range> Perpendicular Distance <distance>
[Switchside] [Draft_angle <degrees>] [Draft_type
<integer>][anchor_entity][include_mesh] [keep] [merge]

The sweeping plane must be planar in order to determine the sweep direction. The switchside
option will reverse the direction of the sweep.

The original surface is retained with the "keep’ option. A new volume is created by
sweeping the surface along the surface normal.
The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.
5. Sweep Surface to a Volume: This command allows users to sweep a surface to a volume.

Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction
{options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will
determine the sweep direction (usually normal to the sweeping surface). The plane option can be
used to define a stopping plane.

6. Offset: The following command creates a body offset from another body or set of surfaces at
the specified distance. The new surfaces are extended or trimmed appropriately. A positive
distance results in a larger body; a negative distance in a smaller body.

Create Body Offset [From] Body <id_range> Distance <value>
Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list>
Offset <val>] [Surface <id_list> Offset <val> ...] [Preview]

Using the second form of the command, the sheet body can be created from a list of surfaces, and
the surfaces may offset by different distances. This command currently requires the original
surfaces to be on solid bodies.

This option is also available for limited cases for facet-based surfaces.

7. Sheet Extended from Surface: The following command creates a body offset from another
body or set of surfaces at the specified distance. The new surfaces are extended or trimmed
appropriately. A positive distance results in a larger body; a negative distance in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity list>]
[Extended {Percentage|Absolute} <val>] [Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you can
give a list of bodies to intersect for this calculation. You can also extend the size of the surface

159

by either a percentage distance or an absolute distance of the minimum area size. The plane can
be previewed with the preview option. Figure 1 shows a set of surfaces being created using the
extended absolute option.

Figure 1. Sheet created from extending multiple surfaces
8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a
specified angle. The axis is specified the same as in the Sweep Surface About Axis command.
The steps, draft_angle, and draft_type options are the same as are described above. To create the
solid, the make_solid option must be specified, otherwise a surface will be created, rather than a
solid. If the rigid option is specified, then the curve or set of curves will remain oriented as
originally oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector
zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [Steps
<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a closed
volume with command below. The geometry must be ACIS-type geometry (i.e. imported from
IGES, STEP or fastq files) This option is also available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep]
[Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this
behavior. The keep option preserves the original surfaces.

All of the surfaces must form a closed water-tight volume for this command to succeed unless
the sheet option is specified.

160

Cubit 15.2 User Documentation

The sheet option allows for the creation of an open body. If the set of surfaces form a closed
volume a sheet body is created instead of a volume.

In situations where the boundaries are not exactly within tolerance, the following command may
be more effective:

Stitch {Body|Volume} <id range>

[tolerance <value>] [no_ tighten gaps]

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a
new body. Surfaces from solid bodies and sheet bodies may be used to create a loft
body. In order to create the loft body, two surfaces coincident to the input surfaces are
created. The loft body is extruded along the shortest path between the corresponding
vertices that define the shapes of the two copied surfaces. This new body is solid. The
surfaces used to create the loft body are unchanged.

Create {Body|Volume} Loft Surface <ids> [guide curve <id_list>
[global_guides]] [Takeoff_factors <one value per surface in order>=.001]
[Takeoff vector Surface <id> {direction options}] [match vertex <ids>]
[closed] [preview] [show_matching_curves]

Note:Source surface ids must be specified in lofting order.

Go to Location, Direction, and Axis Specification to see the direction command
description.

The following options are available for lofting:

e Guide curve: Multiple curves may be specified to guide the loft. The curves must touch
each source surface. If the global_guides option is specified the guides curves are applied
in a global nature.

o Takeoff_factors: Takeoff factors control how strongly the loft follows the takeoff
vectors. When specifying takeoff factors one value must be specified for each source
surface.

o Takeoff vector: The takeoff vector controls the direction of the loft for each surface.
The default takeoff vector for each surface is the normal at the surface centroid. One
takeoff vector may be specified for each surface.

e Match vertex: This option guides the loft in how to match the vertices of the source
surfaces. Multiple match vertex sets may be specified. When specifying match vertices,
one vertex id from each source surface must be specified. The match vertices must be
specified in loft order.

« Closed: This option atempts to create a toroidal solid. The last source surface is lofted to
the first source surface.

e Preview: This option will preview the linking curves of the final solid.

e Show_matching_curves: This option will preview how the vertices of the source
surfaces will be matched.

161

Lofting can be used to split a body in order to create a more structured mesh. Figure 2 below
shows a single volume swept from a large paved surface. Figure 3 shows this same volume after
surfaces defined on the source and target surfaces have been used to create a loft body. This
original body was chopped with the loft body. The resulting two bodies were merged. The
yellow volume was swept as the volume in Figure 2 was but the purple volume was submapped,
producing a much more structured mesh overall.

T
-

Jedel 1 E
TITTT

el

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.
11. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface
can be thickened in both directions using the "both™ keyword, thickened in the direction of
surface normal using a positive depth, or thickened in the opposite direction using a negative
depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards the plane
until the swept surface reaches the plane. See plane options for ways to describe a plane.
Sweep surface <id> target plane <options>
13. Sweep Surface along a Direction: Sweep a surface along a direction to create a volume. See
direction options for ways to specify a direction.
Sweep Surface <surface_id_range> Direction (options) [switchside] [draft_angle
<degrees>] [draft_type <integer>] [rigid] [anchor_entity] [include_mesh] [keep]
[merge]

162

Cubit 15.2 User Documentation

Surface extruded along -X direction without ‘include_mesh' option
14. Sweep Surface along Helix: Sweep a surface along a helix, where the helix is defined by an
axis, thread_distance (distance between turns in axis direction), axis, and handedness
(right_handed or left_handed.
Sweep {Surface|Curve} <id_range> Helix {axis <xpoint ypoint zpoint xvector
yvector zvector> | xaxis | yaxis | zaxis} thread_distance <val> angle
<val> [RIGHT_HANDED|left_handed] [anchor_entity] [include_mesh] [keep]
[merge]
*** Specifying multiple Surfaces that belong to the same Body can cause the creation of
invalid Bodies and is discouraged. ***
axis = axis about which to create the sweep
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Helical Sweep

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the
geometry (shape) of the curve (along with any parameters necessary for that geometry). There
are several forms of this command:

e Straight
o Parabolic, Circular, Ellipse

163

e Spline

o Copy
e Arc Three

e Arc End Vertices and Radius
o Arc Center Vertex

e Arc Center Angle

e From Vertex Onto Curve

o Offset
e From Mesh Edges
e Close To

o Surface Intersection
e Projecting onto Surface
¢ Helix

1. Straight: The first form of the command creates a straight line or a line lying on the specified
surface. If a surface is used, the curve will lie on that surface but will not be associated with the
surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id>[On Surface
<surface_id>]

Straight curves can be created using an axis. The syntax is as follows:
Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see
the axis command description.

Additionally, several connected straight curves can be created with a single command. The
syntax for the polyline command is as follows:

Create Curve Polyline Location {options} Location {options} ...

Notice that two or more locations are used to define a polyline. See Location, Direction, and
Axis Specification for the location command description.
2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes through
the three vertices. The circular and ellipse options create circular and elliptical curves
respectively that go through the first and last vertices.
Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id>
[Parabolic|Circular|ELLIPSE [first angle <val=0> last angle <val=90>]]]
If "ellipse” is specified, Cubit will create an ellipse assuming the vectors between vertices (1 and
3) and (2 and 3) are orthogonal. v1-v3 and v2-v3 define the major and minor axes of the ellipse
and v3 defines the center point. These vectors should be at 90 degrees. If not, Cubit will issue a
warning indicating the vertices are not sufficient to create an ellipse and will then default to
creating a spiral.
The angle options will specify what portion of the ellipse to create. If none are specified, first
angle will default to 0 and last angle to 90 and the ellipse will go from vertex 1 to vertex 2; if
the vertices are free vertices they will be consumed in the ellipse creation. First angle tells Cubit
where to start the ellipse -- the angle from the first axis (v1 - v3) specified. Last angle tells
Cubit where to end the ellipse -- the angle from the first axis. The angle follows the right-hand
rule about the normal defined by (v1 - v3) X (v2 - v3).

164

Cubit 15.2 User Documentation

3. Spline: The spline form of the command creates a spline curve that goes through all the input
vertices or locations. To create a curve from a list of vertices use the syntax shown below. The
delete option will remove all of the intermediate vertices used to create the spline leaving only
the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline will
pass through all of the specified locations. The syntax is shown below:

Create Curve Spline {List of locations}

See Location, Direction, and Axis Specification to view the location specification syntax.
4. Copy: This command actually copies the geometric definition in the specified curve to the
newly created curve. The new curve is free floating.

Create Curve From Curve <curve_id>

5. Combine Existing Curves: This command creates a new curve from a connected chain of
existing ACIS curves.

Create Curve combine curve <id_list> [delete]

6. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3
curves. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

7. Arc End Vertices and Radius: The following command creates an arc using two vertices, the
radius and a normal direction. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Vertex <id_list>
Radius <value> Normal {<x> <y> <z> | {direction options} [Full]

Go to Location, Direction, and Axis Specification to see the direction command description.

8. Arc Center Vertex: The next form of the command creates an arc using the center of the arc
and 2 points on the arc. The arc will always have a radius at a distance from the center to the first
point, unless the Radius value is given. Again, the Full qualifier will cause a complete circle to
be created.

Create Curve Arc Center Vertex <center_id> <endl id> <end2_id>
[Radius <value>] [Full]
[Normal {<x> <y> <z> | {direction options}]

Go to Location, Direction, and Axis Specification to see the direction command description.
Note: Requires 3 Vertices - first is the center, the other two are the end points of the arc. A
normal direction is required when the three points are colinear. Otherwise a normal direction is
optional.

9. Arc Center Angle: This form of the command creates an arc using the center position of the
arc, the radius, the normal direction and the sweep angle.

Create Curve Arc Center {<x=0> <y=0> <z=0> | {location options}
Radius <value>

165

Normal {<x> <y> <z> | {direction options}
Start Angle <value=0> Stop Angle <value=360>

Go to Location, Direction, and Axis Specification to see the location and direction command
descriptions.

10. From Vertex Onto Curve: The following command will create a curve from a vertex onto a
specified position along a curve. If none of the optional parameters are given, the location on the
curve is calculated as using the shortest distance from the start vertex to the curve (i.e., the new
curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction
<f> | Distance <d> | Position <xval><yval><zval> | Close_To Vertex
<vertex_id> [[From] Vertex <vertex_id> (optional for 'Fraction’ &
‘Distance’)]] [On Surface <surface_id>]

Note: Default = Normal to the Curve

11. Offset: The next command creates curves offset at a specified distance from a planar chain
of curves. The direction vector is only needed if a single straight curve is given. The offset
curves are trimmed or extended so that no overlaps or gaps exist between them. If the curves
need to be extended the extension type can be Rounded like arcs, Extended tangentially (the
default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only

In all cases, the specified vertices are not used directly but rather their positions are used to
create new vertices.

12. From Mesh Edges: This commands creates a curve from an existing mesh given a starting
node and an adjacent edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]

The adjacent edge indicates which direction to propagate the curve.

The curve will be composed of mesh edges up to the specified length.

If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1
shows a example of a curve generated from the mesh.

166

Cubit 15.2 User Documentation

i

+
[

\ LYY

[}

iy

VAT
WA
()
VY
WL

&)

\J
A

A Y\

A3 AL oY
WA
VAVALA'

FLA
ALV

RV
VaVS
A

AVAY,

N

AN

L7

X
W\

Figure 1. Example of curve created from mesh
The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve
will also be meshed with the edges it was propagated through. A related command for assigning
mesh edges directly to a mesh block is the Rebar command. See Element Block Specification for
more details.
Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.
13. Close_To This option takes two geometric entities and creates the shortest possible curve
between the two entities at the location where the two entities are the closest. The two entities
may NOT intersect. If two vertices are given, the command will create a straight line between the
two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>
{Vertex|Curve|Surface|Volume|Body} <id_2>

14. Surface Intersection The following command creates curves at surface
intersections. Multiple curves can be created from a single command.

Create Curve Intersecting Surface <id_list>

15. Projecting onto a Surface The project command allows you to make an imprint of a surface
or set of curves onto another surface. The command syntax is as follows:

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]] [Trim]

Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is
given, the result will be the creation of a set of free curves on top of the projection surface. If a
list of surfaces is given, the result will be the same as selecting the curves that bound the surface
(i.e. a group of free curves on the projecting surface).

The imprint option will imprint the resulting projected curves onto the projection surface. If this
option is NOT given, the new curves will lie coincident to the surface, but will not be part of the
surface. Imprinting changes the topology of the projection surface. Keepcurve option retains the
new curves as both free curves, and curves in the projection surface. The keepbody option retains
the original body under the new imprinted body. When projecting curves, the trim option will
cause the curve to be trimmed to the target surface.

167

16. Creating a Helix: This command will create a helical curve. The command syntax is as
follows:
Create Curve Helix { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |
yaxis | zaxis } location (options) thread_distance <value> angle <value>
[RIGHT _HANDED | left_handed]
axis = axis about which to create the helix
location (options) = starting point of the helix
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT
by fitting an analytic or spline surface over a set of bounding curves. In this case, the curves must
form a closed loop, and only one loop of curves may be supplied. The second method, is by
sweeping a curve about an axis, along a vector, or along another curve. The result of these
surface creation commands is a "sheet body" or a body that has zero measurable volume (it does
however have a volume entity). This body may be decomposed with booleans and special
webcutting commands or it may be used as a tool to decompose other bodies. Booleans can be
used to cut holes out of these surfaces.

The following options may be used for creating a surface in CUBIT,

o Bounding Curves

o Bounding Vertices or Nodes
» Copy

o Extended Surface

« Planar Surface

o Net Surface

e Offset
e Skinning

e Sweeping of Curves
e Midsurface

« Weld Profile

e Meshed Entities

e Circular Surface

o Parallelogram

o Ellipse
e Rectangle

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit
to cover the bounding curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...

Another version of this command creates a surface from a set of bounding curves that all lie on
one surface. If the curves are selected they must lie on the surface, and they must create a closed
loop. The On Surface option forces the surface to match the geometry of the underlying surface
exactly.

168

Cubit 15.2 User Documentation

Create Surface Curve <id_list> On Surface <surface_id>

2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an
analytic spline surface. The On Surface option creates the surface from a set of nodes and
vertices that all lie on one surface and restrains the surface to match the geometry of the
underlying surface. The project option will project the nodes or vertices to the specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the specified
surface. The new surface will be a stand-alone sheet body that is geometrically identical to the
user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended from a
given surface or list of surfaces. The specified surface's geometry is examined and extended out
"infinitely"” relative to the current model in CUBIT (i.e. extended to just beyond the bounding
box of the entire model). The given surfaces are extended as shown in the table.

Create Surface Extended From Surface <surface_id>
Table 1. Surface Extension Results

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone, Shell of outside conic axially aligned with given
cylinder... conic of infinite height relative to model

Spline Surface is extended to extents of the spline

definition. This may not be any further than the
surface itself, so caution should be used here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create Sheet
Extended from Surface command.

5. Planar Surface: The following commands create planar surfaces. The first passes a plane
through 3 vertices, the second uses an existing plane, the third creates a plane normal to one of
the global axes, and the fourth creates a plane normal to the tangent of a curve at a location along
the curve. By default, the commands create the surface just large enough to intersect the
bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a
percentage distance or an absolute distance of the minimum area size. The plane can be
previewed with the command Draw Plane [with]... (where the rest of the command is the same as
that to create the surface).

169

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id>
[Vertex] <v3_id> [Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>]

Create Planar Surface [With] Plane Surface <surface_id> [Intersecting]
Body <id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane {Xplane|Yplane|Zplane} [Offset <val>]
[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]
Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction
<f>| Distance <d> | Position <xval><yval><zval> | Close_to vertex
<vertex_id>} [[From] Vertex <vertex_id> (optional for ‘fraction' &
‘distance’)] [Intersecting] Body <id_range>] [Extended Percentage|Absolute
<val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes
through a set of curves in the u-direction and a set of curves in the v-direction (these u and v
curves would looked like a mapped mesh). The first form of the command uses curves to create
the net surface. The curves must pass within tolerance of each other to work. The second form
uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a
collection of mapped or submapped surfaces that form a logical rectangle. By default net
surfaces are healed to take advantage of any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>]
[HEAL|Noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]
[HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of
complicated surfaces then create a net surface from this mesh. Then the original surfaces can be
removed with the noextend option and the new net surface combined back onto the body.

7. Offset: The following command creates surfaces offset from existing surfaces at the specified
distances.

Create Surface Offset [From] Surface <id_list> Distance <val>

The surface offset command will only translate the existing surfaces, without extending or
trimming them. An alternate form of the command for sheet bodies will maintain connections
between surface by extending or trimming as they are offset, shown in Figure 1. On the left, the
surfaces are offset using the surface offset command. On the left, the surface is created by using
the "sheet™ version of the command.

170

Cubit 15.2 User Documentation

o

.

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An example of
a skin surface is to create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>

9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new
surfaces. The path may be specified as an axis and angle, a vector and distance, by indicating
another curve or set of contiguous curves, or by specifying a target plane. The following
commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector
zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Steps

<Number_of _sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Include_mesh] [Keep][Rigid]

Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance
<distance>] [Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh]
[Keep] [Rigid]

Sweep Curve <curve_id_range> Along Curve <refcurve_id_range>
[Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh] [Keep]
[Rigid]

Sweep Curve <curve_id_range> Target Plane <options>

Sweep Curve <curve_id_range> Target {Volume|Body} <id> Direction
{options} [Plane <options>] [Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead of a
smooth round sweep, there are facets to the surface. The make_solid option closes the newly-
created surface to the axis, so that a solid is created instead of a surface.

In the above commands, the include_mesh option will create a surface mesh if the curve is
already meshed (see figure below). The keep option will keep the original curve while creating
the surface.

171

The sweep curve target plane command sweeps a curve until it hits a target plane. The options
for the target plane are described under Specifying a Plane.

The last command sweeps a curve to a target volume or body and can only be used on sheet
bodies. Use the direction keyword to specify the sweep direction and the plane keyword to
specify a stopping plane. The unite keyword will unite the sheet bodies after sweeping

The other options are as follows:

draft_angle: determines how much drafting in of the surface is desired

draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they
intersect)

1 =>rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***

rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The
rigid option disallows this rotation.

10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the
following command:

Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1>
<idN2>

where N denotes the number of pairs of surfaces. An even number of surfaces must be specified,
and the command will group them by pairs in the order in which they are provided. The resulting
surface will be trimmed by the specified body or volume <id>. This replaces the Create
Midplane command in previous versions of CUBIT.

172

Cubit 15.2 User Documentation

Figure 2. Multisurface created with the Create Midsurface command

173

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces
Midsufaces can also be extracted without surface pair specification if the resulting surface is a
single sheet of surfaces (no T intersections). The following is the command syntax for automatic
midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent]
[Thickness] [Limit <lower_bound> <upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:
create midsurface volume 1 auto delete

174

Cubit 15.2 User Documentation

Figure 4. Midsurface created from a volume
The command option descriptions are listed below.
Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to specify
a single surface pair to create a mid-surface.
Transparent shows the successfully midsurfaced volumes as transparent in the graphics display
Thickness applies a 2D property to the created mid-surface geometry.
Limit search range gives the algorithm a range to find surface pairs within.
11. Weld Profile: Surfaces may be created by specifying a weld profile using the following
command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list>
Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the
root curve and uniting the new body to the model. An example of the command is illustrated
below. For a detailed description of the location specifier see Location Direction, and Axis

Specification.
create surface weld root location vertex 25 weld surface 13 14 length 2

175

YWeeld Surface

Foot Location

“ertex 26 Length 2

Figure 5. Weld Profile surface with length and root specifications
12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of
meshed volumes, surfaces, and/or from individual quadrilateral mesh elements. The individual
option makes it so you can enter multiple surfaces at once, and not have them merged together
into a larger surface, but instead retain their own original boundaries. The optional tolerance
value allows the user to specify a tolerance to which the resulting surface should be fit. The
default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face <
id_range> [Individual]} [Tolerance <value>]

Figure 6. Acis Surface created from a Set of Quadrilaterals
13. Creating a Circular Surface: This command creates a 2D circular surface. The surface will
be centered at the origin and on the z-plane if a plane option is not specified.

create surface circle radius <value> {xplane|yplane|ZPLANE}

176

Cubit 15.2 User Documentation

This command creates a 2D circular surface by specifying three vertices; the first vertex will be
the center of the surface, the second vertex will be used to define the radius of the surface, and
the third vertex will assist in defining the plane that the surface will lie in.

create surface circle center vertex <vl id> <v2_ id> <v3_id>
This command creates a 2D circular surface by forming a circular curve through three points.

create surface circle vertex <vl id> <v2 id> <v3_id>

14. Creating a Parallelogram: This command creates a 2D parallelogram surface, centered at
the origin, by specifying three corner vertices. These vertices will form three consecutive
corners of the parallelogram surface.

create surface parallelogram vertex <vl id> v2 <id> <v3_id>
15. Creating an Ellipse: This command creates a 2D elliptical surface, centered at the origin, by
specifying at least a major radius. On an x-y plane this radius will be the radius along the x-
direction. The minor radius will be the radius along the y-direction. By default, the surface will
lie in the z-plane.
Create Surface Ellipse major radius <value> [minor radius <value>]
[xplanelyplane|ZPLANE]
This command creates a 2D elliptical surface using three vertices. The first two vertices define
the major and minor radii of the ellipse surface. The third point defines the center of the
ellipse. It is important to note that a line from v1_id to v3_id must be orthogonal to a line from
v2_id to v3_id, otherwise the command will fail.
Create Surface Ellipse vertex <v1_id> <v2_id><v3_id>
16. Creating a Rectangle: This command creates a rectangular surface centered at the origin. If
only a width value is specified, the surface will be a square. On an x-y plane, the width value is
the x-direction and the height is the y-direction. By default, the surface will lie in the z-plane.
Create Surface rectangle width <value> [height <value>] [xplane|yplane|ZPLANE]

Creating Vertices
The basic commands available for creating new vertices directly in CUBIT are:

e XYZ location

e On Curve - Fraction
e On Curve - General
e From Vertex

o AtArc

o At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the
vertex. It can also be created lying on a curve or surface in the geometric model by specifying
the curve or surface id; the position of the vertex will be the point on the specified entity which is
closest to the position specified on the command. With all of these commands, the user is able to
specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

177

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a
curve using the second form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]
Vertex 3 in the following example was created with this command:
create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve
3. On Curve - General: A more general purpose form of the command is also available for
creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val
0.0 to 1.0> [From Vertex <id> | Start|End] | Distance <val> [From
{Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At} Location {options}
| Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction]
{options} [Direction {options}] [Direction {options}] | Segment <num_segs> |
Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance
from one of the curves ends, at the closest location to an xyz position or another vertex, or at a
specified distance from a vertex, curve or surface. You can also preview the location first with
the command Draw Location On Curve (where the rest of the command is identical to the Create
Vertex form).

4. From Vertex: Create a vertex from an existing vertex.

Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color
<color_name>]

If ‘on curvelsurface’ option is used, the vertex is positioned on that curve or surface. When the 'on
curvelsurface' is not used, the new vertex is positioned on the existing vertex.
5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the
bounded qualifier is used, the vertices are limited to lie on the curves, otherwise the extensions of
the curves are also used to calculate the intersections. The near option is only valid for straight
lines, where the closest point on each curve is created if they do not actually intersect (resulting
in two new vertices).

Create Vertex Atlntersection Curve <id1> <id2> [Bounded] [Near] [Color
<color_name>]

178

Cubit 15.2 User Documentation

Transforms
Geometry Transforms

« Align
» Copy
¢ Move
o Scale
o Rotate
o Reflect

Bodies can be modified in CUBIT using transform operations, which include align, copy, move,
reflect, restore, rotate, and scale. With the exception of the copy operation, transform operations
in CUBIT do not create new topology, rather they modify the geometry of the specified bodies.
ACIS, Mesh Based Geometry and Virtual Geometry representations may be transformed. If the
geometric entity has been meshed, the nodes of the mesh will be transformed along with the
geometry. To transform the nodes of a mesh as they are written to the Exodus 11 mesh file
without modifying their location within CUBIT, see Transforming Mesh Coordinates.

Align Command

The align command is a combination of the rotate and move commands.

The first align command below will transform the specified volumes by computing a
transformation that would align the first surface with the second surface such that the surface
centroids are coincident and the normals are pointing either in the same or opposite direction
(depending on their initial alignment). The first surface need not be in the specified volumes.
The second form of the align command either aligns a face of a volume or two vertices (forming
a direction) with the xy, yz, and xz planes or the X, y, and z axes. If the [reverse] option is
specified, the resulting alignment is flipped 180 degrees.

The third form of the command is a rotational alignment, where the specified entities are rotated
about the specified axis, where the angle of rotation is the angle between the first and second
locations with respect to the axis.

The syntax of the align commands are:

Align Volume <id_range> Surface <surface_id> with Surface <surface_id>
[reverse] [include_merged] [preview]

Align Volume <id_range> {Surface <surface_id>| Vertex <vertex_id>}
{X|Y|Z AXxis}H{XY|XZ|YZ plane}} [reverse] [include_merged] [preview]
Align Volume <id_range> Location {options} with Location {options} about
Axis {options} [include_merged] [preview]

This transformation is useful for aligning surfaces in preparation for geometry decomposition
and aligning models for axis-symmetric analysis. If the [include_merged] option is used, all
entities that are merged with the specified volume will be included in the align transformation
also.

Copy Command

The copy command copies an existing entity to a new entity without modifying the existing
entity. A copy can be made of several entities at once, and the resulting new entities can be
translated or rotated at the same time. The commands for copying entities are:

179

Vertex <range> Copy [Move [X <dx>] [Y <dy>] [Z <dz>]] [Preview]

Vertex <range> Copy [Move <direction_options> [Distance <val>]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move [X <dx>]
[Y <dy>] [Z <dz>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move

<direction _options> [Distance <val>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect {X|Y|Z}
[Nomesh] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect [Vertex
<vl id> [Vertex] <v2_id] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Reflect <x> <y> <z> [Nomesh]
[Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About {X|Y|Z}
[Repeat <value>] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About <x> <y>
<z> [Nomesh] [Repeat <value>] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve} <range> Copy Scale <scale> | X <val>Y <val>
Z <val> [About Vertex <id>] [Nomesh] [Repeat <value>] [Preview]

If the copy command is used to generate new entities, a copy of the original mesh generated in
the original entity will also be copied directly onto the new entity unless the nomesh option is
used.

Several of the commands include the Repeat token. If that token is used the command will
repeat itself value times.

This is currently limited to copies that do not interact with adjacent geometry through non-
manifold topology. For details on mesh copies, see the Mesh Duplication documentation.

Move Command
The move command moves a body, volume, free surface, free curve or free vertex by a specified
offset. The command syntax is:

Vertex <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy] [Preview]
Vertex <id_range> Move <direction options< [Distance <val>] [Copy]
[Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> [Move [X <dx>] [Y
<dy>] [Z <dz>]] [Copy [Nomesh]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Move

<direction _options> [Distance <val>] [Copy [Nomesh]] [Preview]

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis directions. If
the copy option is specified, a copy is made and the copy is moved by the specified offset. The
nomesh option will copy and move only the geometry.

These forms of the Move command will only work on free surfaces and free curves. To move a
curve or surface that is part of a higher-order entity, the Move {entity} ... command is used.
Moving Other Geometric Entities

It is also possible to move bodies by specifying one of its child entities. For example, a body can
by moved by specifying one of its curves. However, if a lower-order entity is moved, the parent
body and all related entities will also be moved. The commands for moving bodies using a child

180

Cubit 15.2 User Documentation

entity are given below. Alternatively, the tweak command can be used to move curves and
surfaces without moving the parent body.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location <x> [<y> [<z>]] [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Location
[Midpoint] [X <val>] [Y <val>] [Z <val>] [Except [X] [Y] [Z]]
[Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Normal to
Surface <id> Distance <val> [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
General Location <location _options> [Except [X] [Y] [Z]] [Include_Merged]
[Preview]

The first form of the command will move the entity to an absolute location. If moving a group,
the centroid of the group is moved to that location. The second form will move the entity by a
relative distance in any of the xyz axis directions. "Except" is used to preserve the X, y, or z plane
in which the center of the entity lies. The third form of the command will move the body along
an axis defined by the outward-facing surface normal of another surface. The fourth form of the
command uses general location parsing to move the entity.

Moving Bodies Relative to Other Geometric Entities

It is also possible to move bodies relative to other geometric entities in the model. The following
command takes as arguments two geometric entities. The first entity is the one to move. The
second entity is where it will be moved. In both cases, the midpoints of the specified entity are
used to determine the distance and direction of the move. In the case of groups, centroids are
used. "Except"” is used to preserve the X, y, or z plane in which the center of the entity lies.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location {Vertex|Curve|Surface|Volume|Body|Group} <id> [Midpoint]
[Except [X] [Y] [Z]] [Include_Merged] [Preview]

Moving Merged Entities

The easiest way to move merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will move together.

The only other way that merged entities can be moved is by including each of the merged entities
in the entity list.

Move Undo

The Undo option allows a user to reverse the most recent move. This command will only work
for the Move {entity} commands, and not the {Entity} Move commands. The syntax is:

Move Undo

Reflect Command
The reflect command mirrors the body about a plane normal to the vector supplied. The reflect
command will destroy the existing body and replace it with the new reflected body, unless the
copy option is used.

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect <x-
comp> <y-comp> <z-comp>

181

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect
{XIy|z}

Rotate Command

The rotate command rotates a body about a given axis without adding any new geometry. If the

Angle or any Components are not specified they are defaulted to be zero. The commands to
rotate a body or bodies are:

Body <range> [Copy] Rotate <angle> About {X|Y|Z} [Preview]

Body <range> [Copy] Rotate <angle> About <x-comp> <y-comp> <z-comp>
[Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> about
{X|Y|Z|<xval> <yval> <zval>} Angle <val> [Include_Merged] [Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Vertex <id> Vertex <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Normal of Surface <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Origin <xval> <yval> <zval> Direction <xval> <yval> <zval> Angle <val>
[Include_Merged] [Preview]

If the copy option is specified, a copy is made and rotated the specified amount.

Rotating Merged Entities

The easiest way to rotate merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will rotate together.

The only other way that merged entities can be rotated is by including each of the merged
entities in the entity list.

Scale Command

The scale command resizes an entity (body, volume, surface, or curve) by a scaling factor. The

scaling factor may be a constant, or may differ in the x, y, and z directions. The entity chosen

will be scaled about the point or vertex indicated. If no point or vertex is entered, it will be scaled
about the origin. Any mesh on the object will be scaled too, unless the nomesh keyword is used.

The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> Scale {<scale> | x <val>y <val>z
<val>} [About {<x> <y> <z> | Vertex <id>}] [Nomesh] [Copy [Repeat
<value>] [Group_Results]] [Preview]

If the copy option is specified, a copy of the entity is made and scaled the specified amount. Use

the repeat option to create multiple copies.

Booleans
Geometry Booleans

e Intersect
e Subtract

182

Cubit 15.2 User Documentation

¢ Unite

CUBIT supports boolean operations of intersect, subtract, and unite for bodies.
An automatic function associated with webcutting operations is regularizing geometry which can
be turned off or back on with the following command:

Set Boolean Regularize [ON | off]

Intersect

The intersect command generates a new body composed of the space that is shared by the two
bodies being intersected. Both of the original bodies will be deleted and the new body will be
given the next highest body ID available. The command is:

Intersect {Volume|[Body]} <range> [With {Volume|[Body]} <range>] [Keep]
[Preview]

The keep option results in the original bodies used in the intersect being kept.

If the Preview option is included in the command, the input bodies will not be modified. The
computed intersection volume will be drawn as a red, shaded solid. For best results change the
graphics mode to transparent or hidden line so the intersection is visible. Otherwise the
intersection volume will be hidden by the volumes being intersected.

Subtract

The subtract operation subtracts one body or set of bodies from another body or set of bodies.
The order of subtraction is significant - the body or bodies specified before the From keyword
is/are subtracted from bodies specified after From. The new body retains the original body's id.
If any additional bodies are created, they will be given the next highest available ids. The keep
option simply retains all of the original bodies. The command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range>
[Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

Unite

The unite operation combines two or more bodies into a single body. The original bodies are
deleted and the new body is given the next highest body ID available, unless the keep option is
used. The commands are:

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [Keep]
Unite Body {<range> | All} [Keep]
Unite Body {<range> | All} [Include_mesh]

The second form of the command unites multiple bodies in a single operation. If the all option is
used, all bodies in the model are united into a single body. If the bodies that are united do not
overlap or touch, the two bodies are combined into a single body with multiple volumes.

The unite command allows sheet bodies to be united with solid bodies. To disable this capability
you can turn the following setting off:

Set Unite Mixed {ON|Off}

183

Decomposition

Geometry Decomposition

Geometry decomposition is often required to generate an all-hexahedral mesh for three-
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is not yet
possible in CUBIT. While geometry booleans can be used for decomposition (and are the basis
of the underlying implementation of advanced decomposition tools described here), CUBIT has
a webcut capability specially tuned for decomposition. It is also useful to split periodic surfaces
to facilitate quad and hex meshing.

e Web Cutting

o Splitting Geometry

e Section Command

e Separating Multi-Volume Bodies
e Separating Surfaces From Bodies

Web Cutting

Web Cutting

The term "web cutting” refers to the act of cutting an existing body or bodies, referred to as the
"blank™, into two or more pieces through the use of some form of cutting tool, or "tool". The two
primary types of cutting tools available in CUBIT are surfaces (either pre-existing surfaces in the
model or infinite or semi-infinite surfaces defined for web cutting), or pre-existing bodies.

The various forms of the web cut command can be classified by the type of tool used for cutting.
These forms are described below, starting with the simplest type of tool and progressing to more
complex types.

e Web Cutting Using the Chop Command

e Web Cutting Using Planar or Cylindrical Surface
e Web Cutting with Arbitrary Surface

e Web Cutting Using Tool or Sheet Body

e Web Cutting by Sweeping Curves or Surfaces

e Web Cutting Options

General Notes

The primary purpose of web cutting is to make an existing model meshable with the hex meshing
algorithms available in CUBIT. While web cutting can also be used to build the initial geometric
model, the implementation and command interface to web cutting have been designed to serve
its primary purpose. Several important things to remember about web cutting are as follows:

e The geometric model should be checked for integrity (using imprinting and merging)
before starting the decomposition process. This makes the checking process easier, since
there are fewer bodies and surfaces to check. Once the model passes that initial integrity
check, it is rare that decompositions using web cut will result in a model that does not
also pass the same checks.

e The use of the Imprint option can in cases save execution time, since it limits the scope of
the imprint operations and thereby works faster. The alternative is performing and

184

Cubit 15.2 User Documentation

Imprint All on the pieces of the model after all decompositions have been completed; this
operation has been made much faster in more current releases of CUBIT, but will still
take a noticeable amount of time for complicated models.

e While the web cut commands make it very simple to cut your model into very many
pieces, we recommend that the user restrict the decomposition they perform to only that
necessary for meshability or for obtaining an acceptable mesh. Having more volumes in
the model may simplify individual volumes, but may not always result in a higher quality
mesh; it will always increase the run time and complexity of the meshing task.

e When the web cut command is executed the associated geometry will be regularized.
This behavior can be changed, see geometry booleans.

e Web cutting volumes will automatically separate parent bodies as well. This behavior can
also be changed, see Separating Multi-Volume Bodies.

« If a geometric entity got split after the webcut operation, then the notesets/sidesets/blocks
applied on that initial geometric entity will be carried over to the split entities.

The Decomposition Tutorials and the Power Tools Tutorial contain some examples that
demonstrate the use of web cutting operations.

Web Cutting with an Arbitrary Surface
An arbitrary "sheet" surface can also be used to web cut a body. This sheet need not be planar,
and can be bounded or infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut options]
Webcut {blank} with sheet extended [from] surface <id> [webcut options]

In its first form, the command uses a sheet body, either one that is pre-existing or one formed
from a specified surface. Note that in this latter case the (bounded) surface should completely cut
the body into two pieces. Sheet bodies can be formed from a single surface, but can also be the
combination of many surfaces; this form of web cut can be used with quite complicated cutting
surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be extended in
all directions possible. Note that some spline surfaces are limited in extent, and so these surfaces
may or may not completely cut the blank.

Chop Command

The chop command works similarly to a web cut command, but is faster. Given two bodies, the
command will find the intersection of the two bodies, and divide the main body into a body that
lies outside the intersection, and a body that lies inside the intersection. The tool body will be
deleted, unless the keep option is specified. The syntax of the command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]
The nonreg option results in the bodies being non-regularized.

Web Cutting with a Planar or Cylindrical Surface
The commands used to web cut with a planar or cylindrical surface in CUBIT are:

e Coordinate Plane
e Planar Surface

185

o Plane from 3 Points

e Plane Normal to Curve

e General Plane Specification
e Cylindrical Surface

e Cone Surface

Coordinate Plane
In the command's simplest form, a coordinate plane can be used to cut the model, and can
optionally be offset a positive or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane
{xplane|yplane|zplane} [Offset <val>] [rotate <theta> about x|y|z <xval>
<yval> <zval> [center <xval> <yval> <zval>]] webcut options

The cutting plane can be rotated about a user-specified axis using the rotate option. The center
of rotation can be moved by using the center option.

Planar Surface
An existing planar surface can also be used to cut the model; in this case, the surface is identified
by its ID as the cutting tool.

Webcut {Volume|Body|Group} <id_range> [With] Plane Surface
<surface_id> webcut_options

Plane from 3 Points

Any arbitrary planar surface can be used by specifying three vertices that define the plane, and
can optionally be offset a positive or negative distance from this plane.

Webcut {VVolume|Body|Group} <id_range> [With] Plane Vertex <vertex_1>
[Vertex] <vertex_ 2> [Vertex] <vertex_3> [Offset <value>] webcut options

The plane to be used for the web cut can be previewed with the preview option in the general
webcut options.

Plane Normal to Curve

The next command allows a user to specify an infinite cutting plane by specifying a location on a
curve. The cutting plane is created such that it is normal to the curve tangent at the specified
location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>

{Position <xval><yval><zval> | Close_To Vertex <vertex_id>}
webcut_options

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>

{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut_options

The position on the curve can be specified as:

186

Cubit 15.2 User Documentation

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed with the Draw Location On Curve command and the
plane to be used for the web cut can be previewed with the preview option in the general webcut
options.

General Plane Specification

A webcut plane can be defined using the general plane specification options in the Specifying a
Plane section of the documentation.

Webcut {Volume|Body|Group} <id_range> [With] General Plane {options}
webcut_options

Cylindrical Surface

Finally, a semi-infinite cylindrical surface can be used by specifying the cylinder radius, and the
cylinder axis. The axis is specified as a line corresponding to a coordinate axis, the normal to a
specified surface, two arbitrary points, or an arbitrary point and the origin. The "center" point
through which the cylinder axis passes can also be specified.

Webcut {VVolume|Body|Group} <range> [With] Cylinder Radius <val> Axis
{xly|z|[normal of surface <id>| vertex <id_1> vertex <id_2>| <x_val> <y_val>
<z_val>>} [center <x_val> <y val> <z_val>] webcut _options

Cone Surface

A semi-infinite cone surface can be used by specifying the cone outer radius, and the cone inner
radius. The axis is specified as a location first of where the outer radius is applied and the second
location of where the inner radius is applied.
Webcut {Volume|Body|Group} <ids> [With] cone radius <val> <val> location
{options} location {options} [Imprint] [Merge] [group_results] [preview]

Web Cutting by Sweeping Curves or Surfaces
Webcutting with sweeping creates a swept tool body in the same step as the web cut operation.
There are 4 general ways to web cut with sweeping:

o Web Cutting by Sweeping a Surface Along a Trajectory
e Web Cutting by Sweeping a Surface About an Axis

« Web Cutting by Sweeping a Curve(s) Along a Trajectory
o Web Cutting by Sweeping a Curve(s) About an Axis

Web Cutting by Sweeping a Surface Along a Trajectory

187

This command allows one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surfaces are swept along a direction and some distance or perpendicular and some distance or
along a curve. For best results the curve to sweep the surface along should intersect one of the
surfaces. The through_all option will sweep the surfaces along the trajectory far enough so as to
intersect all input bodies. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank
bodies. The [Outward|Inward] options specify a sweeping direction that is either INTO the
volume or OUT from the volume.

Webcut {Volume|Body|Group} <range> Sweep Surface <id_range> {Vector
<x> <y> <z> [Distance <distance>] | Along Curve <id>} [Through_all | Stop
Surface <id> | Up_to_next] [webcut _options]

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range>
Perpendicular {Distance <distance> | Through_all | Stop Surface <id>}
[OUTWARD|Inward] [webcut _options]

sweeping a surface in a direction resultant web cut

along a curve to a stop surface resultant web cut
Figure 1. Examples of web cutting with swept surfaces

Web Cutting by Sweeping a Surface About an Axis

188

Cubit 15.2 User Documentation

This command allows a one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surface is swept about a user-defined axis or about one of the x y z coordinate axes and a
specified angle. The stop surface <id> option is used to identify a surface at which the sweep
will stop. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank
bodies. For these 2 options to work correctly the user must specify an angle large enough for the
rotation to traverse the stop surface or the up_to_next surface.

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range> {Axis
<xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id> | Up_to_next] [webcut options]

Web Cutting by Sweeping a Curve(s) Along a Trajectory

This command allows a curve(s) to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept along a direction and some distance or along another curve. If sweeping a curve(s) along
another curve, for best results the curve(s)-to-swept and the curve to sweep along should
intersect at some point. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The through_all option will sweep the curve(s) along the trajectory far enough
so as to intersect all input bodies. For the web cut to be successful, the swept curve(s) must
completely traverse a portion of a blank body(s), cutting off a complete piece of the blank
body(s). Option through_all should not be used when defining the web cut with a vector and a
distance or along a curve.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Vector <x>
<y> <z> [Distance <distance>| Along curve <id>] } [Through_all | Stop
Surface <id>] [webcut options]

Web Cutting by Sweeping a Curve(s) About an Axis

This command allows a curve to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept about a user-defined axis or about one of the X y z coordinate axes and a specified angle.
For the web cut to be successful, the swept curve(s) must completely traverse a portion of a
blank body(s), cutting off a complete piece of the blank body(s). The stop surface <id> option is
used to identify a surface at which the sweep will stop. For this option to work correctly the user
must specify an angle large enough for the rotation to traverse the stop surface.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Axis <xpoint
ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id>] [webcut _options]

Web Cutting using a Tool or Sheet Body
Any existing body in the geometric model can be used to cut other bodies; the command to do
this is:

Webcut {blank} tool [body] <id> [webcut options]

189

This simply uses the specified tool body in a set of boolean operations to split the blank into two
or more pieces.

Another form of the command cuts the body list with a temporary sheet body formed from the
curve loop. This is the same sheet as would be created from the command Create Surface Curve
<id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>
NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]

Webcut {Volume|Body|Group} <id_range> [With] Bounding Box
{Body|Volume|Surface|Curve|Vertex <id_range>} [Tight] [[Extended]
{Percentage|Absolute} <val>] [{X|Width} <val>] [{Y|Height} <val>]
[{Z|Depth} <val>]] NOIMPRINT|Imprint] [NOMERGE|Merge]
[group_results]

The final form of this command cuts a body with the bounding box of another entity. This
bounding box may be tight or extended.

Figure 1. Cylinder cut with bounding box of prism.

Web Cutting Options

The following options can be used with all web cut commands:

[NOIMPRINT|Imprint [include_neighbors]]: In its default implementation, web cutting
results in the pieces not being imprinted on one another; this option forces the code to imprint the
pieces after web cutting. The include_neighbors option will also imprint adjacent bodies.
[NOMERGE|Merge]: By default, the pieces resulting from an imprint are manifold; specifying
this option results in a merge check for all surfaces in the pieces resulting from the web cut.
[Group_results]: The various pieces resulting from the previous command are placed into a
group named “webcut_group'.

[Preview]: This option will preview the web cutting plane without executing the command.

Splitting Geometry

Splitting Geometry

The Split command divides curves or surfaces into multiple entities. The command results are
similar to imprinting. However, vertex and/or curve creation is not necessary for the split
command.

190

Cubit 15.2 User Documentation

e Split Curve

e Split Surface
o Split Periodic Surfaces

Split Curve
The Split Curve command will split a curve without the need for geometry creation (unlike
imprinting). The syntax is shown below.

Split Curve <id> [location on curve options] [Merge] [Preview]

To split a curve, simply specify a location or a location on curve (see location specification).
Using the Preview keyword will draw the splitting location on the curve. The Merge keyword
will merge any topology that contains the newly created vertex.

Split Periodic Surfaces

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic
surfaces can in some cases simplify meshing, and will result in curves and surfaces being added
to the volume. The command used to split periodic surfaces is:

Split Periodic Body <id_range|all>
This command splits all periodic surfaces in a body or bodies.

Split Surface

The Split Surface command divides one or more surfaces into multiple surfaces. The command
results are similar to imprint with curve. However, curve creation is not necessary for splitting
surfaces. Three primary forms of the command are available.

o Split Across
e Split Extend
o Split (Automatically)

e Split Skew

The first form splits a single surface using locations while the second splits by extending a
surface hard-line until it hits a surface boundary. The split automatic splits either a single surface
or a chain of surfaces in an automatic fashion.

Split Across
Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview
[Create]]

Split Surface <id> Across Location <multiple locs> Onto Curve <id>
[Preview] Create]]

This command splits a surface with a spline projection through multiple locations on the surface.
See Location, Direction, and Axis Specification for a detailed description of the location
specifier. Figure 1 shows a simple example of splitting a single surface into two surfaces. A
temporary spline was created through the three specified locations (Vertex 5 6 7), and this curve
was used to split the surface.

191

split surface 1 across location vertex 56 7
Vertex 7

Vertex 6
=urface 1 u Surface 2 Surface 3

Vertex 5
-

Figure 1 - Splitting Across with Multiple Locations
The Pair keyword will pair locations to create multiple surface splitting curves (each defined
with two locations). An even number of input locations is required. Figure 2 shows an example:

split surface 1 across pair vertex57 6 8

YWeartex T Vertex &
- — T -

Surface 1 |:> Surface 2| Surface 2 | Surface 4

YVerfex S Verfex B
L g : L] L

Figure 2 - Splitting Across with Pair Option
The Preview keyword will show a graphics preview of the splitting curve. If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces.
The Onto Curve format of the command takes one or more locations on one side of the surface
and projects them onto a single curve on the other side of the surface. Figure 3 shows an
example:

split surface 1 across vertex 5 6 onto curve 4

Verfex & VYertex 6
= = L 5

Surface 1 |:> Surface 2 | Surface 3 | Surface 4

Curve 4

- L
Figure 3 - Splitting Across with Onto Curve

Split Extend

192

Cubit 15.2 User Documentation

The Split Extend function can be called with the following command:
Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]
With the following settings:

Set Split Surface Extend Normal {on|OFF}
Set Split Surface Extend Gap Threshold <val>
Set Split Surface Extend Tolerance<val>

This command splits a surface by extending a surface hard-line until it hits a surface boundary.
Figure 4 shows a simple example of extending a curve. The hard-line curve was extended from
the specified vertex until it hit the surface boundary.

split surface 1 extend vertex 2

Surface 1 Surface 1
—_
Vertex 1 Vertex 2 Vartex 1 Vertex 2

Figure 4 - Splitting by Extending Hard-line
The auto keyword will search for all hard-lines and extend them according to the Split Surface
Extend settings. Figure 5 shows an example:

split surface 1 extend auto

Surface 1 Surface 2
’/_'//-./_'_'_,_,-'-"'_'-'-4
Vertex 1 WVertex 2 [1 Vertex 2
Vertex 1
Surface 3

Figure 5 - Splitting by Extending with Auto Option
The preview keyword will show a graphics preview of the splitting curve. If the create keyword
is also specified, a free curve (or curves) will be created - these are the internal curves that are
used to imprint the surfaces.
The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the hard-
line so that it is normal to the curve it will intersect. An example of this is in Figure 6:

set split surface normal on
split surface 1 extend vertex 2

193

Surface 1 Surface 1

. B

Vertex 1 Vertex 2 Vertex 1 Vertex 2

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON
Cubit uses the gap threshold to decide whether or not to extend a hard-line when the user
specifies auto. If the distance between a vertex on a hard-line and the curve it will hit is greater
than the gap threshold, then Cubit will not extend that hard-line. The default value is INFINITY,
and can be set to any value. To reset the value back to INFINITY, set the gap threshold to -1.0.
Note: This setting only applies when using the keyword auto. An example of using the gap
threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

o

@ Vertex?2 |0 o Vertex2 | O

= Vertex 1 % g Wertex 1 %

O Gl) .
Surface 1 Surface 1

Vertex 115 = 2.0 fram Curve 1
YVartex 2 is < 2.0 from Curve 2

Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.
(Notice Vertex 1 was not extended because it exceeded the gap threshold)
The tolerance setting can be used to avoid creating short curves on the surface boundary. If
Cubit tries to extend a hard-line that comes within tolerance of a vertex, it will instead snap the
extension to the existing vertex. An example of this is shown in Figure 8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

194

Cubit 15.2 User Documentation

Verex 3 Vertex 3
s Projected =
./ intersection "
Vertex 1 Vertex 2 15 0.8 from Vertex1 Vertex 2
Vertex 3
Surface 1 E:> Surface 1

Figure 8 - Extending Hard-lines with Tolerance
(Notice the extension snapped to Vertex 3)

Split (Automatically)

This form of the command splits a single surface or a chain of surfaces in an automatic
fashion. It is most convenient for splitting a fillet or set of fillets down the middle - oftentimes
necessary to prepare for mesh sweeping. These surfaces cannot have multiple curve loops.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>]
[Segment|Fraction|Distance <val> [From Curve <id>]] [Through Vertex
<id_list>] [Parametric <on|OFF>] [Tolerance <val>] [Preview [Create]]

e Logical Rectangle

e Split Orientation

o Corner Vertex <id_list>

e Direction Curve <id>

o Segment|Fraction|Distance <val> [From Curve <id>]
e Through Vertex <id_list>

e Parametric <on|OFF>

e Tolerance <val>

e Preview [Create]

o Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets and

specifying sweep sources as shown (with the sweep target underneath the volume). The surface
splits are shown in blue.

195

Surface Split Source Surfaces

o8&

Figure 9 - Splitting Fillets to Facilitate Sweeping
Each surface is always split with a single curve along the length of the surface (or multiple single
curves if the Segment option is used). The splitting curve will either be a spline, arc or straight
line.
Logical Rectangle
The Split Surface command analyzes the selected surface or surface chain to find a logical
rectangle, containing four logical sides and four logical corners; each side can be composed of
zero, one or multiple curves. If a single surface is selected (with no options), the logical corners
will be those closest to 90 and oriented such that the surface will be split parallel to the longest
aspect ratio of the surface. If a chain of surfaces is selected, the logical corners will include the
two corners closest to 90 on the starting surface of the chain and the two corners closest to 90 on
the ending surface of the chain (the split will always occur along the chain).
In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between these
corner vertices the logical sides are defined; these sides are described in Table 1. The default
split occurs from the center of Side 1 to the center of Side 3 (parallel to the longest aspect ratio of
the surface), and is shown in blue.

5 5
B Logical Corners |3 ‘:>

/)

Figure 10 - Split Surface Logical Properties

O

1.

196

Cubit 15.2 User Documentation

Table 1. Listing of Logical Sides for Figure 10

Logical Side | Corner Vertices Curve Groups

1 1-2 1
2 2-5 2,34
3 5-6 5
4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the resultant
splits.

1m 10

Logical Rectangle

= .
— =D .

Corners 1-2-5-5

17 SR
T =) .

Corners 2-3-4-5

g 7
Figure 11 - Different Possible Logical Rectangles for Same Surface
Table 2 shows various surfaces and the resultant split based on the automatically detected or
selected logical rectangle. Note that surfaces are always traversed in a counterclockwise
direction.
Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in Ordered Corners (to form the
Blue) Logical Rectangle)

197

1-2-3-4

(using aspect ratio)

4-1-2-3

(user selected)

1-2-5-6

2-5-6-1

1-2-3-4
(split is always along the chain)

1-2-3-4
(notice triangular surfaces along the
chain)

198

Cubit 15.2 User Documentation

1-1-2-3
(note side 1 of the logical rectangle is
collapsed; side 3 is from vertex 2 to 3)

1 2
3
1-2-2-3
(note side 2 of the logical rectangle is
collapsed)
1 2
1w
) 1-2-3-4
ey | 3
1w
4 1-2-4-4
m
! i 1-1-2-2
1-1-2-2

(selected automatically)

Split Orientation

If a chain of surfaces are split, the surfaces will always be split along the chain. The command
will not allow disconnected surfaces.

For a single surface, the split direction logic is a bit more complicated. If no options are
specified, the surface aspect ratio determines the split direction - the surface will be split parallel
to the longest aspect ratio side through the midpoint of each curve. This behavior can be
overridden by the order the Corner vertices are selected (the split always starts on the side

199

between the first two corners selected), the Direction option, the From Curve option, or the
Through Vertex list.

Table 3 shows examples of the various split orientation methods. These options are explained in
more detail in the sections below.

Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

Multiple surfaces are always split
along the chain

Parallel to longest surface aspect ratio
(default)

Corner Vertex4123
(split always starts on side 1 of the logical

rectangle)

Curve |
Direction Curve 1

Curve 1 .
From Curve 1 Fraction .75

or
From Curve 1 Distance 7.5

+— length =100 ———»

200

Cubit 15.2 User Documentation

Wettex B

“erte 5
Through Vertex 5 6
\ g

Corner Specification

The Corner option allows you to specify corners that form logical rectangle the algorithm uses
to orient the split on the surface. When analyzing a surface to be split, the software automatically
selects the corners that are closest to 90. The Preview option displays the automatically selected
corners in red. Sometimes incorrect corners are chosen, so you must specify the desired corners
yourself. The split always starts on the side between the first two corners selected and finishes on
the side between the last two corners selected. Figure 12 shows a situation where the user had to
select corners to get the desired split.

2 1 O

Corners 1-2-3-4 Corners 1-2-4-5
N k\ i
im 14 l4

Automatic Corners User Specified Comers

Figure 12 - Selecting the Desired Corners
The split can be directed to the tip of a triangular shaped surface by selecting that corner vertex
twice (at the start or end of the corner list) when specifying corners, creating a zero-length side
on the logical rectangle. A shortcut exists whereas if you specify only 3 corner vertices, the zero-
length side will be directed to the first corner selected. If you specify only 2 corner vertices, a
zero-length side will be directed to both the first and second corner you select. Table 4 shows
these examples. Note the software will automatically detect triangle corners based on angle
criteria - the corner selection methods for zero-length sides explained in this section need only be
applied if the angles are outside of the thresholds specified in the Set Split Surface Auto Detect

Triangle settings.
Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification
1
T 1-2-4-4- or 4-4-1-2
* or
21 4-1-2 (shortcut method)

201

1-1-2-2 or 2-2-1-1
1 2 or
1-2 or 2-1 (shortcut method)

Direction

The Direction option allows you to conveniently override the default split direction on a single
surface. Simply specify a curve from the logical rectangle that is parallel to the desired split
direction. If Corners are also specified, the Direction option will override the split orientation
that would result from the specified corner order. The Direction option is not valid on a chain of
surfaces. Figure 13 shows an example.

Split YWyith
& Direction

Split Wyithout
Direction

N

Direction Curve 1

_*

4 1

Figure 13 - Direction Specification Overrides Corner Order
Segment|Fraction|Distance
The Segment option allows you to split a surface into 2 or more segments that are equally
spaced across the surface. The Fraction option allows you to override the default 0.5 fractional
split location. The Distance option allows you to specify the split location as an absolute
distance rather than a fraction. By specifying a From Curve, you can indicate which side of the
logical rectangle to base the segment, fraction or distance from (versus a random result). Table 5
gives examples of these options.
Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

_\—'_F//_'____\—'_
Segment 6 From Curve 1

202

Cubit 15.2 User Documentation

A N

Fraction .3 From Curve 1

Curve 1

Distance = 3.0

Distance 3 From Curve 1

T Curve 1

Through Vertex

The Through Vertex option forces the split through vertices on surface boundaries
perpendicular to the split direction. Use this option if the desired fraction is not constant from
one end of the surface to another or if a split would otherwise pass very close to an existing
curve end resulting in a short curve. Through vertices can be used in conjunction with the
Fraction option - the split will linearly adjust to pass exactly through the specified vertices. It is
not valid with the Segment option. The maximum number of Through Vertices that can be
specified is equal to the number of surfaces being split plus one. The selected vertices can be
free, but must lie on the perpendicular curves. Table 6 gives several examples.

Table 6 - Through Vertex Examples

Surface(s) Command Options

Fraction .3 From Curve 1 Through
Vertex 9

Curve 1

Through Vertex56 7 8

Parametric

203

By default, split locations are calculated in 3D space and projected to the surface. As an
alternative, split locations can be calculated directly in the surface parametric space. In rare
instances, this can result in a smoother or more desirable split. The command option Parametric
{on|Off} can be used to split the given surfaces in parametric space. Alternatively, the default
can be overridden with the Set Split Surface Parametric {on|OFF} command.

Tolerance

A single absolute tolerance value is used to determine the accuracy of the split curves. A smaller
tolerance will force more points to be interpolated. The tolerance is also used when detecting an
analytical curve (e.g., an arc or straight line) versus a spline. A looser tolerance will result in
more analytical curves. The default tolerance is 1.0. The command option Tolerance <val> can
be used to split the given surfaces using the given tolerance. Alternatively, the default tolerance
can be overridden with the Set Split Surface Tolerance <val> command.

It is recommended to use the largest tolerance possible to increase the number of analytical
curves and reduce the number of points on splines, resulting in better performance and smaller
file sizes. The Preview option displays the interpolated curve points. Table 7 shows the effect of
the tolerance for a simple example.

Table 7 - Effect of Tolerance on Split Curve

Surface Tolerance

2.0

1.0

0.5

204

Cubit 15.2 User Documentation

0.01

Preview

The Preview keyword will show a graphics preview (in blue) of the splitting curve (or curves)
and the corner vertices (in red) selected for the logical rectangle. The curve preview includes the
interpolated point locations that define spline curves. Note that if no points are shown on the
interior of the curve, it means that the curve is an analytical curve (line or arc). If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces. Table 8 shows some examples.

Table 8 - Graphics Preview

Surface Curve Type

Spline

Arc (no preview points shown on
interior of curve)

Settings

This section describes the settings that are available for the automatic split surface command. To
see the current values, you can enter the command Set Split Surface, optionally followed by the
setting of interest (without specifying a value).

Set Split Surface Tolerance <val>

This sets the default tolerance for the accuracy of the split curves. See the Tolerance section for
more information.

Set Split Surface Parametric {on|OFF}

This sets the default for whether surfaces are split in 3D (default) or in parametric space. See the
Parametric section for more information.

Set Split Surface Auto Detect Triangle {ON|off}
Set Split Surface Point Angle Threshold <val>
Set Split Surface Side Angle Threshold <val>

205

The split surface command automatically detects triangular shaped surfaces as explained in the
section on Corners. This behavior can be turned off with the setting above. Two thresholds are
used when detecting triangles - the Point Angle threshold and the Side Angle threshold,
specified in degrees. Corners with an angle below the Point Angle threshold are considered for
the tip of a triangle (or the collapsed side of the logical rectangle). Corners within the Side Angle
threshold of 180 are considered for removal from the logical rectangle. In order for a triangle to
actually be detected, corners for both the point and side criteria must be met. The default Point
Angle threshold is 45, and the default Side Angle threshold is 27. Figure 14 provides an
illustration.

3 .’
= 160°
.
within Side Angle Threshold of 27 ° of 180°
4 (remowe corner)
40°
below Point Angle Threshold of 457
(collapse to this paoint)
al
Without Triangle Detection With Triangle Detection

Figure 14 - Triangle Detection Settings

Split Skew
The Split Skew function can be called with the following command:
Split Surface <id_list> Skew [Preview] [Create]

This command will split a surface or list of surfaces in a logical way to reduce the amount of
skew in a quadrilateral mesh. This function uses the control skew algorithm to determine where
to make these logical splits. Users should note that Split Skew can only be utilized effectively on
surfaces that lend themselves to a structured meshing scheme. These surfaces cannot have
multiple curve loops. Figure 15 shows a simple example of a surface being split.

split surface 1 skew

206

Cubit 15.2 User Documentation

Figure 15. Split Skew applied to an L-shaped surface
The Preview keyword will show a graphics preview of the splitting curves. If the Create
keyword is also specified, free curves will be created.

Section Command
This command will cut a body or group of bodies with a plane, keeping geometry on one side of
the plane and discarding the rest. The syntax for this command is:

Section {Body|Group} <id_range> [With] {Xplane|Yplane|Zplane} [Offset
<value>] [NORMAL|Reverse] [Keep]

Section {Body|Group} <id_range> With Surface <id> [NORMAL|Reverse]
[Keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset
option is used to specify an offset from the coordinate plane. In the second form, an existing
(planar) surface is used to section the model. In either case, the reverse keyword results in
discarding the positive side of the specified plane or surface instead of the other side. The keep
option results in keeping both sides; the section command used with this option is equivalent to
webcutting with a plane.

Separating Surfaces from Bodies
The separate surface command is used to separate a surface from a sheet body or a solid body.
The command is:

Separate Surface <range>

Separating a surface from a solid body will create a "hole™ in the solid body. Thus the solid body
will become a sheet body. The newly separated surface will be also sheet body, but it will have a
different id. Multiple surfaces can be separated from a body at the same time, but each separated
surface will result in a distinct sheet body, as if the command had been performed on each
surface individually.

Separating Multi-Volume Bodies

The separate and split commands are used to separate a body with multiple volumes into a
multiple bodies with single volumes. The commands are:

207

and

Separate {Body|Volume} <id_rangelall>

Split {Body|Volume} <id_rangelall>

Only very rarely will either of these commands be needed. They are provided for the occasional

instance that a multi-volume body is found. These commands are interchangeable.

Another related command allows the user to control the separation of bodies after webcutting. In

most instances the user will want to separate bodies after webcutting. One reason to possibly

have this option turned off is to be able to keep track of all the volumes during a webcut. Setting

this option to "off" keeps all volumes in the same body. But the more common approach is to

name the original body and allow naming to keep track of volumes. This setting is on by default.
The syntax is:

Set Separate After Webcut [ON|Off]

Cleanup and Defeaturing
Geometry Cleanup and Defeaturing

Frequently, models imported from various CAD platforms either provide too much detail for

mesh generation and analysis, or the geometric representation is deficient. These deficiencies can

often be overcome with small changes to the model. Several tools are provided in CUBIT for

this purpose.

The following describes the features available in CUBIT for clean up and defeaturing

Healing
Tweaking Geometry

Removing Geometric Features
Automatic Geometry Clean-up
Regularizing Geometry

Finding Surface Overlap
Validating Geometry

Debugging Geometry

Geometry Accuracy

Trimming and Extending Curves

Stitching Sheet Bodies
Defeaturing Tool

Tweaking Geometry
Tweaking Geometry

Tweaking Vertices
Tweaking Curves
Tweaking Surfaces
Tweak Remove Topology
Tweak Volume Bend

208

Cubit 15.2 User Documentation

The tweaking commands modify models by moving, offsetting or replacing surfaces, curves, or
volumes while extending the adjoining surfaces to fill the resulting gaps. This is useful for
eliminating gaps between components, simplifying geometry or changing the dimensions of an
object.

Tweaking Curves
The following options of the Tweak Curve command are available. Command syntax and
description follow below.

Create a Chamfer or Fillet

Tweaking a Curve Using an Offset Distance

Removing a Curve

Tweaking a Curve Using a Target Surface, Curve, or Plane
Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet

The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The radius
value is the radius of the fillet arc or chamfer cut distance. The command syntax is:

Tweak Curve <id_range> {Fillet|Chamfer} Radius <value> [Keep] [Preview]

In addition to creating chamfers of a single cut distance, the chamfer can be specified be two
values. The syntax is:

Tweak Curve <id_list> Chamfer Radius <vall> [<val2>] [Keep] [Preview]

Figure 1 shows a brick ('br x 10") chamfered with two different cut distances (‘Tweak Curve 1 2
Chamfer Radius 2 4").

Figure 1 Chamfer with two different distances
Individual curves can also be filleted with different start and finish radius values. The syntax is:

Tweak Curve <id> Fillet Radius <vall> [<val2>] [Keep] [Preview]

Figure 2 shows a brick ('br x 10') filleted with different start and end radius values (‘Tweak
Curve 1 2 Chamfer Radius 2 4°).

209

Figure 2. Fillet with two different radii
For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the destruction of
the original geometry after the operation and the preview option temporarily displays the new
geometry configuration without actually changing the geometry.

Tweaking a Curve Using an Offset Distance

Tweak Curve <id_list> Offset <val> [Curve <id_list> Offset <val>] [Curve
<id_list> Offset <val> ...] [Keep] [Preview]

Tweaking curves a specified distance offsets the existing curves and extends the attached
surfaces to meet them. A positive offset value will enlarge the surface while a negative value will
decrease the area of the attached surface. Different offset values can be specified for each curve.
The keep option prevents the destruction of the original geometry after the operation. The
preview option temporarily displays the new geometry configuration without actually changing
the geometry. Figure 3 shows an example of offsetting a curve a specified distance.

Figui'e 3 Offsetting a set of curves a specified distance

210

Cubit 15.2 User Documentation

Removing a Curve
Tweak Curve <id_list> Remove [Keep] [Preview]

Similar to the Tweak Curve Remove command, the tweak curve remove function removes a

specified curve from a sheet body. Figure 4 shows a simple example of removing a curve from a
sheet body.

Figure 4. Removing a curve from a sheet body
The keep option prevents the destruction of the original geometry after the operation. The

preview option temporarily displays the new geometry configuration without actually changing
the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure 5 shows
an example of tweaking a curve to several surfaces.

Figure 5 Tweaking a curve to multiple target surfaces

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak Curve
syntax is:

Tweak Curve <id_list> Target {Surface >id_list> [Limit Plane (options)]
[EXTEND|Noextend] | Plane (options)} [Max_area_increase <val>] [Keep]
[Preview]

Tweak Curve <id_list> Target Curve <id_list > [EXTEND]|Noextend]
[Max_area_increase <val>] [Keep] [Preview]

211

If a target surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a
plane that the tweak will stop at if the tweaked curve does not completely intersect the target
surface. The limit plane must be used with the extend option. See the help for Specifying a Plane
for the options available to define a plane.

It should be noted that if the source and target surfaces are from the same body the resulting
geometry will be automatically stitched. Single target surfaces are automatically extended so that
the tweaked body will fully intersect the target. Unfortunately, extending multiple target surfaces
can sometimes result in an invalid target, so the option is given to tweak to non-extended targets
with the noextend option. In this case, the tweaked body must fully intersect the existing targets
for success. If you experience a failure when tweaking to multiple targets or the results are
unexpected, it is recommended to try the noextend option (NOTE: Tweaking to multiple targets
is only implemented in the ACIS geometry engine). If a value for the
max_area_increasekeyword is given, Cubit will not perform the tweak if the resulting surface
area increases by more than the specified amount. The keyword expects a percentage to be
entered (i.e. '50' for 50%). It is recommended to always preview before using the tweak target
commands.

For all tweak target variations, the keep option prevents the destruction of the original geometry
after the operation and the preview option temporarily displays the new geometry configuration
without actually changing the geometry.

Although it may not be intuitive curves can also serve as the target geometry. Figure 6 shows an
example of extending a curve to another curve.

Target curvea

Figure 6 Tweaking a curve to a target curve
Notice that the source curve actually extends to the target curve as if the target were a surface.

Tweaking a Pair of Curves to a Corner

212

Cubit 15.2 User Documentation

When creating mid-surface geometry it is often useful to extend surfaces to form a corner. To
handle this specific but common case use the tweak corner command.

Tweak Curve <id> <id> Corner [Preview]

Figure 7 shows a typical tweak corner example. Notice that surfaces are extended/trimmed to
intersect at a corner.

Figure 7. Tweaking two curves to a corner
The preview option temporarily displays the new geometry configuration without actually
changing the geometry.

Tweak Remove Topology

The Tweak Remove Topology command removes curves and surface from a model and
replaces them with new topology. The reconstruction of the new topology and the stitching of it
into the model is done using real solid modeling kernel operations. This command is intended to
be used on small curves and surfaces in the model. The command tries to find small
curves/surfaces neighboring the specified topology and includes these neighbors in the removal
process. Thus, the command can often be used to remove networks of small features just by
specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | Curve <id_range> | Surface
<id_range> Curve <id_range>} Small_curve_size <val> Backoff_distance
<val>

The small_curve_size is input by the user, and is used to calculate the small curves and surfaces.
The backoff_distance value specifies how far away from the original topology cuts are made to
cut out the old topology and stitch in the new topology. The removed topology is replaced by
simplified topology where possible often resulting in a dimension reduction of the original
topology. Extraneous curves that are introduced during the cutting and stitching process are
regularized out if possible using the solid modeling kernel regularize functionality or are
composited out using virtual geometry if the regularization is not possible.

Note: This command is currently only implemented for ACIS and Catia models.

Example

213

reset

set attribute on

import acis "'test10.sat"

separate body all

set attribute off

Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

214

Cubit 15.2 User Documentation

215

.

Figure 1. Tweak Remove Topology command

Tweaking Surfaces
The following options of the Tweak Surface command are available. Command syntax and
examples follow below.

Tweaking a Surface Using an Offset
Tweaking a Surface by Moving

Tweaking Surfaces to Target Surfaces
Removing a Surface

Tweaking a Conical Surface

Tweaking Doublers to Target Surface
Removing Holes and Slots from Sheet Bodies
Removing Fillets from Sheet Bodies

Tweaking a Surface Using an Offset

Tweak Surface <id_list> Offset <val> [Surface <id_list> Offset <val>]
[Surface <id_list> Offset <val> ...] [Keep] [Preview]

The Tweak Offset form of the command offsets an existing set of surfaces and extends the
attached surfaces to meet them. A positive offset value will offset the surface in the positive
surface normal direction while a negative value will go the other way. Different offsets may be
specified for each surface. Figure 1 shows a simple example of offsetting. Note that you can also

216

Cubit 15.2 User Documentation

offset whole groups of surfaces at once. The keep option will retain the original surfaces and
curves.

Offzet in

Fuositive
Direction
“t . =)
-+ Offzet in
& g Menative
Direction

Figure 1. Tweak Offset

Tweaking a Surface by Moving

The Tweak move form of the command simply moves the given surfaces along a vector
direction. The direction can be specified either absolutely or relative to other geometry entities in
the model (from entity centroid to location). Note that when moving a surface for tweak, the
surface is moved and the surface and the adjoining surfaces are extended or trimmed to match up
again. So, for example, moving a vertically oriented planar surface in the vertical direction will
have no effect. In this example, if you move the surface 10 in the x and 5 in the y the effect will
be to move it simply 10 in the x. You can also use this form of the command to move a
protrusion around - just be sure to specify all of the surfaces on the protrusion for moving. The
last form of the command can be used to move a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location {Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]]
[Keep] [Preview]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location <x_val> <y val> <z_val> [Except [X][Y][Z]] [Keep][Preview]
Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [Keep]

[Preview]
Tweak Surface <id_range> Move Direction <options> Distance <val> [Keep]
[Preview]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>
[Except [X][Y]1[Z]] [Keep][Preview]

Tweaking Surfaces to Target Surfaces

The Tweak target form of the command actually replaces the given surfaces with a copy of the
new surfaces, then extends and trims surfaces to match up. This can be useful for closing gaps
between components or performing more complicated modifications to models. The command
syntax is:

217

Tweak {Curve|Surface} <id_list> Target {Surface <id_list> [Limit Plane
(options)] [EXTEND|noextend] | Plane (options)} [keep] [preview]
Tweak Surface <id_list> Replace [With] Surface <id_list> [Keep] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, it is recommended to try
the noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS
geometry engine). It is recommended to always preview before using the tweak target
commands.

Figure 2 shows a simple example.

Replace this
surface...

-

Wyith this one

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface

The Tweak remove command allows you to remove surfaces from a model by extending the
adjacent surfaces to fill in the resulting gaps. It is identical to the Remove Surface command.
See Removing Surfaces for a description of the command options.

Tweak Surface <id_list> Remove [EXTEND|Noextend] [Keepsurface]
[Keep][Preview]

Tweaking a Conical Surface

The Tweak cone form of the command is used to replace a conical projection with a flat circular
surface. This command is useful for simplifying bolt holes. The command syntax is.

Tweak Surface <id_range> Cone [Preview]
The following is a simple example illustrating the use of the tweak surface cone command.

218

Cubit 15.2 User Documentation

Figure 3. Conical bolt hole before and after tweaking

Tweaking Doublers to Target Surfaces

The Tweak Doubler form of the command takes a specified surface and creates drop-down
surfaces either normal to the doubler surface or by a user specified vector to a target surface.
This can be helpful in creating surfaces for weld elements between midsurfaced geometry. The
resulting surfaces do not create a bounding volume, and do not imprint themselves onto the
target surface. The command syntax is:

Tweak Surface <id_list> Doubler Surface <id_list> {[Limit Plane (options)]
[EXTEND|noextend]} [Internal] [Direction (options)] [Thickness] [Preview]

219

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, trying the noextend
option is recommended.

If the doubler surface has a thickness property value, you can propagate that thickness value to
the newly created drop-down surfaces by using the thickness flag.

It is recommended to always preview before using the tweak doubler commands.

NOTE: This function only works for ACIS geometry.

Duuh’

Target

Geometry Output
Figure 3. Extending a doubler surface to target
The internal option will also include internal curves when the surface is extended (see Figure
4c). The direction option will create a skewed surface along the given direction (see Figure 4d).

220

Cubit 15.2 User Documentation

(C) (d)

Figure 4. Explanation of tweak doubler options (a) Original surfaces (b) No option flags
used (c) Internal option used - notice internal curves dropped down (d) Direction flag -
notice skew

Removing Holes and Slots from Sheet Bodies

The Tweak Hole/Slot Idealize command takes a specified sheet body(s) and searches for either
holes or slots (or both) which meet the user's input parameters. This can be helpful in removing

small holes or slots quickly and efficiently from midsurfaced bodies where such level of detail
isn't required. The command syntax is:

Tweak Surface <id_list> Idealize {[Hole Radius <val>] [Slot Radius <val>
Length <val>]} [Exclude Curve <id_list>] [Preview]

Below is a diagram showing the different parameters available for input by the user.

\%ad ius

—

N

Figure 5. Input parameters for tweak surface idealize command
#Hole Removal Example

tweak surface 13 idealize hole radius 6

221

Figure 6. Example of hole removal using tweak surface idealize command
The exclude option allows the user to specify individual curves that should not be deleted, even
if they meet the search criteria for removal. Figure 7 shows another hole removal example where
several curves were excluded.

Figure 7. Example of hole removal using exclude option
Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will highlight
all curves slated to be removed if the command is executed.

Removing Fillets from Sheet Bodies

The Tweak Fillet Idealize command takes a specified sheet body(s) and searches for either
internal or external fillets (or both) which meet the users' radius parameter. This can be helpful in
removing fillets quickly and efficiently from midsurfaced bodies where such level of detail isn't
required. The command syntax is:

Tweak Surface <id_list> Idealize Fillet Radius <val> {[Internal] [External]}
[Exclude Curve <id_list>] [Preview]

#Fillet Removal Example
tweak surface 13 idealize fillet radius 6 internal

222

Cubit 15.2 User Documentation

Figure 8. Example of fillet removal using tweak surface idealize command
Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will show the
result if the command is executed.

Figure 9. Preview of the tweak surface idealize command
Tweaking Vertices
The Tweak Vertex command can be used to do the following:
« Tweaking a Vertex With a Chamfer

¢ Tweaking a Vertex With a Non-Equal Chamfer
o« Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer
Tweak Vertex <id_range> Chamfer Radius <value>[Keep] [Preview]

This form of the command creates a chamfered corner at the specified vertex. Can be use on
volumes or free surfaces. The 'keep' option creates another volume on which the tweak is
applied; the original volume remains unmodified.

223

Figure 1. Tweak Vertex Chamfer

Tweaking a Vertex With a Non-Equal Chamfer

Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius
<value> Curve <id> Radius <value> Curve <id>] [Keep] [Preview]

This next form of the command creates a non-equal chamfered corner at the specified vertex.
Can only be used on vertices of volumes. The 'keep' option creates another volume on which the
tweak is applied; the original volume remains unmodified.

Tweaking a Vertex With a Fillet Radius
Tweak Vertex <id_range> Fillet Radius <value> [Keep] [Preview]

This command replaces a vertex with a filleted radius. The command can only be used on free
surfaces. The 'keep' option creates another volume on which the tweak is applied; the original
free surface remains unmodified.

224

Cubit 15.2 User Documentation

Figure 2. Tweak Vertex Fillet

Tweak Volume Bend

Entity bending bends a solid model around a given axis. In any bending operation, some material
is stretched while other material is compressed, but the topology of the model is maintained. The
command syntax is:

Tweak {Volume|Body} <id_list> Bend Root <location_options> Axis
<direction_vector> Direction <direction_vector> Radius <val> angle <val>
[Preview] [Keep] [Center_bend] [Location <options>]

Root and axis determine location for the bend. Direction determines direction of the bend.
Radius and angle determine how much to bend. Center_bend will bend both sides of the
volume around the bend location instead of one side. Location can be used to select only
specific parts of a volume to bend.

225

Bending Axiz

. . + Transfarmed
Fixed Portion W Partion

Bent Portion

Figure 1. Bending a volume
#Ex: Bend parts of a body specified by the location option
create brick width 11 height 1
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
move body 2 general location position -350
move body 3 general location position 050
move body 4 general location position 350
subtract body 2 from body 1
subtract body 3 from body 1
subtract body 4 from body 1
tweak volume 1 bend root 0 0 0 axis 1 0 0 direction 0 0 -1 radius 1 angle 3.14 location vertex
3947

Removing Geometric Features
Removing Geometric Features

¢ Vertex Removal
o Surface Removal

The Remove will remove surfaces or vertices from bodies. Adjacent surfaces or curves will be
extended, where possible, to fill in remaining gaps. The remove command is useful for replacing
filleted edges with sharp corners.

Removing Surfaces

« Remove Sliver Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend
the adjoining surfaces to fill the resultant gap. This is a useful way to remove fillets and rounds

226

Cubit 15.2 User Documentation

and other features such as bosses not needed for analysis. See Figure 1 for an example of this
process. The syntax for this command is
Remove Surface <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the
body. This is sometimes useful for repairing bad geometry - the surface can be rebuilt with
surface from curves or a net surface, etc.., then combined back onto the body

The keep option will retain the original body and put the results of the remove surface in a new
body. The keepsurface option will retain the surface which was removed

The individual option will remove surfaces one-by-one instead of as a group. If one removal
fails, the rest are still attempted. Without the individual option, no surface is removed unless
they are all able to be removed.

This command is identical to the Tweak Surface Remove command

Remwe

o
filletsfrounds e
Remove ' \

protrusions and : —_—
mhulea

/"' | :> ﬁ. T
Remove | :

.--""'"'---:_ﬁ-“'"'
1 I
Fl.' ,'

L individual ;) J
-...surfaces ' p
T i

Figure 1. Remove Surface Example
Remove Sliver Surface

This command uses the ACIS remove surface capability on surfaces that have area less than a
specified area limit. When ACIS removes a surface it extends the adjoining surfaces and

intersects them to fill the gap. If it is not possible to extend the surfaces or if the geometry is bad
the command will fail. The syntax for this command is
Remove Slivers Body <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Arealimit [<double>]]
Default Arealimit = 0.1

The noextend, keepsurface and keep options operate as for the remove surface command. The
arealimit option allows the user to set the area below which surfaces will be removed

Removing Vertices

At times you may find that you have an extraneous vertex in your model. This would be a vertex
connected to two and only two edges. This stray vertex can cause unwanted mesh artifacts, due
to the fact that a mesh node MUST lie on this vertex, thereby disallowing the possibility of

movement for better quality. Fortunately there is a relatively easy way of getting rid of this stray
vertex using the tweak surface command
Tweak Surface <id> Replace With Surface <same_id>

227

Note that you are replacing a surface with itself. In doing so, the geometry engine will do an
intersection check on that surface, and should realize that the vertex doesn't need to be there.

Healing

Healing

Healing is an optional module that detects and fixes ACIS models.

It is possible to create ACIS models that are not accurate enough for ACIS to process. This most
often happens when geometry is created in some other modeling system and translated into an
ACIS model. Such models may be imprecise due to the inherent numerical limitations of their
parent systems, or due to limitations of data transfer through neutral file formats. This
imprecision can also result when an ACIS model is created at a different tolerance from the
current tolerance settings. This imprecision leads to problems such as geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). Since
ACIS is a high precision modeler, it expects all entities to satisfy stringent data integrity checks
for the proper functioning of its algorithms. Therefore, if such imprecise models must be
processed by an ACIS based system, "healing™ of such models is necessary to establish the
desired precision and accuracy.

The following sections describe how to use the Healing capability in ACIS and CUBIT to
analyze and heal defective ACIS geometry.

o Analyzing Geometry

o Healing Attributes

e Auto Healing

« Spline Removal

e What if Healing is Unsuccessful?

Analyzing Geometry
The following command analyzes the ACIS geometry and will indicate problems detected:

Healer Analyze Body <id_range> [Logfile [*filename'] [Display]]

The logfile option writes the analysis results to the filename specified, or to 'healanalysis.log’ by
default. In the GUI version of CUBIT, the display option will write the results in a dialog
window.

The outputs include an estimate of the percentage of good geometry in each body. The optional
logfile will include detailed information about the geometry analysis. By default CUBIT will
also highlight the bad geometry in the graphics and give a printed summary indicating which
entities are "bad"”. Sample output from this command is shown below:

Percentage good geometry in Body 9: 98%
HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9

Found 2 bad Vertices: 51, 52

Found 3 bad Curves: 76, 77, 80

Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problems: 9
Journaled Command: healer analyze body 9

228

Cubit 15.2 User Documentation

Note that it is not necessary to analyze the geometry before healing; however, it can be useful to
analyze first rather than healing unnecessarily. Also note that healer analysis can take a bit of
time, depending on the complexity of the geometry and how bad the geometry is.

The validate geometry commands work independently of the healer and give more detailed
information.

Healer Settings
You can control the outputs from the healer with the following commands:

Healer Set OnShow {Highlight|Draw|None}

Healer Set OnShow {Badvertices|Badcurves|Badcoedges|Badbodies|All}
{On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can
control which entity types to display, as well as whether or not to show the printed summary at
the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad
geometry again with the "show" command. This command simply uses cached data (healing
attributes - see the next section) from the previous analysis.

Healer Show Body <id_list>

Auto Healing
Healing is an extremely complex process. The general steps to healing are:

e Preprocess - trim overhanging surfaces and clean topology (remove small curves and
surfaces).

Simplify - converts splines to analytic representations, if possible.

Stitch - geometry cleanup and stitching loose surfaces together to form bodies.
Geometry Build - repairing and building geometry to correct gaps in the model.
Post-Process - calculating pcurves and further repairing bad geometry.

Make Tolerant Curves & Vertices - a last optional step that allows special handling of
unhealed entities for booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:

Healer Autoheal Body <id_range> [Rebuild] [Keep] [Maketolerant] [Logfile
['logfilename'] [Display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the surfaces
back together and heals again. In some cases this can more effectively fix up the body, although
it is much more computationally intensive and is not recommended unless normal healing is
unsuccessful.

The keep option will retain the original body, putting the resulting healed body in a new body.
The maketolerant option will make the edges tolerant if ACIS is unable to heal them. This can
result in successful booleans even if the body cannot be fully healed - ACIS can then sometimes
"tolerate” the bad geometry. Note that the healer analyze command will still show these curves

229

as "bad", even though they are tolerant. The validate geometry commands however take this into
consideration.

The output from the autoheal command can be written to a file using the logfile option; the
default file name is autoheal.log. The display option works as before, displaying the results in a
window in the GUI version of CUBIT.

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows
you to use the "show" command to quickly display the bad geometry again. The results attributes
are automatically removed when the geometry is exported or any boolean operations are
performed. They can also be explicitly removed with the command

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the
"CleanAtt" setting (this can save a little memory):

Healer Set CleanAtt {On|Off}

Spline Removal
If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance can
be modified and healing re-run:

healer default simplifytol .1
healer autoheal body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):
Healer Force {Plane|Cylinder|Cone|Sphere|Torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic
surfaces. Note: Spline curves can be found using entity filters:

Execute Filter Curve Geometry_type Spline

What if Healing is Unsuccessful?

The ACIS healing module is under continued development and is improving with every release.
However, there will often be situations where healing is unable to fully correct the geometry.
This might be okay, as meshing is rarely affected by the small inaccuracies healing addresses.
However, boolean operations on the geometry can fail if the bad geometry must be processed by
the operation (i.e., a webcut must cut through a bad curve or vertex).

Here are some possible methods to fix this bad geometry:

e Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy.
Re-export the geometry.

e Heal again using the rebuild option.

« Heal again using the make tolerant option.

e Remove the offending surface from the body (using the remove surface command), then
construct new surfaces from existing curves and combine the body back together.

o Composite the surfaces over the bad area, mesh and create a net surface from the
composite, remove the bad surfaces and combine.

230

Cubit 15.2 User Documentation

o Export the geometry as IGES, import the IGES file into a new model and look for double
surfaces or surfaces that show up at odd angles using the find overlap commands. Delete
and recreate surfaces as needed and combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing bad
geometry.

Auto Clean

Automatic Geometry Clean-up

The automated geometry clean-up commands are used to automatically clean up geometry in
preparation for meshing. These commands are built in to the ITEM interface, but they can also
be used on their own. They include:

e Automatic Forced Sweepability

e Automatic Small Curve Removal
e Automatic Small Surface Removal
o Automatic Surface Split

Automatic Forced Sweepability

In some cases, a volume can be "forced" into a sweepable configuration by compositing surfaces
on the linking surfaces. The automatic forced sweep command will attempt to automatically
composite linking surfaces together to create a sweepable topology. This command can be useful
in cases where there are many linking surfaces that prohibit sweepability and are not needed to
define the mesh. It is assumed that the user has assigned the source and target surfaces for the
sweep prior to calling this function. CUBIT will try to composite linking surfaces together to get
rid of problems such as 1) non-submappable linking surfaces, 2) interior angles between curves
of a surface that deviate far from multiples of 90 degrees, and 3) surfaces with curves smaller
than the small curve size, if a small curve size is specified. This command is incorporated into
the ITEM GUI, but is also available from the command line using the following command
syntax.

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size
<val>]

The small_curve_size qualifier is an optional argument. If a curve size is specified, the
command will try to remove surfaces with curves smaller than this size by compositing the
surface with adjacent surfaces.

Example

The following cylinder has been webcut and had surface splits so that it is not sweepable. The
split surface command has also introduced 3 small curves on the surfaces. After the source and
target surfaces are set, the force sweepability command is issued to automatically composite
neighboring surfaces to make the volume sweepable and remove the small curves. The results
are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

231

Figure 1. Linking surfaces are composited to force a sweepable volume topology

Automatic Surface Split

This auto clean command will attempt to automatically split narrow regions of surfaces. In this
context, any surface that contains a portion that narrows down to a small angle is considered a
narrow region. The command will use the split command from the underlying solid modeling
kernel. The user specifies a size that defines what it narrow. This command also propagates the
splits to neighboring narrow surfaces. This command is usually used as a preprocessor to the
"tweak remove_topology" command but can also be used on its own.

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>

Example
The model has a surface that necks down to a narrow region. This surface also has some
neighboring narrow surfaces to which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

Automatic Small Curve Removal
The automatic small curve removal command uses composites and collapse curves commands to
automatically remove small curves from a volume. This is useful for removing small or

232

Cubit 15.2 User Documentation

unnecessary details from a model to facilitate meshing algorithms. The user enters a small curve
size. Any curve smaller than this specified size will be removed. This command is issued from
the ITEM toolbar. More information can be found by reading the section entitled Small Details
in the Model in the ITEM documentation. This command can also be called from the command
line. The syntax of this command is:

Auto_clean Volume <id_range> Small_curves Small_curve_size <val>

Note: The automatic curve removal should be used with caution, as the user has little control
over how curves are removed.

Example:

The cylindrical model has 3 small curves just less than 0.7. The remove small curves command
will remove two of the small curves by compositing two neighboring surfaces and the third using
the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

Figure 1. Automatic small curve removal on a cylinder

Automatic Small Surface Removal

This auto clean command will attempt to remove small and narrow surfaces from the model by
compositing them with neighboring surfaces. The user specifies a small curve size value. This
value is used in two different ways. First, a small area is calculated as the small curve size
squared. This value is used to compare against when looking for small surfaces. The small curve
size is also used to identify surfaces that are narrower than the small curve size.

Auto_clean Volume <id_range> Small_surfaces Small_curve_size <val>

Example
The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are
composited to remove these.

233

ll ¥

Figure 1. Automatic small and narrow surface removal on a cylinder

Debugging Geometry
The following command checks for inconsistencies in the CUBIT topological model, by
checking the specified entities and all child topology and/or comparing to solid model topology:

Geomdebug Validate [compare] <entity_list>

This command checks for:

Consistent CoFace senses

Loops are closed/complete

Consistent CoEdge senses

Correct vertex order on curves w.r.t. parameterization
Correct tangent direction of curves w.r.t. parameterization

Related Commands:

Geomdebug Vertex <vertex_id>

Geomdebug Curve <curve_id>

Geomdebug Surface <surface_id>

Geomdebug body <body_id>

Geomdebug Containment {Curve | Surface} <id> {Location (options) | Node
<id_list>}

The following command prints info about GeometryEntities owned by specified entity:

Geomdebug Geometry <entity_list> [interval <n>] [index <n>] [TEXT]
[GRAPHIC] [attributes]

The following command lists (TopologyBridge) topology for specified entity:

Geomdebug solidmodel <entity_list> [index <n>]
[depth<n>|up<n>|down<n>]

The following command lists GroupingEntities.

Geomdebug GPE <entity_list>

234

Cubit 15.2 User Documentation

Finding Surface Overlap

The surface overlap capability finds surfaces that overlap each other, with the capability to
specify a distance and angle range between them. This is useful for debugging geometry
imprinting and merging problems, as well as for finding gaps in large assembly models. Finding
overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume} <id_list> [Filter_Sliver]

If a list of entities is not specified, all bodies in the model are checked. By default the command
does not check the surfaces within a given body against each other; rather, it only checks
surfaces between bodies. This can be overridden by inputting a surface list (i.e. find overlap
surface all), or with a setting (see below).

The filter_sliver option will remove false positives from the list by weeding out sliver surfaces
that have a merged curve between them. The following pictures is an example of a sliver surface.

Figure 1. Example of a sliver surface
If curves 27 and 29 are merged before you run the find overlapping surface checkthe user will
get the two surfaces in the picture as an overlapping surface pair. However, if the filter_sliver
keyword is used, Cubit will not find the two surfaces to be overlapping.
Facetted Representation
This command works entirely off of the facetted surface representation of the model (the facetted
representation is what you see in a shaded view in the graphics). There are inherent advantages
and disadvantages with this method. The biggest advantage is avoidance of closest-point
calculations with NURBS based geometry, which tends to be slow. This method also eliminates
possible problems with unhealed ACIS geometry. The disadvantage is working with a less
accurate (i.e., facetted) representation of the geometry. To circumvent problems with this
facetted geometry, various settings can be used to control the algorithm. For example, you might
consider using a more accurate facetted representation of the model - see below.

235

Find Overlap Settings
Various settings are used to control the precision and handling of overlaps during the find
overlap process. A listing of the settings that find overlap uses is printed using the command:

Find [Surface] Overlap Settings

These settings, and the commands used to control them, are described below.

Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between normals
of adjacent surface facets. The default angular tolerance is 15 - consider using a value of 5. This
will generate a more accurate facetted representation of the geometry for overlap detection. This
can be particularly useful if the overlap command is not finding surface pairs as you would
expect, particularly in "curvy" regions. Note however that the algorithm will run slower with
more facets. The distance tolerance means the maximum actual distance between the generated
facets and the surface. This value is by default ignored by the facetter - consider specifying a
reasonable value here for more accurate results.

Set Overlap [Facet] {Angle|Absolute} <value>

Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a distance
from the minimum to maximum specified. The default range is 0 to 0.01. Testing has shown this
to be about right when searching for coincident surfaces. Gaps can be found by using a range
such as 3.95 to 5.05.

Set Overlap {Minimum|Maximum} Gap <value>

Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this angle
range of each other. The default range is 0.0 to 5.0 degrees. Testing has shown that this range
works well for most models. It is usually necessary to have a range up to 5.0 degrees even if you
are looking for coincident surfaces because of the different types of faceting that can occur on
curvy type surfaces. For example, for the case of a shaft in a hole, the facets of the shaft usually
won't be coincident with the facets of the hole, but may be offset by a certain distance
circumferentially with each other. The 5 degree max angle range will account for this. If you find
that the algorithm is not finding coincident surfaces when it should, you can increase the upper
range of this value. Note that this parameter is useful also for finding plates coming together at
an angle.

Set Overlap {Minimum|Maximum} Angle <value>

Normal - this setting determines whether to search for surfaces whose normals point in the same
direction as each other (same), away from each other (opposite) or either (any). The default is
ANY, but it may be useful to limit this search to opposite, as this would be the usual case for
most finds.

Set Overlap Normal {ANY |opposite|same}

Tolerance - two individual facets must overlap by more than this area for a match to be found.
Consider the two cylindrical curves at the interface of the shaft and the block in Figure 2. Note
that some of the facets actually overlap, even though the curves will analytically be coincident.
You can filter out false matches by increasing the overlap tolerance area. The default value for
this setting is 0.001.

Set Overlap Tolerance <value>

236

Cubit 15.2 User Documentation

e Facet

Block o Qf\{r"/ Overlap

[=

Figure 2. Possible false find due to overlap (tolerance will prevent finding match)
Group - the surface pairs found can optionally be placed into a group. The name of the group
defaults to "overlap_surfaces".

Set Overlap Group {on|OFF}

List - by default the command lists out each overlapping pair - this can be turned off using the
command:

Set Overlap List {ON|off}

Display - by default the command clears the graphics and displays each overlapping pair - this
can be turned off using the command:

Set Overlap Display {ON|off}

Body - by default the command will not search for overlapping pairs within bodies - only
between different bodies. Turn this setting on to search for pairs within bodies. Note however
that this will slow the algorithm down.

Set Overlap [Within] {Body|Volume} {on|OFF}

Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will often
force imprints that just imprinting bodies together will miss. For each pair of overlapping
surfaces, the containing body of one surface is imprinted with the individual curves of the other
surface, until the resulting surfaces no longer overlap.

Set Imprint {on|OFF}

Geometry Accuracy
The accuracy setting of the ACIS solid model geometry can be controlled using the following
command:

[set] Geometry Accuracy <value = 1e-6>

Some operations like imprinting can be more successful with a lower accuracy setting (i.e., 0.1 to
1e-5). However, it is not recommended to change this value. Be sure to set it back to 1e-6 before
exporting the model or doing other operations as a higher setting can corrupt your geometry.

Regularizing Geometry

The regularize command removes unnecessary topology, which in effect reverses the imprint
operation. This can help clean up the model from extra features that are unnecessary for the
geometric definition of the model. The following command regularizes the model:

Regularize Body|Group|Volume|Surface|Curve|Vertex <range>

237

If you are frequently using web-cutting or other boolean operations to decompose your
geometry, it may be convenient to always generate regularized geometry. To set creation of
regularized geometry during boolean operations use the following command:

Set Boolean Regularize [ON | off]

Stitching Sheet Bodies

The stitch command stitches together the specified sheet bodies into either a larger sheet body or
a solid volume(s). The tolerance value can be used when these sheet bodies don't line up exactly
along the edges. This is common for IGES and STEP models. Only manifold stitching is
performed, i.e., edges will be shared with no more than two surfaces.

Stitch {Body|Volume} <id_range> [Tolerance <value>] [No_tighten_gaps]
This command has three stages to it:

1. Stitch the surfaces together along overlapping edges Normally IGES and some STEP

files do not contain topological information that links surfaces together to share bounding

curves. Stitching is an operation that builds up this topological information.

Simplify geometry The command replaces splines with analytics where possible.

3. Tighten up gaps (inaccuracies) between the sheet bodies The command will build the
geometry necessary to tighten the gaps in the model.

N

When the stitch operation completes, a print statement lets the user know if the resulting body is
not a closed, solid body.

If the no_tighten_gaps option is included, the third step of the stitching process is excluded.
This may be necessary in very large or complex models, where the regular approach fails.

Trimming and Extending Curves
Curves can be trimmed or extended with the following command:

Trim Curve <id> AtlIntersection {Curve|Vertex <id>} Keepside Vertex <id>
[near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex
location. When trimming to another curve, the curves must physically intersect unless they both
are straight lines in which case the near option is available. With the near option the closest
intersection point is used to the other line - so it is possible to trim to a curve that lies in a
different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected
to the closest location on the curve or an extension of the curve if possible.

The Keepside vertex is needed to determine which side of the curve to keep and which side to
throw away. This vertex need not be one of the curve's vertices, nor does it need to lie on the
curve. However, if it is not on the curve it will be projected to the curve and that location will
determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it
is a free curve a new curve is created and the old curve is removed. The figures below show
several examples of trimming/extending curves.

238

Cubit 15.2 User Documentation

Trimming a Curve

Trim to
Curve

Keepside vertex

/
\ \

Figure 1. Trimming a Curve to an Intersecting Curve

Trim to
Curve

Heepsuﬂe “ertex

Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Trim to
Vertex

Heepmde Yertex

Figure 3. Trimming a Curve to a Vertex

239

Extending a Curve

Trim to
Curve

Heepside vertex

/
| \

Figure 4. Extending a Curve to An Intersecting Curve

Trim to
Yertex

Keepside YWertex

.

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

Validating Geometry
Detailed checks of geometry and topology can be performed using the validate command:

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>
Validate {VVolume|Surface|Curve|Vertex} <range> Mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements to
determine the validity of the mesh.

More rigorous checking can be accomplished with the validate geometry commands by
specifying a higher check level. Use the following command to accomplish this:

set AcisOption Integer 'check_level' <integer>
where integer is one of the following:

10 = Fast error checks

20 = Level 10 checks plus slower error checks (default)

30 = Level 20 checks plus D-Cubed curve and surface checks

40 = Level 30 checks plus fast warning checks

50 = Level 40 checks plus slower warning checks

60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default is off):
set AcisOption Integer ‘check _output’ on

240

Cubit 15.2 User Documentation

Note that some of the ids listed in the output of the validate command are currently meaningless,
e.g. those for coedges.

The validate command can also check for consistent surface normals and return a list of
offending surfaces. The syntax for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>]
[Reverse]

Using the "reference™ keyword, a reference surface is compared to the normal consistency of all
other specified surfaces. Inconsistent surfaces can be reversed using the "reverse" keyword.

Imprint Merge
Geometry Imprinting and Merging

o Imprinting Geometry

o Merging Geometry

o Examining Merged Entities
e Merge Tolerance

o Unmerging
o Using Geometry Merging to Verify Geometry

Geometry is created and imported in a manifold state. The process of converting manifold to
non-manifold geometry is referred to as "geometry merging", since it involves merging multiple
geometric entities into single ones. When importing mesh-based geometry, the merging step can
be automatic. Imprinting is a necessary step in the merging process, which ensures that entities to
be merged have identical topology.

Examining Merged Entities

There are several mechanisms for examining which entities have been merged. The most useful
mechanism is assigning all merged or unmerged entities of a specified type to a group, and
examining that group graphically. This process can be used to examine the outer shell of an
assembly of volumes, for example to verify if all interior surfaces have been merged. To put all
the merged entities of a given type into a specified group, use the command:

Group {<'name">|<id>} add [Surface | Curve | Vertex] with Is_merged
To put all the unmerged entities of a given type into a specified group, use the command:
Group {<'name'>|<id>} add [Surface | Curve | Vertex] with Is_merged=0

Entities can also be labeled in the graphics according to the state of their merge flag. See the
Preventing geometry from merging section for information on controlling the merge flag. To turn
merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Imprinting Geometry

To produce a non-manifold geometry model from a manifold geometry, coincident surfaces must
be merged together (See Geometry Merging); this merge can only take place if the surfaces to be
merged have like topology and geometry. While various parts of an assembly will typically have

241

surfaces, which coincide geometrically, an imprint is necessary to make the surfaces have like
topology. There are three types of imprinting:

e Reqular Imprinting
e Tolerant Imprinting
e Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular
imprint command misses, the Find Overlap command can be used.

Regular Imprinting

The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [Keep]

A body can also be imprinted with curves, vertices or positions, and surfaces can be imprinted
with curves. It is useful to imprint bodies or surfaces with curves to eliminate mesh skew,
generate more favorable surfaces for meshing, or create hard lines for paving. Imprinting with a
vertex or position can be useful to split curves for better control of the mesh or to create hard
points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [Keep]
Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [Keep]
Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]
Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [Keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter
out imprint calls for bodies which clearly don't intersect.

Imprint [Body] All

Tolerant Imprinting

Normal imprinting may be ineffective for some assembly models that have tolerance problems,
generating unwanted sliver entities or missing imprints altogether. Tolerant imprinting is useful
for dealing with these tolerance challenged assemblies. To determine coincident and overlap
entities, tolerant imprinting uses the merge tolerance. The commands also include an optional
tolerance value that will be used for the purposes of the single command. Specifying an optional
tolerance value will not change the default, system tolerance value.

A limitation of tolerant imprinting is that it cannot imprint intersecting surfaces onto one another,
as normal imprinting can. Tolerant imprinting imprints only overlapping entities onto one other.

Imprint Tolerant {Body|Volume} <range> [tolerance <value>]

Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the tolerance
between surface and curve(s) falls within the merge tolerance. The 'merge' option will merge the
owning volume of the specified surface with all other volumes that share any curves with this
surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge] [tolerance
<value>]

Imprint Tolerant Surface <id> <id> with Curve <id_range>

[merge] [tolerance <value>]

Imprint Tolerant Surface <id> <id> [tolerance <value>]

242

Cubit 15.2 User Documentation

The second form of the command imprints the specified bounding curves of one surface onto
another surface and vice versa. Any specified curves that are not bounding either of the two
specified surfaces will not be imprinted. The 'merge’ option will merge all the volumes sharing
any curve of these two surfaces, after the imprint.

It is recommended that normal imprinting be used when possible and tolerant imprinting be used
only when normal imprinting fails.

Mesh-Based Imprinting

Another form of the imprint command,

Imprint Mesh {Body | Volume} <id_list>

uses coincident mesh entities and virtual geometry to create imprints. See the Partitioned
Geometry section for more information on this command.

Imprint Settings

After imprint operations, an effort is made to remove sliver entities: sliver curves and surfaces.
Previously, all curves in participating bodies less than 0.001 were removed. Newer versions of
Cubit changed this because there might be times when the user wants sliver curves/surfaces to be
generated during an imprint operation. In order to give the user more control over the cleanup of
these sliver entities after imprint operations, a command was implemented so that the user can
set an 'imprint sliver cleanup tolerance'. The default tolerance for curves is the merge tolerance
0.0005. The default tolerance for surfaces is a suitable tolerance chosen internally based on the
bounding box of the entity. Sliver surfaces are removed whose maximum gap distance among
the long edges is smaller than the tolerance and who have at most three long edges. A long edge
is an edge whose length is greater than the specified tolerance.

Set {Curve|Surface} Imprint Cleanup Tolerance <value>

Merge Tolerance

Geometric correspondence between entities is judged according to a specified absolute numerical
tolerance. The particular kind of spatial check depends on the type of entity. Vertices are
compared by comparing their spatial position; curves are tested geometrically by testing points
1/3 and 2/3 down the curve in terms of parameter value; surfaces are tested at several pre-
determined points on the surface. In all cases, spatial checks are done comparing a given position
on one entity with the closest point on the other entity. This allows merging of entities which
correspond spatially but which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which are
at least this close will pass the geometric correspondence test used for merging. The user may
change this value using the following command:

Merge Tolerance <val>

If the user does not enter a value, the current merge tolerance value will be printed to the screen.
There is no upper bound to the merge tolerance, although in experience there are few cases
where the merge tolerance has needed to be adjusted upward. The lower bound on the tolerance,
which is tied to the accuracy of the solid modeling engine in CUBIT, is 1e-6.

Finding Nearly Coincident Entities

These commands find vertex-vertex, vertex-curve and vertex-surface pairs whose separation is
within the specified tolerance range. If a tolerance range isn't specified the default will be from
merge tolerance to 10*merge tolerance. It is useful for determining if you need to expand merge
tolerance to accomodate sloppy geometry.

243

Find Near Coincident Vertex Vertex {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Find Near Coincident Vertex Curve {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Find Near Coincident Vertex Surface {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Merging Geometry
The steps of the geometry merging algorithm used in CUBIT are outlined below:

Check lower order geometry, merge if possible

Check topology of current entities

Check geometry of current entities

If both entities are meshed, check topology of meshes.

If geometric topology, geometry, and mesh topology are alike, merge.

okrwdPE

Thus, in order for two entities to merge, the entities must correspond geometrically and
topologically, and if both are meshed must have topologically equivalent meshes. The geometric
correspondence usually comes from constructing the model that way. The topological
correspondence can come from that process as well, but also can be accomplished in CUBIT
using Imprinting.

If both entities are meshed, they can only be merged if the meshes are topologically identical.
This means that the entities must have the same number of each kind of mesh entity, and those
mesh entities must be connected in the same way. The mesh on each entity need not have nodes
in identical positions. If the node positions are not identical, the position of the nodes on the
entity with the lowest ID will be used in the resulting merged mesh.

There are several options for merging geometry in CUBIT.

Merge geometry automatically

Merge All [Group|Body|Surface|Curve|Vertex] [group_results][tolerance
<value>]

All topological entities in the model or in the specified bodies are examined for geometric and
topological correspondence, and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type are
merged. For example, if Merge all surface is entered, only vertices which are part of
corresponding surfaces being merged; vertices which correspond but which are not part of
corresponding surfaces will not be merged. This command can be used to speed up the merging
process for large models, but should be used with caution as it can hide problems with the
geometry.

Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With
{Group|Body|Surface|Curve|Vertex} <id_range>] [group_results] [force]
[tolerance<value>]

All topological entities in the specified entity list, as well as lower order topology belonging to
those entities, are examined for merging. This command can be used to prevent merging of
entities which correspond and would otherwise be merged, e.g. slide surfaces.

244

Cubit 15.2 User Documentation

Force merge specified geometry entities

Merge Vertex <id> with Vertex <id> Force
Merge Curve <id> with Curve <id> Force
Merge Surface <id> with Surface <id> Force

This command results in the specified entities being merged, whether they pass the geometric
correspondence test or not. This command should only be used with caution and when merging
otherwise fails; instances where this is required should be reported to the CUBIT development
team.

Preventing geometry from merging

Body <id_range> Merge [On | Off]
Volume <id_range> Merge [On | Off]
Surface <id_range> Merge [On | Off]
Curve <id_range> Merge [On | Off]
Vertex <id_range> Merge [On | Off]

These commands provide a method for preventing entities from merging. If merging is set to off
for an entity, merging commands (e.g. "merge all") will not merge that entity with any other.
Other Merge Commands

Set Merge Test BBox {on|OFF}

This is an additional test for merging to see if a pair of surfaces should merge. First, it creates a
bounding box for each surface by summing individual bounding boxes of each of the surface's
curves. A comparison is then made to see if these two bounding boxes are within tolerance. This
can help to weed out any potential incorrect merges that can result from non-tight bounding
boxes.

Set Merge Test InternalSurf {on|OFF|spline}

This is an extra check when merging surfaces. A point on one surface, closest to its centroid is
found. Another point, closest to this point is found on the other surface. If these two points are
not within merge tolerance, the two surfaces will not be merged. If set to on, all surface types
will be included in this check. If set with the spline option, then splines are only checked this
way; analytic surfaces are excluded. This is another check to prevent incorrect merges from
occurring.

Using Geometry Merging to Verify Geometry

Geometry merging is often used to verify the correctness of an assembly of volumes. For
example, groups of unmerged surfaces can be used to verify the outer shell of the assembly (see
Examining Merged Entities.) There is other information that comes from the Merge all
command that is useful for verifying geometry.

In typical geometric models, vertices and curves which get merged will usually be part of
surfaces containing them which get merged. So, if a Merge all command is used and the
command reports that vertices and curves have been merged, this is usually an indication of a
problem with geometry. In particular, it is often a sign that there are overlapping bodies in the
model. The second most common problem indicated by merging curves and vertices is that the
merge tolerance is set too high for a given model. In any event, merged vertices and curves
should be examined closely.

245

Unmerging
The unmerge command is used to reverse the merging operation. This is often in cases where
further geometry decomposition must be done.

Unmerge {all|<entity_list> [only]}

Un-merging an entity means that the specified geometric entity and all lower-order (or child)
entities will no longer share non-manifold topology with any other entities. For example, if a
body is unmerged, that body will no longer share any surfaces, curves, or vertices with any other
body.

[Set] Unmerge Duplicate_mesh {On|OFF}

If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh of higher-
order entities valid. For example, if a surface shared by two volumes is to be unmerged and only
one of the volumes is meshed, the surface mesh will remain with whichever surface is part of the
meshed volume.

When unmerging meshed entities, the default behavior of the code is that the placement if the
mesh is determined by the following rules:

« If neither entity has meshed parent entities, the mesh is kept on one of the two entities.
« If one entity has a meshed parent entity, the mesh is kept on

that entity.
« If both entities have meshed parents, the mesh is kept on one

and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and
whenever a meshed entity is unmerged the mesh is always copied such that both entities remain
meshed.

To get back to the default behavior, turn unmerge duplicate_mesh off.

Virtual Geometry
Virtual Geometry

e Composite Geometry

o Partitioned Geometry

e Collapsing Geometry

o Simplify Geometry

o Deleting Virtual Geometry

The Virtual Geometry module in CUBIT provides a way to modify the topology of the model
without affecting the underlying ACIS geometry representation and without making changes to
the actual solid model. Virtual Geometry includes the capability to composite or partition
geometry as well as creates new virtual geometric entities. Virtual Geometry operations are most
often used as a tool for adjusting the geometry to allow mapping, sub-mapping or sweeping mesh
generation schemes to be applied.

The advantage to using Virtual Geometry is that all operations are reversible. With standard
geometry modification commands, changes are made to the underlying geometry representation
and cannot be changed once effected. With virtual geometry, the original solid model topology
can be easily restored. This is useful when geometry modifications are made in order to apply a

246

Cubit 15.2 User Documentation

particular meshing scheme. Virtual geometry can be applied and later removed once the part has
been meshed.

Collapse Geometry

Collapse Geometry

The collapse geometry commands use virtual geometry to tweak small angles and curves to
improve meshability of geometry models. The following options for collapsing geometry are
available:

e Collapse Angle
e Collapse Curve
e Collapse Surface

Collapse Angle
The collapse command allows the user to collapse small angles using virtual geometry. The
command syntax is:

Collapse Angle at Vertex <id> Curve <id1> [Arc_length <length>] Curve
<id2> [Arc_length <length> | Same_size | Perpendicular | Tangent]
[Composite_vertex <angle>] [Preview]

The collapse angle command is used to eliminate small angles at vertices, where curves meet at a
tangential point. The command will split each curve at a specified distance (61 and 82) as shown
in Figure 1, and create two new vertices along those curves. The remaining small angle will be
composited into its neighboring surface using virtual geometry. The options of the command
allow you to specify where to split each curve. You must input a distance for the first curve (31),
but the second location can be determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax
The arclength option will split each curve at a specified distance 61 and 62, (See Figure 1)
measured from the vertex. You must input at least one arclength for each of the options listed
below.
The same_size option will split curve 2 so that the two resulting curves, 1 and 62, are the same
length as shown in Figure 2.

247

Figure 2. Collapse angle using the same_size option
The perpendicular option will split curve 2 so it is perpendicular to the split location on curve 1,
as shown in Figure 3.

Figure 3. Collapse angle using the perpendicular option
The tangent option will split curve 2 where a line tangent to curve 1 at the split location
intersects curve 2, as shown in Figure 4.

Figure 4. Collapse angle using the tangent option
The composite_vertex option automatically composites resulting surfaces if there are only two
curves left at the vertex, and the angle is less than a specified tolerance.
The preview option will preview composited surface before applying changes.

248

Cubit 15.2 User Documentation

Figure 5. An example of a meshed surface that is generated after using the collapse angle
command.

Collapse Curve

The collapse curve command allows the user to collapse small curves using virtual geometry. It
is intended to be used in cases where removing a small curve to simplify topology will facilitate
meshing. The operation can be thought of as reconnecting curves from one vertex on the small
curve to the other vertex. If the user doesn’t specify which vertex to keep during the operation
CUBIT will choose one of the vertices. The operation is performed using virtual partitions and
composites on the curves and surfaces surrounding the small curve. The command syntax is:

Collapse Curve <id> [Vertex <id>] [Ignore] [Real_split]

The vertex keyword allows the user to specify which vertex on the small curve to keep during
the operation or in other words which vertex to "collapse to". Depending on the surrounding
topological configuration some vertices cannot currently be chosen so if the user specifies a
vertex to collapse to that results in a complex topological configuration that CUBIT can’t
currently handle the user will be notified and encouraged to pick a different vertex. If the user
doesn’t specify a vertex CUBIT will attempt to choose the “best” vertex to keep based on
surrounding topology and geometry. Currently, the collapse curve command only handles curves
where the vertex that is NOT retained has a valence of 3 or 4.

The ignore keyword allows the user to specify whether or not small portions of surfaces that are
partitioned off of one surface and composited with a neighboring surface during the collapse
curve operation are considered when evaluating the new composite surface. By specifying the
ignore option the user tells CUBIT that these small surfaces will be ignored in future evaluations
of the composite surface. This can be beneficial in cases where the small surface makes a sharp
angle with the neighboring surface it is being composited with. These first derivative
discontinuities of composite surfaces can make it difficult for the meshing algorithms to proceed
and ignoring the small surfaces during evaluation can help remedy this problem. By default the
small surfaces will not be ignored.

The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface
functionality to do the splitting rather than using virtual partitioning. The result is that you only
have virtual composites at the end and no virtual partitions. The main advantage of using this
option is that the solid modeling kernel's split operation is often more reliable than the virtual
partition.

249

Figure 1 shows a typical example where the collapse curve command should be used to simplify
the topology for meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

Figure 2. Above example after collapsing the small curve.

Collapse Surface

The collapse surface command allows the user to remove surface boundaries from the model.
This is accomplished by splitting the surface at two given locations and combining it into two
adjacent surfaces using virtual geometry operations. The command syntax is:

Collapse Surface <id> Across Locationl Location 2 With Surface <id_list>
[Preview]

The locations option can use any of the general Cubit location commands. However, the vertex
and curve options are among the most useful location options. For example, the command

250

Cubit 15.2 User Documentation

collapse surface 15 across vertex 128 curve 40 with surface 26 117

would split surface 15 by the line that is formed between vertex 128 and the midpoint of curve
40. 1t would then composite the two parts of surface 15 that are adjacent to surfaces 26 and 117.
The result is that three surfaces have been reduced to two.

The collapse surface command is most useful in removing blended surfaces (i.e. fillets and
chamfers) from a model. For example, Figure 1 below shows a set of highlighted surfaces on a
bracket. By collapsing all these surfaces the model shown in Figure 2 is created. Collapsing the
surfaces for this model simplifies the model and allows for the creation of a higher quality mesh.

Figure 2. Bracket after highlighted edges have been collapsed

Composite Geometry
Composite Geometry

o Composite Curves
o Composite Surfaces

251

The virtual geometry module has the capability to combine a set of connected curves into a
single composite curve, or a set of connected surfaces into a single surface. The general purpose
IS to suppress or remove the child geometry common to those entities being composited. For
example, compositing a set of curves suppresses the vertices common to those curves, thus
removing the constraint that a node must be placed at that vertex location.

The basic form of the command to create composites is:

Composite Create {Surface|Curve} <id_list>

This command will composite as many surfaces (or curves) as possible, in many cases creating
multiple composites.

The entities combined to create the composite must either all be unmeshed or all be meshed. A
meshed composite surface can not be removed unless the mesh is first deleted.

Care should be taken when compositing over large C! discontinuities as it may cause problems
for the meshing algorithms and may result in poor quality elements. C* discontinuities are
corners or abrupt changes in the surface normal.

The command to remove a composite is:

Composite Delete {Surface|Curve} <id>

Composite Curves
The full command for the creation of composite curves is:

Composite Create Curve <id_range> [Keep Vertex <id_list>] [Angle
<degrees>]

The additional arguments provide two methods to prevent vertices from being removed from the
model or composited over. The first method, keep vertex explicitly specifies vertices which are
not to be removed. This option can also be used to control which vertex is kept when
compositing a set of curves results in a closed curve.

The angle option specifies vertices to keep by the angle between the tangents of the curves at
that vertex. A value less than zero will result in no composite curves being created. A value of
180 or greater will result in all possible composites being created. The default behavior is an
empty list of vertices to keep, and an angle of 180 degrees.

Composite Surfaces
The general command for composite surface creation is:

Composite Create Surface <id_range> [Angle <degrees>] [Nocurves] [Keep
[Angle <degrees>] [Vertex <id_list>]]

Related Commands
Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited over.
Composites will not be generated where the angle between surface normals adjacent to the curve
is greater than the specified angle.

When a composite surface is created, the default behavior is to also to composite curves on the
boundary of the new composite surface.

252

Cubit 15.2 User Documentation

Curves are automatically composited if the angle between tangents at the common vertex is less
than 15 degrees. The nocurves option can be used to prevent any composite curves from being
created.

The keep keyword can be used to change the default choice of which curves to composite. The
arguments following the keep keyword behave the same as for explicit composite curve creation.
The nocurves and keep arguments are mutually exclusive.

Controlling the Surface Evaluation Method for Composite Surfaces

It typically takes longer to mesh a single composite surface than to mesh the surfaces used in the
creation of the composite. To improve speed, composite surfaces use an approximation method
to evaluate the closest point to a trimmed surface. However, this evaluation method may give
poor results for composites of highly convoluted surfaces.

The virtual geometry module provides a way to change the way surfaces are evaluated using the
following command:

Composite Closest_pt Surface <id> {Gme|Emulate}

The default behavior is to use the emulate method, as it is typically considerably faster.
Specifying the gme option will force the specified composite surface to use the exact calculation
of the closest point to a trimmed surface, as provided by the solid modeler. The gme option,
however, can be considerably slower.

Composite Determination

The composite create surface command is non-deterministic in some circumstances. When
three or more adjacent surfaces are to be composited, all the surfaces may not be able to be
composited into a single surface as illustrated in Figure 1. In this case different subsets of the
surfaces may be composited and the command will choose arbitrary subsets to composite. As an
example, there are three surfaces A, B, and C, all adjacent to each other. The common curve
between A and B is AB, the common curve between B and C is BC, and the common curve
between A and C is CA. If the curve BC cannot be removed, either due to the angle specified in
the composite command, or because there is a fourth surface, D, also using that curve, the
command will arbitrarily choose to either composite A and B or A and C.

253

Figure 1. In some cases, the program will make a determination of which surfaces to
composite.

Partitioned Geometry

Partitioned Geometry

Partitioning provides a method to introduce additional topology into the model, to better
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing curves
or surfaces.

o Partitioned Curves

o Partitioned Surfaces

o Partitioned Volumes

e Using Mesh Intersections to Partition Surfaces
e Removing Partitions

Removing Partitions
There are two commands used to remove partitions:

Partition Merge {Curve|Surface|Volume} <id_list>

The command combines existing partitions where possible. This command is similar to the
composite create command. The difference is that this command is special-cased for partitions,
and will result in more efficient geometric evaluations. If all the partitions of a real solid model
entity are merged, such that there is only one partition remaining, the virtual geometry will be
removed, and the original solid model geometry will be restored to the model.

254

Cubit 15.2 User Documentation

The CUBIT delete command can also be used for removing partitions. See Deleting Virtual
Geometry for a description of its use.

Using Mesh Intersections to Partition Surfaces
To assist in various mesh editing tasks such as joining, a mesh-based imprinting capability is
provided. The command

Imprint Mesh {Body | Volume} <id_list>

determines imprint locations using the mesh on the surfaces of the specified bodies or volumes.
Regions of coincidence between the surfaces is determined by searching for coincident nodes in
the mesh of the surfaces. Virtual geometry is then used to partition the surfaces and curves at the
boundary of these regions of coincident mesh.

The imprint mesh functionality differs from a normal geometric imprint in the following ways:

The location of the imprint is determined from coincidence of mesh nodes.

The mesh remains intact through the imprint operation.

Virtual geometry is used to create the imprint.

The imprinting can be done on all types of geometry (including mesh-based geometry,
merged geometry, and virtual geometry.)

The following is a trivial example of this capability. The following commands create two
meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 12 size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the
imprint operation.
The mesh of the blocks can be joined by first doing a mesh-based imprint and then merging:

255

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the interface
between the two meshed volumes. The nodes on the new surface are shared by the neighboring
hexahedra of both volumes.

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

Partitioned Curves
There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position
<Xpos> <ypos> <zpos> | [with] <vertex_list> | <node_list>}

The first two forms of the command create additional vertices and use those vertices to split a
curve. The third form of the command uses existing vertices to split the curve. The fourth form
of the command uses existing nodes to split the curve.

Using the fraction option, vertices are created at the specified fractions along the curve (in the
range [0,1].) Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n
is the number of fraction values specified.

Using the position option, vertices are created at the closest location along the curve to each of
the specified position. Subsequently, the curve is split at each vertex, resulting in n+1 new
curves, where n is the number of positions specified.

If the node option is used, meshed curves may be partitioned. The specified nodes must lie on
the curve to be partitioned. The curve is split at each node specified, and any other mesh entities
are divided appropriately amongst the curve partitions.

Partitioned Surfaces
There are several forms of the command to partition a surface. A surface may be partitioned
using hard points, curves, polylines, mesh edges, mesh faces or mesh triangles.

e Partitioning with Vertices or Nodes
e Partitioning with Curves
e Partitioning with Mesh Edges

256

Cubit 15.2 User Documentation

o Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points

There are two methods of partitioning a surface using vertices and nodes. The first method is to
create a set of hard points using nodes, vertices, or coordinates that constrain the mesh to
particular points on the surface. The syntax is:

Partition Create Surface <id> Vertex <id_list> [Individual]
Partition Create Surface <id> Node <id_list> [Individual]

Partitioning with Polylines

The second method is to define a polyline using a set of vertices or coordinates. This method
splits the surface using a polyline defined by the a list of positions specified as either coordinate
triples, or existing vertices. The polyline is projected to the surface to define the curve for
splitting the surface. If only one position is specified a zero-length curve with a single vertex will
be created The syntax is identical to above WITHOUT the individual option.

Partition Create Surface <id> Vertex <id_list>
Partition Create Surface <id> Position <x> <y> <z> [[Position] <x> <y> <z>

]

In the following simple example, the surface is partitioned using both methods. On the left half
of the object, the surface is partitioned using the individual option (vertices 11 12 15 13). On the
right half, a polyline is used (vertices 9 10 16 14). All of the free vertices can then be deleted,
leaving the virtual curves shown in the second picture. Vertices 19 20 21 and 22 are all zero-
length curves. The small 'v' in parentheses is to indicate that it is virtual geometry. The resulting
mesh is shown in the third picture. Notice that the polyline constrains the entire curve to the
mesh, while the hardpoints constrain only that individual point.

257

b
Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves

This form of the command splits the existing surface into several surfaces by creating curves that
approximate the projection of the specified existing curves onto the surface. The syntax is:

Partition Create Surface <id> Curve <id_list>

Partitioning with Mesh Edges

Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must be owned
by the surface to be partitioned. The shape of the curve(s) used to split the surface is specified by
a set of mesh edges.

If the split location is specified by a series of mesh edges, and the specified mesh edges form a
closed loop, the node option may be used to control which node the vertex is created at.

Partition Create Surface <id> Edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles

Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The boundary
of the list will automatically be detected and new curves and vertices created at the appropriate
locations. Curves are created from the mesh edges and used to split the surface. The surface
mesh is split and assigned to the appropriate surface partitions.

Partition Create Surface <id> Face|Tri <id_list>

Partitioned Volumes
To partition a volume by giving a center and radius:

Partition Create Volume <id> Center [Location] {options} Radius <val>

This command splits the existing volume into two volumes. All volume elements that lie within
the specified radius of the specified center location are identified, and the exterior faces of these
elements are used to create a surface and partition the volume. The center can be specified with
any of the location options.

258

Cubit 15.2 User Documentation

Figure 1 shows an example of a partitioned volume. A cube that has been map meshed is
partitioned using a center at one of its vertices. The result is two distinct volumes with a surface
separating the two. The interface surface is composed of the faces of the interior hex elements.

Figure 1. A partitioned volume
This command may be useful for separating small regions of a meshed volume so that remeshing
or mesh improvement may be performed locally.

Deleting Virtual Geometry
Removing Virtual Geometry
The following command removes all lower-order virtual geometry from the specified entities.

Virtual Remove <entity _list>

Examples:
virtual remove surface 5

Removes all composite and partition curves from surface 5.
virtual remove body all

Remove all virtual geometry from all bodies.

For removing individual virtual entities, see the sections of the documentation for each type of
virtual entity:

e Composite curves

o Composite surfaces
o Partition curves

o Partition surfaces

259

Using The Delete Command With Composites

If the general delete command is invoked for a composite surface, the composite surface will be
removed, and the original surfaces used to define the composite will be restored to the model.
The defining surfaces are NOT also deleted. As with any other non-virtual surfaces, the delete
command will fail if the composite has a parent volume.

To delete composite surfaces with a parent volume, the composite delete command can be used.
The behavior is analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, or on a
surface containing a composite curve, the entire volume or surface will be deleted, including the
original entities used to define the composite, as those entities are also children of the entity
being deleted.

Using the Delete Command With Partitions

It is recommended that the delete command not be used with partitions, as it may break
subsequent usage of the merge and delete forms of the partition command for other partitions of
the same real geometry entity. However, if the delete command is used for partitions, the
behavior is to delete the specified partition, and when the last partition of the real geometry is
deleted, to restore the original geometry.

The delete command can also be used on parents of partitions. For example, a volume containing
partitioned surfaces, or a surface containing partitioned curves can be deleted. In this case, the
specified entity will be deleted along with all of its children, including the partition entities, and
the original entities that were partitioned.

Simplify Geometry

Simplifying topology by compositing individually selected surfaces is often a tedious and time-
consuming task. The simplify command addresses the tedium by automatically compositing
surfaces and curves based on selected criteria between neighboring entities. Figure 1 shows a
typical example of simplify command usage (‘simplify volume 1 angle 15°).

260

Cubit 15.2 User Documentation

Figure 1. Typical Simplify command usage
The command syntax and discussion items are shown below.

Simplify {Volume|Surface|Curve} <range> [Angle< value >] [Respect
{Surface <id_range> | Curve <id_range> | Vertex <id_range>| Imprint |
Fillet}] [Local_Normals] [Preview]

Feature Angle

Feature angle is defined as the angle between the average facet normals of two neighboring
surfaces. If the angle is less than the specified angle then the two surfaces are composited
together (assuming any other specified criteria are met). Feature angle is always used as criteria
and if an angle is not specified the value is set to 15 degrees.

261

Automatically Compositing Curves
The simplify command can also be used to automatically composite curves using an angle
tolerance. Curves will be composited together only if they are explicitly specified in this
command, and not as the result of two surfaces being composited.

Respecting Vertices, Curves and Surfaces

Surfaces, curves, and vertices can be specified to prevent geometry features from automatically
being composited. Figure 2 show an example of respecting a surface (‘simplify vol 1 angle 15
respect surf 289°).

\J7

Figure 2 Respecting a surface
For complex geometries, it is often useful to preview the simplify command and then add any
respected geometry to the command respect lists.
Respecting Imprints
Curves created by imprints can automatically be respected by the simplify command. Figure 3
shows an example of geometry with split fillets.

77

Figure 3 Respecting imprint geometry
Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle 40
respect imprint’).
Using Local Normals
By default the command will compare the average normal of two adjacent surfaces to determine
whether they should be composited. By issuing the local_normal option, the test will be modifed
slightly. The modified test will compare the maximum difference between normals along the
shared curve(s) for the two surfaces.

262

Cubit 15.2 User Documentation

Figure 4. Comparison of surface normals using the average surface normal method (on the
left) and local normal method (on the right).

Other Options

The preview option shows what curves are respected without compositing any surfaces. It should

also be pointed out that multiple respect specifications can be chained together. For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect fillet
preview

Geometry Orientation

The orientation of surface and curve geometry is the direction of the normal and tangent vectors
respectively.

Each surface has a forward (or top) side. The evaluation of the surface normal at any point on the
surface will return a vector at that point, orthogonal to the surface and directed towards the
forward side of the surface. The mesh faces generated on each surface will have the same normal
direction as their owning surface.

Each curve has a forward direction and a corresponding start and end vertex. The direction of the
curve is from start to end vertex. The evaluation of the tangent vector of the curve at any point
along the curve will result in a vector that is both tangent to the curve and pointing in the forward
direction of the curve (towards the end vertex along the path of the curve.) The mesh edges
created on each curve will be oriented in the same direction as their owning curve. The exported
nodes and edges of a curve mesh will be written in the order they occur along the path of the
curve.

Higher-dimension geometry has uses lower-dimension geometry with an associated sense
(forward or reversed) for each lower-dimension entity. For example, a volume as a sense for
each surface used to bound the volume. If the surface normal points outside the volume, then the
volume uses the surface with a forward sense. If the surface normal points into the interior of the
volume, the volume uses the surface with a reversed sense. Similarly a surface is bounded by a
set of curves forming a loop such that the direction of the loop and the sense of each curve
results in a cycle that is counter-clockwise around the surface normal.

Adjusting Orientation

By default, a surface is oriented so that its normal points OUT of the volume of which it is a part.
For a merged surface (a surface which belongs to more than one volume) or a free surface (a
surface that belongs to no volume, also known as a sheet body), the orientation of the surface is
arbitrary. The orientation of a surface influences the orientation of any elements created on that

263

surface. All surface elements have the same orientation as the surface on which they are created.
The following commands are available to adjust the normal-direction for a surface:

Surface <id_range> Normal Opposite
Surface <id_range> Normal Volume <id>

The orientation of a surface can be flipped from its current orientation by using the "Opposite™
keyword. The orientation of a merged surface can be set to point OUT of a specific volume by
specifying that volume in the "Volume" keyword.

Occasionally, volumes will be created "inside-out”. The command:

Reverse {Body|Volume|Surface} <id_range>

will turn a given volume, surface, or body inside out. This should be equivalent to reversing the
normals on all the surfaces. This shouldn't be encountered very often, as it is a very rare
condition.

The following commands are available to adjust the tangent direction of a curve:

Curve <id_range> Tangent Opposite
Curve <id_range> Tangent {Forward|Reverse} Surface <id>
Curve <id_range> Tangent {Start|End} Vertex <id>

The first command reverses the tangent direction of the curve. The second command sets the
tangent direction such that it is used by a specific surface with a specified sense. The third
command sets the tangent direction of the curve such that the curve starts or ends with the
specified vertex. For the latter two forms of the command, the curve must be adjacent to the
specified surface or vertex.

The below command can be used to change the orientation of multiple curves at once. With the
direction option, the curve will be oriented along the specified direction. With the location
option, the vertex closest to the give location becomes the start vert in the oriented curve. The
curve orientation can be reversed using the opposite argument. Also, a vertex id can be specified
to make it the start vertex in the oriented curve.

Curve <id_range> Orient Sense {direction (options)|location (options)|vertex
<id_range>} [Opposite]

The above command is useful in changing the orientation of multiple curves at once using
various options described. This becomes helpful, e.g., when bias is applied on multiple curves.
By default, bias depends on the orientation of the curve, i.e., bias begins at start vertex.

Groups

Geometry Groups

Groups provide a powerful capability for performing operations on multiple geometric entities
with minimal input. They can also serve as a means for sorting geometric entities according to
various criteria. The following describes the Group operations available in CUBIT:

When a group is meshed, CUBIT will automatically perform an interval matching on all surfaces
in the group (including surfaces that are a part of volumes or bodies in the group).

o Basic Group Operations
e Groups in Graphics
o Propagated Hex Groups

264

Cubit 15.2 User Documentation

e Quality Groups

There are several utilities in CUBIT which use groups as a means of visualizing output. These
utilities are described elsewhere, but listed here for reference:

Webcut results

Merged and unmerged entities

Sweep groups

Interval matching

Disassociated Meshes

Importing ACIS, IGES, STEP, Free Meshes

Propagated Groups

Propagated Groups

Creating propagated groups is a mechanism for joining groups of elements that meet specific
criteria. For hex groups it might be grouping hexes from a hex mesh using sweep-type criteria.
For surface elements, it might be grouping faces or tris into sidesets based on angle criteria.

o Propagated Hex Groups
o Propagated Surface Groups using the Seed Method

Naming Convention for Propagated Hex Groups

A special naming convention can be used for the propagated groups, best described by an
example.

The following command will create a hierarchy of logically named groups, as follows.

group "W1P1T1" add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:
W1
W1P1

WI1P1T1
W1P1T2
WI1P1T3

WI1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.
The software simply looks for numerical numbers in the group name and parses out the correct
grandparent, parent and child names from the substrings. There must be exactly 3 substrings in
the group name, each ending with an integer for the command to work properly.

A subsequent command:

group "W1P2T1" add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:

265

w1
W1P1

W1P1T1
WI1P1T2
W1P1T3

W1P1T10
W1P2

W1P2T1
W1P2T2
W1P2T3

W1P2T10

Propagated Hex Groups

o Starting on a Surface
e Starting on a Face

Propagated hex groups are a way of grouping hexes from a hex mesh using sweep-type criteria.
For example, creating a group containing all hexes between two specified mesh faces.
Note: the first examples below are based on first executing these commands:

brick width 10
volume 1size 1
mesh volume 1

Propagated Hex Group Starting on a Surface
Starting on a surface can end at a surface or can end after the number of times the user specifies.

Ending at a Surface

Number of Times

Ending at a Surface with Multiple
Number of Times with Multiple
Ending at a Surface with Direction
Number of Times with Direction

Ending at a Surface

Group ['name’ | <id>] Add Hex Propagate Surface <id> Target Surface <id>
Example

group 2 add hex propagate surface 1 target surface
Result: Group 2 will be created containing 1000 hexes

Number of Times

266

Cubit 15.2 User Documentation

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number>
Example
group 2 add hex propagate surface 1 times 4

Result: Group 2 will be created containing 400 hexes
Both methods, ending at surface or number of times, can be used with the "multiple” option
which will create several groups depending upon the multiple number specified.

Ending at a Surface with Multiple

Group ['name’ | <id>] Add Hex Propagate Surface <id> Target Surface <id>
Multiple <number>

Example
group 2 add hex propagate surface 1 target surface 2 multiple 2

Result: Five groups will be created and stored with their respective ids of multiple 2, these
groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2.

Number of Times with Multiple

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number>
Multiple <number>

Example
group 2 add hex propagate surface 1 times 10 multiple 5

Result: Two groups will be created and stored with their respective ids of multiple 5, these two
groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node
direction can be specified to direct the propagation. If the end surface is specified, only a node
direction can be specified to direct the propagation. When specifying the node direction, the node
has to be picked such that when the hexes are propagated, the picked node lies in these
propagated hexes. If that node is never reached while propagating, the direction is not found and
zero hexes will be included in the specified group.

Note: for the examples below, the result can be seen by executing these commands:

brick x 10

vol 1size 1
brick width 10
body 2 move 10
volume all size 1
merge all

mesh volume all

Ending at Surface with Direction

267

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number>
Direction Node <id>

Example
group 2 add hex propagate surface 6 target surface 12 direction node 1530

Result: Group 2 will be created containing 400 hexes
Note: The direction command and the multiple command can be combined (i.e. group 2 add
propagate surface 6 times 4 multiple 2 direction node 1530)

Number of Times with Direction

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number>
Direction [surface <id> | node <id>]

Example

group 2 add hex propagate surface 6 times 4 direction surface 4
group 2 add hex propagate surface 6 times 4 direction node 1530

Result: group 2 will be created containing 400 hexes

Propagated Hex Group Starting on a Face

When starting on a face, the propagation method can end at a surface, end at a face or can end
after the number of times the user specifies:

Ending at a Surface

Ending at a Face

Number of Times

Ending at a Surface with Multiple
Ending at a Face with Multiple
Number of Times with Multiple
Ending at a Face with Direction
Ending at a Surface with Direction
Number of Times with Direction

Ending at a Surface

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id range> Target
Surface <id>

Example
group 2 add hex propagate face 1 11 21 target surface 2
Result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a Face

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id> Target Face
<id>

Example

268

Cubit 15.2 User Documentation

group 2 add hex propagate face 1 target face 1721

Result: Group 2 will be created containing 5 propagated hexes (5 layers of 1 hex)
Note: Ending at a face requires starting at one face at one time, but ending at surface allows
multiple start faces

Number of Times

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id range> Times
<number>

Example
group 2 add hex propagate face 2 times 4
Result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

All of these methods, ending at surface, end at a face or number of times, can be used with the
"multiple” option which will create a grandparent (top-level), parent (mid-level, contained within
the grandparent) and child (bottom level, contained within the parent) groups. The child groups
will contain each hex layer (specified number of layers per child group), all organized into a
single parent group, which is organized underneath the group ID given to the command.
Subsequent propagation commands could then be executed adding to the grandparent group, but
creating a new parent and child groups. This way multiple propagation "sets" can be stored in
one grandparent group, if desired.

Ending at a Surface with Multiple

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id> Target
Surface <id> Multiple <number>

Example
group 2 add hex propagate face 1 target surface 2 multiple 1

Result: Ten groups will be created and stored with their respective ids, one for each layer of
hexes. These groups will be stored in the parent group, Group 3, and Group 3 will be stored in
the grand parent group, Group 2. A subsequent propagation command could be executed adding
to group 2 (the grandparent), which would create a single group contained in group 2 (the
parent), containing the hex layer groups (the children).

Ending at a Face with Multiple

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id> Target
Surface <id> Multiple <number>

Example
group 2 add hex propagate face 1 target face 1721 multiple 1

Result: 5 groups will be created and stored with their respective ids, one for each layer of hexes.
These groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2. A subsequent propagation command could be executed adding to group 2
(the grandparent), which would create a single group contained in group 2 (the parent),
containing the hex layer groups (the children).

269

Number of Times with Multiple

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id> Times
<number> Multiple <number>

Example
group 2 add hex propagate face 1 times 10 multiple

Result: Two groups will be created and stored with their respective ids, these two groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group
2.

If the end surface or end face is ambiguous, a node direction can be specified to direct the
propagation. When specify the node direction, the node has to be picked such that when the
hexes are propagated, the picked node lies in these propagated hexes. If that node is never
reached while propagating, the direction is not found and zero hexes will be included in the
specified group.

Ending at Face with Direction

Group ['name’ | <id>] Add Hex Propagate [source] Face <id> Target Face
<id> Direction Node <id>

Example
group 2 add hex propagate face 1721 target face 1 direction node334
Result: group 2 will be created containing 6 hexes

Ending at Surface with Direction

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id range> Target
Surface <id> Direction Node <id>

Example
group 2 add hex propagate face 1 target surface 2 direction node 334

Result: group 2 will be created containing 10 hexes
Note: The direction command and the multiple command can be used together (i.e. group 2 add
propagate face 1721 end face 1 multiple 2 direction node 334)

If number of times is specified and the direction is ambiguous, a surface direction or a node
direction can be specified to direct the propagation. The node direction has the same condition as
when ending at a surface or face and that is it must lie in the propagated hexes.

Number of Times with Direction

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id> Times
<number>Direction [surface <id> | node <id>]

Example

group 2 add hex propagate face 110 times 4 direction surface 2
group 2 add hex propagate face 1 times 4 direction node 269

270

Cubit 15.2 User Documentation

Result: group 2 will be created contained 4 hexes
Note: The direction command and the multiple command can be used together. (i.e. group 2 add
propagate face 1721 times 4 multiple 2 direction surface 1)

Naming Convention for Propagated Hex Groups

A special naming convention can be used for the propagated hex groups, best described by an
example.
The following command will create a hierarchy of logically named groups, as follows.

group "W1P1T1" add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:
W1
W1P1

WI1P1T1
W1P1T2
WI1P1T3

WI1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.
The software simply looks for numerical numbers in the group name and parses out the correct
grandparent, parent and child names from the substrings. There must be exactly 3 substrings in
the group name, each ending with an integer for the command to work properly.

A subsequent command:

group "W1P2T1" add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:
W1
W1P1

WI1P1T1
W1P1T2
WI1P1T3

WI1P1T10
W1P2

WI1P2T1
W1P2T2
WI1P2T3

W1P2T10

271

Seeded Mesh Groups

It is also possible to automatically group surface mesh elements based on feature angles. Given a
seed element, the algorithm will loop over all adjacent elements and create groups of elements
whose surface normals are similar, or which fall within a certain radius. The command syntax is:

Group {<'name'>|<id>} {Add|Equals|Remove|Xor} Seed <mesh_entities>
{Feature_angle <angle> [Divergence]|Depth <number>}

The seed element may be a quad, tri, or node element. There are two methods of angle
comparison for this command. The feature angle option will compare angles of the each element
to its adjacent elements by comparing surface normals. In the case of nodes, the seed node
surface normal will be the average of the adjacent faces or tris. Nodes will be added if their
attached faces meet the angle requirements. The divergence option will compare angles to the
original seed element's surface normal. The depth option will add elements within a certain
radius.

The following figures illustrate the use of the seed method to create mesh groups using the
feature angle and divergence methods.

CUBIT> group 'mygroupl’ add seed face 269 feature_angle 45

272

Cubit 15.2 User Documentation

CUBIT> group 'mygroup2' add seed face 269 feature_angle 45 divergence
The seed method of creating groups is particularly useful for creating groups on free meshes for
the purpose of assigning nodesets and sidesets.
The GUI command panel for this command is found by selecting
"Mode-Meshing", "Entity-Group", "Action-Manage Groups", then "Create with Seed.” The
command panel is shown below:

273

Command Panel
Mode - Meshing

3

Entity - Group

Do |+ e
ABREINEE
—

(i 2|2 R
»/%

[Create with Seed

Group Mame,ID

O (quad = ||

Add
[7] Remaove

Specify By
@ Feature Angle
™) Depth

Feature Angle

[7] Divergence

Depth

2| &

Basic Group Operations
Geometry Groups

[7] Equals
] xor

The command syntax to create or modify a group is:

Group [""'name™ | <id>] Add <list of topology entities>

For example, the command,

group "exterior' add surface 1 to 2, curve 3to 5

will create the group named Exterior consisting of the listed topological entities. Any of the

commands that can be applied to the "regular” topological entities can also be applied to groups.

For example, mesh Exterior , list Exterior , or draw Exterior .

274

Cubit 15.2 User Documentation

Elements may specified by name as well. For example, the command
group ‘interior’ add surface with name *bill* 'john" *fred"

will add the surfaces named 'bill’ 'john" and ‘fred’ to the group 'interior'.
Wildcards (*) can also be used with names. To add all surfaces with the substring 'bob' in their
name, use the command:

group ‘interior' add surface with name "*bill*"
A topological entity can be removed from a group using the command:
Group [""'name" | <id>] Remove <entity list>

The Xor operation can also be performed on entities in group. Xor means if an entity is already
in the group, the command will delete this entity from the group. If it is not in the group, the
entity is then added to the group.

Group [""'name" | <id>] Xor <entity list>

The Equals operation assigns the group to be exactly the same as the list given. All other existing
members of the group will be removed.

Group [""'name" | <id>] Equals <entity list>

Group Booleans

Groups may also be created from existing groups by using boolean operations. Each of these
commands will create a new group that contains entities from two existing groups. The intersect
command will create a new group that contains elements common to both existing groups. The
unite command will contain entities that exist in either group. The subtract command will
remove entities that are common to both groups and create a new group from entities that exist in
exactly one of the groups.

Group {<'name">|<id>} Intersect Group <id> with Group <id>
Group {<'name'>|<id>} Unite Group <id> with Group <id>
Group {<'name">|<id>} Subtract Group <id> from Group <id>

Mesh Groups
Groups may also contain mesh entities. The commands for adding and removing mesh entities
are analogous to those for geometric entities.

Group [""'name™ | <id>] Add {Hex|Face|Edge|Node <id_list>}
Group [""'name™ | <id>] Remove {Hex|Face|Edge|Node <id_list>}
Group ["'name" | <id>] Xor {Hex|Face|Edge|Node <id_list>}

Group Copy

Groups may be copied as groups using the group transform commands. Child entities cannot be
moved using this command. If a child entity is in the group, its parent entity must be specified as
well. In addition, all merge partners must be specified. Only groups containing geometric entities
can be copied with these commands. If a geometry entity is meshed, the mesh will be copied as
well, unless the [nomesh] option is given. Copied entities can be moved, rotated, reflected, or
scaled as well.

Group {<'name'>|<id>} Copy [Move <x> <y> <z>] [nomesh]
Group {<'name'>|<id>} Copy [Move {x|y|z} <distance>...] [nomesh]
Group {<'name'>|<id>} Copy [Move <direction> [distance]] [nomesh]

275

Group {<'name'>|<id>} Copy [Reflect {x|y|z}] [nomesh]

Group {<'name">|<id>} Copy [Reflect <x> <y> <z>] [nomesh]

Group {<'name'>|<id>} Copy [Rotate <angle> About {x|y|z}] [nomesh]
Group {<'name">|<id>} Copy [Rotate <angle> About <x> <y> <z>] [nomesh]
Group {<'name'>|<id>} Copy [Scale <scale> | x <val>y <val> z <val>]
[nomesh]

Group Transformations

Groups may be transformed as groups using the group transform commands. This is especially
helpful for transforming groups of free mesh elements, where no geometry exists. The command
syntax is shown below.

Group {<'name'>|<id>} [Copy [nomesh]] Move <dx> <dy> <dz>

Group {<'name'>|<id>} [Copy [nomesh]] Move {x|y|z} <distance>...
Group {<'name">|<id>} [Copy [nomesh]] Reflect {x|y|z}

Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>

Group {<'name'>|<id>} [Copy [nomesh]] Reflect {x|y|z}

Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>

Group {<'name">|<id>} [Copy [nomesh]] Rotate <angle> About {x|y|z}
Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About <x> <y> <z>
Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About Vertex
<Vertex-1> [Vertex] <Vertex-2>

Group {<'name'>|<id>} [Copy [nomesh]] Scale <scale> | x <val>y <val> z
<val>

The nomesh option applies to the copy part of the command. If the no_mesh option is specify,
the mesh will not be copied.

Deleting Groups

Groups can be deleted with the following command:

Delete Group <id range> [Propagate]

The option propagate will delete the group specified and all of its contained groups recursively.
Cleaning Out Groups
You can remove all of the entities in a group via the cleanout command:

Group <group_id_range> Cleanout [Geometry|Mesh] [Propagate]

By default all entities will be removed - optionally you can cleanout just geometry or mesh
entities. As in delete, the propagate option will cleanout the group specified and all of its
contained groups recursively.

Groups in Graphics

In the GUI version of CUBIT, groups may be picked with the mouse.

When displaying a group containing hexes, only the outside skin of the hexes will be displayed.

Quality Groups

Groups can also be formed from the hexes or faces obtained from the quality command. Each
group formed using quality can be drawn with its associated quality characteristics {i.e. jacobian
low .2 high .3} automatically.

Group {<'name'>|id} {Add|Equals|Remove|Xor} Quality { Hex | Tet | Face |
Tri | Volume | Surface | Group } <id_range> { quality metric name (default is

276

Cubit 15.2 User Documentation

SHAPE) } [High <value>] [Low <value>] [Top <number>] [Bottom
<number>]

The following example illustrates the use of quality groups:
group 2 add quality volume 1 jacobian

In this case, if the meshed brick from the section Propagated Hex Groups is used, Group 2 will
be created and it will contain 1000 hexes with quality characteristics.
The quality metric names can be found in the Quality Assessment section of the documentation.

Attributes

Geometry Attributes

Each geometric topological entity has specific information attached to it. These
attributes specify aspects of the entity such as the color that entity is drawn in and the
meshing scheme to be used when meshing that entity. This section describes those
geometry attributes that are not described elsewhere in this manual.

o Entity Names

° Entlty IDs
o Persistent Attributes

Persistent Attributes

Persistent Attributes

Typical data assigned to topological entities during a meshing session might include intervals,
mesh schemes, group assignments, etc. By default, most of this data is lost between CUBIT
sessions, and must be restored using the original CUBIT commands. Using CUBIT's persistent
attributes capability, some of this data can be saved with the solid model and restored
automatically when the model is imported into CUBIT.

o Attribute Behavior

o Attribute Types

o Attribute Commands

o Using CUBIT Attributes

Attribute Behavior

In this context, attributes are defined as data associated directly with a particular geometry entity.
In CUBIT's implementation of attributes, these data can occupy one of three "states™ at any given
time: they can be stored in data fields on CUBIT's geometry entities; they can be stored in an
intermediate representation, using CUBIT's attribute objects; or they can exist only on the ACIS
objects. When they are stored on ACIS objects, those attributes are written to and read from disk
files with the geometry. This mechanism allows CUBIT-specific information to be stored and
retrieved with the geometry data. By default, attribute data is not stored with geometry. To
enable the use of attributes, use the commands described in the following sections.

277

Attribute Commands
Most non-CUBIT-developer uses of attributes will be to use all or none of the
attributes. Therefore, the most common command to enable and disable the use of attributes is:

Set Attribute {On|Off}

When this option is on, all defined attributes will be saved with the geometry when the user
enters the Export Acis command.

When a geometry is imported into CUBIT, any attributes defined on that geometry and
recognized as CUBIT attributes are imported and put into an intermediate representation (that is,
this information is not assigned directly to the geometry entities). To find out which attributes
are defined on a given set of entities, use the following command:

List [<entity_list>] Attributes [Type <attribute type>] [All] [Print]

If no entities are entered, attribute information for all the geometric entities defined in CUBIT is
printed.

The Type option can be used to list information about a specific attribute type; values for are the
same as those in the previous table.

If the All option is entered, information about all attribute types will be printed, even if there are
none of those attributes defined for the specified entities.

If the Print option is entered, the information stored in each attribute will be printed; this
command is usually used only by CUBIT developers.

Control By Attribute Type or Geometric Entity

Attributes can be enabled or disabled by attribute type, to allow the use of only user-specified
attribute types. To turn on or off specific attributes, use the command:

Set Attribute <attribute type> {On|Off}

where <attribute type> is one of the types shown in the previous table.
Attributes can also be controlled to automatically write (update) and read (actuate) to/from solid
model files automatically, using the command:

Set Attribute <attribute_type> Auto {Actuate|Update} {On|Off}

Finally, attributes can be manually written to and read from the geometric entities, and removed
from cubit entities, using the command

{geom_list} Attribute {All|Attribute_type}
{Actuate|Remove|Update|Read|Write}

where geom_list is a list of geometry entities. This command is recommended only for
developers' use.

Attribute Types
The attribute types currently implemented in CUBIT are shown below.

Attribute
Types

Color Entity Color
Composite vg Used to restore composite virtual topology

Description

278

Cubit 15.2 User Documentation

Genesis entity Membership in boundary conditions (block, sideset,

nodeset)

Id Entity Id

Mesh_ Handle to mesh defined for the owner

container

Mesh scheme Meshing scheme (e.g. paving, sweeping, etc.)

Name Entity name

Partition vg Used to restore partition virtual topology

Smooth Smoothing scheme (e.g. Laplacian, Condition

scheme Number)

Unique Id Unl_q_ue entity id, used to cross-reference other
entities

Vertex type Used to define megh topology at vertex for
mapping/submapping

Virtual vg Used to store virtual geometry entity(ies) defined on
an entity

Using CUBIT Attributes
A typical scenario for using CUBIT attributes would be as follows.

Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT
session)
Enable automatic use of attributes using the command:

Set Attribute On

Export acis file (see Export Acis command).
Subsequent runs:
Enable automatic reading and actuating of attributes:

set attribute on
Import ACIS file (see Import Acis command)

Used in this manner, geometry attributes allow the user to store some data directly with the
geometry, and have that data be assigned to the corresponding CUBIT objects without entering
any additional commands.

Entity IDs

Topological entities (including groups) are assigned integer identification numbers or ids in
CUBIT in ascending order, starting with 1 (one). Each new entity created within CUBIT receives
a unique id within the topological entity type. This id can be used for specifying the entity in
CUBIT commands, for example "draw volume 3".

There is a separate id space for each type of topological entity. For example, all mesh nodes are
given ids from 1 to n, where n is an integer greater than or equal to the number of nodes in the
model. Likewise, all hexahedra are given ids from 1 to m, where m is an integer greater than or
equal to the number of hexahedra in the model.

279

Element Ids

Each mesh entity (hex, tet, face, tri, edge, node, etc.) may also have a Global Element ID from an
id space which is used for all mesh entities. A mesh entity is only assigned a Global Element ID
if itis in a block, and is the global id that will be assigned to the element during Exodus export.
The Global Element ID provides a single id space across all the different element types.

Gaps in ID space

After working with a model for some time, various operations will cause gaps to be left in the
numbering of the geometric & mesh entities. The compress ids commands can be used to
eliminate these gaps:

Compress [ids] [all] [Retainmax] [Sort]

Compress [Ids] [All]
{Group|Body|Volume|Surface|Curve|Vertex|Element|Hex|Tet|Face|Edge|Nod
e} [Retainmax]

Typing compress with no options or compress all will compress the ids of all entities;
otherwise, the entity type for which ids should be compressed can be specified. The retainmax
argument will retain the maximum id for each entity type, so that entities created subsequent to
this command will receive ids greater than that value. If the sort qualifier is included, the new id
of each entity will be determined by its size and location. Small entities are given a lower id than
large entities. Entities that are the same size are sorted by their location, with lower x coordinate,
then y, then z leading to a lower id. For example, two vertices are always the same size, so they
are sorted based on the lowest x coordinate. If they are equal, then lowest y coordinate, etc. If
two entities are found to have the same size and location, they are sorted according to their
previous ids. This option can be used to restore ids in translated models in a manner which leads
to more persistence than purely random id assignment.

Renumbering IDs

The renumber command can be used to change the id numbers assigned to meshed entities.

Renumber {Node|Edge|Tri|Face|Hex|Tet|Wedge|Element} <id_range>

Start_id <id> [Uniqueids]
Any valid range specification can be used to specify the source ids. There is no requirement that
the ids being renumbered are consecutively numbered. The new id numbers will be consecutive
beginning at the specified start id. For the command to be successful there can be no existing ids
within the effective range of the start id. If the resultant destination range is not free of id
numbers, the command will fail with an appropriate error.
Using the uniqueids keyword will result in the elements to be renumbered such that no element
shares the same ID.
For convenience, all elements and nodes in a block can be renumbered with a single command:

Renumber block <id_range> [node_start_id <id>] [elem_start_id <id>]
[localids]

By default, the Global Element ID is renumbered with the renumber block command. If
localids is specified, the hex, tet, face, tri, or edge id is renumbered instead.

Volume ID

The volume id command is used to renumber a single volume.

Volume <old_id> Id <new_id>

280

Cubit 15.2 User Documentation

This command replaces the volume's old_id with the new _id if no other is using the new _id
number. Entity renaming only works for volumes; it does not work for nodes, curves or surfaces.

Entity Names

By default, geometric entities in CUBIT are referenced using an entity type (e.g. Surface,
Volume) and an id, for example "draw surface 1". However, geometric entities can also be
assigned names, to simplify working with specific entities. Once a name is assigned to an entity,
that name can be used in any CUBIT command in place of the entity type and number. For
example, if surface 1 were named 'mysurfl’, the command above would be equivalent to "draw
mysurfl”. Also, since entity names are saved with the geometry, this also provides a means for
persistent identifiers for geometric entities. Names can be added or removed using the
following commands.

{Group|Body|Volume|Surface|Curve|Vertex} {Name | Rename}
{"<entity_name>'| Default}
{Group|Body|Volume|Surface|Curve|Vertex} Remove Name
{"<entity_name>'| All | Default}

The name of each topological entity appears in the output of the List command. In addition,
topological entities can be labeled with their names (see label command). A list of all names
currently assigned and their corresponding entity type and id (optionally filtered by entity type)
can be obtained with the command

List Names [{Group|Body|Volume|Surface|Curve|Vertex|All}]
Notes:

e In amerge operation, the surviving entity is given the name(s) of the deleted entity.
e A geometric entity may have multiple names, but a particular name may only refer to a
single entity.

Valid and Invalid Names

Although any string may be used as an entity name, only valid names may be used directly in
commands. A name is valid if it begins with a letter or underscore ("_"), followed by any
combination of zero or more letters, digits, or the characters ".", " ", or "@". If an attempt is
made to assign an invalid name to an entity, CUBIT will generate a valid version of the invalid
name by replacing invalid characters with an underscore. Then both the valid and invalid
versions of the name are assigned to the entity. For example, assigning the name "123#" to a
volume will result in the volume having two names, "123#" and "_23_". The valid name can be
used directly in commands (mesh _23), while the invalid name can only be referenced using a
longer, less direct syntax (mesh volume with name "123#").

Reconciling Duplicate Names

When an attempt is made to assign the same name to two different entities, a suffix is added to
the name of the second entity to make it unique. The suffix consists of the "@" character
followed by one or more letters or numbers. For example, the following commands will result in
volumes 1 to 3 having the names "hinge", "hinge@A", and "hinge@B", respectively:

volume 1 name **hinge™
volume 2 name **hinge™
volume 3 name ""hinge"

281

To prevent this automatic "fixing" of names, the Fix Duplicate Names flag may be switched to
off. If the user attempts to assign a duplicate name while the flag is set to off, the name will
remain unchanged.

Set Fix Duplicate Names [ON|Off]

Automatic Name Creation
CUBIT provides an option for automatically assigning names to entities upon entity
creation. This option is controlled with the command:

Set Default Names {On|OFF}

When this option is on, entities are assigned default names consisting of a geometry type
concatenated with the entity id, for example ‘curl’, 'surf26', or 'vol62'.

Automatic Name Propagation

CUBIT automatically propagates names through webcuts. If an entity that has been assigned the
name "Gear" is split through webcuts, the resulting bodies are named "Gear" and "Gear@A". Try
the following example.

br x 10

volume 1 name ""Cube""
webcut volume 1 xplane
webcut volume 1 2 yplane
webcut volume 1 2 3 4 zplane
label volume name

Figure 1. Name Propagation through Webcuts

You can operate on these propagated names using wildcards such as:

282

Cubit 15.2 User Documentation

mesh volume with name 'Cube*"
block 1 volume with name 'Cube*"

Naming Merged Entities

When entities that have the same base name, such as "platform" and "platform@A", are merged,
the resulting entities is assigned both names. The set merge base names on command tells Cubit
that in this situation, it should merge the names too. The command syntax is:

Set Merge Base Names [On|OFF]
For example:

brick x 10

vol 1 copy move 10
surf 6 name platform’
surf 10 name "platform’

Surface 10 actually is named platform@A, since we don't want duplicate names

merge all
list surf 6

You see that surface 6 has both 'platform' and ‘platform@A' as names. Now, for the contrasting
example

brick x 10

vol 1 copy move 10

surf 6 name 'platform’
surf 10 name ‘platform’
set merge base names on
merge all

list surf 6

You see that surface 6 has only ‘platform’ as its name.

Entity Measurement
To output various properties of entities, the following Measure command options are available.

o« Measure Between
e Measure Small

e Measure Angle

e Measure Void

Measure Between

Measure Between { { Vertex|Curve|Surface [Volume|Node} <id1> | Location
<options> | Plane <options> | Axis <options> } With {
{Vertex|Curve|Surface|Volume|Node} <id2> | Location <options> | Plane
<options> | Axis <options> }

Measure Between {Surface|Curve} <idl > [Surface|Curve] <id2> [Node]
Measure Between
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id1> With
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id2>

283

The Measure Between command outputs the distance from one entity, location, plane, or axis to
the next. The two entities in the command should be separated by the word "with". The result
will always be the minimum distance between entities. For example, measuring between two
spheres will output the minimum distance between them, not the distance between centroids. The
example shown below will output the minimum distance between vertex 1 and surface 2.

measure between vertex 1 surface 2

The second form of the command is just for surfaces or curves and contains the Node argument.
This argument attempts to measure between corresponding nodes on a pair of surfaces or curves.
The command tries to determine a one-to-one mapping of nodes between the pair. It returns the
greatest distance between any two nodal pairs, least distance between any two nodal pairs, and
average distance between all of the nodal pairs. The mapping algorithm works best on surfaces if
they are parallel.

The last form of the command measures between any geometry or mesh entities. The
measurement to the mesh entities is to their center (i.e. the averaged vector location of all of the
nodes belonging to the mesh entity).

Measure Small

Measure Small {Length|Area|Volume|All} {Body|Surface} <id_list>

The Measure Small command locates all of the lengths, areas, or volumes smaller than the
Measure Small Tolerance setting. Entities meeting the small tolerance criteria are listed in the
output window and typically highlighted in the view port. The following two commands set the
small tolerance to 0.1 and output all of the curves within body 1 with lengths at or below the
small tolerance.

set measure small tolerance 0.1
measure small length body 1

Measure Angle

Measure Angle { Direction <options> | Plane <options> | Axis <options> }
With { Direction <options> | Plane <options> | Axis <options> }

The Measure Angle command displays the interior angle between the two entered entities.
When a plane and a direction are specified, the angle between the direction vector and its
projection into the plane is displayed. The measured angle represents the distance between the
orientations of entities, and does not require the entities to intersect. Angles of model features
can be measured by using the various options associated with the Direction, Planes, and Axis
commands.

measure angle direction tangent curve 1 with plane surf 1
Measure Void
Measure Void [Face | Tri] <range>[No_Checks]

The Measure Void command takes a closed list of quadrilaterals or triangles and calculates the
volume of the internal region defined by the given list of elements. This command assumes that
the normals on the given elements are consistently ordered. If the normals are pointing away
from the interior of the void, the reported volume may be negative. This command will check to
ensure that the given elements do form a closed, manifold shell, otherwise an error is reported.

284

Cubit 15.2 User Documentation

Common uses will be to calculate the volume of an internal void for use in determining bulk
element properties for a thermal analysis.

Rather than issuing an error, the no_check option does not check for closure of the faces and will
compute a void volume regardless of their watertightness. This is useful if faces are all touching,
but may not have complete topological closure.

Metadata

Parts, Assemblies, and Metadata

Overview of Parts, Assemblies and Metadata

A geometric model may be organized into a hierarchy of assemblies, sub-assemblies, and parts.
These parts and assemblies can be assigned certain attribute values. The parts, assemblies, and
associated attributes are referred to as DART Metadata, or simply metadata. Metadata can be
imported from files, or can be created within CUBIT. Metadata can be exported to both mesh
and geometry files.

Although useful in its own right, the primary purpose of CUBIT’s metadata capabilities is to
enable interoperability with the set of applications participating in the DART project (see the
DART project's Analyst Home Page at http://www-irn.sandia.gov/analyst). DART
interoperability enables CUBIT to preserve assembly relationships and material data through the
analysis process.

This section describes the procedures for importing, manipulating and exporting metadata within
CUBIT.

o« Working with Parts and Assemblies
o Metadata Attributes
« Importing and Exporting Metadata

Importing and Exporting Metadata

Metadata can be imported from and exported to a file. In most cases metadata will be imported
and exported with a data file such as a SAT file or a genesis file. CUBIT is also compatible with
DART artifacts, including artifact dependency tracking.

e Importing Metadata
o« Exporting Metadata
o Importing and Exporting DART Artifacts

Importing Metadata

Parts and assemblies can be created and associated with geometry by importing a DART
Metadata file along with a geometry file, using the XML option of the import command. At this
time the only two geometry formats which support metadata import are STEP and ACIS:

Import {Step|Acis} "'<filename>". . . [XML "'<xml_filename>""]

To successfully associate the contents of the geometry file with the parts described in the
metadata, the XML file must follow the DART Metadata 3.0 XML schema found at http://www-
irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd, and the geometry file must contain extra
DART data. A suitable STEP file and a corresponding metadata file can be exported from Pro/E
using an add-in called eMatrix (a tool under the umbrella of the DART project, see the Analyst

285

http://www-irn.sandia.gov/analyst
http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd
http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd
http://www-irn.sandia.gov/analyst

Home Page for details). A SAT file and corresponding metadata file can be obtained by
exporting them from CUBIT using the XML option of the export command.

Exporting Metadata

Some export commands include an XML option. Including this option in the export command
instructs CUBIT to write out a DART metadata file, in addition to the traditional data file. The
metadata file includes the data required to enable interoperability with other DART-compliant
applications.

The only geometry export command which supports the XML option is ACIS export:

Export Acis “<acis_filename>” [XML “<xml_filename>"]

When an ACIS file exported with metadata, the specified XML file includes a description of the
assembly hierarchy as it appears in CUBIT.

Metadata can also be written to an XML file when exporting mesh. The only mesh export
command which supports the XML option is genesis export:

Export {Genesis|Mesh} “<mesh_filename>” [XML '<xml_filename>']

The XML file generated during mesh export includes the same information in a geometry
metadata file, but also includes mesh-related data such as mappings between parts and element
blocks, and includes any block, nodeset, or sideset names or descriptions which have been
defined.

Importing and Exporting DART Artifacts

The DART project has defined a specific way to package data files with corresponding metadata
files. A correctly packaged set of data files with a corresponding metadata file is called an
artifact. An artifact’s metadata file is always located in the same directory as the primary data
file, and is always named artifact.dta.

Within the DART environment, dependencies between artifacts may be tracked by placing
tracking information into metadata files. CUBIT supports automated artifact dependency
tracking. Tracking information in an input metadata file is automatically reflected in any output
metadata file written by CUBIT.

If input is correctly packaged as an artifact, CUBIT can automatically locate and read the
metadata file corresponding to a particular input data file. To have CUBIT do this, select the
“Import as Artifact” checkbox in the Open File dialog.

CUBIT can also package output as an artifact. To do so, select the “Export as Artifact” checkbox
in the export dialog box.

When importing or exporting artifacts using the command line, include the XML option in the
import or export command, specifying the xml file called artifact.dta in the same directory as the
main data file.

For dependency tracking purposes, it may be necessary to import an artifact’s metadata file by
itself. For example, it may be necessary to import an artifact consisting of an IGES file. Since the
Import IGES command does not support the XML option, the metadata file must be imported
separately. To do so, use the command:

Import XML “<xml_filename>”
When working with correctly packaged artifacts, the XML filename will always be artifact.dta.

286

http://www-irn.sandia.gov/analyst

Cubit 15.2 User Documentation

Metadata Attributes

Each part and assembly has several attributes, including its name and description. In addition,
there are several attributes which do not describe any particular part or assembly. The “global”
attributes describe the assembly tree as a whole, or the metadata as a whole.

These sections describe how to view and edit metadata attributes.

o Part and Assembly Metadata Attributes

e Viewing Part and Assembly Metadata Attributes

« Modifying Part and Assembly Metadata Attributes
« Viewing and Modifying Global Metadata Attributes

Part and Assembly Metadata Attributes

Each part and assembly has several attributes. Some attributes apply to both parts and
assemblies, while other attributes apply to only parts. The attributes are listed in the following
table:

Attribute Name Attribute Description Applies To:
Part Assembly
Name Name of Part or Assembly X X
Description Description of Part or % X
Assembly
Instance Instance Number X X
File The name of the file X X

containing the original
version of this entity. Often a
reference to a PDM system.

Units The unit system of this partor, X X
assembly.

Material_Description The name or description of X
the material of which this part
is composed.

Material_Specification The formal specification X

number of the material of
which this part is composed.

Density The density of the material of X
which this part is composed.
Setting it to a non-positive
value will clear the attribute,
as if there were no value
assigned.

Material_Volume The volume of the region X
enclosed by this part. The
material_volume is not
calculated from the volumes
associated with the part. It
will often differ from the

287

actual volume enclosed by

this part's associated

geometric volumes, and can

also be manually set to any

non-negative value. Setting it

to a non-positive value will

clear the attribute, as if there

were no value assigned.
Elemental_Composition A string value describing the X

composition of the material,

typically expressed as

percentages of given

elements.
Viewing Part and Assembly Metadata Attribute Values
The easiest way to view a part or assembly’s metadata attribute values is to select the item in the
entity tree. The item’s metadata attributes are listed in the property page.
A part or assembly’s metadata attribute values can also be viewed using the Metadata List
command:

Metadata List [<attribute_name>] {Part|Assembly} “<path>"

The attribute_name should be one of the attribute names in the table above. If no attribute name
is included in the command, all metadata attributes are listed.
Metadata attributes can also be listed based on a volume.

Metadata List [<attribute_name>] Volume <id>

This volume-based command works just like the part-based command, but lists the metadata for
the part with which the volume is associated.

Modifying Metadata Attributes

A part or assembly’s metadata attributes can be modified in the property page. Simply select the
part or assembly in the entity tree, then click in the appropriate text field in the property page.

A part or assembly’s metadata attributes can also be modified using the Metadata Modify
command:

Metadata Modify <attribute> “new value” {Part|Assembly} “<path>”

where attribute is one of the attributes listed in the table above. The specified attribute value
will be changed to new_value.
There is also a volume-based version of the Metadata Modify command:

Metadata Modify <attribute> “new_value” Volume <id>

The volume-based command works just like the part-based command, operating on the part with
which the volume is associated. Note that if the specified volume is not associated with a part, a
new part will be created and associated with the volume.

Viewing and Modifying Global Metadata

There are several attributes which do not describe any particular part or assembly. These
“global” attributes describe the metadata as a whole:

Attribute Name Description

288

Cubit 15.2 User Documentation

Classification_Level The level of sensitivity of the metadata. Usually
one of the following:

e Secret
+ Confidential
¢ Unclassified

Classification_Category The classification category. Usually one of the
following:

« Not Restricted

o Restricted Data (RD)

« Formerly Restricted Data (FRD)

o National Security Information (NSI)

Weapon_Category Sigma 1 through Sigma 15
Global metadata values can be viewed using the Metadata List command:

Metadata List <attribute_name>
Global metadata values can be modified using the Metadata Modify command:
Metadata Modify <attribute_name> “new_value”
For both commands, attribute_name should be one of the attribute names in the table above.

Working With Parts and Assemblies

Volumes can be organized into a hierarchical tree of parts, assemblies, and sub-assemblies.
Assemblies may contain parts and other assemblies. Parts, on the other hand, may not contain
sub-entities.

Each part and assembly has a name and an optional description. Other attributes may also be
assigned, such as a material specification or a link to an entry in a PDM system. See Metadata
Attributes.

The relationship between the geometric model and the assembly is determined by associating
parts with volumes. A single part can be associated with any number of volumes, including zero
volumes. A volume, however, can be associated with only one part.

As volumes are modified, CUBIT automatically maintains the appropriate relationships with
parts. If a volume is associated with a part, and that one volume is split into multiple volumes
through a webcut or some other operation, each of the resulting volumes is automatically
associated with the original volume’s part. Copying a volume will also result in the new volume
being associated with the same part as the original volume.

o Identifying Parts and Assemblies

o Creating Parts and Assemblies

o Deleting Parts and Assemblies

o Associating Parts with VVolumes

o Viewing All Assembly Information at Once

289

Identifying Parts and Assemblies

A part or assembly is identified by its assembly path. An assembly path is much like a directory
path in a file system. It consists of the name of each ancestor in the assembly tree, separated by a
forward slash. For example, a part named “p1” contained within the top-level assembly “al”
would be identified by the path “/al/p1”. If the part “p2” is part of the assembly “a2”, and “a2” is
a sub-assembly of “al”, then “p2” has the path “/al/a2/p2”.

More than one part or assembly may have the same name. To differentiate between parts or
assemblies with the same name and path, each part also has an instance number. If two entities
have the same name, they will not have the same instance number. For example, two parts
named “p1” may be “p1 instance 1”” and “p1 instance 2”.

Instance numbers may be incorporated into assembly paths by placing the instance number in
angled braces after a part or assembly name. For example, “pl instance 3” is identified in a path
as “p1<3>”. Other examples of instance numbers in assembly paths include
“/al<1>/a2<1>/p1<3>” and “/al/a2<1>/p1”. Assembly paths are always allowed to incorporate
instance numbers, but are only required to include as many instance numbers as it takes to avoid
ambiguity. Note that some commands do accept ambiguous paths, selecting a random entity
which matches the path.

Most commands which accept assembly paths also allow the path to be followed by an
“instance” command option (for example, metadata list part “/al/p1” instance 3). The instance
option always refers to the instance number of the last item in the path (p1 in the example).
Creating Parts and Assemblies

Parts and assemblies can be created using the following commands:

Metadata Create {Assembly|Part} “<absolute path>" [Instance <instance>]

If the instance option is not included, CUBIT will assign an appropriate instance number to the
new entity. If the instance option IS included, an entity with the specified name and instance
number must not already exist or the command will fail.

Note that the path must be absolute, identifying each ancestor of the new entity. Any ancestors of
the new entity which do not already exist are automatically created.

Deleting Parts and Assemblies

To delete a part or an assembly, use the Metadata Remove command:

Metadata Remove {Part “<path>” | Assembly “<path>" [propagate]}

This will remove the specified part or assembly. If the propagate option is specified when
removing an assembly, all contained parts and subassemblies will be removed automatically
before the assembly itself is removed. Otherwise, assemblies will only be removed if they have
no contents.

It is also possible to remove all parts and assemblies that have no association with geometric
volumes in the model:

Metadata Clean

This can be extremely useful when importing geometry which has been simplified with metadata
which has not been simplified. For example, eMatrix currently writes out the full assembly
hierarchy even when exporting a simplified representation of the geometry.

Associating Parts with VVolumes

The relationship between the geometric model and the assembly is determined by associations
between parts and volumes. As stated previously, a part may be associated with any number of

290

Cubit 15.2 User Documentation

volumes, while a volume may be associated with only one part. The easiest way to associate a
volume with a part is to use the entity tree in the user interface. Drag a volume in the tree onto a
part in the tree, and the volume and part are now associated. Since a volume can only be
associated with one part at a time, any previous association between that volume and a part is
removed.

Part-to-volume associations can be created on the command line using the Metadata Modify
Path command:

Metadata Modify Path “<part_path>” Volume <ids>

The specified volume or volumes will be associated with the part specified by part_path. Any
volumes already associated with the specified part will retain their association with the part.
Associations can be removed using the Metadata Remove command:

Metadata Remove Volume <ids>

After the Metadata Remove command has been issued, the specified volumes are no longer
associated with any part.

The set of volumes associated with a given part can be modified using the Metadata Replace
command:

Metadata Replace Part “<part_path>” Volume <ids>

When the Metadata Replace command is issued, all associations the part may have had with any
volumes are removed. New associations are then created with the specified volume or volumes.
Viewing All Assembly Information at Once

Once an assembly tree is created, all assemblies, parts, and part-to-volume associations can be
viewed using the command:

Metadata List Tree

This will print the names of all parts and assemblies in the output window, along with the IDs of
the volumes associated with each part.

It is also possible to view all parts, their properties, and their volume associations using a
spreadsheet application such as Microsoft Excel. This is done by generating a file using the
command:

Export Part_L.ist ""<filename>"" [OverWrite]

This command writes an XML file in a format that Excel can convert to a spreadsheet. To do
this, simply import the XML file into Excel as an XML List. The data can then be sorted and
filtered by any of the parts' properties.

The Export Part_List command is particularly useful for identifying parts which are not
correctly associated with parts. Among the fields that can be filtered is the is-part field. This
field is FALSE for each volume that is not associated with a part. Filtering on this value will
show a list of all volumes that are not associated with any part. The volume-ids field will show
the ID of each unassociated volume, and the volume-name field will show each unassociated
volume's name, if any.

It is equally easy to identify parts that are not associated with volumes. Display only those rows
with a blank value in the volume-ids field to see a list of parts that have no associated volume.
Similar methods can be used to identify missing materials information. Fields can also be sorted
to group the parts by material.

291

Metadata in the GUI

Metadata may be displayed and manipulated in the GUI. The tree view includes a category for
metadata. The category is labelled "Assemblies™ in the tree view. Users are able to drag volumes
into parts on the tree. Also, selecting an Assembly or Part on the tree will cause the attributes for
the entity to be displayed in the property page where further data manipulation is enabled.

Power Tools g X
REE SR NE-NENES

Current View [Full Tree -
Name D~ Properties -

Aﬁ Azsemblies
495 ANS1-AD5-SH28-0...
- @2 ANS1-AQ5-5H2T...
- by ANS1-AD5-SH29...
- @3 ANS1-AD5-SH3-...
a [ANS1-A05-SH3L...
- P ANSL-AQ5-5H.. 22

FAMNS1-A05-5H28-00...
FAMNS1-A05-5H28-00..,
FAMS1-A05-5H28-00...
FAMNS1-A05-5H28-00...
FAMS1-A05-5H28-00..,

o e e

m

ﬁ AMS1-AD5-5H31.. 1 FAMNS1-AD5-5H28-00...
ﬁ AMS1-A05-5H31.. 1 FAMS1-A05-5H28-00..,
4 ﬁ AMS1-A05-5H31.. 1 FAMNS1-A05-5H28-00...
- G ANS1-A05-5H.. 23 £
ﬁ AMS1-AD5-5HG-... 1 FAMNSL-A05-5H28-00...
ﬁ AMSL-A05-5HG-.., 2 FAMSL-A05-5H2E8-00..,
ﬁ AMS1-A05-5HG6-... 3 FAMS1-A05-5H28-00..,
. % Boundary Conditions 57
ANS 1-A05-5H28-00-UNC_ASM
Properties Page B X
Perform Action
ORI E ®
Property Value
4 General
Type HAszembly
MName AMS1-ADS-5H28-00-UMNC_ASM
Instance 1
Path SAMSL-A05-5H2E-00-UMC_ASM
Description
File Format
Units

Geometry Deletion
Geometry can be deleted from the model using the following command:

292

Cubit 15.2 User Documentation

Delete [Body | Surface | Curve | Vertex] <id_range>

Any type of Body can be deleted, whether it is based on solid model geometry or another
representation. Other entities (Surface, Curve, Vertex) can be deleted when they are "free", i.e.
when they are not contained in an entity of higher topological order (Body, Surface or Curve,
respectively); this type of geometry is often created from the lowest order topology up.

Import
Importing Geometry

Importing ACIS Models
Importing FASTQ Models
Importing STEP Files
Importing IGES Files
Importing Facet Files
Other Formats

Other Formats

Internally, CUBIT represents geometry as either ACIS solid model geometry or mesh-based
geometry. CUBIT can import ACIS geometry in the native "sat" file format. CUBIT can also
import STEP and IGES files and internally converts them into ACIS solid model geometry. For
compatibility with Sandia legacy applications, CUBIT can import FASTQ input decks to create
ACIS geometry, as well. If you have geometry that has been created in another format, such as in
SolidWorks, you will need to translate that geometry into something that Cubit can read. Many
solid modeling packages have an Export ACIS .sat command, which is probably the easiest way
of translating your model. If you do not have that option, there are some other possibilities.

o Tryadifferent file format, such as STEP or IGES.
e As a last resort, contact the Cubit team. They might have other options for importing your
file.

See Also
Importing a Mesh

Importing ACIS Files
The command used to read an ACIS file is:

Import Acis ‘<acis_filename>' [No_bodies][No_surfaces]
[No_curves][No_vertices][Group {'<name>'|<id>}] [Binary|Ascii]
[Show_Each] [Sort] [XML *<xml_filename>"] [Attributes_On]
[Separate_Bodies] [merge_gloabally] [Heal]

The import ACIS command is the primary mechanism for generating geometry within CUBIT.
ACIS parts can be generated and saved with CUBIT, but in most cases are developed within a
3rd party CAD package and exported for use in CUBIT. CUBIT provides the capability to
import ACIS solid models and make modifications to them so they can be meshed. CUBIT
incorporates the commercial ACIS libraries developed and maintained by Spatial Inc. for reading

293

http://www.spatial.com/

and writing ACIS format files. IGES and STEP format files can also be imported and exported
to/from CUBIT using the Spatial's libraries.

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or are free.
By using any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may
exclude certain types of free entities.

The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.

The import capability of ACIS files supports both the ASCII format (.sat) and binary format
(.sab). When importing, the filename extension will determine the default file type, be it ASCII
or binary. A (.sat) extension will default to ASCII, while a (.sab) extension will default to binary.
If you use a different file extension you can specify the type with the [binary|ascii] option.
Binary files can be significantly faster but are not guaranteed to be upward compatible, nor
cross-platform compatible. Therefore, it is recommended that models be archived in ASCII
format.

Normally the numerical 1Ds of the geometric entities contained in the ACIS model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from the
ACIS file. The sort option does the same thing as the compress ids sort command, but combines
it with the import command to remove a step in the process.

The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.

The xml option will read assembly information and other metadata from an XML file in the
DART metadata XML format. See the metadata documentation and the Analyst's Home Page for
details.

The attributes_on option will enable attribute support for the file. Attributes include properties
like entity color, entity id, and meshing scheme. Including the attributes option will only affect
the current import. The settings will be restored to their previous settings after importing.

The separate_each option creates a separate body for each volume that is imported, preventing
multi-volume bodies from being imported.

When importing, the use may specify the scope of the merge using merge_globally. The default
behavior is to merge within the scope of the file being imported. With the merge_globally
option, imported entities will merge with anything, including entities already in the Cubit session
that have merge attributes on them.

Use the heal option to heal the entities when importing.

Importing ACIS files at startup

ACIS files can also be imported using the **-solid™* option when starting CUBIT from the UNIX
command prompt. (See Execution Command Syntax for details.) Note that the filename must be
enclosed in single or double quotes. This command will create as many bodies within CUBIT as
there are bodies in the input file.

See also Exporting ACIS Files.

294

http://www-irn.sandia.gov/analyst

Cubit 15.2 User Documentation

Importing Facet Files
CUBIT provides the capability to import a model composed of facets to create geometry. The
command to import facets from a file is:

Import [Facets|AVS|STL] '<filename>" [Feature_Angle] [LINEAR||Spline]
[MERGE|No_merge] [Make_elements] [Stitch] [Improve]

Facets are simply triangles that have been stitched together to form surfaces. Faceted geometry
representations are commonly used for graphics, bio-medical, geotechnical and many other
applications that output a discrete surface representation. Upon import, the resulting geometry
representation is Mesh-Based Geometry. Figure 1. shows an example of a faceted model and the
resulting geometry created in CUBIT.

Figure 1. Example of faceted model and the resulting solid model created in CUBIT from
the facets.
For convenience, the import facet command currently supports three different formats, facet,
AVS and STL

o [Facet format: The facet file format is a simple ASCII file that contains vertex
coordinates and connectivities. The facet file format is described below.

e AVS format: The AVS format is a general geometry format that can support a variety of
polygonal shapes. In CUBIT's implementation of the AVS import, it will support only
triangles.

e STL format: Perhaps the most common format in the industry is Stereolithography
(STL). CUBIT supports both ASCII and binary forms of the STL format. While the STL
format is adequate for graphics and visualization, it can be problematic for geometry
applications such as CUBIT. Each triangle in the STL format is represented

295

independently. This means that multiple definitions of a single vertex are included in the
file. CUBIT will attempt to merge duplicate vertices to form a water-tight surface. In
cases where the vertex locations may not correspond exactly, an optional tolerance
argument may be used on the import command. The tolerance option is used only for
STL format files.

Facet File Format
The format for the ASCII facet file is as follows

nm
idl x1ylz1l
i1d2 x2 y2 z2
1d3 x3y3 z3

idn xn yn zn

fidl id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]

fidm id<1> id<2> id<3> [id<4>]
Where:

n = number of vertices

m = number of facet

id<i> = vertex ID of vertex i

X<i> y<i> z<i> = location of vertex i
fid<j> = facet ID of facet j

id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the facets serve
as the underlying representation for the geometry. By default, the facets are not visible once the
geometry has been imported. To view the facets, use the following command:

draw surf <id range> facets

Feature Angle

The feature angle option is used to specify the angle at which surfaces will be split by a curve or
where curves will be split by a vertex. 180 degrees will generate a surface for every facet, while
0 degrees will define a single, unbroken surface from the shell of the mesh. The default angle is
135 degrees. This feature is identical to the feature angle option available when importing
Exodus Il files.

Smooth Curves and Surfaces

This option permits the use of a higher order approximation of the surface when
remeshing/refining the resulting geometry. Default is to use the original facets themselves as the

296

Cubit 15.2 User Documentation

curve and surface geometry representation. If the facet model to be imported is to represent
geometry with curved surfaces, it may be useful to apply this option. If the Spline option is
selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. More
information on using smooth approximation of the facets is available in Importing an Exodus |1
File.

Merge

This option allows the user to either merge or not merge the resulting surfaces. The default
option is to merge adjacent surfaces. This results in non-manifold topology, where neighboring
surfaces share common curves. The no_merge option, adjacent surfaces will generate
distinct/separate curves.

Make elements

This option creates mesh elements from each of the facets on the facet surface.

Stitch

The stitch option is used with the facet or avs format files to try to merge vertices and triangles
that are close. Figure 2 shows an example of where this might be employed. The model on the
left contains facets that are not connected between the red and blue groups. In this case, the
surfaces will not be water-tight, even though the vertices on the boundary between the two
groups may be coincident. The stitch option attempts to eliminate the extra edge and vertex
between the groups to form the model on the right. This option can be useful when importing
facet files for 3D meshing. CUBIT's 3D meshing algorithms require a water-tight (closed) set of
surfaces.

Figure 2. Example use of the stitch option on import.
Improve
The improve option will collapse short edges on the boundary of the triangulation that are less
than 30% the length of the average edge length in the model. In some cases, short edges are the
result of discrete boolean operations on the triangulation which may result in edges that are of
negligible length. This option is particularly useful for boundaries where multiple surfaces come
together at an edge. Figure 3. shows an example of where the improve option improved the
quality of the triangles at the boundary. This option is especially useful if the facets themselves
will be used for the FEA mesh.

297

Triangles near a boundary that have The same set of triangles where
not been used the improve option improve option has collapsed edges
Figure 3. Example use of the improve option

Importing FASTQ Files
CUBIT can read a FASTQ file and convert it into an ACIS model:

Import Fastq '<fastq_filename>"

Note that the filename must be enclosed in single or double quotes.

FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands much
like a CUBIT journal file. All FASTQ commands are fully supported except for the "Body"
command (it is unnecessary and ignored), the "corn” (corner) line type, and some of the
specialized mapping primitive "Scheme" commands. Standard mapping, paving, and triangle
primitive scheme commands are handled. The pentagon, semicircle, and transition primitives are
not handled directly, but are meshed using the paving scheme. The FASTQ input file may have
to be modified if the Scheme commands use any non-alphabetic characters such as "+, *(", or °)".
Circular lines with non-constant radius are generated as a logarithmic decrement spiral in
FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to
generate three dimensional geometry. CUBIT supports sweeping options to convert imported
FASTQ geometries into volumetric regions.

Importing Granite Files
As of version 13.0, native Granite models are no longer supported.

Importing IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphics Exchange Specification) format.

The commands to import IGES files are:

Import Iges '<iges_filename>" [No_bodies] [No_surfaces] [No_curves]
[No_vertices] [Group {'<name>'|<id>}] [Nofreesurfaces] [HEAL|noheal]
[Logfile ['filename’] [Display]] [Show_Each] [Sort]

Import Options
It is possible to include free entities (vertices, curves and surfaces) in the file. Default operation
is to read all entities in the file whether they are included as part of a body or are free. By using

298

Cubit 15.2 User Documentation

any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may exclude
certain types of free entities.

The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.

The nofreesurfaces option will automatically convert free surfaces to bodies. By default this
option is off.

By default, bodies are automatically healed when imported - if this causes problems, you can
disable this option by using the noheal argument.

The logfile option specifies a file where informational messages generated during import of the
STEP file will be written. The display option will display the file.

The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.

Normally the numerical 1Ds of the geometric entities contained in the ACIS model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from
the ACIS file. The sort option does the same thing as the compress ids sort command, but
combines it with the import command to remove a step in the process.

Note that the IGES import and export functionality might not be available on all 64-bit
platforms.

See also Exporting IGES Files.

Importing STEP Files

The ACIS STEP translator provides bi-directional functionality for data translation between
ACIS and the file format standard STEP AP203.

STEP AP203 is an international standard which defines a neutral file format for representation of
configuration control design data for a product.

The command used to import a STEP file are:

Import Step "<step_filename>" [No_bodies][No_surfaces] [No_curves]
[No_vertices] [HEAL|Noheal] [Logfile ['filename’] [Display]] [Show_Each]
[Group {'<name>'|<id>}] [Sort] [XML *<xml_filename>']

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or are free.
By using any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may
exclude certain types of free entities.

By default, bodies are automatically healed when imported - if this causes problems, you can
disable this option by using the noheal argument.

The logfile option specifies a file where informational messages generated during import of the
STEP file will be written. The display option will display the file.

The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.

The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.

299

Normally the numerical 1Ds of the geometric entities contained in the STEP model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from
the STEP file. The sort option does the same thing as the compress ids sort command, but
combines it with the import command to remove a step in the process.

The xml option will read assembly information and other metadata from an XML file in the
DART metadata XML format. See the metadata documentation and the Analyst's Home Page for
details.

Beginning with version 13.0, Cubit will read assembly information embedded in the imported
STEP file. No additional arguments are required. The resultant assembly/part structure will be
displayed in the GUI's main entity tree.

Exporting a STEP file from Pro/Engineer

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.

In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.

Also be sure your export option is set to Solids. If the geometry has problems in CUBIT, you
may need to increase the geometry accuracy in Pro/ENGINEER.

See also Exporting STEP Files.

Export

Exporting Geometry

Geometry can be exported from CUBIT in a variety of formats, including the ACIS ".sat" and
".sab" formats as well as in more portable exchange formats like STEP and IGES.

o Exporting ACIS Files
e Exporting STEP Files
o Exporting IGES Files
o Exporting Facet Files

Exporting ACIS Files

Geometry can be exported from within CUBIT to the ACIS "sat" (ASCII) and "sab™ (binary)
formats. These formats can be used to exchange geometry between ACIS-compliant
applications. The command used to export geometry is:

Export Acis [Debug] *filename’ [<geometry_entity list>] [Binary|Ascii]
[Current] [Overwrite]

The filename should be enclosed in single or double quotes. By convention, binary and ASCI|I
ACIS files use the .sab and .sat filename extensions, respectively. If a geometry entity list is not
specified, the entire ACIS model is exported. A geometry entity list is specified in the same
format used for other CUBIT commands (See Entity Specification). Note that the model is saved
as manifold geometry, and will have that representation when imported back into CUBIT (See
Non-Manifold Topology and Geometry Merging.)

When exporting, the filename extension will determine the default file type, either ASCII or
binary. A .sat extension will default to ASCII; a .sab extension will default to binary. If you use a
different file extension you can specify the type with the [binary|ascii] option (with an
unsupported extension exporting will default to ASCII but importing requires the type to be
specified). Binary files can be significantly faster but are not guaranteed to be upward

300

Cubit 15.2 User Documentation

compatible nor cross-platform compatible (although testing has determined compatibility
between NT and HP/UX).

In the GUI version, the current option will set the default filename for autosave (cntrl-S or File-
>Save (auto inc)) to the imported filename. Also, the filename is then set in the window titlebar.
When exporting with the "file overwrite" option on, the software will check to see if the file
exists already, and if it does, exporting will fail in the command line version or ask to confirm
the overwrite in the GUI version of CUBIT. The overwrite option will override this option and
overwrite the file. The "file overwrite” option defaults to ON in the GUI version, OFF in the
command line version.

When exporting, you can set the version of the Acis geometry. This allows backwards
compatibility to previous versions of Cubit or other Acis-based applications. The command to
change the Acis geometry engine version is:

Set Geometry Version [version_number]

where version_number can be one of the following:106, 107, 201, 300, 301, 401, 402, 403, 500,
501, 502, 503, 600, 601, 602, 603, 700, 701, 702, 703, 704, 705, 800, 1007, 1100, 1200, 1300,
1400, 1500, 1600, 1700, 1800, 1900, 2100, 2200, 2401, 2502. Note that you cannot set a version
number that is higher than that of your current engine. For example, Cubit 6.0 was based on Acis
6.2, so you cannot set a geometry version of 700.

See also Importing ACIS Models.

Exporting Facet Files
Facet files may be exported directly, or by converting from an ACIS representation. The syntax
for exporting facet files is:

Export Facets 'filename' <entity_list> [Overwrite]

The overwrite function allows you to overwrite an existing facet file.
STL facet files may be generated from geometry or from a triangle mesh. The syntax for
exporting to the STL format is:

Export STL [ASClI|binary] ‘filename’ [<entity_list>] [tri <id_range>]
[angle=15] [mesh|water tight] [Overwrite]

The [entity_list] option is a list of geometric entities (bodies, volumes, or surfaces). By default,
the graphics facets for the geometric entities will be written to the STL file. The [angle] keyword
specifies the dihedral angle used during facet generation. The [water tight] option will enforce a
"water-tight" set of graphics facets to be exported for solid volumes. To export the triangle mesh
on the geometric entities, instead of the graphics facets, specify the [mesh] keyword. Note that
STL export of quad meshes is not supported.

Alternatively, a list of mesh triangles can be specified for export. If neither geometry entities nor
mesh are specified, all volumes and sheet bodies are written out.

Exporting IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphic Exchange Standard) format. The command to export IGES
files is:

301

Export Iges ‘'filename’ [<geometry_entity_list>] [Solid] [Logfile ['filename’]
[Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all
ACIS entities are exported.

The logfile option is used to save information regarding the conversion to IGES format. This
information saved to a file with the name specified by the user, or named 'iges_export.log' by
default. When running the GUI version of CUBIT, the logfile can be displayed in a dialog
window by using the display option.

The solid option allows solid volumes to be exported as Manifold Solid B-Rep Objects (MSBO).
Without this option, the iges file is simply a collection of stand-alone surfaces.

The overwrite option works the same as with ACIS file export.

See Importing IGES Files for information on setting up the IGES import and export
functionality.

Note that the IGES import and export functionality might not be available on all 64-bit
platforms.

Exporting STEP Files

CUBIT can export geometry to the STEP format, an emerging standard for storing geometry and
other information. The STEP AP203 and STEP AP214 standards are supported. It is
recommended to use AP214 for exchange of geometry information with CUBIT. The command
used to export a STEP file is:

Export Step *filename' [<geometry_entity_list>] [Logfile [*filename’]
[Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all
ACIS entities are exported.

The logfile option is used to save information regarding the conversion to STEP format. This
information saved to a file with the name specified by the user, or named 'step_export.log' by
default. When running the GUI version of CUBIT, the logfile can be displayed in a dialog
window by using the display option.

The overwrite option works the same as with ACIS file export.

See Importing STEP Files for information on setting up the STEP import and export
functionality.

Note that the STEP import and export functionality might not be available on all 64-bit
platforms.

302

MESH GENERATION
Mesh Generation

e Meshing the Geometry

o Interval Assignment

e Meshing Schemes

e Mesh Quality Assessment

« Mesh Modification

e Mesh Validity

o Mesh Adaptivity and Sizing Functions
e Mesh Deletion

o Free Meshes

e Skinning a Mesh

The methods used to generate a mesh on existing geometry are discussed in this chapter. The
definitions used to describe the process are first presented, followed by descriptions of interval
specification, mesh scheme selection, and available curve, surface, and volume meshing
techniques. The chapter concludes with a description of the mesh editing capabilities, and the
quality metrics available for viewing mesh quality.

Element Types

For each entity topology-type in the model geometry, CUBIT can discretize the entity using one,
or several, types of basic elements, for each order entity in the geometry (vertex, curve, etc.).
CUBIT uses a basic element designator to describe the corresponding entity, or entities, in the
mesh, and a given geometric topology entity can be discretized with one, or several, of basic
elements types in CUBIT. For example, a geometric surface in CUBIT is discretized into a
number of faces, where faces is the basic element designator for surfaces. These faces can
consist of two types of basic elements, quadrilaterals or triangles. The basic element designators
corresponding to each type of geometric entity, along with the types of basic elements supported
in CUBIT, are summarized in the table below.

For each basic element, CUBIT also supports several element type definitions, whose use
depends on the level of accuracy desired in the finite element analysis. For example, CUBIT can
write both linear (4-noded) and quadratic (8- or 9-noded) quadrilaterals. The element type
definition is specified after meshing occurs, as part of the boundary condition specification. See
Finite Element Model Definition for a description of that process and the various element types
available in CUBIT.

Each mesh entity is associated with a geometric entity which "owns" it. This associativity allows
the user to mesh, display, color, and attach attributes to the mesh through the geometry. For
example, setting a mesh attribute on a surface affects all faces owned by that surface.

Mesh Generation Process

Starting with a geometric model, the mesh generation process in CUBIT consists of four primary
steps:

Set interval size and count for individual entities or groups

The size or interval is always applied to a specific geometric entity. For example:

volume 1 size 2.0

Set mesh schemes

CUBIT supports numerous meshing schemes for meshing solid model entities. For example:

303

Mesh Generation

volume 1 scheme sweep

Generate the mesh for the model

Use the mesh command to generate the mesh on a specified geometric entity. For
example:

mesh volume 1

Inspect mesh for guality and suitability for targeted analysis

CUBIT provides various quality metrics for the user to verify the suitability of the mesh for
analysis. The quality command can be used to check the elements generated on a specific
geometric entity. For example:

guality volume 1

There are also mechanisms for improving mesh quality locally using smoothing and local mesh
topology changes and refinement. For complex models, this process can be iterative, repeating
all of the steps above.

The mesh for any given geometry is usually generated hierarchically. For example, if the mesh
command is issued on a volume, first its vertices are meshed with nodes, then curves are meshed
with edges, then surfaces are meshed with faces, and finally the volume is meshed with hexes.
Vertex meshing is of course trivial and thus the user is given little control over this process.
However, curve, surface, and volume meshing can be directly controlled by the user. Each of the
steps listed are described in detail in the following sections.

Ei?ﬁ;“?;ge B%s;gigLeaT;nt Basic Element(s) In CUBIT
Vertex Node Node
Curve Edge Edge
Surface Face Quadrilateral, Triangle
Volume (or Element Hexah_edron, Tetrahedron,
Body) Pyramid, Wedge

Meshing the Geometry
After assigning interval or sizing attributes to a geometric entity and a meshing scheme is
applied, the geometry is ready to be meshed. To mesh a geometric entity, use the command:

Mesh <entity> <id_range> [GLOBAL |Individual]
The <entity> to be meshed may be any one of the following:

Body
Volume
Surface
Curve
Vertex

The Global and Individual options affect how the constraints are gathered for interval matching.
With the Global option, the interval constraint equations are calculated from all entities in the

304

Cubit 15.2 User Documentation

entity list. The Individual option calculates the interval constraint equations from each entity
individually. The Global option is the default.

Default Scheme and Interval Selection

If either interval settings or schemes have not already been set on the entities being meshed,
CUBIT will do its best to automatically set one or both of these attributes. See Auto Scheme
Selection and Auto Specification of Intervals for a description of how CUBIT chooses these
attributes. In cases where the automatic scheme selection algorithm fails to select a scheme for
the geometry, the meshing operation will fail. In this case explicit specification of the meshing
scheme and/or further geometry decomposition may be necessary.

Continuing Meshing After a Mesh Failure

Frequently when meshing large assemblies containing a number of volumes, the mesh command
can be applied to a group of volumes with the same mesh command. Typically, if a mesh failure
is detected, the meshing operation will continue to mesh the remaining volumes specified at the
command line. The following command permits the user to override this feature to discontinue
meshing additional volumes and return to the command line immediately after a mesh failure is
detected:

Set Continue Meshing [ON|Off]

The default for this command is ON.

Turning this setting OFF is useful when meshing assemblies where a meshing failure of one
volume would adversely affect the meshing of adjoining volume(s). This occurs frequently when
meshing a sweep group using the sweep scheme.

Interval Assignment
Interval Assignment

e Interval Firmness

o Explicit Specification of Intervals

o Explicit Specification of Intervals Using Interval Size
e Automatic Specification of Intervals

o Additional Interval Constraints

e Vertex Sizing and Automatic Curve Biasing

e Interval Matching

o Periodic Intervals

o Relative Intervals

e Mesh Preview

Mesh density is usually controlled by the intervals, i.e. the number of mesh edges, specified on
curves. Intervals are set on a curve by either specifying the interval count directly or by
specifying a desired size for each interval. Intervals and interval size can be specified for curves
individually, or indirectly by specifying intervals for higher order geometry containing those
curves. Because of interval constraints imposed by various meshing algorithms in CUBIT, the
assignment of intervals to curves is not completely arbitrary. For this reason, a global interval
match must be performed prior to meshing one or more surfaces or volumes.

305

Mesh Generation

Automatic Specification of Interval Size
In addition to specifying intervals explicitly based on a known count or size, CUBIT is able to
compute interval sizes automatically based on characteristics of the model geometry. The
following automatic interval size setting command can be used:

{geom_list} Size Auto [Factor <factor>] [Individual] [Propagate]
Vertices are not valid in the geom_list for this command. Automatic interval size assignment
works by examining the geometric characteristics of the entities in the geom_list and assigning a
heuristic size to the entities and their child entities. The factor may be a floating point number
between 1.0 and 10.0, where 1.0 represents a fine interval size and 10.0 represents a coarse size.
Figure 1 shows an example of different auto size specification on a CAD model.

(b) auto size factor =5.0

306

Cubit 15.2 User Documentation

(c) auto size factor = 1.0

The user may assign the interval size to be the arc length of the smallest curve contained in the
specified entity or entities using the following command:

{geom_list} Size Smallest Curve
Vertices are not allowed in the geom_list for this command. This command assigns a soft
interval firmness.
Automatic Interval Size Specification
An automatic interval size with an auto size factor of 5 will automatically be computed and
applied to any curve for which the following is true:

1) Intervals have not been explicitly defined by the user for a curve or its owning entities.

2) An Interval size has not been explicitly defined by the user for a curve and it is not

possible to determine an interval size from its owning entities.
This automatic interval size is based upon all the geometry in the model. The automatic interval
size specifications can be overridden easily by specifying another auto size factor or an explicit
interval size.
If an auto size factor of 5 is undesirable for most meshing operations, the default factor may be
changed by using the following command:

Set Auto Size Default <value>
where value is a number from 1 to 10. This will be the default auto size factor used when either a
factor has not been specified on the size auto command or when an automatic interval size
specification is used.
In previous versions of CUBIT a default interval of 1 was assigned to all entities. If this behavior
is still desired, the following command may be used to enforce this condition:

Set Default Autosize [ON|off]
Maximum Spanning Angle on Arcs
On many CAD models, arcs or small holes require that a finer mesh be specified around these
entities in order to maintain reasonable mesh quality. To facilitate this, the user may specify the
maximum angle an element edge may span on an arc. To change or list the maximum arc span,
use the following commands

Set Maximum Arc_Span <angle>

List Maximum Arc_Span
The angle parameter must be a positive value less than 360. The maximum arc span setting will
only be used if there is not already a user defined interval set on the arc, and if the interval

307

Mesh Generation

setting produces mesh edges which exceed the maximum spanning angle. Figure 2 shows the
effect of three different maximum arc_span settings on a small hole using the pave scheme.

Figure 2. Maximum arc_span settings of 90, 45 and 15 degrees respectively.
Default arc span setting: In addition to setting an automatic size factor, if there are otherwise no
user-defined interval sizes defined on an arc and no maximum arc_span has been set by the
user when a tetrahedral mesh or triangle mesh is defined, a maximum spanning angle of 60
degrees will be used. Removing the use of the arc_span setting can be accomplished with the
following:

Set Maximum Arc_Span Default

Note that once interval sizes have been defined when the entity has been meshed, it may be
necessary to reset the interval settings (reset {geom_list}) to use a new maximum arc span
setting when remeshing.

Explicit Specification of Intervals
The density of mesh edges along curves is specified by setting the actual number of intervals or
by specifying a desired interval size. The number of intervals can be explicitly set curve by
curve, or implicitly set by specifying the intervals on a surface or volume containing that
edge. For example, setting the intervals for a volume sets the intervals on all curves in that
volume.
The command to specify the number of intervals at the command line is:
{Curve|Surface|Volume|Body|Group} <range> Interval <intervals>
When setting interval counts for surfaces, volumes, bodies and groups, an interval's firmness of
soft is assigned to the owned curves. When setting the interval count for a curve, a firmness of
hard is assigned.
The user can scale the current intervals with the following commands. Scaling is done on an
entity by entity basis.
{Curve|Surface|Volume|Body|Group} <range> Interval Factor <factor>

Explicit Specification of Intervals Using Interval Size

The number of intervals along curves can be specifying by setting a desired interval size. The
interval size can be explicitly set curve by curve, or indirectly set by specifying the interval size
on a surface or volume containing that curve. The size for an entity is determined with the
following method. If the entity has a size explicitly set then that size is used. Otherwise the entity
averages the size determined for its parents. If an entity doesn't have any parents then a size is
automatically calculated from all of the geometry in the model. If the auto size functionality is
turned off then a default size of 1.0 is used. Some meshing algorithms may calculate a different
default size.

308

Cubit 15.2 User Documentation

For example, Suppose you have two volumes that share a face and corresponding curves. If the
size on volume one is set to 1.0 and the size on volume two is set to 3.0 then the size for the
common face will be set to 2.0. The size for the remaining faces on volume one and two will be
1.0 and 3.0 respectively. The size for the common curves will be set to 2.0.
The command to specify the interval size at the command line is:

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size <interval_size>
Interval sizes set directly on an entity are given the type “user_set”. Interval sizes determined
from parents or automatically calculated are give the type “calculated”.
When interval matching or meshing the interval count for each curve is computed by dividing
the curve's arc length by the specified interval size. Interval counts calculated in this manner are
considered to have a default firmness of soft. This firmness can be changed with the following
command:

{geom_list} Interval {Default | Soft | Hard}
If an entity has a valid size, having one set explicitly or derived from its parents or calculated
automatically, then this command will set the firmness of the calculated intervals. The setting is
reset to default when a new size is set on this entity.
The user can scale the current intervals or size with the following commands. Scaling is done on
an entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size Factor <factor>
Additional Interval Constraints
Interval equal_to is a one way constraint that is set in the interval matcher and resolved when the
interval matcher is run. If a user sets curve 33 interval equal_to curve 35 than the interval
matcher will constrain curve 35 to have the same interval as curve 33. If the user hard sets an
interval on curve 33 then curve 35 will have the same interval when the interval matcher runs. If
the user hard sets an interval on curve 35 then problems could arise when the interval matcher
tries to constrain it to the interval on curve 33.
Interval same is a two way constraint that is resolved immediately. If the user changes the
interval on curve 33 then the interval on curve 35 is changed immediately. And if the user
changes the interval on curve 35, curve 33 is changed immediately. One problem with this
constraint is that if the user hard sets an interval on either curve and then sets a size on one of
them, the hard set interval on the other curve is not changed.
Vertex Sizing and Automatic Curve Biasing
Sizes can now be specified on vertices to control biasing along curves. If a curve has a bias
scheme the vertex sizes will be honored, even if it is inherited from parent geometry.
Set a size on a vertex with the following command:

vertex <id> size <size>
Bias can be turned on with:

curve <id> scheme bias
For tri/tet meshing, curve biasing is on by default to generate higher quality tri/tet meshes. Not
only is the difference noticeable when setting sizes on vertices, but it is also noticeable when
setting various sizes on connected curves, surfaces, or volumes. To turn curve biasing off issue
the following command:

curve<id> scheme equal
In the following examples, the surfaces have been given sizes. In the first graphic auto bias is not
enabled. In the second graphic auto bias is enabled.

309

Mesh Generation

X/ Cubit (1) X/ Cubit (1)

’
z

When auto bias is enabled sizes on vertices are respected. If a size hasn't been directly set on a
vertex the size is inherited from the parent(s). If there are multiple parents the inherited size is
averaged. In the examples shown above the sizes of the vertices attached to both surfaces was an
average of the two surface sizes. That affected the biasing while curve meshing.

Interval Firmness

Before describing the methods used to set and change intervals, it is important that the user
understand the concept of interval firmness. An interval firmness value is assigned to a geometry
curve along with an interval count or size; this firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by
interval matching

soft: current interval count is a goal and may be adjusted up or down slightly by
interval matching or changed by other interval size commands.

default: default firmness setting, used for detecting whether intervals have been
set explicitly by the user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firmness
along with an interval count or size. Commands and tools which change intervals also affect the
interval firmness of the curves. Those same commands and tools which change intervals can
only do so if the curves being changed have a lower-precedence interval firmness. The firmness
settings are listed above in order of decreasing precedence. For example, some commands are
only able to change curves whose interval firmness is soft or default ; curves with hard firmness
are not changed by these commands.

More examples of interval setting commands and how they are affected by firmness are given in
the following sections.

A curve's interval firmness can be set explicitly by the user, either for an individual curve or for
all the curves contained in a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness of default , and any command that changes
intervals (including interval assignment) upgrades the firmness to at least soft .

Precedence

If a size is specified multiple times for a single entity, the following precedence is used:

e The highest firmness command takes precedence.
Hard commands include "curve <id> interval <val>", and "{geometry_list} interval hard"
will fix the size at the current size.

« Within a given firmness, the last-issued command takes precedence.
For example, if the user commands "surface 1 size 1" then "volume 1 size 2", and surface
1 is part of volume 1, then surface 1 will have a size of 2.

310

Cubit 15.2 User Documentation

Interval Matching

Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned to the
curves bounding the entity being meshed. For example, meshing any surface with quadrilaterals
requires that the surface be bounded by an even number of mesh edges. This constrains the
intervals on the bounding curves to sum to an even number. For a collection of connected
surfaces and volumes, these interval constraints must be resolved globally to ensure that each
surface will be meshable with the assigned scheme. The global solution technique implemented
in CUBIT is referred to as interval matching.

When meshing a surface or volume, matching intervals is performed automatically. In some
cases, interval matching needs to be invoked manually, for example when meshing a collection
of volumes, or a collection of surfaces not in a common volume. Interval matching can also be
called to check whether the assigned intervals and schemes are compatible.

The command syntax for manually matching intervals is the following:

Match Intervals {Surface|Volume|Body|Group} <range>

Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and curves.
The interval matcher assigns intervals as close as possible to the user-specified intervals, while
satisfying global interval constraints. The goal is to minimize the relative change in pre-assigned
intervals on all entities. Interval matching only changes curves with interval firmness of soft or
default .

Extra constraints can be added by the user to improve mesh quality locally; in particular, curves
can be constrained to have the same intervals using the command

Curve <range> Interval {Same|Different}

Specifying that curves have the "same" intervals stores them in a set. More curves may be added
to an existing set, and sets merged, by future commands. The current contents of the affected sets
are printed after each command. A curve may be removed from a set by specifying that its
intervals are "different.”

The interval assignment algorithm tries to find one good interval solution from among the
possibly infinite set of solutions. However, if many curves are hard-set or already meshed, there
may be no solution. To improve the chances of finding a solution, it is suggested that curves are
soft-set whenever possible. Also, a solution might not exist due to the way the local selections of
corners and sides of mapped surfaces interact globally. If there is no solution, the following
command may help in determining the cause:

Match Intervals {Surface|Volume|Body|Group} <range> [Seed Curve
<range>] [Assign Groups [Only|Infeasible]] [Map|Pave]

Specifying Assign Groups will create groups that contain independent subproblems of the
global problem. Specifying Assign Groups Only will group independent subproblems, but the
algorithm will not attempt to solve these subproblems. Assign Groups Infeasible will put each
independent subproblem with no solution into specially named groups. Often poor corner
choices and surface meshing schemes will be illuminated this way. If Map or Pave is specified,
then only subproblems involving mapping or paving constraints will be considered. If a Seed
Curve is specified, then only those subproblems containing that curve will be considered.
Advanced users may also wish to experiment with setting the following, which may change the
interval solution slightly:

311

Mesh Generation

Set Match Intervals Rounding {on|off}
Set Match Intervals Fast {on|off}
Set Match Intervals Delta <interval_difference = 0.>

If set match intervals rounding is set to on, the intervals will be rounded to the nearest integer.
If the setting is off, the intervals will be rounded toward the user specified intervals.

If set match intervals fast is set to off a single curve will be fixed per iteration. Note in rare
cases this may produce better meshes. If set match intervals fast is set to on multiple curves will
be fixed per iteration.

Set match intervals delta allows the number of intervals assigned to a curve to be delta intervals
away from optimal unexpectedly. A larger value makes matching intervals faster, but the quality
of the solution may be worse; Hint: try delta = 1.0. Default is 0.0.

The user can also constrain the parity of intervals on curves:

{Curve|Surface|Volume} <range> Interval {Even | Odd}

If Even is specified, then during subsequent interval setting commands and during interval
assignment, curves are forced to have an even number of intervals. If the current number of
intervals is odd, then it is increased by one to be even. If Odd is specified then intervals may be
either even or odd. Setting intervals to even is useful in problems where adjoining faces are
paved one by one without global interval assignment.

Rather than specifying a specific size or interval for a curve or surface, which may overconstrain
the interval matcher, you can specify an upper and lower bound that is acceptable. This would
typically be used in a complex assembly where there may be multiple intervals that may interact
in order to get a compatible mapped/swept mesh through the assembly.

Surface <surface_id_range> {Interval|Size|Periodic Interval} {Lower|Upper}
Bound {On|Off|<bound>}

Mesh Interval Preview
It is sometimes useful to view the nodal locations/intervals on curves graphically before meshing
(which can take considerably more time). The command to do this is:

Preview Mesh {Body|Volume|Surface|Curve|Vertex} <id_range> [Hard]

To clear the display of the temporary nodes, simply issue a "display” command. The purpose of
the hard option is that only curves that have an interval firmness of hard will be previewed.

Periodic Intervals

The number of intervals on a periodic surface, such as a cylinder, in the dimension that is not
represented by a curve is usually set implicitly by the surface size.

However, periodic intervals and firmness can be specified explicitly by the following commands:

Surface <range> Periodic Interval <intervals>
Surface <range> Periodic Interval {Default|Soft|Hard}

Relative Intervals

If the user needs fine control over mesh density, then for curvy or slanted sides of swept
geometries, it is often useful to treat curves as if they had a different length when setting interval
sizes. For example, the user may wish to specify that a slanting side curve and a straight side

312

Cubit 15.2 User Documentation

curve have the same "relative" length, despite their true length as shown in the following figure.
These are not interval matching constraints; interval matching may change intervals so that the
user-specified ratio does not hold exactly.

0.55
1.0 1.0

1.0
0.45 '\

The relative lengths of curves are set with the following command:

{geom_list} Relative Length <size>
The following command is used to assign intervals proportional to these lengths:
{geom_list} Relative Interval <base_interval>

For a curve with relative length x, setting a relative interval of y produces xy intervals, rounded
to the nearest integer.

Meshing Schemes
Automatic Scheme Selection

o Default Scheme Selection

o Automatic Scheme Selection General Notes
o Surface Auto Scheme Selection

e Volume Auto Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the
meshing scheme. Automatic scheme selection is based on several constraints, some of which are
controllable by the user. The algorithms to select meshing schemes will use topological and
geometric data to select the best quad or hex meshing tool. Auto scheme selection will not select
tet or tri meshing algorithms. The command to invoke automatic scheme selection is:

{geom_list} Scheme Auto

Specifically for surface meshing, interval specifications will affect the scheme designation. For
this reason it is recommended that the user specify intervals before calling automatic scheme
selection. If the user later chooses to change the interval assignment, it may be necessary to call
scheme selection again. For example, if the user assigns a square surface to have 4 intervals
along each curve, scheme selection will choose the surface mapping algorithm. However if the
user designates opposite curves to have different intervals, scheme selection will choose paving,
since this surface and its assigned intervals will not satisfy the mapping algorithm's interval
constraints. In cases where a general interval size for a surface or volume is specified and then
changed, scheme selection will not change. For example, if the user specified an interval size of
1.0 a square 10X10 surface, scheme selection will choose mapping. If the user changes the
interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection.
If a mesh density is not specified for a surface, a size based on the smallest curve on the surface
will be selected automatically.

313

Mesh Generation

Default Scheme Selection

If the user does not set a scheme for a particular entity and chooses to mesh the entity, CUBIT
will automatically run the auto scheme selection algorithm and attempt to set a scheme. In cases
where the auto scheme selection fails to choose a scheme, the meshing operation will fail. In this
case explicit specification of the meshing scheme and/or further geometry decomposition may be
necessary.

The default scheme selection in CUBIT, unless otherwise set, will attempt to set a quadrilateral
or hexahedral meshing scheme on the entity. If tet or tri meshing will always be the desired
element shape, the following command can be used:

Set Default Element [Tet|Tri|HEX|QUAD|None]

Setting the default element to tet or tri will bypass the auto scheme selection and always use
either the triadvance or tetmesh schemes if the scheme has not otherwise been set by the user.
The default settings of quad or hex will use the automatic scheme selection.

Previous functionality of CUBIT used a default scheme of map and interval of 1 for all surface
and volume entities. For backwards compatibility and if this behavior is still desired, the none
option may be used on the set default element command.

Auto Scheme Selection General Notes

In general, automatic scheme selection reduces the amount of user input. If the user knows the
model consists of 2.5D meshable volumes, three commands to generate a mesh after importing
or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The model shown in the following figure was meshed using these three commands (part of the
model is not shown to reveal the internal structure of the model).

314

Cubit 15.2 User Documentation

Figure 1. Non-trivial model meshed using automatic scheme selection
Scheme Firmness
Meshing schemes may be selected through three different approaches. They are: default settings,
automatic scheme selection, and user specification. These methods also affect the scheme
firmness settings for surfaces and volumes. Scheme firmness is completely analogous to interval
firmness.
Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}

Scheme firmness settings can only be applied to surfaces and volumes.

This may be useful if the user is working on several different areas in the model. Once she/he is
satisfied with an area's scheme selection and doesn't want it to change, the firmness command
can be given to hard set the schemes in that area. Or, if some surfaces were hard set by the user,
and the user now wants to set them through automatic scheme selection then she/he may change
the surface's scheme firmness to soft or default.

Surface Auto Scheme Selection

Surface auto scheme selection (White, 99) will choose between Pave, Submap, Triprimitive, and
Map meshing schemes, and will always result in selecting a meshing scheme due to the existence
of the paving algorithm, a general surface meshing tool (assuming the surface passes the even
interval constraint).

315

Mesh Generation

Surface auto scheme selection uses an angle metric to determine the vertex type to assign to each
vertex on a surface; these vertex types are then analyzed to determine whether the surface can be
mapped or submapped. Often, a surface's meshing scheme will be selected as Pave or
Triprimitive when the user would prefer the surface to be mapped or submapped. The user can
overcome this by several methods. First, the user can manually set the surface scheme for the
"fuzzy" surface. Second, the user can manually set the "vertex types" for the surface. Third, the
user can increase the angle tolerance for determining "fuzziness." The command to change
scheme selection’s angle tolerances is:

[Set] Scheme Auto Fuzzy [Tolerance] {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as
the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in general mapping and
submapping will be chosen more often. If the user enters 0 degrees, only surfaces that are
"blocky" will be selected to be mapped or submapped, and in general paving will be chosen more
often.

Volume Auto Scheme Selection

When automatic scheme selection is called for a volume, surface scheme selection is invoked on
the surfaces of the given volume. Mesh density selections should also be specified before
automatic volume scheme selection is invoked due to the relationship of surface and volume
scheme assignment.

Volume scheme selection chooses between Map, Submap and Sweep meshing schemes. Other
schemes can be assigned manually, either before or after the automatic scheme selection.
Volume scheme selection is limited to selecting schemes for 2.5D geometries, with additional
tool limitations (e.g. Sweep can currently only sweep from several sources to a single target, not
multiple targets); this is due to the lack of a completely automatic 3D hexahedral meshing
algorithm. If volume scheme selection is unable to select a meshing scheme, the mesh scheme
will remain as the default and a warning will be reported to the user.

Volume scheme selection can fail to select a meshing scheme for several reasons. First, the
volume may not be mappable and not 2.5D; in this case, further decomposition of the model may
be necessary. Second, volume scheme selection may fail due to improper surface scheme
selection. Volume schemes such as Map, Submap, and Sweep require certain surface meshing
schemes, as mentioned previously.

Meshing Schemes
Meshing schemes in CUBIT can be divided into four broad categories.

e Traditional Meshing Schemes

e Free Meshing Schemes

e Conversional Meshing Schemes
o Duplication Meshing Schemes

In addition, Cubit supports two parallel meshing applications, pCamal and Sculpt

o Parallel Meshing

If no scheme is selected, Cubit will attempt to assign a scheme using the automatic scheme
selection methods.

316

Cubit 15.2 User Documentation

o Automatic Scheme Selection

Traditional Meshing Schemes

Traditional meshing schemes are used to apply a mesh to an existing geometry using the
methods described in Meshing the Geometry (i.e. setting a scheme, applying interval sizes, and
meshing). Traditional meshing schemes are available for all geometry types.

. . STransition
: glizra;,eDualblas . Stretch
« Curvature : %‘2
: E—gf?al « Tetmesh
. Manpi o Tetprimitive
. %\‘7—6@9 e Tridelaunay
. ma on o TriAdvance
« Pinpoint : %Sh
e Polyhedron —_—
« Sphere - Iripave

e Triprimitive

Free Meshing Schemes
Free meshing schemes will create a free-standing mesh without any prior existing geometry. The
final mesh will have mesh-based geometry.

o Radialmesh

Conversional Meshing Schemes

Conversional meshing schemes are used to convert an existing mesh into a mesh of different
element type or size. For example, the THex scheme will convert a tetrahedral mesh into a
hexahedral mesh.

o HTet

. Tri
e THex
e TQuad

Duplication Meshing Schemes
Duplication meshing schemes are used to copy an existing mesh from one geometry onto another
similar geometry.

. COQY
e Mirror

General Meshing Information

Information on specific mesh schemes available in CUBIT is given in this section. The
following sections have important meshing-related information as well, and should be
read before applying any of the mesh schemes described below.

317

Mesh Generation

In most cases, meshing a geometric entity in CUBIT consists of three steps:

o Set the interval number or size for the entity (See Interval Assignment.)

o Set the scheme for the object, along with any scheme-specific information, using the
scheme setting commands described below.

e Mesh the object, using the command:

Mesh {geom_list}

This command will match intervals on the given entity, then mesh any unmeshed lower order
entities, then mesh the given entity.

After meshing is completed, the mesh quality is automatically checked (see Mesh Quality
Assessment), then the mesh is drawn in the graphics window.

The following table classifies the meshing schemes with respect to their applicable
geometry.

Curves Surfaces Volumes
Bias/Dualbias Circle Copy
Copy Copy HTet
Curvature Mapping
Hole Polyhedron
Equal Mapping Sphere
Pinpoint Mirror Submap
Stretch Pave Sweep
Pentagon TetMesh, TetINTRIA
Polyhedron Tetprimitive
QTri THex
Submap
TriDelaunay
Triprimitive
TriMap
TriMesh
TriAdvance
TriPave
STransition
Duplication
Copying a Mesh

Applies to: Curves, Surfaces, Volumes
Summary: Copies the mesh from one entity to another
Syntax:

318

Cubit 15.2 User Documentation

Curve <range> Scheme Copy source Curve <range> [Source Percent
[<percentage> | auto]] [Source [combine|SEPARATE]] [Target
[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex
<id_range>]]

Surface <range> Scheme Copy [Source Surface] <id> [[Source Curve <id>
Target Curve <id>] [Source Vertex <id> Target Vertex <id>] [Nosmoothing]
Volume <range> Scheme Copy [Source Volume] <id> [[Source Surface <id>
Target Surface <id>] [Source Curve <id> Target Curve <id>] [Source Vertex
<id> Target Vertex <id>]][Nosmoothing]

Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range> [Source
Node <starting node id> <ending node id>] [Source Percent
[<percentage>|auto]] [Source [combine|SEPARATE]] [Target
[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex
<id_range>]

Copy Mesh Surface <surface_id> Onto Surface <surface_id> [Source Face
<id_range>] [Source Node <id> Target Node <id>] [Source Edge <id> Target
Edge <id>] [Source Vertex <id> Target Vertex <id>] [Source Curve <id>
Target Curve <id>] [Nosmoothing]

Copy Mesh Volume <volume_id> Onto Volume <volume_id> [Source Vertex
<vertex_id> Target Vertex <vertex_id> [Source Curve <curve_id> Target
Curve <curve_id>] [Nosmoothing]

Related Commands:
Set Morph Smooth {on | off}

Discussion:

If the user desires to copy the mesh from a surface, volume, curve, or set of curves that has
already been meshed, the copy mesh scheme can be used. Note that this scheme can be set before
the source entity has been meshed; the source entity will be meshed automatically, if necessary,
before the mesh is copied to the target entity. The user has the option of providing orientation
data to specify how to orient the source mesh on the target entity. For example, when copying a
curve mesh, the user can specify which vertex on the source (the source vertex) gets copied to
which vertex on the target (the target vertex). If you need to reference mesh entities for the copy,
use the Copy Mesh commands. If no orientation data is specified, or if the data is insufficient to
completely determine the orientation on the target entity, the copy algorithm will attempt to
determine the remaining orientation data automatically. If conflicting, or inappropriate,
orientation data is given, the algorithm attempts to discard enough information to arrive at a
proper mesh orientation.

Curve mesh copying has certain options that allow the copying of just a section of the source
curves' mesh. These options are accessed through the extra keyword options. The percent option
allows the user to specify that a certain percentage of the source mesh be copied--in this context
the auto keyword means that the percentage will be calculated based on the ratio of lengths of the
source and target curves. The combine and separate keywords relate to how the command line
options are interpreted. If the user wishes to specify a group of target curves that will each
receive an identical copy of a source mesh, then the target separate option should be used (this
is the default). If, however, the user wishes the source mesh to be spread out along the range of

319

Mesh Generation

target curves, then the target combine option should be used. The source curves are treated in a
similar fashion.

Volume mesh copying depends on the surface copying scheme. Because of this, the target
volume must not have any of its surfaces meshed already.

Because of how the copying algorithm works, the target mesh might not be an exact copy of the
source mesh. This happens because of the effects of smoothing. If an exact copy is required,
there are two possible solutions. The first option is useful when the source and target surfaces or
volumes are exact matches. If this criterion is met, the user may specify the Nosmoothing
option. That will disable any smoothing of the mesh on the target surface and thereby providing
an exact copy of the mesh. The second option is useful if the source and target surfaces are not
identical. In this case the user may set the morph smoothing flag on, which will activate a special
smoother that will match up the meshes as closely as possible.

Mirroring a Mesh

Applies to: Surfaces

Summary: Mirrors the mesh from one surface to another
Syntax:

Surface <range> Scheme Mirror [Source Surface <id> [Source Vertex <id>
Target Vertex <id>]] [Nosmoothing]

Mirror Mesh Surface <surface_id> Onto Surface <surface_id> [Source
Vertex <id> Target Vertex <id> Source Curve <id> Target Curve <id>
Source Node <id> Target Node <id>] [Nosmoothing]

Discussion:

The mirror scheme is very similar to the copy scheme. In order to understand what is changed, a
discussion of the copy command is in order. Depending on what the user enters for the copy
scheme, the resulting mesh might be oriented one of two ways. For example, if the user entered:
Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1

then the algorithm would match vertex 1 with vertex 5, but then would have to make a guess
about how to match the curves. Lacking other pertinent data, the match will be a direct match, as
is shown in the following figure:

=

l

i
[
|

I

[!
"~ Source Yerex xTargeWer’[E}{

Figure 1. Surface 1 copied onto surface 2

320

Cubit 15.2 User Documentation

L]

[
o R)

[
\‘*Snurce Wertex H‘Target Wertex

Figure 2. Surface 1 mirrored onto surface 2
This default matching can be changed by specifying more information for matching, or the user
can specify scheme mirror. The mirror scheme sets up the copying information in such a way as
to reverse the default orientation of the target mesh, as is shown in the above figure (right).
There are times when the resulting mesh may not match the original mesh exactly due to
smoothing. Using the nosmoothing option will ensure that the resulting mesh matches the
original mesh exactly.
The alternate form of the command copies the mesh immediately instead of setting a scheme
first. This form of the command can also use curves and mesh entities as references.

Conversion

HTet

Applies to: Volumes

Summary: Converts an existing hex mesh into a conforming tetrahedral mesh.
Syntax:

HTet Volume <range> {UNSTRUCTURED | structured}

Discussion:

Unlike other meshing schemes in this section, The HTet command requires an existing
hexahedral mesh on which to operate. Rather than setting a meshing scheme for use with the
mesh command, the HTet command works after an initial hex mesh has been generated.

Two methods for decomposing a hex mesh into tetrahedra are available. Set the method to be
used with the optional arguments unstructured and structured. The unstructured method is the
default. Figure 1 shows the difference between the two methods:

321

Mesh Generation

Figure 1. Left: Unstructured method creates 6 tets per hex. Right: Structured method
creates 28 tets per hex

Unstructured

This method creates 6 tetrahedra for every hexahedra. No new nodes will be generated. The
orientation of the 6 hexahedra will be based upon the element node numbering, as a result
orientations may change if node numbering changes. This method is referred to as unstructured
because the number of tetrahedra adjacent each node will be relatively arbitrary in the final
mesh. Tetrahedral element quality is generally sufficient for most applications, however the user
may want to verify quality before performing analysis.

Structured

With this approach, 28 tetrahedra are generated for every hexahedra in the mesh. This method
adds a node to each face of the hex and one to the interior. Although this method generates
significantly more elements, the orientation and quality of the resulting tetrahedra are more
consistent. Each previously existing interior node in the mesh will have the same number of
adjacent tetrahedra.

QTri

Applies to: Surfaces

Summary: Meshes surfaces using a quadrilateral scheme, then converts the
quadrilateral elements into triangles.

Syntax:

Surface <range> Scheme Qtri [Base Scheme quad_scheme>]
QTri Surface <range>

Set QTri Split [2|4]

Set QTri Test {Angle|Diagonal}

322

Cubit 15.2 User Documentation

Discussion:

QTri is used to mesh surfaces with triangular elements. The surface is, first, meshed with the
quadrilateral scheme, and, then, the generated quads are split along a diagonal to produce
triangles. The first command listed above sets the meshing scheme on a surface to QTri. The
second form sets the scheme and generates the mesh in a single step.

In the first command, the user has the option of specifying the underlying quadrilateral meshing
scheme using the base scheme <quad_scheme> option. If no base scheme is specified, CUBIT
will automatically select a scheme. For non-periodic surfaces, the base scheme will be set to
scheme pave. For periodic surfaces, the base scheme will be set to scheme map.

Generally, the second command, Qtri Surface <range>, is used on surfaces that have already
been meshed with quadrilaterals. If, however, this command is used on a surface that has not
been meshed, a base scheme will automatically be selected using CUBIT’s auto-scheme
capabilities. The user can over-ride this selection by specifying a quadrilateral meshing scheme
prior to using the gtri command (using the Surface <range> Scheme <quad_scheme> command).
In addition to the default 2 tris per quad, the set gtri split command may alter the QTri scheme so
that it will split the quad into 4 triangles per quad. Where the 4 option is used, an additional mesh
node is placed at the centroid of each quad.

There are two methods that may be used to calculate the best diagonal to use for splitting the
quadrilateral elements: angle or diagonal. The angle measurement uses the largest angle, while
the diagonal option uses the shortest diagonal. The largest angle measurement will be more
accurate but takes more time.

Also, the QTri scheme is used in the TriMesh command as a backup to the TriAdvance triangle
meshing scheme.

Figure 1. Surface meshed with scheme QTri

THex

Applies to: Volumes

Summary: Converts a tetrahedral mesh into a hexahedral mesh.
Syntax:

THex Volume <range>
Discussion:

323

Mesh Generation

The THex command splits each tetrahedral element in a volume into four hexahedral elements,
as shown in Figure 1. This is done by splitting each edge and face at its midpoint, and then
forming connections to the center of the tet.

When THexing merged volumes, all of the volumes must be THexed at the same time, in a
single command. Otherwise, meshes on shared surfaces will be invalid. An example of the THex
algorithm is shown in Figure 2.

Figure 1. Conversion of a tetrahedron to four hexahedra, as performed by the THex
algorithm.

324

Cubit 15.2 User Documentation

Figure 2. A cylinder before and after the THex algorithm is applied.

TQuad

Applies to: Surfaces

Summary: Converts a triangular surface mesh into a quadrilateral mesh.
Syntax:

TQuad Surface <range>

Discussion:

The TQuad command splits each triangular surface element in four quadrilateral elements, as
shown in Figure 1. This is done by splitting each edge at its midpoint, and then forming
connections to the center of the triangle. The result is the same as using the THex algorithm, but
only applies to surfaces. In general it is better to use a mapped or paved mesh to generate
quadrilateral surface meshes. However, the TQuad scheme may be useful for converting facet-
based triangular meshes to quadrilateral meshes when remeshing is not possible.

325

Mesh Generation

Figure 1. A triangle split into 3 quads using the TQuad scheme

Traditional

Bias, Dualbias

Applies to: Curves

Summary: Meshes a curve with node spacing biased toward one or both curve ends.
Syntax:

Curve <range> Scheme Bias

Curve <range> Scheme Bias {Factor|First_Delta|Fraction} <double> [Start
Vertex <range>] [preview]

Curve <range> Scheme Dualbias {Factor|First_Delta|Fraction} <double>
[preview]

Curve <range> Scheme Bias Fine Size <double>

{Coarse Size <double> | Factor <double>} [Start Vertex <range>] [preview]
Curve <range> Scheme Dualbias Fine Size <double>

{Coarse Size <double> | Factor <double>} [preview]

Related Commands:

Curve <range> Reverse Bias

Set Maximum Interval <int>

See also Surface Sizing Function Type Bias
See also Curve Scheme Stretch

The main differences between scheme bias and stretch are the following: scheme stretch does not
use strict geometric series for node placement. If you specify scheme bias or dualbias using the
"fine size" form, the interval count will be hard-set to a value that fills in the curve.

Auto Bias

When using the command 'curve <range> scheme bias' with no additional parameters, an auto
setting will be enabled by default for tet and tri meshing. This scheme honors sizes at a curve's

326

Cubit 15.2 User Documentation

vertices and that vertex size will be used to create a biased edge mesh. For example, two
volumes with different sizes set on the volumes are merged. The size at the vertices (averaged
from sizes on the parent entities) will be used to create the biased edge mesh.
A user can set a size on a vertex with the following command:

Vertex <id> Size <size>
More Discussion:
The Bias and DualBias schemes space the curve mesh unequally, placing more nodes towards
(or away from) the ends of the curve according to a geometric progression. The ratio of
successive edges is the "factor," which may be greater than or less than one. For bias, the series
starts at the first vertex of the curve, or the "start vertex™ if specified. For dualbias, the series
starts at both ends of the curve and meets in the middle.
The command behaves differently depending on which set of parameters are specified. There are
three basic variables: the interval count, the bias factor, or the first edge size. The curve length is
a given, fixed quantity. The user can specify any two of these variables, and the third will be
automatically determined.
If the "{Factor|First_Delta|Fraction}" form is specified, then the interval count is taken as a
given. The interval count is whatever was specified previously by an interval count or size
command (see Interval Assignment). If "Factor™ is specified, then the first edge size will be
automatically chosen so that the geometric progression of edges "fit" onto the curve. If
"first_delta" is specified, then the first edge length is exactly that absolute value, and the "factor"
is automatically chosen. If "fraction” is specified, then the first edge length is the curve length
times that fraction, and again the "factor" is automatically chosen.
If the "fine size" is specified, then the first edge length is exactly that absolute value. If the
"factor" is specified, then the interval count is automatically chosen. If an approximate coarse
size is specified, then this also determines the factor, and again the interval count is
automatically chosen. If a surface sizing function type bias is used, then the curves of the surface
are sized using similar formulas.
If no start or end vertex is specified, the curve's start vertex is used as the starting point of the
bias. (A curve's start vertex can be identified by listing the curve from the "CUBIT>" prompt.)
If a curve needs to have its nodes distributed towards the opposite end, it can be easily edited
using the reverse bias command. Reversing the curve bias using this command is equivalent to
setting a bias factor equal to the inverse of the original bias factor. Reversing the bias can be
performed on both meshed and unmeshed curves.
The maximum interval setting allows the user to set a maximum number of intervals on any bias
curve. This value is doubled for a curve with a dualbias scheme. It can be easy to accidentally
specify a very large number of intervals and this setting allows the user to place an upper limit
the number of intervals.
The preview option will allow the user to preview mesh size and distribution on the curve before
meshing.
The following figure shows the result of meshing edges with equal, bias and dualbias schemes.

Circle

Applies to: Surfaces

Summary: Produces a circle-primitive mesh for a surface
Syntax:

327

Mesh Generation

Surface <range> Scheme [Sector] Circle [Interval <int>] [fraction <double>]

Discussion:

The Circle scheme is used in regions that should be meshed as a circle. A "circle" consists of a
single loop of bounding curves containing an even number of intervals. Thus, the circle scheme
can be applied to circles, ellipses, ovals, and regions with "corners” (e.g. polygons). The
bounding curves should enclose a convex region. Non-planar bounding loops can also be meshed
using the circle primitive provided the surface curvature is not too great. The mesh resembles
that obtained via polar coordinates except that the cells at the “center" are quadrilaterals, not
triangles. See Figure 1 for an example of a circle mesh. Radial grading of the mesh may be
achieved via the optional [intervals] input parameter. The Fraction option has the range 0 <
fraction < 1 and defaults to 0.5. Fraction determines the size of the inner portion of the circle
mesh relative to the total radius of the circle. The sector option was added to revert to legacy
behavior which is not recommended.

Figure 1. Circle Primitive Mesh

Curvature

Applies to: Curves

Summary: Meshes curves by adapting the interval size to the local curvature.
Syntax:

Curve <range> Scheme Curvature <double>

Discussion:

The value of <double> controls the degree of adaptation. If zero, the resulting mesh will have
nearly equal intervals. If greater than zero, the smallest intervals will correspond to the locations
of largest curvature. If less than zero, the largest intervals will correspond to the locations of
largest curvature. The default value of <double> is zero. Straight lines and circular arcs will
produce meshes with near-equal intervals. The method for generating this mesh is iterative and
may sometimes not converge. If the method does not converge, either the <double> is too large
(over-adaptation) or the number of intervals is too small. Currently, the scheme does not work on
periodic curves.

328

Cubit 15.2 User Documentation

Equal

Applies to: Curves

Summary: Meshes a curve with equally-spaced nodes
Syntax:

Curve <range> Scheme Equal

Discussion:
See Interval Assignment for a description of how to set the number of nodes or the node spacing
on a curve.

Hole

Applies to: Annular Surfaces

Summary: Useful on annular surfaces to produce a "polar coordinate™ type mesh (with the
singularity removed).

Syntax:

Surface <surface_id_range> Scheme Hole [Rad_intervals <int>] [Bias
<double>] [Pair Node <id> With Node <id>]

Discussion:

A polar coordinate-like mesh with the singularity removed is produced with this scheme. The
azimuthal coordinate lines will be of constant radius (unlike scheme map) The number of
intervals in the azimuthal direction is controlled by setting the number of intervals on the inner
and outer bounding loops of the surface (the number of intervals must be the same on each loop).
The number of intervals in the radial direction is controlled by the user input, rad_intervals
(default is one).

A bias may be put on the mesh in the radial direction via the input parameter bias. The default
bias of 0 gives a uniform grading, a bias less than zero gives smaller radial intervals near the
inner loop, and a bias greater than zero gives smaller radial intervals near the outer loop.

The correspondence between mesh nodes on the inner and outer boundaries is controlled with the
pair node "<loop node-id> with node <loop node-id>" construct. One id on the inner loop and
one id on the outer loop should be given to connect the two nodes by a radial mesh line. Not
choosing this option may result in sub-optimal node pairings with possible negative Jacobians.
To use this option, mesh the inner and outer curve loops and then determine the mesh node ids.

329

Mesh Generation

Figure 1. Example of Hole Scheme

Mapping

Applies to: Surfaces, Volumes

Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.
Syntax:

{Volume|Surface} <range> Scheme Map

Discussion:

A structured mesh is defined as one where each interior node on a surface/volume is connected
to 4/6 other nodes. Mappable surfaces contain four logical sides and four logical corners of the
map; each side can be composed of one or several geometric curves. Similarly, mappable
volumes have six logical sides and eight logical corners; each side can consist of one or several
geometric surfaces. For example, in Figure 1 below, the logical corners selected by the algorithm
are indicated by arrows. Between these vertices the logical sides are defined; these sides are
described in Table 1.

Figure 1. Scheme Map Logical Properties

Table 1. Listing of Logical Sides

330

Cubit 15.2 User Documentation

Logical Side Curve Groups
Side 1 Curve 1
Side 2 Curve 2
Side 3 Curve 3, Curve 4, Curve 5
Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh
shown in the right portion of Figure 1. (i.e. The number of intervals on logical side 1 is equated
to the number of intervals on logical side 3). The process is similar for volume mapping except
that a logical hexahedron is formed from eight vertices. Note that the corners for both surface
and volume mapping can be placed on curves rather than vertices; this allows mapping surfaces
and volumes with less than four and eight vertices, respectively. For example, the mapped
quarter cylinder shown in Figure 2 has only five surfaces.

Figure 2. Volume Mapping of a 5-surfaced volume
The mapper works on a bicubic interpolation of the points on the boundary to represent the
surface. There may be times that those points may not be on the surface exactly if the surface is
not suitable for bicubic interpolation. The Mapping Constraint flag tells the mapper to relax the
nodes to the geometry or not.

Set Mapping Constraint {ON|off}

Pave

Applies to: Surfaces

Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.
Syntax:

Surface <range> Scheme Pave Related Commands:

[Set] Paver Diagonal Scale <factor (Default = 0.9)> [set] Paver Grid Cell
<factor (Default = 2.5)>[set] Paver LinearSizing {Off | ON} Surface <range>
Sizing Function Type ...

[Set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

[Set] Paver Cleanup {ON|Off|[Extend}

Discussion:

331

Mesh Generation

Paving (Blacker, 91; White, 97) allows the meshing of an arbitrary three-dimensional surface
with quadrilateral elements. The paver supports interior holes, arbitrary boundaries, hard lines,
and zero-width cracks. It also allows for easy transitions between dissimilar sizes of elements
and element size variations based on sizing functions. Figure 1 shows the same surface meshed
with mapping (left) and paving (right) schemes using the same discretization of the boundary
curves.

= 1

Figure 1. Map (left) and Paved (right) Surface Meshes

Element Shape Improvement

When meshing a surface geometry with paving, clean-up and smoothing techniques are
automatically applied to the paved mesh. These methods improve the regularity and quality of
the surface mesh. By default the paver uses its own smoothing methods that are not directly-
callable from CUBIT. Using one of CUBIT's callable smoothing methods in place of the default
method will sometimes improve mesh quality, depending on the surface geometry and specific
mesh characteristics. If the paver produces poor element quality, switching the smoothing
scheme may help. This is done by the command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

When the "Smooth Scheme" is selected, the smoothing scheme specified for the surface will be
used in place of the paver's smoother. See "Mesh Smoothing™ for more information about the
available smoothing schemes in CUBIT.

Controlling Flattening of Elements

The smoothers flatten elements, such as inserted wedges, that have two edges on the active mesh
front. In meshes where this "corner" is a real corner, flattening the element may give an
unacceptable mesh. The following command controls how much the diagonal of such an element
is able to shrink.

[set] Paver Diagonal Scale <factor (Default = 0.9)>

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will force the element to be a
parallelogram as long as it is on the mesh front. A value of 0.5 will allow the diagonal to be half
its calculated length. The element may became triangular in shape with the two sides on the
mesh front being collinear.

Controlling the Grid Search for Intersection Checking

The paver divides the bounding box of a surface into a number of cells based on the average
length of an element. It uses these cells to speed intersection checking of new element edges with
the existing mesh. If both very long and very short edges fall in the same area, it is possible that a

332

Cubit 15.2 User Documentation

long edge which spans the search region is excluded from the intersection check when it does
intersect the new element. The following command allows the user to adjust the size of the grid
cells.

[set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size, which then becomes the
grid cell size. The surface's bounding box is divided by this cell size to determine the number of
cells in each direction. A larger cell size means each cell contains more nodes and edges. A
smaller cell size means each cell has fewer nodes and edges. A larger cell size forces the
intersection algorithm to check more potential intersections, which results in long paver times. A
smaller cell size gives the intersection algorithm few edges to check (faster execution) but may
result in missed intersections where the ratio of long to short element edges is great. Increase this
value if the paver is missing intersections of elements.

Controlling the Paver Sizing Function

The paving algorithm will automatically select a "linear" sizing function if the ratio the largest
element to the smallest is greater than 6.0 and no other sizing function is specified for the
surface. This is usually desirable. When it is not, the user can change this behavior with the
command:

[set] Paver LinearSizing {Off | ON}

Setting paver linear sizing to "off" will keep the default behavior. The size of the element will be
based on the side(s) of the element on the mesh front. For a discussion of sizing functions,
including how to automatically set up size transitions, see Adaptive Meshing.

Controlling Paver Cleanup

The paver uses a mesh clean-up process to improve mesh quality after the initial paving
operation. Clean-up applies local connectivity corrections to increase the number of interior
mesh nodes that are connected to four quadrilaterals. Sometimes it fails to improve the mesh.
The following command allows the user to control some aspects of the clean-up process.

[Set] Paver Cleanup {ON|Off|Extend}

The default option is to clean-up the mesh. The off option will turn clean-up off and may give an
invalid mesh. The extend option enables a non-local topology replacement algorithm. The
command without any option will list the current setting.

The extend option attempts to group several defective nodes in a region that may be replaced
with a template that has fewer defects. The images below show a mesh before and after using
this option.

333

Mesh Generation

Figure 2. Paved mesh before using cleanup extend

334

Cubit 15.2 User Documentation

Figure 3. Paved mesh after using cleanup extend

Pentagon

Applies to: Surfaces

Summary: Produces a pentagon-primitive mesh for a surface
Syntax:

Surface <range> Scheme Pentagon

Discussion:

The pentagon scheme is a meshing primitive for 5-sided regions. It is similar to the triprimitive
and polyhedron schemes, but is hard-coded for 5 sided surfaces.

The pentagon scheme indicates the region should be meshed as a pentagon. The scheme works
best if the shape has 5 well-defined corners; however shapes with more corners can be meshed.
The algorithm requires that there be at least 10 intervals (2 per side) specified on the curves
representing the perimeter of the surface. In addition, the sum of the intervals on any three

335

Mesh Generation

connected sides must be at least two greater than the sum of the intervals on the remaining two
sides. Figure 1 shows two examples of pentagon meshes.

Figure 1. Examples of Pentagon Scheme Meshes

Pinpoint

Applies to: Curves

Summary:Meshes a curve with node spacing specified by the user.
Syntax:

Curve <range> Scheme Pinpoint Location <list of doubles>
Discussion:
The Pinpoint scheme allow the user to specify exactly where on a curve to place nodes. The list
of doubles are absolute positions, measured from the start vertex. The user can enter as many as
needed, and they do not need to be in numerical order. Below is an example of a curve that has
been meshed using the following scheme:

curve 2 scheme pinpoint location 1456 6.2 6.4 6.6 9:

336

Cubit 15.2 User Documentation

Polyhedron

Applies to: Surfaces and VVolumes.

Summary: Produces an arbitrary-sided block primitive mesh for a surface or volume.
Syntax:

Volume <range> Scheme Polyhedron
Surface <range> Scheme Polyhedron

Discussion:

The polyhedron scheme is a meshing primitive for 2d and 3d n-sided regions. This is similar to
the triprimitive , tetprimitive, and pentagon schemes, except rather than 3, 4, or 5 sides, it allows
an arbitrary number of sides. The scheme works best on convex regions. Surfaces must have
only one loop, and each vertex must be connected to exactly two curves on the surface (e.g., no
hardlines). Volumes must have only one shell, each vertex must be connected to exactly three
surfaces on the volume, and each surface should be meshed with scheme polyhedron. There are
some interval assignment requirements as well, which should be automatically handled by
CUBIT.

If the polyhedron scheme is specified for the volume, then the surfaces of the volume are
automatically assigned scheme polyhedron as well, unless they were hard-set by the user.
Schemes should be specified on all volumes of an assembly prior to meshing any of them.
Scheme polyhedron attaches extra data to volumes; if Cubit is behaving strangely, the user may
need to explicitly remove that data with a reset volume all, or similar command.

Scheme polyhedron was designed for assemblies of material grains, where each volume is
roughly a Voronoi region, and the assembly is a periodic space-filling model (tile). Figure 1
shows two examples of polyhedron meshes.

337

Mesh Generation

Figure 1. Examples of Polyhedron Scheme Meshes

338

Cubit 15.2 User Documentation

Sphere

Applies to: Volumes topologically equivalent to a sphere and having one surface.
Summary: Generates a radially-graded hex mesh on a spherical volume.

Syntax:

Volume <range> Scheme Sphere [Graded_interval <int>] [Az_interval <int>]
[Bias <val>] [Fraction <val>] [Max_smooth_iterations <int=2>]

Discussion:

This scheme generates a radially-graded mesh on a spherical volume having a single bounding
surface. The mesh is a straightforward generalization of the circle scheme for surfaces. The mesh
consists of an inner region and an outer region. The inner region is a mapped mesh of a cube and
the outer region contains fronts that trasition from the cube surface to the sphere surface. The
following describes the parameters that control the sphere mesh.

Graded_interval:

The number of intervals in the outer region from the inner mapped mesh to the surface of the
sphere is controlled by the graded_interval input parameter. Azimuthal mesh lines in the outer
portion of the sphere will have approximately constant radius. If graded_interval is not
specified, a default number of intervals will be computed based on the interval size value
assigned to the sphere volume.

Az_interval:

The number of azimuthal intervals around the equator is controlled by the az_interval input
parameter. To maintain symmetry, the az_interval will be rounded to the nearest multiple of 8.
If az_interval is not specified, a default number of intervals will be computed either based on
the the the interval value or on the mesh size value assigned to the volume. If the interval value is
set (volume 1 interval 40, for example), the interval value will be used to define the number of
azimuthal intervals. Otherwise, the mesh size will be used as the approximate size for elements
on the inner mapped mesh.

Bias:

The bias parameter controls the amount of radial grading in the outer region of the mesh from
the inner mapped mesh to the sphere surface. A bias = 1 will results in equal size intervals, while
a bias < 1 will generate smaller intervals towards the sphere interior and a bias > 1 will generate
smaller elements towards the sphere surface. If the bias parameter is not specified, a default bias
will be computed so that element size gradually increases from the inner mapped mesh to the
sphere surface. The default bias value will also be based on the interval size assigned to the
sphere volume as it attempts to maintain approximately isotropic elements throughout the sphere.
Fraction:

The fraction parameter (between 0 and 1) determines what fraction of the sphere is occupied by
the inner mapped mesh. The fraction is defined as ratio of the diagonal of the cube containing
the mapped mesh to sphere's diameter. The default value for fraction is 0.5. Interval sizes in the
inner mapped mesh are normally constrained by the az_intervals. If az_intervals are not
specified, element sizes in this region will be based upon the interval size assigned to the sphere
volume.

Max_smooth_iterations:

The Max_smooth_iterations parameter determines the number of smoothing iterations
following initial definition of the sphere mesh. By default, the number of smoothing interations
is set to 0, which will result in a symmetric mesh. Note that smoothing can improve the quality

339

Mesh Generation

of the mesh, however, it may disturb the bias and fraction. When bias and fraction are critical
then smoothing iterations should be set to 0.

SPHERE MESH: fraction 0.3 graded_interval 6 az_interval 40 bias 0.8
max_smooth_iterations 0

BIAS (uniform): fraction 0.3 graded_interval 6 az_interval 40 bias 1.0
max_smooth_iterations 0

340

Cubit 15.2 User Documentation

FRACTION: fraction 0.7 graded_interval 6 az_interval 40 bias 1.0 max_smooth_iterations
0

INTERVAL.: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0 max_smooth_iterations
0

SMOOTHING: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0
max_smooth_iterations 2

341

Mesh Generation

AZIMUTHAL (mesh coarseness): fraction 0.7 graded_interval 5 az_interval 32 bias 1.0
max_smooth_iterations 2

BIAS (graded): fraction 0.9 graded_interval 9 az_interval 32 bias 1.5
max_smooth_iterations 0

STransition

Applies to: Surfaces

Summary:

Produces a simple transitional mapped mesh.
Syntax:

Surface <surface_id_range> Scheme STransition [Triangle] [Coarse]

Discussion:

The STransition scheme transitions a mesh from one element density to another across a surface.
This scheme is particularly helpful when the Paving scheme produces a poor mesh. The
following two figures show a specific case where the STransition scheme may offer an
improvement.

2 } 4 Pave scheme

2 ‘ :} 4 STransition scheme

The coarse option forces the mesh to transition to a coarser mesh in the first layer.

342

Cubit 15.2 User Documentation

__‘\ o
s STransition scheme with

2 v L |* coarse option
Vo -
¥

2
For triangular surfaces, the STransition scheme with the triangle option will produce similar
results when compared to the Triprimitive scheme. However, STransition is capable of handling
more varied interval settings. The following triangle fails when using the Triprimitive scheme

but succeeds with the STransition scheme.

STransition scheme on a triangular
& surface with intervals set to 3, 3, and
6.

The figures below show the STransition meshing scheme response to different shapes and
interval settings.
2

5 STransition scheme on a rectangular
4 surface with three intervals set to 2
I and one set to 4.

Mm-‘-"_\

I STransition scheme on a rectangular
5 3 surface with intervals set to 2, 3, 4,
and 5.

4
The user also has the option of specifying END or SIDE surface vertex types.

343

Mesh Generation

2 2
end end
STransition scheme on a hexagon
5 5 surface with five intervals set to 2, one
interval set to 8, and user specified
endpoints.
ani End
2 2

Note, that the Centroid Area Pull smoothing algorithm sometimes gives better results than the
default Winslow smoothing algorithm for STransition meshes.

Stretch
Applies to: Curves
Summary: Permits user to specify the exact size of the first and/or last edges on a curve.

Syntax:

Curve <range> Scheme Stretch [First_size <double>] [Last_size <double>]
[Start Vertex <id>]
Curve <range> Scheme Stretch [Stretch_factor <double>] [Start Vertex
<id>]

Related Commands:
Scheme Bias and Dualbias.

Discussion:

This scheme allows the user to specify the exact length of the first and/or last edge on a curve
mesh. Intermediate edge lengths will vary smoothly between these input values. Reasonable
values for these parameters should be used (for example, the sizes must be less than the total
length of the curve). If last_size is input, first_size must be input also. If stretch_factor is input,
neither first_size nor last_size can be input. This scheme does not currently work on periodic
curves.

Submap
Applies to: Surfaces, Volumes
Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical sides

Syntax:
{Surface|Volume} <range> Scheme Submap
Related Commands:
{Surface|Volume} <range> Submap Smooth <on|off>

Discussion:

Submapping (Whiteley, 96) is a meshing tool based on the surface mapping capability discussed
previously, and is suited for mesh generation on surfaces which can be decomposed into
mappable subsurfaces. This algorithm uses a decomposition method to break the surface into
simple mappable regions. Submapping is not limited by the number of logical sides in the

344

Cubit 15.2 User Documentation

geometry or by the number of edges. The submap tool, however is best suited for surfaces and
volumes that are fairly blocky or that contain interior angles that are close to multiples of 90

degrees.
An example of a volume and its surfaces meshed with submapping is shown in Figure 1.

Like the mapping scheme, submapping uses vertex types to determine where to put the corners
of the mapped mesh (See Surface Vertex Types). For surface submapping, curves on the surface
are traversed and grouped into " logical sides " by a classification of the curves position in a local
"i-J" coordinate system.

Volume submapping uses the logical sides for the bounding surfaces and the vertex types to
construct a logical "i-j-k" coordinate system, which is used to construct the logical sides of the
volume. For surface and volume submapping, the sides are used to formulate the interval
constraints for the surface or volume.

Figure 2 shows an example of this logical classification technique, where the edges on the front
surface have been classified in the i-j coordinate system; the figure also shows the submapped
mesh for that volume.

Figure 2. Scheme Submap Logical Properties
In special cases where quick results are desired, submap cornerpicking can be set to OFF. The
corner picking will be accomplished by a faster, but less accurate algorithm which sets the vertex
types by the measured interior angle at the given vertex on the surface. In most cases this is not
recommended.

Set Submap CornerPicking {ON|off}

345

Mesh Generation

After submapping has subdivided the surface and applied the mapped meshing technique
mentioned above, the mesh is smoothed to improve mesh quality. Because the decomposition
performed by submapping is mesh based, no geometry is created in the process and the resulting
interior mesh can be smoothed. Sometimes smoothing can decrease the quality of the mesh; in
this case the following command can turn off the automatic smoothing before meshing:

{Surface|Volume} <range> Submap Smooth <on|off>

Surface submapping also has the ability to mesh periodic surfaces such as cylinders. An example
of a periodic surface meshed with submapping is shown in Figure 3. The requirement for
meshing these surfaces is that the top and bottom of the cylinder must have matching intervals.

Figure 3. Periodic Surface Meshing with Submapping
For periodic surfaces, there are no curves connecting the top and bottom of the cylinder. Setting
intervals in this direction on the surface can be done by setting the periodic interval for that
surface (see Interval Assignment). No special commands need to be given to submap a periodic
surface, the algorithm will automatically detect the fact that the surface is periodic. Currently,
periodic surfaces with interior holes are not supported.

Surface Vertex Types

e Surface Vertex Commands

o Listing and Drawing Vertex Types

e Triangle Vertex Types

o Adjusting the Automatic Vertex Type Selection Algorithm
e Volume Curve Types

Several meshing algorithms in CUBIT "classify" the vertices of a surface or volume to produce a
high quality mesh. This classification is based on the angle between the edges meeting at the
vertex, and helps determine where to place the corners of the map, submap or trimesh, or the
triangles in the trimap or tripave schemes. For example, a surface mapping algorithm must
identify the four vertices of the surface that best represent the surface as a rectangle. Figure 1
illustrates the vertex angle types for mapped and submapped surfaces, and the correspondence
between vertex types and the placement of corners in a mapped or submapped mesh.

346

Cubit 15.2 User Documentation

C~IT0 deg)

CORNER
END

-0 deg)

{360 deg

SIE
|I' {180 dag

Figure 1. Angle Types for Mapped and Submapped Surfaces: An End vertex is contained
in one element, a Side vertex two, a Corner three, and a Reversal four.

The surface vertex type is computed automatically during meshing, but can also be specified
manually. In some cases, choosing vertex types manually results in a better quality mesh or a
mesh that is preferable to the user. Vertex types can be specified directly as End, Side, Corner, or
Reversal, or can be specified by giving the desired interior angle as 90, 180, 270, or 360,
respectively.
Vertex types have a firmness, just as meshing schemes do. Automatically selected vertex types
are soft, while user-set vertex types are hard.

Surface Vertex Commands
Vertex types are set using the following commands:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{End|Side|Corner|Reversal}

Surface <surface_id> [Vertex [<vertex_id_range> [Loop_index <int>]] Angle
<value>

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Default|Soft|Hard}

If no vertices are specified, the command is applied to all vertices of each surface.

Note that a vertex may be connected to several surfaces and its classification can be different for
each of those surfaces.

The influence of vertex types when mapping or submapping a surface is illustrated in Figure 2.
There, the same surface is submapped in two different ways by adjusting the vertex types of ten
vertices.

]
[TV T Tiy by bl
Mesh & Vertex Types Mesh & Vertex Types

347

Mesh Generation

Logical submap shape Logical submap shape

Figure 2. Influence of vertex types on submap meshes; vertices whose types are changed

are indicated above, along with the mesh produced; logical submap shape shown below.
The loop_index is an advanced option used only for vertices where the boundary of a single
surface passes through the same vertex more than once. This case is not common. If no loop
index is specified for such a vertex, the specified vertex type is assigned to all occurrences of the
vertex. The loop index for a specific occurrence of a vertex can be determined by listing the
surface (list surface <id>) to show the list of curves in each loop bounding the surface, with the
start and end vertex listed for each curve. The loop index begins at zero for the first curve in the
first loop, and is incremented by one for subsequent curves through the last curve in the last loop.
The loop index values corresponding to a specific vertex will be the loop index of each curve
whose start vertex is the desired vertex.

Listing and Drawing Vertex Types

Listing a surface lists the types of the vertices. The vertex type settings may also be drawn with
the following commands:

Draw Surface <surface_id_range> {Vertex Angle|Vertex Type}

Triangle Vertex Types

For a surface that will be meshed with scheme trimap or tripave, the user may specify the angle
below which triangles are inserted:

Surface <surface_id_range> Angle <angle>
The user may also set whether to add a triangle at a particular vertex:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Triangle|Nontriangle}

Adjusting the Automatic Vertex Type Selection Algorithm
The user may specify the maximum allowable angle at a corner with the following command:

Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the others by
changing the following absolute weights. The corner weight considers how large angles are at
corners. The turn weight considers how L-shaped the surface is. The interval weight considers
how much intervals must change. The large angle weight affects only auto-scheme selection:
surfaces with a large angle will be paved instead. Each weight's default is 1 and must be between
0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

348

Cubit 15.2 User Documentation

Set Turn Weight <value>
Set Interval Weight <value>
Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 2. The
meshes produced by submapping on the left and right result from adjusting the vertex types of
the eight vertices shown.

Volume Curve Types

When sweeping, a 2.5 dimensional meshing scheme, curves perpendicular to the sweep direction
can have a type with respect to the volume. These types are usually automatically selected. The
following commands are useful:

Draw Volume <surface_id_range> {Curve Angle|Curve Type}

List Volume <volume_id> Curve Type

Volume <volume_id> [Curve <curve_id_range>] Type
{End|Side|Corner|Reversal}

Volume <volume_id> [Curve <curve_id_range>] Type {Default|Soft|Hard}

Sweep

Applies to: Volumes

Summary: Produces an extruded hexahedral mesh for 2.5D volumes.
Syntax:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface]
<range>]

[Propagate bias]

[Sweep smooth {auto | smart affine | linear | residual | winslow}]

[Sweep transform {LEAST SQUARES | Translate}] [Autosmooth target
{ON|off}]

Volume <range> Scheme Sweep Vector <xval yval zval>

Volume <range> autosmooth target [off|ON]

fixed imprints [on|OFF]

smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>

nlayers <val >=0=5>

Related Commands:

Set Multisweep [On|Off]

Multisweep Smoothing {ON|Off}

Multisweep Volume <range> Remove
Volume <range> Redistribute Nodes {ON|off}
[Set] Legacy Sweeper {On|Off}

Discussion:

The sweep algorithm can sweep general 2.5D geometries and can also do pure translation or
rotations. A 2.5D geometry is characterized by source and target surfaces which are
topologically similar. The hexahedral mesh is swept (extruded) between source and target along
a single logical axis. Bounding the swept hexahedra between source and target surfaces, are the
linking surfaces. Figures 1 and 2 show examples of source, target and linking surfaces.

349

Mesh Generation

Command Options: The user can specify the source and target surfaces. The user can also
specify a geometric vector approximating the sweep direction, and let CUBIT determine the
source and target surfaces. The user can specify just the source surfaces, and let cubit guess the
target, or "scheme auto" can also be used.

Source
Surface

ey

(A i e e e L
oo T e T]
HE e I~
RE e = T H
P
o n:hﬁ_;‘fg _
Target
Surface

Figure 2. Multiple Linking Surface Volume Meshing with Scheme Sweep
In general, the procedure for using the sweep scheme is to first mesh the source surfaces. Any
surface meshing scheme may be employed. Figure 1 displays swept meshes involving mapped
and paved source surfaces. Linking surfaces must have either mapping or submapping schemes
applied. The sweep algorithm can also handle multiple surfaces linking the source surface and
the target surfaces. An example of this is shown in Figure 2. Note that for the multiple- linking-
surface meshing case, the interval requirement is that the total number of intervals along each
multiple edge path from the source surface to the target surface must be the same for each path.
Once the appropriate mesh is applied to the source surface and intervals assigned, the mesh
command may be issued.
In many cases auto-scheme selection can simplify this process by recognizing sweepable
geometries and automatically select source and target surfaces. If the source and target surfaces
are not specified, CUBIT attempts to automatically select them. CUBIT also automatically sets
curve and vertex types in an attempt to make the mesh of the linking surfaces lead from a source
surface to a target surface. These automatic selections may occasionally fail, in which case the
user must manually select the source/target surfaces, or some of the curve and vertex types. After

350

Cubit 15.2 User Documentation

making some of these changes, the user should again set the volume scheme to sweep and
attempt to mesh.

Occasionally the user must also adjust intervals along curves, in addition to the usual surface
interval matching requirements. For a given pair of source/target surfaces, there must be the
same number of hexahedral layers between them regardless of the path taken. This constrains the
number of edges along curves of linking surfaces. For example, in Figure 1 right, the number of
intervals through the holes must be the same as along the outer shell.

Propagate bias Option: The propagate bias option attempts to preserve the source bias by
propagating bias mesh schemes from the curves of the source surface to the curves of the target
surface.

Sweep transform Option: Swept meshes are created by projecting points between the source
and target surfaces using affine transformations and then connecting them to form hexahedra.
The method used to calculate the affine transformations is set using the sweep transform option.

Least squares: If the least squares option is selected then affine transformations
between the source and target are calculated using a least squares method.
translate: If the translate option is selected then a simple translate affine
transformation is calculated based upon the centroid of the source and target.

Sweep smooth Option: Note: This option is available only in Legacy mode. The command 'set
legacy sweeper on|off controls the mode. Legacy mode is OFF by default.

To ensure adequate mesh quality, optional smoothing schemes are available to reposition the
interior nodes. The sweep tool permits five types of smoothing that are set with the following
command prior to meshing a volume whose mesh scheme is sweep:

Linear: If this option is selected, no layer smoothing is performed. The node
positions are determined strictly by the affine transformation from the previous
layer. Good quality swept meshes can be constructed using “linear” provided the
volume geometry and meshed linking surfaces permit the volume mesh to be
created by a translation, scaling, and/or rotation of the source mesh. Volumes for
which this is nearly true may also produce acceptable quality with “linear”. As
one would expect, this option generates swept meshes more quickly than the other
sweep smooth options. This option is rarely needed since the next option produces
better results with little time penalty.

Smart affine: The “smart affine” option does minimal smoothing of the interior
nodes. Affine transformations are used to project the source and target surfaces to
the middle surface of the volume. The position of the middle surface nodes is the
average of the projected nodes from the source and target surfaces. The error in
projecting from source and target is computed, and this error is linearly
distributed back to the source and target.

Residual: The “residual” method is often used for meshing volumes that cannot
be swept with the “smart linear” method. It tends to produce better quality meshes
than the “smart linear” method while running faster than the Winslow-based
smoother. The sweeping algorithm uses an affine transformation to calculate the
interior nodes’ positions, but the mesh on the linking surface determines the
positions of the nodes on the boundary of the layer. For the “residual” method,
CUBIT calculates corrective adjustments for interior nodes using the “residuals”
from boundary nodes. The “residual” is defined as the distance between the

351

Mesh Generation

boundary node’s position (as determined by the surface mesh) and the boundary
node’s ideal position (as determined by the affine transformation of the previous
layer). Cubit computes the residual forward from the source and backward from
the target to get best the possible node position.

Winslow: Smooth scheme “winslow” smooths each layer using a weighted,
elliptic smoother. The weights are computed from the source mesh; they help
maintain any biased spacing that occurs on the source mesh. For example, one
might want to use the “winslow” option if the source was a biased mesh that was
created using scheme circle. The biasing of the outer elements of the source mesh
may be destroyed if one of the other smooth options is used. The interior nodes
are initially place using the residual method.

AUTO: This is the default for the sweep smooth option. “auto” causes the
Sweeper to automatically choose between “smart affine” and “residual.” Auto
will choose “off” if the layer needs little or no smoothing or “residual” if it needs
smoothing. Scheme “auto” does not guarantee that no negative Jacobians are
produced. This option produces acceptable results in most cases. If it fails to
produce a quality mesh, then choose one of the other sweep smooth options.

If none of these smooth schemes result in adequate mesh quality, one can consider
trying one of the volume smoothing schemes such as condition number or mean
ratio.

Autosmooth target Option and Command
During sweeping, a quad mesh is placed on each source surface. Then the collection of nodes &
quads from all the source surfaces is projected onto the target surface. The autosmooth target
command or sweep command options control the placement of the nodes onto the target surface.

Volume <range> autosmooth target [off|ON]

fixed imprints [on|OFF]

smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>

nlayers <val >=0=5>
Issuing the command “Volume <id> autosmooth target off”, or using these options in the sweep
command, will project the source nodes onto the target without any subsequent smoothing to
improve quality. The result is that the relative placement of the nodes on the target will be as
close to identical as possible to the relative placement of the node on the sources. This should be
used when sweeping models that are very thin, and smoothing of the target could result in
significant skew introduced in the thin layers in the sweep. Axisymmetric models might also
want to turn OFF the autosmooth target so that the nodes are identically placed on the symmetry
plane surfaces.
Issuing the command “Volume <id> autosmooth target on”, or using it as an option in the sweep
command, will call a surface smoother after the initial projection of the nodes onto the target in
order to improve surface element quality. This smoothing does not consider hex element quality,
only quality of the target surface mesh. This command will smooth all nodes on the target
surface. Adding the “fixed imprint on” keyword onto the command will cause the target nodes
which are projections of source nodes on source curves and vertices to remain fixed during
smoothing. Only target nodes, which are projections of source surface nodes will be
smoothed. The “smart smooth on” option provides further control to the user. If “smart
smooth” is turned on, target surface smoothing will only move nodes which are within “nlayers”

352

Cubit 15.2 User Documentation

of a target surface quad element that has a scaled Jacobian quality measure less than the specified
“tolerance” value.

Multisweep

While the basic sweeping algorithm requires a single target surface, the sweeping algorithm can
also handle multiple target surfaces. The multisweep algorithm works by recognizing possible
mesh and topology conflicts between the source and target surfaces and works to resolve these
conflicts through the use of the virtual geometry capabilities in CUBIT. Figure 4 shows some
examples of volumes which have been meshed with the multisweep algorithm.

P
L]

T T

II 1
'
Tt

!

[
1

T

.
A

T

]
|

i

o]

Figure 4. Examples of Multisweep meshes.

353

Mesh Generation

Linear: If this option is active and/or target surfaces are omitted from the scheme
setting command, CUBIT will determine source and target surfaces (See
Automatic Scheme Selection). Sweeping can be further automated using the

"sweep groups” command.

Limitations: Not all geometries are sweepable. Even some that appear
sweepable may not be, depending on the linking surface meshes. Highly
curved source and target surfaces may not be meshable with the current
sweep algorithm.

Grouping Sweepable Volumes

Swept meshing relies on the constraint that the source and target meshes
are topologically identical or the target surface is unmeshed. This results
in there being dependencies between swept volumes connected through
non-manifold surfaces; these dependencies must be satisfied before the
group of volumes can be meshed successfully. For example, if the model
was a series of connected cylinders, the proper way to mesh the model
would be to sweep each volume starting at the top (or bottom) and
continuing through each successive connected volume.

With larger models and with models that contain volumes that require
many source surfaces, the process of determining the correct sweeping
ordering becomes tedious. The sweep grouping capability computes these
dependencies and puts the volumes into groups, in an order which
represents those dependencies. The volumes are meshed in the correct
order when the resulting group is meshed.

To compute the sweep dependencies, use the command:

Group Sweep Volumes

This will create a group named "sweep_groups"”, which can then be
meshed using the command:

Mesh sweep_groups

In some automated meshing systems, the source and target surfaces are
named using a naming pattern. For example, all source surfaces might be
given names "xxx.source" and all target surfaces might be named
"xxx.target". This allows the automated setting of the sweep direction
based on predetermined names rather than ids. The following command is
used to set the source and targets based on the naming pattern.

Set {Source|Target} Surface Pattern '<pattern>'
[Include Volume Name]

The pattern is checked against all surfaces in the model using a simple
case-sensitive substring match. All surfaces which contain that string of
letters in their name will be designated as either a source or target surface,
depending on which option the user specifies. For example:

br x 10

surface 1 name *brick.top’

354

Cubit 15.2 User Documentation

355

surface 2 name "brick.bottom’

set source surface pattern ‘top’
set target surface pattern 'bottom’
volume 1 scheme sweep

list volume 1 brief

Node Redistribution

Volume <range> redistribute nodes {ON|off}
With redistribute set to ON, the boundary nodes of a mappable surface are
moved until the spacing between the nodes are equivalent on the two
opposing curves. In other words, the parametric values of the nodes lying
on the two opposite curves are matched.
Redistribute option ON will assist in avoiding the skewness of the mapped
mesh. In the below examples, the linking surfaces are meshed using
mapped scheme, and with redistribute option ON, the skewness is
significantly avoided (see figures (4) and (5)).
Note:
1. Redistribute option ON will affect all mapped surfaces, not just
the linking surfaces of a swept volume. Even though the example
below shows a swept volume, the command can be used
independent of the sweeping command. That is, it can be used
while meshing surface models that contain mappable surfaces.
2. If the linking surfaces of a swept mesh contain submappable
surfaces, then the affect of redistribute option ON is generally not
seen. The current implementation is restricted to mappable surfaces
only and doesn’t handle submappable surfaces. In the future, we
should be able to easily extend the redistribute option to
submappable surfaces.

Mesh Generation

Figure 1 - Linking surfaces of a many-to-one sweepable solid (shown
in green) is mappable

Figure 2 - Highly skewed elements on the linking mapped surface with
‘redistribute nodes OFF'

356

Cubit 15.2 User Documentation

Figure 3 - Quality of mesh with "Redistribute Nodes OFF’

Figure 4 - High skew on the linking mapped surface can be avoided
with 'Redistribute Nodes ON’

357

Mesh Generation

Figure 5 - Quality of mesh with "Redistribute Nodes ON'

TetMesh

Applies to: Volumes

Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.
Syntax:

VVolume <range> Scheme TetMesh [Proximity Layers
{on[<num layers>]|OFF}] [Geometry Approximation Angle <angle>]

Related Commands:

[Set] Tetmesher Optimize Level <level>

[Set] Tetmesher Optimize Overconstrained {on|OFF}

[Set] Tetmesher Optimize Sliver {on|OFF}

[Set] Tetmesher Optimize Default

[Set] Tetmesher Boundary Recovery {on|OFF}

[Set] Tetmesher Interior Points {ON|off}

[Set] Trimesher Surface Gradation <value>

[Set] Trimesher Volume Gradation <value>

THex Volume All

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>
Volume <volume_id> Tetmesh Respect Clear

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

Tetmesh Tri <range> [Make {Block|Group} [<id>]]

Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

Volume <id range> Tetmesh growth factor <value 1.0 t0 10.0 =1.0>

Discussion

358

Cubit 15.2 User Documentation

The TetMesh scheme fills an arbitrary three-dimensional volume with tetrahedral elements. The
surfaces are first triangulated with one of the triangle schemes (TriMesh, TriAdvance or
TriDelaunay) or a quadrilateral scheme with the quadrilaterals being split into two triangles
(QTri). If a meshing scheme has not been applied to the surfaces, the TriMesh scheme will be
used.

Included in Cubit is a third party software library for generating tetrahedral meshes called
MeshGems. This is a robust and fast tetrahedral mesher developed by the French laboratory
INRIA and distributed by Distene. It utilizes an algorithm for automatic mesh generation based
upon the Voronoi-Delaunay method. Figure 1 shows a CAD model meshed with the TetMesh
scheme, with the TriMesh scheme used to mesh the surfaces.

<KX
o b/

(©) (d)

Figure 1. Tetrahedral mesh generated with the TetMesh scheme using default settings. (a)
Initial CAD geometry (b) CAD model with surface mesh generated with TriMesh scheme.
(c) and (d) Cut-away views of the interior tetrahedral mesh
The TetMesh scheme is usually very good at generating a mesh with its default settings. In most

cases no adjustments to default settings are necessry. Using the size assigned to the volume,
either assigned explicitly or defined with an auto size, the TetMesh scheme will attempt to
maintain the assigned size, except where features smaller than the specified size exist. In this
case, smaller tets will automatically be generated to match the feature size. The tet mesher will
then generate a smooth gradation from the small tets used to capture features, to the size
specified on the volume. This effect is shown in figure 1 where internal transitions in tetrahedra

359

Mesh Generation

size can be seen. User defined sizes and intervals can also be assigned to individual surfaces and
curves for more specific control of element sizes.

A sizing function can also be used with the TetMesh scheme to control element sizes, however
the algorithm used for meshing surfaces will automatically revert to the TriAdvance scheme.
This is because the TetMesh scheme provides built-in capabilities for adaptively controlling the
element sizes based on geometry. More details can be found in Geometry Adaptive Sizing for
TriMesh and TetMesh Schemes

When using the TetMesh and TriMesh schemes, recommended practice is to mesh all surfaces
and volumes simultaneously. This provides the greatest flexibility to the algorithms to determine
feature sizes and their effect on neighboring surfaces and volumes.

TetMesh Scheme Options

The Tetmesh options described below can be set to adjust the default behavior of the tet mesher.
Scheme options are assigned independently to each volume as part of the scheme tetmesh
command.

Proximity Layers {on[<num_layers>]|OFF}

In some thin regions of the model, it may be necessary to ensure a minimum number of element
layers through the thickness to better capture physical properties. Using the proximity layers
setting, the specified minimum num_layers of tetrahedra will be placed in thin regions, even if
the tetrahedra sizes drop below the size assigned to the volume. The default setting for
proximity layers is OFF where element sizes will not be affected in thin regions.

360

Cubit 15.2 User Documentation

Figure 2. Demonstrates the effect of using proximity layers on a cut-away section of a
volume. Note the layers of smaller tets placed in the thin region.

Geometry Approximation Angle <angle>

For non-planar CAD surfaces, an approximation must always be made to capture the curved
features using the linear faces of the tetrahedra. When a geometry approximation angle is
specified, the tet mesher will adjust element sizes on curved surfaces so that the linear edges of
the tetrahedra will deviate no greater than the specified angle from the geometry. Figure 3
illustrates how the geometry approximation angle is determined. If the red curve representes the
geometry and the black segments represent the mesh, the angle θ is the angle between the
tangent plane at point A and the plane of a triangle at A. θ represents the maximum
deviation from the geometry that the mesh will attempt to capture. As shown in figure 2(b), a
smaller geometry approximation angle will normally result in more elements, but it will more
closely approximate the actual geometry. The default approximation angle is 15 degrees.

(@) (b)
Figure 3. The geometry approximation angle θ is shown as the maximum deviation
between the tangent plane at A and the plane of a triangle at A.

361

Mesh Generation

v
Figure 4. Demonstrates the effect of the geometry approximation angle set on the volume.
Triangle sizes on the interior of surfaces will be adjusted to better capture curvature.

Global Tetmesher Options

The user may set options that control the operation of the tet-meshing algorithms. These
tetmesher options are global settings and apply to all tetmeshes generated when the scheme is set
to TetMesh until the option is changed by the user.

[Set] Tetmesher Optimize Level <level>

The Tetmesher Optimize Level command allows the user to control the degree of optimization
used to automatically improve element quality followng the initial generation of tetrahedra. The
optimization level is an integer in the range 0 to 6, which represent how aggressively the
algorithm will attempt to improve element quality by automatically adjusting element
connectivity and smoothing. The integers 0 to 6 can also be represented as none (0), light (1),
medium (2), standard (3), strong (4), heavy (5), and extreme (6). Greater values will result in
greater computation time, however may result in improved mesh quality. The default is 3 or
standard optimization.

[Set] Tetmesher Optimize Overconstrained {on|OFF}

In some cases, the default mesh generated with the TetMesh scheme may result in cases where
more than one triangle face of a single tetrahedra lies on the same geometric surface. This

362

Cubit 15.2 User Documentation

condition may not be desirable for some FEA analysis. Setting the optimize overconstrained
value to ON will do additional processing on the mesh to ensure this case does not exist,
resulting in slightly more time to generate the mesh. The default for optimize overconstrained
is OFF

[Set] Tetmesher Optimize Sliver {on|OFF}

A sliver tetrahedra is one in which the four nodes of the tet are nearly co-planar. Sliver tets are a
common occurence when using the Delaunay method, but are normally removed by standard
optimization. In some cases, sliver tets may still remain even after optimization. To facilitate
removal of all sliver-shaped tets, the optimize sliver option may be set to ON. In this event,
additional processing will be done on the mesh to attempt to identify and remove all sliver-
shaped tets from the mesh. Since this step may take additional time, and in most cases is not
needed, the default setting is OFF.

[Set] Tetmesher Optimize Default

The Tetmesher Optimize Default command restores the default optimization values: level = 3
(standard), overconstrained = off, and sliver = off.

[Set] Tetmesher Boundary Recovery {on|OFF}

The TetMesh scheme includes a specialized module known as Boundary Recovery. Normally if
the quality of the surface mesh is good, the boundary recovery module is not used and the
resulting tet mesh will conform exactly to the triangles defined on the surfaces without additional
processing. In some cases where the surface mesh contains triangles that are of poor quality (ie.
highly stretched or sliver shaped triangles) the tet mesher is unable to generate sufficiently good
quality elements. When this occurs, the boundary recovery module is automatically invoked.
This module does additional processing to temporarily modify boundary triangles so that
reasonable quality tets may be inserted. The boundary adjustment is done as an intermediate
phase and in most cases the boundary triangulation remains unchanged following meshing. The
TetMesh scheme in Cubit will automatically invoke the boundary recovery module if the
minimum surface mesh quality drops below a condition number of 0.2. However, if the the
boundary recovery option is set to ON, the tet mesher will use the boundary recovery module
regardless of surface mesh quality. Turning this setting ON will normally increase the time to
generate the mesh, but may result in improved mesh quality. The default setting is OFF

[Set] Tetmesher Interior Points {ON|off}

Infrequently, the user desires a model with as few interior points as possible. The Interior
Points command allows the user to enable or disable, or turn OFF the insertion of interior
points. If interior points are disabled, the tetmesher will attempt to mesh the volume using only
the exterior points. This may not be possible and a few points will be inserted to allow tet-
meshing to complete. The default setting is ON, meaning that interior points will be inserted
according to the specified element size.

Using tets as the basis of an unstructured hexahedral mesh

Tet meshing can be used to generate hexahedral meshes using the THex command. Each of the
tetrahedron can be converted into 4 hexes, producing a fully conformal hexahedral mesh, albeit
of poorer quality. These meshes can often be used in codes that are less sensitive to mesh quality

363

Mesh Generation

and mesh directionality. The THex command requires that all tets in the model be converted to
hexahedra with the same command.

Conforming the tetmesh to internal features

In some cases it is necessary for the finite element mesh to conform to internal features of the
model. The tetmesh scheme provides this capability provided the tetmesh respect command has
been previously issued to define the features that will be respected.

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

The tetmesh respect command allows the user to specify mesh entities that will be part of a
tetrahedral mesh. These faces, triangles, edges, or nodes are inside the volume since all surface
mesh features will appear in the final tetrahedral mesh by default. These mesh entities specified
to be respected can be generated from other meshing commands on free vertices, curves, or
surfaces.

Figure 2. Example of using tetmesh respect to ensure node 9 is captured in the tetmesh.
Figure 2 is an example of using the tetmesh respect command to enforce a node at the center of
a cube. Node 9 in this example was generated by first creating a free vertex at the center location
and meshing the vertex. (mesh vertex 9). The following commands would then be used to
generate the tetmesh that respected node 9.

volume 1 scheme tetmesh
tetmesh respect node 9
mesh volume 1

The tetmesh respect command can also be used to enforce multiple mesh entities. To
accomplish this, the tetmesh respect command may be issued multiple times. For example, If
node 12 and a triangle 2 inside volume 3 was to appear in the volumetric mesh, the following
commands could be used:

volume 3 scheme tetmesh

volume 3 tetmesh respect node 12
volume 3 tetmesh respect tri 2
mesh volume 1

Unlike the tetmesh respect command described above, the tetmesh respect file and tetmesh
respect location commands do not require underlying geometry.

Volume <volume_id> Tetmesh Respect File '<filename>"
Volume <volume_id> Tetmesh Respect Location (options)

364

Cubit 15.2 User Documentation

These two commands create mesh data that only the tetmesher knows about. Thus, to respect a
point at (1.0, 0.0, -1.0) in your model, enter the command

volume 1 tetmesh respect location 1 0 -1

This is much simpler than creating the vertex, meshing it, and then respecting it.

If the model has many points that must be respected, use the file version of the command. First
generate a file with all of the points, edges, and triangles that should be respected. The format of
the file is the format used by the facet file. Now, use the following command to respect all of the
information in the file for the given volume.

volume 2 tetmesh respect file ‘'my_points.facet’
Finally, the following command is used to remove the respected data from an entity.
Volume <volume_id> Tetmesh Respect Clear

The tetmesh respect clear command is the only way to remove respected data from a volume
without deleting the volume. Unfortunately, it removes all respected data from the volume.
Therefore, if the model has a lot of data to be respected, it is best to put it in a file or keep a
journal file that can be edited.

Controling the gradation of the mesh size inside the volume
Volume <id_range> Tetmesh growth_factor <value 1.0 to 10.0 = 1.0>

The growth_factor option controls how fast the tetrahedra sizes can change when transitioning
from small to larger sizes within the volume. For example a value of 1.5 will attempt to limit the
change in element size of adjacent tets to no greater than a factor of 1.5. Valid values for
gradation should be greater than or equal to 1.0 and usually less than 2 or 3. The larger the value,
the faster the transition resulting in fewer total elements. Likewise, values closer to 1.0 can result
in significantly more elements, especially when small features are present. The default setting for
growth_factor is 1.0, so that tet sizes should be roughly constant throughout the volume.
Gradation of the triangles on the surfaces can also be controlled independently using the global
settings [set] trimesher surface gradation and [set] trimesher volume gradation.

Generating a Tetmesh from a Skin of Triangles

Tetmesh Tri <range> [Make {Block|Group} [<id>]]
Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

The Tetmesh Tri command generates a tetrahedral mesh from the list of triangles entered. The
triangles must form a closed surface. The command fails if they do not. The list of triangles may
be a skin, and thus a command such as tetmesh tri in block 1 would be acceptable, should block
1 be a previously defined skin.

The first command form has optional arguments. If the make option and its arguments are
present, then the specified object receives the tet mesh. The command fails if an object with the
optional identifier exists. If the object identifier is omitted, the identifier is set to the next
available block.

The second command form has two options, add and replace. Each option has a required,
associated identifier. If the identifier is missing or invalid, the command fails. The add option
appends the tet mesh to the object. The replace option removes any existing mesh from the
object before adding the tet mesh.

365

Mesh Generation

Tetprimitive
Applies to: Volumes
Summary: Meshes a 4 "sided" object with hexahedral elements using the standard tetrahedron
primitive.
Syntax:
Volume <range> Scheme Tetprimitive [Combine Surface <range>] [Combine
Surface <range>] [Combine Surface <range>] [Combine Surface <range>]

Discussion:

The tetprimitive scheme is used to create a hexahedral mesh in a volume which fits the shape of
a tetrahedral primitive. The Tetprimitive scheme assumes that each of the four surfaces have
been meshed with the triprimitive, or similar, meshing scheme. If more than four surfaces form
the tetrahedron geometry, the surfaces forming a logical side can be combined using the
combine option.

Figure 1. Sphere octant hex meshed with scheme Tetprimitive, surfaces meshed using
scheme Triprimitive

TriAdvance

Applies to: Surfaces

Summary: Automatically meshes surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriAdvance
Discussion:

366

Cubit 15.2 User Documentation

The triangle meshing scheme TriAdvance fills an arbitrary surface with triangle elements. It is an
advancing front algorithm which allows holes in the surface and transitions between dissimilar
element sizes. It can use a sizing function like the pave scheme if one is defined for the surface.
Future development will add hard lines to this scheme's capabilities. You specify this scheme for
a surface by giving the command:

TriDelaunay

Applies to: Surfaces

Summary: Automatically meshes parametric surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriDelaunay

Discussion:
The scheme TriDelaunay is a parametric meshing algorithm. It can be run in two modes. The
default mode (asp) combines the Delaunay [Watson,81] criterion for connecting nodes into
triangles with an advancing-front approach for inserting nodes into the mesh. This method
maximizes the number of regular triangles in the mesh but does not guarantee the minimum
angle quality of the triangles. A guaranteed quality (gq) mode can be used for planar surfaces
(only). This mode refines the initial Delaunay configuration by placing points at the centroids of
the worst triangles until the mesh has an acceptable density. To switch between the two modes,
use the following setting command.

[Set] Tridelaunay point placement {gq | guaranteed quality | asp}
TriDelaunay can also utilize a sizing function if one is defined for the surface.

Note: This algorithm is unstable for periodic surfaces which include a singularity point, E.G.
spheres with poles, cone tips and some types of toruses. Use scheme TriMesh, TriAdvance or
QTri to mesh non-parametric or periodic parametric surfaces.

TriMap

Applies to: Surfaces

Summary: Places triangle elements at some vertices, and map meshes the remaining surface.
Syntax:

Surface <range> Scheme Trimap
Related Commands:
Surface <range> Vertex <range> Type {Triangle|Notriangle}

Discussion:

Some surfaces contain bounding curves which meet at a very acute angle. Meshing these
surfaces with an all-quadrilateral mesh will result in a very skewed quad to resolve that angle. In
some cases, this is a worse result than simply placing a triangular element to resolve that angle.
This scheme resolves this situation by placing a triangular element in these tight corners, and
filling the remainder of the surface with a mapped mesh.

The algorithm can automatically compute whether a triangular element is necessary, along with
where to place that element. To override the choice of where triangular elements are used, the
following command can be issued:

367

http://cubit.sandia.gov/help-version12.1/appendix/references.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/trimesh.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/triadvance.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/conversion/qtri.htm

Mesh Generation

Surface <range> Vertex <range> Type {Triangle|Notriangle}

TriMesh

Applies to: Surfaces

Summary: Automatically meshes surface geometry with triangle elements using the third part
meshgems tool.

Syntax:

Surface <range> Scheme TriMesh [Geometry Approximation Angle
<angle>]

Related Commands:

[Set] Trimesher Surface Gradation <value>
[Set] Trimesher VVolume Gradation <value>

Discussion:

The TriMesh scheme fills a surface of arbitrary shape with triangle elements. The TriMesh
scheme serves as the default method for meshing the surfaces of volumes for the TetMesh
scheme.

Included in Cubit is a third party software library for generating triangle meshes called
MeshGems. This is a robust and fast triangle mesher developed and distributed by Distene.
Figure 1 shows a CAD model where surfaces have been meshed with the TriMesh scheme. The
triangle mesh was then used as input to the TetMesh scheme.

Figure 1. Triangle meshes generated with the TriMesh scheme using default settings on the
surfaces of a CAD model.
The TriMesh scheme is usually very good at generating a mesh with its default settings. In most
cases no adjustments to default settings are necessry. Using the size assigned to the surface,
either assigned explicitly or defined with an auto size, the TriMesh scheme will attempt to
maintain the assigned size, except where features smaller than the specified size exist. In this
case, smaller triangles will automatically be generated to match the feature size. The triangle
mesher will then generate a smooth gradation from the small triangles used to capture features, to
the size specified on the surface. This effect is shown in figure 1 where the transitions in triangle
sizes can be seen. If no size is specified on the surface, it will use the size that was set on its
parent volume. User defined sizes and intervals can also be assigned to individual curves for
more specific control of element sizes.

368

Cubit 15.2 User Documentation

Although rare, if meshing fails when using the TriMesh scheme, Cubit will automatically
attempt to mesh the surface with the TriDelaunay scheme. Subsequent mesh failures will also
attempt meshing with the TriAdvance and QTri schemes.

A sizing function can also be used with the TriMesh scheme to control element sizes, however
the algorithm used for meshing will automatically revert to the TriAdvance scheme. This is
because the MeshGems algorithm provides built-in capabilities for adaptively controlling the
element sizes based on geometry. More details can be found in Geometry Adaptive Sizing for
TriMesh and TetMesh Schemes

When using the TriMesh and TetMesh schemes, recommended practice is to mesh all surfaces
and volumes simultaneously. This provides the greatest flexibility to the algorithms to determine
feature sizes and their effect on neighboring surfaces and volumes.

TriMesh Scheme Options

The TriMesh options described below can be set to adjust the default behavior of the tri mesher.
Scheme options are assigned independently to each surface as part of the scheme TriMesh
command. Note that the options described here will apply only if the TriMesh scheme is used.
TriDelaunay and TriAdvance schemes will not utilize these options when meshing.

Geometry Approximation Angle <angle>

For non-planar CAD surfaces and non-linear curves, an approximation must always be made to
capture the curved features using the linear edges of the triangle. When a geometry
approximation angle is specified, the triangle mesher will adjust triangle sizes on curved
boundaries so that the linear edges of the triangle will deviate from the geometry by no greater
than the specified angle. Figure 2 illustrates how the geometry approximation angle is
determined. If the red curve representes the geometry and the black segments represent the mesh,
the angle θ is the angle between the tangent plane at point A and the plane of a triangle at
A. θ represents the maximum deviation from the geometry that the mesh will attempt to
capture. As shown in figure 2(b), a smaller geometry approximation angle will normally result in
more elements, but it will more closely approximate the actual geometry. The default
approximation angle is 15 degrees.

(a) (b)
Figure 2. The geometry approximation angle θ is shown as the maximum deviation
between the tangent plane at A and the plane of a triangle at A.
Note that the geometry approximation angle is also effective in controlling the element size on
the interior of surfaces as illustrated in figure 3. This is most useful when used in conjunction
with the TetMesh Scheme where smaller tets will be placed in regions of higher curvature.

369

Mesh Generation

Y
Figure 3. Demonstrates the effect of the geometry approximation angle to better capture
surface curvature on the interior of surfaces.

Global Trimesher Gradation Options

The user may set options that control the gradation of the tri-meshing algorithms. These
trimesher options are global settings and apply to all trimeshes generated when the scheme is set
to TriMesh until the option is changed by the user.

The global gradation options control how fast the triangle sizes can change when transitioning
from small to larger sizes. For example a value of 1.5 will attempt to limit the change in element
size of adjacent triangles to no greater than a factor of 1.5. Valid values for gradation should be
greater than 1.0 and usually less than 2 or 3. The larger the value, the faster the transition
resulting in fewer total elements. Likewise, values closer to 1.0 can result in significantly more
elements, especially when small features are present. The default setting for gradation is 1.3.
Gradation can be controlled for both surfaces and volumes.

[Set] Trimesher Surface Gradation <value>

Surface gradation will control the growth of triangles where element size has been determined
by bounding curves. For example, Figure 4 shows a small feature where element sizes have been
determined locally by the length of the small curves. A gradation is applied so that triangle sizes
increase away from the small feature. A surface gradation of 1.3 is shown on the left, while a
surface gradation of 1.1 is shown on the right.

370

Cubit 15.2 User Documentation

(@) (b)
Figure 4. Demonstrates the effect of changing the default gradation, where () is the default
gradtion of 1.3, compared with (b) using a gradation of 1.1. Note that both images use the
same interval size setting for the surface.

[Set] Trimesher Volume Gradation <value>

Volume gradation will control the growth of triangles where element size has been determined
by the proximity of other nearby surfaces. For example, Figure 5a and 5b shows a brick with a
small void where the surface meshes are generated with the TriMesh scheme. The surface
gradation has been adjusted to a large number so its effect is negligible. The small element size
determined for the void is propagated to the exterior surfaces. The resulting gradation of the
nearby triangles on the surface is determined by the trimesh volume gradation setting.

Note that the trimesh volume gradation command is different than the growth factor control
setting. The trimesh volume gradation controls the gradation of triangles on the surface due to
nearby features where small tets will exist, whereas the volume <range> tetmesh

growth factor command controls the gradation of the interior tet elements.

371

Mesh Generation

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size
on the interior void propagates to the exterior surfaces

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size
on the interior void propagates to the exterior surfaces

TriPave

Applies to: Surface

Summary: Places triangle elements at some vertices, and paves the remaining surface.
Syntax:

Surface <range> Scheme Tripave
Related Commands:
Surface <range> Vertex <range> Type {triangle|notriangle}

Discussion:

Similar to the trimap algorithm, but uses paving instead of mapping to fill the remainder of the
surface with quadrilaterals.

The algorithm can automatically compute whether a triangular element is necessary, along with
where to place that element. To override the choice of where triangular elements are used, the
following command can be issued:

Surface <range> Vertex <range> Type {triangle|notriangle}
TriPrimitive
Applies to: Surfaces

Summary: Produces a triangle-primitive mesh for a surface with three logical sides
Syntax:

Surface <range> Scheme Triprimitive [SMOOTH | nosmoothing]

372

Cubit 15.2 User Documentation

Discussion:

The triprimitive scheme indicates that the region should be meshed as a triangle. A surface may
use the triprimitive scheme if three "natural™, or obvious, corners of the surface can be identified.
For instance, the surface of a sphere octant (shown in the figure below) is handled nicely by the
triprimitive scheme. The algorithm requires that there be at least 6 intervals (2 per side) specified
on the curves representing the perimeter of the surface and that the sum of the intervals on any
two of the triangle's sides be at least two greater than the number of intervals on the remaining
side. The following figure illustrates a triprimitive mesh on a 3D surface.

By default, the triprimitive algorithm will smooth the mesh with an iterative smoothing scheme.
This smoothing can be disabled by using the "nosmoothing™ option with this command. The
quality of the mesh will often be significantly degraded by disabling smoothing, but in certain
cases the unsmoothed mesh may be preferred.

Figure 1. Surfaces meshed with scheme Triprimitive

Parallel Meshing
Sculpt

Sculpt

Sculpt is a separate parallel application designed to generate all-hex meshes on complex
geometries with little or no user interaction. Sculpt was developed as a separate application so
that it can be run independently from Cubit on high performance computing platforms. It was
also designed as a separable software library so it can be easily integrated as an in-situ meshing
solution within other codes. Cubit provides a front end command line and GUI for the Sculpt
application. The command will build the appropriate input files based on the current geometry
and can also automatically invoke Sculpt to generate the mesh and bring the mesh back to Cubit.

373

Mesh Generation

e Preparing to Use Sculpt

e Sculpt Parallel Command

e Sculpt Parallel Path Command

e Sculpt Examples

e Sculpt Technical Description

e Sculpt Application Documentation

Preparing to Use Sculpt

Platforms
Sculpt is available for Windows, Mac and Linux operating systems.

Sculpt Installation

Sculpt is a stand-alone executable, separate from Cubit. In order for Cubit to start up Sculpt, it
must be on your system and accessible to Cubit. The default installation of Cubit should install
files in the correct locations for this to occur. Check with Cubit support if it did not come with
your installation or you are not able to locate it or any of its supporting applications.

To run Sculpt from Cubit, four executable files are needed:

e sculpt: Application that controls start-up of mpiexec and psculpt. Main entry point from
Cubit, that checks for the existence and compatibility of either the system mpiexec
application or will use a local cubit instalation of mpiexec.

e psculpt: The main mpi-based Sculpt application. Requires mpiexec to run.

e mpiexec: Standard application available on most linux-based operating systems for
starting up mpi-based applications on multiple processors. This should be available with
your Cubit installation, but is also available from open-mpi.org

e epu: Used for combining multiple exodus files, generated with Sculpt, into a single
exodus file. This executable is optional, but is useful for importing the resulting mesh
into Cubit for viewing. It is part of the SEACAS tool suite developed by Sandia National
Laboratories and is also included with your Cubit installation. It can also be obtained in
open source form from sourceforge.net.

To view the current path to these executables that Cubit will use, issue the following command
from the Cubit command window

Sculpt Parallel Path List

See the Sculpt Parallel Path Command for more info on setting and customizing these paths.
The following image illustrates the process flow when the sculpt parallel command is used in
Cubit.

374

http://open-mpi.org/
http://seacas.sourceforge.net/

Cubit 15.2 User Documentation

psculpt P
psculpt P
psculpt P
psculpt P

For the Sculpt meshing process, a set of files, including a facet-based stl file are written to disk.
The sculpt application is then started up which in turn invokes mpiexec to start up multiple
instances of psculpt in parallel. psculpt then performs the meshing and writes one exodus file
per processor. These files can then be combined using epu and then imported back into Cubit for
viewing.

mpiexec

Setting your Working Directory
When using the Sculpt Parallel command in Cubit, several temporary files will be written to the

current working directory. Because of this, it is important to set your working directory before
using Sculpt to a desired location where you want these files placed.

Sculpt Parallel Command
The command syntax for preparing a model for Sculpt is:

Sculpt Parallel [Volume|Block <id list>]
[processors <value>]
[fileroot '<root filename>']
[exodus '<exodus filename>']

[overwrite]
[absolute path]

[no_execute]

[size <value>|autosize <value>]

[xint <value> yint <value> zint <value>]
[box alignl{Location <options> Location <options>}]
[smooth <value>]

[csmooth <value>]

[num laplace <value>]

[max_opt iters <value>]

[opt threshold <value>]

[max_pcol iters <value>]

[pcol threshold <value>]

375

Mesh Generation

[max deq iters <value>]

[deg threshold <value>]

[sideset <value>]

[void]

[stair <value>]

[htet <value>]

[pillow <value>]

[adapt type <value>]

[adapt threshold <value>]

[adapt levels <value>]

[combine]

import

[show]
[clean]

[gen input file]

Option

Volume | Block
<id_list>

Default: Volume
all

processors
<value>

Default: 4

fileroot '<root
filename>'

Default:
sculpt_parallel

exodus
'<exodus
filename>'

Default: <'root
filename™

overwrite

Default: OFF (Do
not overwrite)

Description

List of volumes or Blocks to include in the mesh. One file containing
a facetted representation (STL) per volume will be generated and
saved in the current working directory to be used as input to Sculpt.
Each volume will be treated as a separate material within sculpt and
a conforming mesh will be generated where volumes touch. If the
Block command is used, one file per block will be used. Each block
represents a separate material in Sculpt.

Number of processors to use for meshing. One exodus file per
processor will be generated.

Root of file names for output. When the sculpt parallel command is
executed, Cubit will generate multiple files in the working directory
used for input to the Sculpt application. The '<root filename>' will be
used as the basis for naming these files.

If a different filename for resulting exodus files is desired, the
Exodus option can be used. Exodus files will use <'filename'> as the
root and filenames will be of the form <exodus
filename>.<processors>.<iproc>. For example where '<exodus
filename>'="model", processors=8, eight files will be written of the
form model.e.8.0, model.e.8.1, ... model.e.8.7.

By default, Cubit will not overwrite an existing set of files with the
same '<root filename>'. To over-ride, use the overwrite option.

376

Cubit 15.2 User Documentation

absolute_path

Default: OFF
(relative path)

no_execute

Default: OFF
(Invoke Sculpt)

size <value> |
autosize
<value>

Default: autosize
10

Xintervals
<value>
yintervals
<value>
zintervals
<value>

Default:
Automatically
computed from
size

box align |
{Location

<options>
Location

<options>

Default: Enclosing

bounding box
automatically

377

By default, Cubit will write the relative path names of files used in
the .run and .diatom files. To force absolute path names to be
written, use the absolute path option

By default, Cubit will attempt to run sculpt in parallel on the machine
Cubit is currently running on. To generate just the required input to
run Sculpt at a later time or on another machine, use this option. A
file of the form <root filename>.run will be generated in the current
working directory. (for example "model.run"). Executing the .run file
from the linux command line should run sculpt in parallel. It can also
be used to run sculpt on a cluster where a Cubit executable may not
be available.

The size or autosize option may be used.

e The size option will define the absolute cell size for the base
Cartesian grid that Sculpt will use for generating the mesh.
This is the target size of each edge in the mesh in the units of
the current model.

e The autosize option is a value between 0 and 10. It
represents a model independent size where 1 is the small
size and 10 is large. This is the same scaling factor used in
Cubit's auto sizing but is divided by ten. A size value will be
computed from the selected autosize and used as the
absolute cell size for the base Cartesian grid.

Rather than a cell size, the number of intervals in the x, y, and z
directions may be specified for the bounding Cartesian grid. Both
size and intervals cannot be specified simultaneously. It is
recommended that intervals be defined so that aspect ratio for cells
is approximately a cube.

Either align or location options may be used to define the bounding
box.

« The align option will attempt to orient the Cartesian grid with
the main dimensions of the geometry. This is done by
defining a tight bounding box around the geometry using an
optimization procedure where the objective is to minimize the
difference in volume between an enclosing box and the
geometry. The align option is used in place of an explicit

computed from
size with 2.5
additional cells on
each side

Mesh Generation

bounding box definition as it will automatically build an
"aligned" bounding box around the full geometry. Note that
this option will also write temporary stl and diatom files to the
working directory.

Location options define the bounds of the Cartesian grid.
The first Location <option> defines the minimum Cartesian
coordinate of the grid and the second, the maximum. The
<options> can be any valid method for defining a coordinate
location in cubit. In most cases the position option can be
used. For example: box location position -5 -5 -5 location
position 5 5 5 will define a Cartesian grid centered about the
origin that is 10 units on each side. The default box will be
the bounding box of the geometry with an additional 2.5 cell
layers added to each dimension.

smooth <value> Smoothing adjusts node locations following meshing to improve
mesh quality. Sculpt includes both Laplacian and Optimization-
based smoothing and by default is performed automatically to
achieve maximum possible mesh quality for the given geometry.
See Sculpt Mesh Quality Control for discussion of Sculpt's default
three-tired smoothing approach. In some cases it may be worthwhile
to experiment with alternate smoothing parameters as noted here.
Smoothing options available:

Default: 1
(Combined
Laplacian/
Optimization)

0 = No smoothing is performed.

1 = (Default) Combined Laplacian/Optimization (Hybrid)
smoothing for both surface and volumes. Boundary buffer
layer improvement is performed at surfaces intersecting the
domain boundary.

2 = Surface smoothing using facets as geometry with
Laplacian smoothing and hybrid volume smoothing.
Boundary buffer improvement is on.

3 = Surface smoothing using interpolated geometry with
Laplacian smoothing and hybrid volume smoothing.
Boundary buffer improvement is off.

4 = Surface smoothing using interpolated geometry with
Laplacian smoothing and Laplacian volume smoothing

5-6 = Notot used

7 = Surface smoothing using interpolated geometry with
Laplacian smoothing and hybrid volume smoothing (same as
3). Except no boundary buffer improvement is performed.

8 = Combined Laplacian/Optimization (Hybrid) smoothing for
both surface and volumes. (same as 1) Except with no
boundary buffer improvement performed.

9 = Same as option 8 however surface nodes are not
projected to the interpolated surface. This is effective in

378

Cubit 15.2 User Documentation

csmooth
<value>

Default: 5

smoothing noisy surface data, but can potentially reduce
overall volume.

The csmooth option controls the smoothing method used on curves.
In most cases the default should be sufficient, however it may be
useful to experiment with different options. The default curve
smoothing option is 5 (Volume Fraction). The following curve

(Volume Fraction) 'smoothing options are available:

num_laplace
<value>
Default: 2
max_opt_iters
<value>

Default: 5

opt_threshold
<value>

Default: 0.60

max_pcol_iters
<value>

Default: 100

pcol_threshold
<value>

379

0 = No curve smoothing will be performed.

1 = Circle smoothing. Nodes projected to a fitted circle
defined current node and its two neighbors.

2 = Hermite smoothing. Nodes projected based on Hermite
interpolation.

3 = Average Tangent. Nodes projected based on average
tangent of neighbors. Note that this method can only be used
in serial (-] 1)

4 = Neighbor Surface Normal. Nodes projected based on
neighboring surface normals and the resulting intersecting
planes.

5 = Volume Fraction. (Default) Nodes projected to initial
curve interface defined from the original volume fraction data.
6 = Linear. Nodes projected to the linear segment defined by

the node and its two immediate neighbors.

Number of Laplacian smoothing iterations performed. See Laplacian

Smoothing

Indicates the maximum number of iterations of optimization-based

smoothing to perform. May complete sooner if no further
improvement can be made. See Optimization Smoothing

Jacobian where Optimization smoothing will be performed.
Elements with scaled Jacobian less than opt_threshold and their
neighbors will be smoothed.

Maximum number of spot smoothing (also known as parallel
coloring) iterations to perform. May complete sooner if no further
improvement can be made. See Spot Optimization

Indicates scaled Jacobian threshold for spot smoothing (also known
as parallel coloring). A parallel coloring algorithm is used to uniquely

identify and isolate nodes to be improved using optimization.

Mesh Generation

Default: 0.2

max_deg_iters 'Maximum number of edge collapse iterations to perform to create

<value> degenerate hex elements. See Creating degenerate hexes

Default: 0

deg_threshold |Indicates scaled Jacobian threshold for edge collapses. Nodes at

<value> hexes below this threshold will be candidates for edge collapses,
provided doing so will improve the minimum scaled Jacobian at the

Default: 0.2 neighboring hexes.

sideset Several options for generating sidesets are available.

Default: 0 (No 1. Fixed: Exactly 3 sidesets will be generated acoording to the

sidesets generated) following:

o Sideset 1: All sides at the domain boundary. Sides will
only be present in this sideset if the model intersects
the enclosing bounding box or the void option is used.

o Sideset 2: All sides at the model boundary. Any side
on the model that is not interior will be included. This
should represent a full enclosure of the model if it does
not intersect the domain boundary.

o Sideset 3: All sides at material interfaces. Includes
sides on the interior where adjacent blocks are
different

2. Variable: A variable number of sidesets will be generated
with the following characteristics:

o Surfaces at the domain boundary

o Exterior material surfaces

o Interfaces between materials

Unlike Fixed sidesets, grouping of sides will be contiguous. A
separate sideset will be generated for each set of contiguous
sides.

3. Geometric Surfaces: Sidesets will be generated according
to surface IDs currently defined on the geometry model. One
sideset per surface will generated.

4. Geometric Sidesets: Sidesets will be generated based on
the current sidesets assigned to surfaces in the geometric
model.

void If void option is used, then the void space surrounding the geometry
will be treated as a separate material. Elements will be generated in
Default: OFF the void to the extent of the Cartesian grid boundaries.

(Elements not
generated in void)

380

Cubit 15.2 User Documentation

stair <value>
Default: 0

(Boundaries
smoothed)

htet <value>

Default: -1.0
(Hexes only)

pillow <value>

Default: 0 (No
pillow)

381

If the stair option is used, no projection and smoothing of material
interfaces will occur. The result will be a Cartesian mesh where
elements may be stair-step at the boundaries of the material
regions.

e 0 = Stair option is off (default)

e 1 = Stair-step mesh is generated, but additional processing is
done to ensure material interfaces are manifold. This option
may add or subtract cells from the basic mesh (where volume
fraction > 0.5) to ensure no non-manifold connections
between nodes and edges exist in the final mesh.

e 2 =The exterior boundary will be smooth while internal
material interfaces will be stair-step. This option also ensures
manifold connections between elements.

e 3 = Fast stair-step mesh. Generates the final mesh based
only on volume fraction criteria. No additional processing is
done to ensure manifold connections between edges and
nodes.

Automatically generate tets in place of poor quality elements. This
option can be used to eliminate poor quality hex elements by
replacing each hex that falls below the user defined <value> Scaled
Jacobian with 24 tets. Default value for htet is -1.0. The result will be
a non-conforming mesh at the interface between tets and hexes.
One additional nodeset and sideset will be generated and output to
the exodus file if the sideset option is specified.

o Sideset 10000 = the set of hex faces that interface a set of 4
tets.

« Nodeset 1000 = the set of nodes at the interface between
hexes and tets. One node per face in Sideset 10000 will be
included.

Generate a pillow or additional layer of hexes at surfaces as a
means to improve element quality near curve interfaces. This is
intended to eliminate the problem of 3 or more nodes from a single
hex face lying on the same curve. The following options are
available:

e 0 = (Default) No pillowing is performed

« 1 = All hexes containing faces on surfaces will be pillowed.

e 2 =0nly hexes that have faces with 3 or more nodes on a
curve will be pillowed. One additional layer beyond the poor
gquads at the curves will be included in the pillow region.

adapt_type
<value>

Default: 0 (No
adaptivity)

Mesh Generation

These options may be modified by adding 2 additional digits to the
option. The second digit will turn on and off smoothing following the
pillow operation and the third digit defines the number of layers of
guads beyond the poor quality quads at the curves that will be
included in the pillow region. For example:

e 100 = All hexes containing faces on surfaces will be pillowed,
however no smoothing will be performed following the pillow
operation.

e 203 = Hexes that have faces with 3 or more nodes on a curve
will be pillowed. Additionally, 3 layers of quads will be
included in the pillow region. No smoothing will be performed.

This option will automatically refine the mesh according to a user-
defined criteria. Without this option, a constant cell size will be
assumed everywhere in the model. To build the mesh, Sculpt uses
an approximation to the exact geometry of the CAD model by
interpolating mesh surfaces from volume fraction samples in each
cell of the Cartesian grid. In general, the, higher the resolution of the
Cartesian grid, the more sampling is done and the more accurate
the mesh will represent the initial geometry. The adapt_type
selected will control the criteria used for refining the mesh. If the
criteria is not satisfied, the refinement will continue until a threshold
indicated by the adapt_threshold parameter is satisfied everywhere,
or the maximum number of levels (adapt_levels) is reached. The
following criteria for refinement are available:

e 0= No Refinement: Cartesian grid is defined by xint, yint, and
zint or cell_size and used as the basis for sculpt mesh.

e 1 = Distance from STL Facet to Approximated Geometry:
This option will evaluate every location where an edge in the
Cartesian grid intersects a triangle of the STL model and
measures the closest distance to the approximated
geometry. The cells adjacent to intersecting edges where the
measured distance is greater than the adapt_threshold will
be identified for uniform refinement. This is done for each
refinement level where a new approximated geometry is then
computed based upon the finer resolution grid. The
refinement will continue until all measured distances are less
than the adapt_threshold, or the maximum number of levels
(adapt_levels) is reached. This option can only be used if
input comes from an STL file. Microstructures and diatoms
are currently not supported.

o 2 = Distance from Approximated Geometry to Facet: This
criteria is similar to option 1 except that the locations selected
for sampling are chosen from the vertices representing the

382

Cubit 15.2 User Documentation

approximated surfaces. The closest distance measured to
any of the facets in the STL model is used as the criteria for
refinement. Those cells at vertices where the distance
measured exceeds the adapt_threshold are identified for
refinement. This option is generally faster than 1, but may
miss features if the initial resolution of the grid is too coarse.
This option can also only be used if input geometry comes
from an STL file. Microstructures and diatoms are currently
not supported.

3 = Distance Between Child and Parent Approximated
Geometry: This criteria will test each cell to compute the local
interpolated surface for the cell and compare with the surface
interpolated for its eight subdivided child cells. If the distance
between these two approximated surfaces is greater the the
user defined adapt_threshold, then the cell will be uniformly
refined. This option can be used with STL and diatom input
geometry, but not with Microstructures.

4 = Average Cell Volume Fraction: Each cell of the Cartesian
grid is tested to determine if it should be subdivided into eight
cells. The volume fraction of the parent cell is compared with
the average volume fractions of its eight child cells. If the
difference between those two values is greater than the user
defined adapt_threshold then the cell is uniformly refined.
The adapt_threshold for this case should be a number
between 0 and 1.

To maintain a conforming mesh, transition elements will be inserted to
transition between smaller and larger element sizes. Default for the
adapt_type option is O (or that no adaptive refinement will take place).

In all cases the initial Cartesian grid defined by xint, yint and zint or the
cell_size value will be used as the basis for refinement and will define the
approximate largest element size in the mesh.

adapt_threshold This value controls the sensitivity of of the adaptivity. The value

<value>
Default: 0.25 *

cell_size/
adapt_levels"2

383

used should be based upon the adapt_type:

adapt_type options 1,2,3: For these options, the adapt_type
selected represents an absolute distance between surfaces
or facets. Where the distance exceeds adapt_threshold the
nearby cell or cells will be identified for refinement. The
smaller this number the more sensitive will be the adaptation
and greater the resulting number of elements. If not specified,
the adapt_threshold will be determined as follows:

adapt_threshold = 0.25 * cell_size / adapt_levels"2

adapt_levels
<value>

Default: 2

combine

Default: OFF (will
not be combined)

import

Default: OFF (will
not be imported)

show

Mesh Generation

o adapt_type option 4: The adapt_threshold value in this case
represents the the maximum difference in volume fraction
between a parent cell and the average of its eight child cells.
This value should be between 0.0 and 1.0. The smaller the
number, the more sensitive will be the adaptation and the
greater the number of resulting elements. A default
adapt_threshold of 0.01 is used if not specified.

Note that the user defined adapt_threshold may not be satisfied everywhere
in the mesh if the value defined for adapt_levels is exceeded.

The maximum number of levels of adaptive refinement to be
performed. One level of refinement will split each Cartesian grid cell
identified for uniform refinement into eight child cells. Two levels of
refinement will split each cell again into eight, resulting in sixty-four
child cells, three levels into 256, and so on. The maximum number
of subdivision per cell is give as:

number of cells = 8"adapt_levels

The minimum edge length for any cell will be given by:

min cell edge length = cell_size / adapt_levels"2

The actual number of refinement levels used will be determined by
whether all cells meet the adapt_threshold, or the adapt_levels value is
exceeded. The default adapt_levels is 2. Note that setting the adapt_levels
more than 4 or 5 can result in long compute times.

If the combine option is used, following execution of Sculpt, the
resulting exodus meshes will be combined using the epu seacas
tool. Note that epu should be installed on your system and the path
to epu defined using the sculpt parallel path command. If not used,
files will not be combined. Epu is a code developed by Sandia
National Laboratories and is part of the SEACAS tool suite. It
combines multiple Exodus databases produced by a parallel
application into a single Exodus database. The epu program should
be included with distributions of Cubit beginning with Version 15.0.

If the import option is used, following execution of Sculpt, the result
will be imported into Cubit as a free mesh. If the combine option
has not been used, then multiple free meshes will be imported with
duplicate nodes and faces at processor domain boundaries.
Otherwise a single free mesh, the result of the epu code, will be
imported. Note that the resulting mesh will not be associated with
the original geometry, however Block (material) definitions will be
maintained. In addition a separate group will be generated for each
imported mesh (One per processor).

If the show option is used, while the external Sculpt process is
running, output from the Sculpt application will be echoed to the

384

Cubit 15.2 User Documentation

Default: OFF (will |Cubit command window. This option is only effective if the
not display output) |no_execute is not used.

clean If the clean option is used, temporary files generated during the
sculpt parallel command will be deleted. This includes any exodus
Default: OFF mesh files, .stl, .diatom, .log and .run files.

(temporary files
will not be deleted)

gen_input_file |An input file with the given file name will be generated when the

<file name> command is executed. This is a text file containing all sculpt options
used in the command. The input file is intended to be used for batch

Default:No input |execution of sculpt. To run sculpt from the operating system

file generated command line you would use the -i option. For example: sculpt -i
myinputfile.i -j 4 where myinputfile.i is the name of the input file
specified with the gen_input_file option and -j 4 is the number of
processors to use.

Sculpt Parallel Path Command
The command for letting Cubit know where the Sculpt and related applications are located is:

Sculpt Parallel Path [List|Psculpt|Epu|Mpiexec]

This command defines the path to psculpt, epu and mpiexec on your system. In most cases,
however, these paths should be automatically set provided Sculpt was successfully installed with
your Cubit installation. The list option will list the current paths that Cubit will use for these
tools. If an alternate path to these executables is desired, it is recommended that this command be
used in the .cubit initialization file so that it wont be necessary to define these parameters every
time Cubit is run.

Sculpt Mesh Quality Control

In most cases, the Sculpt tool can be used without adjusting default values. Depending on the
characteristics of the geometry to be meshed, the default values may not yield adequate mesh
quality. Upon completion, Sculpt reports to the command line, a summary of the mesh that was
generated. This includes a summary of the mesh quality. Care should be taken to review this
summary to ensure the minimum mesh quality is in a range suitable for analysis.

The element metric used for computing mesh quality in Sculpt is the Scaled Jacobian. This is a
value between -1 and 1 that is a relative measure of the angles at the element's nodes. A value of
1 indicates a perfect 90 degree angle between each of its edges. In most cases a value less than
zero, or negtive Jacobian element, indicates an unusable mesh. Sculpt's default settings try to
achieve a minimum Scaled Jacobian of 0.2, which is normally usable in most analysis. The
following discussion provides several options for adjusting the model or Sculpt parameters to
help improve mesh quality.

1. Locating poor mesh quality: When the Sculpt mesh has been imported back into

CUBIT it is a good idea to display the element quality. You can do this with variations of
the following commands:

385

Mesh Generation

guality hex all scaled jacobian
guality hex all draw mesh

Identify regions where hexes are poor quality and zoom in to these regions.

Modifying the geometry: Zooming in to poor quality elements may reveal that the mesh
does not adequately represent the underlying geometry. In some cases you may find that
small features, or small gaps between parts may be on the order of the size of the Sculpt
cell size. If these features are not important to the analysis, you may consider using
Cubit's geometry modification tools to remove features or close small gaps.

Modifying the cell size: In cases where small geometric features or gaps are important to
the simulation, it may be necessary to use a smaller base cell size. Use the size or
autosize input parameters or increase the numbers of intervals. Normally to adequately
capture a feature you would want the cell size to be no greater than about 1/3 to 1/2 the
size of the smallest feature you would want to represent in the simulation.

. Turning on Pillowing for multiple materials: For models that have more than one
material that share an interface, unless the geometry is precisely aligned with the global
axis, it is usually a good idea to turn on pillowing. Pillowing automatically inserts an
additional layer of hexes at interface boundaries to improve mesh quality. Without
pillowing may notice inverted or poor quality elements at curve interfaces where 2 or
more materials meet.

Modifying smoothing parameters: Sculpt includes a tiered approach to smoothing to
improve element quality. It starts by applying smoothing to all nodes in the mesh and
progressively restricts the smoothing operations to only those nodes that fall below a
user-defined scaled Jacobian threshold. Default numbers of iterations and thresholds for
each smoothing phase have been tuned for general use, however it may be worthwhile to
adjust these parameters. The three smoothing phases include:

o Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach
to improve quality, but can result in degraded element quality if applied to excess.
A fixed default of 2 iterations is applied to all hexes. Increasing the num_laplace
parameter can improve some cases, especially convex shapes

o Optimization Smoothing: Applied only to elements who's scaled Jacobian falls
below the opt_threshold parameter (default 0.6) and their surrounding elements.
This approach uses a more expensive optimization technique to improve regions
of elements simultaneously. The max_opt_iters parameter can control the
maximum number of iterations applied (default is 5). Iterations will terminate,
however, if no further improvement is detected. Because this method optimizes
node locations simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

o Spot Optimization: Also known as parallel coloring, is applied only to elements
who's element quality falls below the pcol_threshold parameter (default 0.2). This
technique is the most expensive of the techniques, but focusses only on nodes that
are immediately adjacent to poor quality hexes. Each node is smoothed
independently of its neighbors, and may require a high number of iterations using
the max_pcol_iters to achieve desired results. Increasing the pcol_threshold and
max_pcol_iters may yield improved results.

386

Cubit 15.2 User Documentation

Observing the mesh quality output to the command line following each smoothing
iteration can provide some insight on the effect of modifying smoothing parameters.

Creating degenerate hexes: Some geometries will not permit a usable mesh with a
traditional all-hex mesh. Sculpt includes the option to automatically and selectively
collapse element edges to improve low-quality elements. The max_deg_iters and the
deg_threshold values are used to control the creation of degenerates. Degenerate elements
are treated as standard hex elements, but use repeated nodes in the eight-node
connectivity array.

Creating hex-dominant mesh Another option for avoiding mesh quality issues is to
generate a few tet elements in the mesh using the htet option. With this option you can
specify a scaled Jacobian threshold value below which hexes will be converted to tet
elements. The interface between hex and tet elements is managed by an automatically
defined set of nodesets and sidesets that describe where multi-point constraints will be
applied.

Sculpt Examples

Basic Sculpt
Size and Bounding Box

Meshing the Void

Automatic Sideset Definition

Running Sculpt Stand-Alone

Meshing Multiple Materials With Sculpt

The following examples use this simple geometry. Execute these commands prior to performing
the example Sculpt Parallel command line operations

387

sphere rad 1

sphere rad 1

vol 2 mov x 2

cylinder rad 1 height 2
vol 3 rota 90 about y
vol 3mov x 1

unite vol all

Mesh Generation

Figure 1. Geometry created from the above commands and used for the following
examples.

Basic Sculpt
This example illustrates use of Sculpt with all default options. So that we can view the result, we

will also use the overwrite, combine and import options.

sculpt parallel over combine import
draw block all
The result of this operation is shown in Figure 2. For this example, behind the scenes, Cubit built
an input file for Sculpt, ran it on 4 processors, combined the resulting 4 meshes, and
subsequently imported the resulting mesh into Cubit. Note that VVolume 1 remains "unmeshed"
and we have created a free mesh that is not associated with a volume. The result of any Sculpt
command is always an unassociated free mesh.

Figure 2. Free mesh generated from sculpt command

Size and Bounding Box
This example illustrates the use of the size and box options

delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5

0 over import combine
draw block all
In this case we have used the size option to define the base cell size for the grid. We have also
used the box option to define a bounding box in which the mesh will be generated. Any
geometry falling outside of the bounding box is ignored by Sculpt. Figure 3 shows the mesh
generated with this command.

388

Cubit 15.2 User Documentation

Figure 3. Sculpt ""box™" option limits the extent of the generated mesh.

Meshing the Void
In this example we illustrate the use of the void option:

delete mesh

sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5
0 over import combine void

draw block all

The result is shown in figure 4. Notice that this example is precisely the same as the last with the
exception of the addition of the void option. Mesh is generated in the space surrounding the
volume out to the extent of the bounding box. In this case, an additional material block is defined
and automatically assigned an ID of 2. The nodes and element faces at the interface between the
two blocks are shared between the two materials.

Figure 4. Sculpt "void" operation generates mesh outside the volume.

Automatic Sideset Definition
In this example we illustrate the use of the sideset option.

389

Mesh Generation

Generating sidesets on the free mesh with Cubit: Sideset boundary conditions can be
manually created on the resulting free mesh from Sculpt using the standard Sideset <sideset id>
Face <id _range> syntax. The Group Seed command is also useful in grouping faces based on a

feature angle to be used in a single sideset.
Generating sidesets in Sculpt: Sculpt also provides several options for defining sidesets as part

of the Sculpt run. The following illustrates one option:

delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5

0 over import combine void sideset 2

list sideset all

draw sideset all
Once again we use the same syntax but add the sideset 2 option to automatically generate a
series of sidesets. The list command should reveal that 10 sidesets were defined for this example
with IDs 1 to 10. Figure 5 shows the result of the draw command showing all of the sidesets in
different colors. Note that for the sideset 2 option, sidesets are created with the following

criteria:

o Interfaces between materials
o Exterior surfaces
e Surfaces at the domain boundary

See the sideset option above for a description of other options for generating sidesets in Sculpt.

Figure 5. Automatic sidesets created using Sculpt

Running Sculpt Stand-Alone

This example illustrates how to set up the files necessary to run Sculpt as a stand-alone process.
This can be done on the same desktop machine or moved to a larger cluster machine more suited

for parallel processing.
Begin by setting your working directory to a location that is convenient for placing example files

390

Cubit 15.2 User Documentation

cd ""path/to/my/sculpt/examples™
Next we issue the basic sculpt parallel command to mesh the volume

delete mesh
sculpt parallel processors 8 fileroot *"bean’ over no_execute

In this case, we used the no_execute option which does not invoke the Sculpt application.
Instead it will write a series of files to the working directory. The fileroot option defines the base
file name for the files that will be written; in this case ""bean™. We also use the processors
option to set the number of processors to be used to 8.

To see the files that Cubit placed in the working directory, bring up a terminal window on your
desktop and change directories to the current working directory (ie. cd
path/to/my/sculpt/examples). A directory listing should reveal 3 files as shown in Figure 6.

sjowen@sajn2009-137:~/scul sxamples$ 1s -1

total 1408

-rw-r——r—— 1 sjowen SANDIA\Domain Users 156 Nov 7 11:21 bean.diatom
—-rwxr-xr-x 1 sjowen SANDIA\Domain Users 318 Nov 7 11:21 bean.run

-rw-r——r—— 1 sjowen SANDIA\Domain Users 711256 Nov 7 11:21 bean_Volume_1l.stl
sjowen@sajn2009-137:~/sculpt/examples$

Figure 6. Directoky ‘iisting of files written from Cubit
The following describes the purpose of each of the resulting files:

e bean.diatom: Diatoms is a file format used by Sandia's CTH and Alegra analysis
programs that includes a rich constructive solid geometry definition. A series of
directives for constructing and orienting primitives to build a complete solid model can
be used. Included in the Diatom description is an STL import option. While any standard
Diatom description may be used as input to Sculpt, for Cubit's purposes, only the STL
option is used. This file contains a listing of all STL files that will be used as input to
Sculpt.

e Dbean.run: The .run file contains the unix command line for running sculpt. Note that the
file permissions have been set to execute to allow this file to be used as a unix script.
Figure 7 shows the .run file for this example. Note that the command uses mpiexec and
the psculpt executables, along with their full path. These paths may need to be edited
when running on a different machine. It also includes the default parameters for setting
the sizes, bounding box and smoothing parameters that have been computed by Cubit.

enon examples — vim — 73x8

/usr/local/bin/mpiexec -np 8 /Users/sjowen/cubit/psculpt/camal-build/bin/
Release/psculft —x 37 -y 21 -z 21 -t -1.414369 -u -1.370318 -v -1.370318
q 3.414369 -r 1.370318 -s 1.370318 S1-SI 12 -LI 2 -0T 0.600000
e /Users/sjowen/sculpt/examples/bean.diatom_result -d /Users/sjowen/sc
ulpt/examples/bean.diatom

~

Figure 7. Unix command line for running Sculpt generated by Cubit

o bean_Volume_1.stl: The STL file is a copy of the geometric model. In our case, it is a
representation of the cylinder and sphere object we have been working with. The STL
format is a set of triangles that describe the surfaces of the object. One STL file will be
generated for each VVolume. If the Block option is used, then one file for each Block
would be created.

391

Mesh Generation

To run sculpt on the same machine, from the terminal window in your current working directory
you would issue the following command:

Jbean.run

If Sculpt is to be run on a different machine, copy the files in the working directory to the other
machine and issue the same command. Remember to change the path to the mpiexec and
psculpt executables to match those on the new machine. For running on cluster machines that
have scheduling of resources, check with your system administrator for how to submit a job for
running.

After running Sculpt, Figure 8 shows the resulting files that would be written to the current
working directory.

e 00 (] examples — bash — 73x8
sjowen@sajn2009-137:~/sculpt/examples$ ls
bean.diatom bean.diatom_result.e.8.5
bean.diatom_result.e.8.0 bean.diatom_result.e.8.6
bean.diatom_result.e.8.1 bean.diatom_result.e.8.7
bean.diatom_result.e.8.2 bean.run
bean.diatom_result.e.8.3 bean_Volume_1.stl
bean.diatom_result.e.8.4 quality.csv
sjowen@sajn2009-137:~/sculpt/examples$ JJ

Figure 8. 8 Exodus files were generated and placed in working directory
Note that 8 exodus files have been generated, 1 from each processor. These files can be used by
themselves or used as-is for use in a simlation, or they can be combined into a single file. The
exodus files produced by Sculpt include all appropriate parallel communication information as
defined by the Nemesis format. Nemesis is an extension of Sandia's Exodus Il format that also
includes appropriate parallel communication information.
To combine the resulting exodus files into a single file, we can use the epu tool. Epu should be
included in your Cubit distribution, but may require you to set up appropriate paths for it to be
recognized. To run epu on this model, use the following command from a unix terminal window:

epu -p 8 bean.diatom_result

The result should be a single file with the name bean.diatom_result.e. The mesh in this file can
then be imported into Cubit. Switch back to your Cubit application and from the command line
type the following command:

import mesh "bean.diatom_result.e” no_geom
The result should be the same mesh we generated previously that is shown in Figure 2.

Meshing Multiple Materials With Sculpt

This example illustrates using Sculpt to mesh models with multiple materials. To begin with, we
will modify our current model by adding some additional volumes. Use the following
commands:

delete mesh

cylinder rad 0.5 height 3
cylinder rad 0.5 height 3
vol 5 mov x 2

The resulting geometry should look like the image in Figure 9.

392

Cubit 15.2 User Documentation

Figure 9. Geometry used to demonstrate multiple materials with Sculpt
Use this geometry to generate a mesh using Sculpt.

sculpt parallel size 0.075 over combine import
draw block all

The resulting mesh should look like the image in Figure 10.

Figure 10. Mesh generated on multiple materials
Notice that one mesh block per volume was created. We should also note that no boolean
operations were performed prior to building the mesh with Scu