
Exceptional Service

CUBIT Mesh Generation
Environment

Volume 1: Users Manual

Cubit Development Team1

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

The CUBIT mesh generation environment is a two- and three-dimensional fi-
nite element mesh generation tool which is being developed to pursue the goal
of robust and unattended mesh generation—effectively automating the genera-
tion of quadrilateral and hexahedral elements. It is a solid-modeler based pre-
processor that meshes volume and surface solid models for finite element
analysis. A combination of techniques including paving, mapping, sweeping,
and various other algorithms being developed are available for discretizing the
geometry into a finite element mesh. CUBIT also features boundary layer
meshing specifically designed for fluid flow problems. Boundary conditions
can be applied to the mesh through the geometry and appropriate files for anal-
ysis generated. CUBIT is specifically designed to reduce the time required to
create all-quadrilateral and all-hexahedral meshes. This manual is designed to
serve as a reference and guide to creating finite element models in the CUBIT
environment.

This manual documents CUBIT Version 1.14.

1. See the next page for the members of the CUBIT Development Team.

SAND94-1100
Unlimited Release

Printed November 5, 1997 11:54 am

Distribution
Category UC-705

▼ Cubit Development Team Membership

Sandia National Laboratories, Albuquerque New Mexico

Patrick Knupp Parallel Computing Sciences

Randy R. Lober Advanced Engineering & Manufacturing Software

Darryl Melander Parallel Computing Sciences

Scott A. Mitchell Parallel Computing Sciences

Gregory D. Sjaardema Solid & Structural Mechanics

W. Ann Sample Parallel Computing Sciences

Marilyn K. Smith Technology Programs

Timothy J. Tautges Parallel Computing Sciences

David R. White Parallel Computing Sciences

Brigham Young University, Provo, Utah

Steve Benzley Professor of Civil and Environmental Engineering

Robert Kerr Student in Department of Civil and Environmental Eng.

Steven R. Jankovich Student in Department of Mechanical Engineering

Daniel B. McRae Student in Department of Civil and Environmental Eng.

Jason Shephard Student in Department of Civil and Environmental Eng.

University of Wisconsin

Contractors

Ray J. Meyers Contractor, Provo, Utah

Table of Contents

Document Version 11/10/97 CUBIT Reference Manual 5

▼ Table of Contents
▼ Cubit Development Team Membership . 4
▼ Table of Contents . 5
▼ List of Figures . 13
▼ List of Tables . 15

Chapter 1: Getting Started . 17

▼ How to Use This Manual . 17
▼ CUBIT Mailing List . 18
▼ Problem Reports and Enhancement Requests . 18
▼ Executing CUBIT . 19

Execution Command Syntax. 19
Initialization File. 20
User Environment Settings . 20
Graphics Customization . 21

▼ Command Syntax . 21
Identifier Ranges. 23

▼ Features . 23
Geometry Creation . 24
Algebraic Command Preprocessing (APREPRO) . 24
Geometry Consolidation . 24
Geometry Decomposition . 24
Supported Element Types. 24
Mesh Creation. 24
Boundary Condition Application . 25
Graphical Display Capabilities . 25
Hardware Platforms . 25

▼ Future Releases . 25

Chapter 2: Tutorial . 27

▼ The Tutorial . 27
▼ Step 1: Beginning Execution . 29
▼ Step 2: Creating the Brick . 29
▼ Step 3: Creating the Cylinder . 31
▼ Step 4: Adjusting the Graphics Display . 31
▼ Step 5: Forming the Hole . 32
▼ Step 6: Setting Body Interval Size . 33
▼ Step 7: Setting Specific Surface Intervals . 33
▼ Step 8: Setting Specific Curve Intervals . 34
▼ Step 9: Surface Meshing . 35
▼ Step 10: Volume Meshing . 35

Table of Contents

6 CUBIT Reference Manual Document Version 11/10/97

▼ Congratulations! . 37

Chapter 3: Environment . 39

▼ Interface Choices . 39
Command Entry . 39
No-Graphics Interface. 40
Batch Execution . 41

▼ Session Control . 41
▼ Command Journalling . 41

CUBIT Journal File Generation . 41
Replaying Journal Files. 42

▼ Graphics . 42
Graphics Window Control . 42
Image Rendering Control . 43
Viewing the Model . 45
Displaying Entities . 48

Drawing Entities 48
Highlighting Entities 48
Setting Visibility 49

Global Settings . 49
Individual Geometric Entity Settings . 49

Color . 50
Entity Labeling . 50
Hardcopy Output. 51
Video Animations . 51

▼ Model Information . 52
Model Summary Information . 52
Geometry Information . 52
Mesh Information . 54
Special Entity Information . 56
Other Information . 57

Message Output Settings 58
Graphical Display Information 59
Memory Usage Information 59

▼ Picking . 60
▼ Help Facility . 61

Chapter 4: Geometry . 63

▼ Geometry Definition . 63
Topology. 63

Vertex 64
Curve 64
Surface 64

Table of Contents

Document Version 11/10/97 CUBIT Reference Manual 7

Volume 64
Body 64
Group 64

Groups. 64
Geometry Entity Identifier Ranges . 65
Cellular Topology . 65

▼ Geometry Creation . 66
Geometric Primitives . 66

Brick 66
Cylinder 67
Prism 68
Frustum 68
Pyramid 68
Sphere 69
Torus 69

Importing Geometry . 69
Importing ACIS Models 70
Importing FASTQ Models 70
Importing EXODUSII Files 70
Importing PRO/Engineer Models 71

Exporting Geometry . 71
▼ Geometry Manipulation . 71

Transform Operations . 72
Copy 72
Move 72
Scale 72
Rotate 72
Reflect 73
Restore 73

Boolean Operations. 73
Intersect 73
Subtract 73
Unite 73

Sweep Operations . 74
Imprint Operation . 75

▼ Geometry Decomposition . 75
Web Cutting . 75
Body-Based Decomposition . 76

▼ Geometry Consolidation . 76
General Geometry Consolidation . 78
Selective Geometry Consolidation . 78

▼ Geometry Attributes . 79
Entity Names. 79

Chapter 5: Mesh Generation . 81

Table of Contents

8 CUBIT Reference Manual Document Version 11/10/97

▼ Mesh Definition . 81
Mesh Hierarchy. 81

Node 81
Edge 82
Face 82
Hex 82

Mesh Generation Order of Procession . 82
▼ Mesh Attributes . 82

Meshing Schemes . 82
Mesh Density Specification . 86
Element Types . 87

▼ Curve Meshing . 87
Interval Firmness and Parity . 88
Standard Node Density . 88
Relative Element Edge Lengths . 88
Sizing Function-Based Node Density. 89
Featuresize Function Node Density . 89
Meshing the Curve . 90

▼ Surface Meshing . 91
Surface Vertex Types . 91
Mapping and Submapping Interval Constraints . 91
Scheme Designation . 94

Surface Mapping 94
Paving 94
Surface Submapping 95
Meshing Primitives 96

Adaptive Surface Meshing . 97
Boundary Layer Meshing . 103
Generating the Surface Mesh . 105

▼ Volume Meshing . 105
Scheme Designation . 105

Volume Mapping 106
Volume Submapping 107
Sweeping (Project, Translate, and Rotate) 108

Project . 109
Translate . 111
Rotate . 111

Plastering 111
Stair Tool 112
Whisker weaving 113
Whisker weaving basic commands 114
Viewing the Weave 114
Resolving whisker weaving degeneracies 115

Knife resolution . 115
Doublet Resolution . 117
Degeneracy Resolution Using Pillow Sheets 117

Table of Contents

Document Version 11/10/97 CUBIT Reference Manual 9

Weaving without geometry 118
Miscellaneous Whisker Weaving Options 119

Whisker Weaving Sub-Command Interface 119
Explicit Looping . 120
Deleting loop self-intersections . 120
Weaving database while plastering. 121

Dicing 121
Dicer Sheets and Refinement Intervals. 122
Dicing Basic Commands. 122
Additional Dicing Commands . 123

Generating the Volume Mesh . 124
▼ Mesh Editing . 124

Mesh Smoothing . 124
Surface smoothing 124
Volume smoothing 125

Mesh Deletion. 126
Complete mesh removal 126
Partial mesh removal 126
Individual mesh face removal 127

Node and NodeSet Repositioning. 127
▼ Mesh Importing and Duplicating . 127

Importing mesh from an external file . 127
Duplicating mesh . 128

▼ Mesh Quality . 128
Background. 128
Command Syntax . 129
Command Examples . 130
Example Output . 130

Chapter 6: OvFinite Element Model Definition and Output 133

▼ Finite Element Model Definition . 133
Element Blocks . 133
Nodesets . 133
Sidesets . 134
Property Names. 134

▼ Element Block Specification . 134
Default Element Types, Block IDs, and Attributes 135
Element Block Definition Examples . 135

Multiple Element Blocks 135
Surface Mesh Only 135
Two-Dimensional Mesh 135

▼ Boundary Conditions: Nodesets and Sidesets . 136
Nodeset Associativity Data. 136

▼ Setting the Title . 137

Table of Contents

10 CUBIT Reference Manual Document Version 11/10/97

▼ Exporting the Finite Element Model . 137

Appendix A: Command Index . 139

▼ Command Syntax . 139
▼ Commands . 139

Appendix B: Examples . 159

▼ General Comments . 159
▼ Simple Internal Geometry Generation . 160
▼ Octant of Sphere . 161
▼ Airfoil . 163
▼ The Box Beam . 164
▼ Thunderbird 3D Shell . 167
▼ Assembly Components . 170
▼ Whisker Weaving . 174

Appendix C: CUBIT Installation . 175

▼ Licensing . 175
▼ Distribution Contents . 176
▼ Installation . 176
▼ HyperHelp Installation . 176

System Requirements . 177
CPU. 177
Disk Space . 177
Printer . 177
Operating System . 177
Windowing Environment . 178

Copying HyperHelp Files . 178
Setting Up the HyperHelp Environment. 178

Appendix D: Available Colors . 181

References . 185

Glossary. 187

Index . 191

Table of Contents

Document Version 11/10/97 CUBIT Reference Manual 11

Table of Contents

12 CUBIT Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.11.0 Reference Manual13

▼ List of Figures
Figure 2-1 Geometry for Cube with Cylindrical Hole... 28
Figure 2-2 Generated Mesh for Cube with Cylindrical Hole .. 28
Figure 3-1 Schematic of From, At, Up, and Perspective Angle 45
Figure 4-1 Cellular Topology Between Volumes.. 65
Figure 4-2 Dangling Faces & Edges.. 65
Figure 4-3 CUBIT Geometry Primitives ... 67
Figure 4-4 Solid Model Prior to Decomposition ... 77
Figure 4-5 Solid Model After Decomposition... 78
Figure 5-1 Model Meshed Using Automatic Scheme Selection 85
Figure 5-2 Local Node Numbering for CUBIT Element Types...................................... 87
Figure 5-3 Curves meshed with featuresize... 90
Figure 5-4 Equal and biased curve meshing.. 90
Figure 5-5 Illustration of Angle Types .. 92
Figure 5-6 Scheme Map Logical Properties .. 92
Figure 5-7 Scheme Submap Logical Properties .. 93
Figure 5-8 Mapped and paved surface meshing.. 94
Figure 5-9 Submapping Example .. 96
Figure 5-10 Alternate Submapping Topology Interpretation .. 96
Figure 5-12 Triangle and Circle Primitive Meshes ... 97
Figure 5-11 Periodic Surface Meshing with Submapping... 97
Figure 5-13 NURB solid with high surface curvature change .. 98
Figure 5-14 NURB mesh with no interior sizing function .. 99
Figure 5-15 NURB mesh with curvature sizing function.. 99
Figure 5-16 NURB mesh with no sizing function, 34 by 16 density 99
Figure 5-17 NURB mesh with linear sizing function, 34 by 16 density 100
Figure 5-18 NURB mesh with interval sizing function, 34 by 16 density 100
Figure 5-19 NURB mesh with inverse sizing function, 34 by 16 density......................... 101
Figure 5-20 NURB mesh with super sizing function, 34 by 16 density............................ 101
Figure 5-21 Test sizing function mesh for square geometry ... 102
Figure 5-22 Test sizing function for spline geometry ... 102
Figure 5-23 Plastic strain metric and the adaptively generated mesh 104
Figure 5-24 Boundary Layer Parameters... 104
Figure 5-25 Volume mapping of an 8-surfaced volume.. 106
Figure 5-26 Volume mapping of a 5-surfaced volume.. 107
Figure 5-27 Surface mesh of an 8-surfaced volume highlighting the logical edges used for vol-
ume mapping. ... 107
Figure 5-28 Example of internal virtual surface creation.. 108
Figure 5-29 Hexahedral mesh generated by volume submapping..................................... 108
Figure 5-30 Project Volume Meshing ... 109
Figure 5-31 Multiple Surface Project Volume Meshing ... 110
Figure 5-32 Plastering Examples... 112

List of Figures

14 CUBIT Reference Manual Document Version 11/10/97

Figure 5-33 StairTool mesh. .. 113
Figure 5-34 Whisker weaving meshes... 113
Figure 5-35 Example sheet diagram (left) and corresponding loop (right). 115
Figure 5-36 Illustration of Quadrilateral Shape Parameters (Quality Metrics) 129
Figure 5-37 Illustration of Quality Metric Graphical Output .. 131

Document Version 11/10/97 CUBIT Version 1.11.0 Reference Manual15

▼ List of Tables
Table 3-1 Command Line Interface Line Editing Keys .. 40
Table 3-1 CUBIT Journal file used for List Output Examples 52
Table 3-2 Sample Output from ‘List Model’ Command ... 53
Table 3-3 Sample Output from ‘List Names’ Command .. 53
Table 3-4 Sample Output from ‘List Surface Ids’ Command 54
Table 3-5 Sample Output from ‘List Group’ Command ... 54
Table 3-6 Sample Output from ‘List Body’ Command .. 54
Table 3-7 Sample Output from ‘List Volume’ Command .. 55
Table 3-8 Sample Output from ‘List Surface’ Command ... 55
Table 3-9 Sample Output from ‘List Curve’ Command ... 56
Table 3-10 Sample Output from ‘List Vertex’ Command .. 56
Table 3-11 Sample Output from ‘List Hex’ Command .. 56
Table 3-12 Sample Output from ‘List Face’ Command .. 57
Table 3-13 Sample Output from ‘List Edge’ Command ... 57
Table 3-14 Sample Output from ‘List Node’ Command .. 57
Table 3-15 Sample Output from ‘List Block’ Command .. 57
Table 3-16 Sample Output from ‘List SideSet’ Command ... 58
Table 3-17 Sample Output from ‘List NodeSet’ Command ... 58
Table 3-18 Sample Output from ‘List Settings’ Command .. 59
Table 3-19 Sample Output from ‘List View’ Command .. 60
Table 3-20 Sample Output from ‘List Memory’ Command ... 60
Table 5-1 Default Meshing Attributes .. 82
Table 5-2 Valid Meshing Schemes for Curves, Surfaces, and Volumes 83
Table 5-1 Listing of logical sides .. 93
Table 5-1 . Whisker weaving sub-command line interface commands. 119
Table 5-1 Sample Output for ‘Quality’ Command ... 130
Table 5-1 Element Quality Plot Legend .. 130
Table 6-1 .Nodeset id base numbers for geometric entities .. 137
Table B-1 CUBIT Features Exercised by Examples. ... 160
Table C-1 HyperHelp Distribution Files .. 177
Table 6-2 Available Colors ... 181

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual17

Chapter 1: Getting Started
▼ How to Use This Manual…17

▼ CUBIT Mailing List…18

▼ Problem Reports and Enhancement Requests…18

▼ Executing CUBIT…19

▼ Command Syntax…21

▼ Features…23

▼ Future Releases…25

Welcome to CUBIT, the Sandia National Laboratory automated mesh
generation toolkit. With CUBIT the geometry of a part can be imported, created,
and/or modified using an embedded solid modelling engine. The geometry can
then be discretized into a finite element mesh using a combination of techniques
including paving [1], mapping, sweeping, and various other algorithms being
developed. Boundary conditions can be applied to the mesh through the
geometry and appropriate files for analysis generated. CUBIT is specifically
designed to reduce the time required to create all-quadrilateral and all-
hexahedral meshes.

▼ How to Use This Manual
This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters which roughly follow the process in which a finite element model is
designed, from geometry creation to mesh generation to boundary condition application. An
example is provided in a tutorial chapter to illustrate some of the capabilities and uses of
CUBIT. Appendices containing complete command usage, examples, installation instructions,
and a list of available colors are included.

The CUBIT environment is designed to provide the user with powerful meshing algorithms that
require minimal input to produce a complete finite element model. As such, the code is
constantly being updated and improved. Feedback from our users indicates that new meshing
tools are often needed and/or desired before they have been completely tested and debugged. As
a service to the user, these tools are integrated and made available as quickly as possible, but in
auser beware state. As they are further tested (often with the assistance of users) and improved,
the state of the particular tool becomes more stable, and thus the risk to the user is lowered.
Since documentation of the tool is necessary for actual use, we have included the documentation

CHAPTER 1 Getting Started

18 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

of all available tools in the manual. However, to warn the user, a “hammer” icon is placed in the
document next to those features that are only minimally tested or are in a state of work-in-
progress (See “hammer” icon in left margin). In other words, “proceed with caution.” Certain
portions of this manual contain information that is vital for understanding and effectively using
CUBIT. In order to highlight these portions, a “key” icon is positioned in the document next to
these sections. In other words, “this is a key point”.

This manual is Volume 1 of the CUBIT documentation set. The companion document isCUBIT
Mesh Generation Environment, Volume 2: Developers Manual [3] which contains internal
programming-related details of the CUBIT mesh generation environment.

This manual documents CUBIT Version 1.14, December 15, 1996.

▼ CUBIT Mailing List
A mailing list has been created to keep interested users informed of new features, bug-fixes, and
other pertinent information about CUBIT. The list can also be used for general discussions about
CUBIT. Users can subscribe to the mailing list by sending a mail message to
listserv@sahp046.jal.sandia.gov with the body (not the subject) of the mail message
containing the line:

subscribe cubit Your Full Name

The user would then receive a message confirming the subscription to the CUBIT mailing list.
More information about the use of the mailing lists can be obtained by sending the message
help to the above mail address. Messages are sent to the list by sending mail to the address:

cubit@sandia.gov

The CUBIT developers will be sending announcements of new CUBIT capabilities,
enhancements, and user-visible bug fixes to this list on a regular basis. In addition, this list may
be used for general questions regarding CUBIT that may be solvable by other subscribers to the
list.

An additional mailing list has been created for direct communication with the CUBIT
developers. All messages sent to this list will be distributed to the CUBIT developers only. It
should be used for questions that are not of general interest to other CUBIT users. Messages are
sent to the CUBIT developers by sending mail to the address:

cubit-dev@sandia.gov

▼ Problem Reports and Enhancement
Requests

All problem reports and enhancement requests for CUBIT should be sent to cubit-
dev@sandia.gov. These requests will be responded to as quickly as possible. As the number of
CUBIT users increases, it may be beneficial in the future to go to an electronic bug reporting
system; instructions for this system will be e-mailed to cubit@sandia.gov when appropriate.

Note: The existence and recommended use of an electronic mailing list to report bugs and
request enhancements is not an attempt by the CUBIT developers to ignore and or

CHAPTER 1 Getting Started

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual19

discourage face-to-face discussion of problems with, or enhancements to the CUBIT
code with users.

▼ Executing CUBIT

Execution Command Syntax
Two versions of CUBIT are currently supported1: 1) a basic command line version which
outputs graphics to a standard X Window System graphics window, and 2) a command line
version with no graphics. Both versions can be run in “batch” mode, requiring no direct
interaction from the user. The commands to execute these versions of CUBIT on most systems
are simply:

cubit Command line version with X Window system graphics.

cubitb Command line version with no graphics.

Throughout this manual, “CUBIT” will be used as a generic term that applies to all of the
executables. If it is necessary to specify a specific version of CUBIT, one of above names will
be used.

The command syntax recognized by CUBIT is:

{cubit|cubitb} [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>]
[-batch] [-nojournal] [-journalfile <file>] [-maxjournal <val>]
[-noecho] [-debug=<val>] [-information={on|off}] [-warning={on|off}]
[-Include <path>] [-fastq <fastq_file>] {<input_file_list>|<var=value>}...

where the quantities in square brackets[-options] are optional parameters that are used to
modify the default behavior of CUBIT and the quantities in angle brackets<values> are values
supplied to the option. The effect of these parameters are:

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified by<val> as the initialization file instead of the default
initialization file $HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initialization
file $HOME/.cubit or the file specified by the-initfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specified
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT will
terminate after reading the initialization file, the geometry file, and the file specified by the-
initfile option.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs the
same function as theJournal Off command. The default behavior is to create a journal file.

-journalfile <file> Write the journal entries to the file<file> . The file will be overwritten if
it already exists.

1. In subsequent versions of CUBIT, a single executable will be used for both graphics and no-graphics versions; graphics

behavior will be controlled through a command line option and/or a CUBIT command.

CHAPTER 1 Getting Started

20 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

-maxjournal <val> Only create a maximum of<val> default journal files. Default journal
files are of the formcubit.#.jou where # is a number in the range 01 to 99.

-noecho Do not echo commands to the console. This option performs the same function as
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Set the debug message flags indicated by<val> . <val> is a comma-separated
list of integers or ranges of integers. An integer range is specified by separating the beginning
and the end of the range by a hyphen. For example, to set debug flags 1, 3, and 8 to 10 on, the
syntax would be -debug=1,3,8-10. Flags not specified are off by default. Debug messages are
typically of importance only to developers and are not normally used in normal execution.

-information={on|off} Turn on/off the printing of information messages from CUBIT to the
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the console.

-Include=<include_path> Set the patch to search for journal files and other input files to be
<include_path>. This is useful if you are executing a journal file from another directory and that
journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ file
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a description
of the FASTQ file format.

The information following the last option on the command line consists of either input files or
variable definitions. Variables are specified by the syntax<variable=value> where variable is
any valid Aprepro variable name (See Reference [13]) and value is either a real value or a string
value. String values must be surrounded by double quotes. Input files are specified simply by
typing the filename. All files specified on the command line following the last option are
processed in the order they are listed prior to prompting for interactive command input.

An example of the use of the command line options is:

cubitb -batch -nojournal final_mesh.jou height=1.2345

which specifies thatcubitb will execute the commands in the filefinal_mesh.jou unattended.
The Aprepro variableheight will be defined to have the value 1.2345. This mode is typically
used to recreate a previously generated mesh with no user interaction.

The command options can also be specified through theCUBIT_OPT environment variable.
See the “User Environment Settings” section below for more information.

Initialization File
If the file$HOME/.cubit or the file specified by the optional-initfile <val> option exists when
CUBIT begins executing, it is read prior to beginning interactive command input. This file is
typically used to perform initialization commands that do not change from one execution to the
next, such as turning off journal file output, setting geometric and mesh entity colors, and setting
the size of the graphics window.

User Environment Settings
To execute CUBIT several environment variables must be set. In particular the “HOME” ,
“PATH” and “DISPLAY ” variables. TheHOME environment variable is typically set
automatically when you login to a system. Its purpose is to provide a pointer to your login

CHAPTER 1 Getting Started

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual21

directory. ThePATH, on a Unix system, is a list of directories that are searched for commands
to be executed. Proper setting of the path is system-dependent; if CUBIT does not execute
correctly, contact your system manager or another CUBIT user for the correct setting of the
PATH specification.

The X Window System-based command line input version of CUBIT (cubit) requires the
specification of theDISPLAY environment variable which is used by the application to
determine where the graphics window should be displayed (and which screen should be used on
displays with multiple monitors).

CUBIT can also read the environment variableCUBIT_HELP_DIR for use with the online
hypertext help system. This variable should be set to the pathname specifying where the CUBIT
help filecubitHelp.hlp is located. The person responsible for installing CUBIT on the system
should be contacted for this information.

Another useful environment variable isCUBIT_OPT which can be used to set execution
command line parameter options. For example, if journalling of commands is never wanted,
then settingCUBIT_OPT to -nojournal will turn off journalling for all CUBIT executions1.

Graphics Customization
Settings for the default CUBIT window sizes, locations, colors, and fonts can be set in the
.Xdefaults or .Xresources resource files in the user’s home directory. This file is a text file
that can be edited with any standard UNIX text editor. In the resource file, each resource must
be on a separate line. The resource setting consists of a resource label, a colon, one or more
spaces or tabs, and the resource value. For additional general information on resources, see X
Window System documentation; a readily available documentation source is the RESOURCES
section of the X(1) manual page which is usually installed on most systems.

A CUBIT resource label begins with the word “cubit” followed by an asterisk or period,
followed by the specification of the resource. For example, to specify that the CUBIT graphics
window should be 700 pixels square rather than the default size, the following line should be
added to the resource file:

cubit*CUBIT.geometry: 700x700+445+0

For example:

cubit*XmTextField*background: LightBlue

This line states that the background of all text fields in thecubit application will be the color
LightBlue. Colors can normally be found in the /usr/lib/X11/rgb.txt file on your
system. For additional information aboutXdefaults or Xresources files, see the application
defaults section in any X Window user’s book.

▼ Command Syntax
The execution of CUBIT is controlled either by entering commands from the command line or
by reading them in from a journal file. Throughout this document, each function or process will
have a description of the command required to perform the function or process. In this section,
the command syntax used in this manual will be described. The user can obtain a quick guide

1. Journalling could then be turned back on with the “Record” command.

CHAPTER 1 Getting Started

22 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

to proper command format by issuing the<keyword> help command. This help message will
indicate the full command syntax expected by the keywords. For example, enteringview help
results in the following output:

View At <X_coord> <Y_coord> <Z_coord>

View From <X_coord> <Y_coord> <Z_coord>

View List

View Up <X_coord> <Y_coord> <Z_coord>

The words that begin with an uppercase letter are keywords which must be entered (case is not
significant) and the bracketed words are user supplied parameters.

The commands recognized by CUBIT are free-format and must adhere to the following syntax
rules.

• Either lowercase or uppercase letters are acceptable.

• The “#” character in any command line begins a comment. The “#” and any characters
following it on the same line are ignored.

Each command typically has either:

• an action keyword or “verb” followed by a variable number of parameters, for example

Mesh Volume 1

• or a selector keyword or “noun” followed by a “verb” or “selector keyword and a variable
number of parameters, for example

Volume 1 Scheme Project Source 1 Target 2

The action or selector keyword is a character string matching one of the valid commands. It may
be abbreviated as long as enough characters are used to distinguish it from other commands. The
meaning and type of the parameters depend on the keyword. Valid entries for parameters are:

• A numeric parameter may be a real number or an integer. A real number may be in any legal
C or FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer parameter may be in
any legal decimal integer format (for example, 1, 100, 1000, but not 1.5, 1.0, 0x1F).

• A string parameter is a literal character string contained within single or double quotes. For
example,‘This is a string’ .

• A filename parameter must specify a legal filename on the system that CUBIT is running.
Environment variables and aliases may not be used in the filename specification. For
example, the C-Shell shorthand of referring to a file relative to the user’s login directory
(~jdoe/cubit/mesh.jou) is not valid. The filename must be specified using either a relative
path (../cubit/mesh.jou), or a fully-qualified path (/home/jdoe/cubit/mesh.jou). Like a
string, it also must be contained within single quotes.

• Some commands require a “toggle” keyword to enable or disable a setting or option. Valid
toggle keywords are “on ”, “ yes ”, and “true ” to enable the option; and “off ”, “ no ”, and
“ false ” to disable the option.

The notation conventions used in the command descriptions in this document are:

• The command will be shown in a format thatlooks like this ,

• A word enclosed in angle brackets (<parameter>) signifies a user-specified value. The
value can be an integer, a range of integers, a real number, or a string. The valid value types
should be evident from the command or the command description.

CHAPTER 1 Getting Started

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual23

• A series of words in braces and delimited by a vertical bar ({choice1 | choice2 |
choice3}) signifies that one of the words within the brackets must be entered.

• A word enclosed in square brackets ([optional]) signifies an optional parameter which can
be entered to modify the default behavior of the command, but is not required.

An example of this command syntax is shown below.

{volume|surface|curve} <range> size <size>

volume 1 size 0.5 Valid

surface 1 to 10 by 3 size 0.05 Valid

volume 10 to 1 size 0.05 Invalid — negative increment

volume 10 to 1 by -1 size 0.05 Valid

surface 1 10 size 1.0 Invalid — not a valid range specification

surface 1 to 10 interval 5.0 Invalid — “interval” requires an integer

Identifier Ranges
Integers are used to identify various types of objects in the model. For example, a model might
have 3 volumes, numbered 2, 3 and 5. Commands entered by the user often apply to multiple
objects; the ids for these objects can be specified using id ranges. The parsing of id ranges in
CUBIT is done according to the following syntax:

<id_range> = n1 n2 n3 Selects ids n1, n2 and n3

<id_range> = n1 to n2 by n3 Selects identifiers between n1 and n2
stepping by n3

<id_range> = all Selects all identifiers for a given
object type

Note that the first two varieties described above can be used in sequence to describe an arbitrary
identifier range; for example, the following range specification is valid:

<id_range> = n1 n2 n3 to n4 by n5 n7 to n8

In addition to the using general identifier ranges described above, geometric objects can be
specified by topological relationship and other criteria; for more information, See “Geometry
Entity Identifier Ranges” on page 65.

▼ Features
The CUBIT environment is designed to provide the user with powerful meshing algorithms that
require minimal input to produce a complete finite element model. CUBIT is based on a solid
modeler that provides it with a precise geometric representation. Thepaving algorithm [1] has
been extended to mesh complex three dimensional surfaces based on the solid modeler.
Volumetric meshing is provided by mapping transformations and sweeping algorithms. Several
quadrilateral and hexahedral element types are also supported. The following sections provide
a brief overview of the CUBIT meshing toolkit.

CHAPTER 1 Getting Started

24 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Geometry Creation
Geometry creation is accomplished using the geometric primitives and boolean operations in
CUBIT or by reading an external solid model file into the CUBIT meshing toolkit. External
solid model files can be created from any of several environments that support the ACIS solid
model format: a rudimentary command line system, referred to as the “test harness [4],” is
useful for building quick and straightforward models. Other more advanced environments
include the Aries ConceptStation and PRO/Engineer via a PRO/Engineer/ACIS translator.
Models from FASTQ [5] input files can be imported into CUBIT and meshed.

Algebraic Command Preprocessing (APREPRO)
Many analysts use the Aprepro [13] program to preprocess commands and journal files which
contain algebraic expressions. The Aprepro algebraic preprocessing capability has been
implemented into the CUBIT command parser. The full Aprepro functionality has been
included except for theunits , andloop commands.

Geometry Consolidation
When assembly solid models are imported into the CUBIT environment, many surface, curve,
and vertex entities will be redundant. To resolve this issue, the automated geometry
consolidation or “merge” routines will identify matching entities and make database
modifications to remove the redundancy. Geometry consolidation can also be interactive, in case
certain redundant features need to be retained to represent slide surfaces or slide lines. The
geometry merge capability eliminates the generation of non-contiguous elements between
adjacent surfaces and curves which would have to be removed after meshing.

Geometry Decomposition
Solid models imported into the CUBIT environment sometimes consist of combinations of
simple geometric volumes, for example a plate with a cylinder projecting out of it. These
geometries are also sometimes constructed within CUBIT. Currently these geometries must be
decomposed into topologically primitive lumps (cylinder, brick, etc) before being able to be
meshed. CUBIT contains functions which aid in the decomposition of complicated geometries
into meshable pieces.

Supported Element Types
Element types supported in CUBIT include 2 and 3 node bars and beams; 4, 8, and 9 node
quads; 4, 8, and 9 node shells; and 8, 20, and 27 node hex elements. Element types must be set
before mesh generation is initiated.

Mesh Creation
Mesh generation in CUBIT is designed to be highly automated although numerous control
mechanisms are provided to allow the user to guide the meshing process. Meshing is controlled
through scheme choice, and interval number or node density specification. Curve meshing
schemes include equally spaced and biased spaced intervals. Surface meshing schemes include
mapping transformations, paving, boundary layers, and primitives. Volume meshing schemes

CHAPTER 1 Getting Started

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual25

include mapping transformations, mesh sweeping or projecting, multiple surface sweeping, and
submapping. In addition, automated volume meshing algorithms are being developed.

Boundary Condition Application
Once a suitable mesh has been generated, elements can be grouped into sets using three control
classes: element blocks, nodesets, and sidesets. Numeric flags are associated with these sets
allowing analysis codes to apply appropriate boundary conditions to the correct mesh entities.

Element blocks are used for efficient storage of a finite element model. Within an element block,
all elements are of the same type (basic geometry and number of nodes) and have the same
material definition.

Nodesets provide a means to reference a group of nodes with a single identification number
rather than by each node’s identification number. Nodesets are typically used to specify load or
boundary conditions, or to identify a set of nodes for a special processing within CUBIT. A node
may appear in multiple nodesets, but will only appear once in any single nodeset.

Sidesets provide an additional means of applying load and boundary conditions. Unlike
nodesets, sidesets group sides or faces of elements rather than simply a list of nodes. For
example, a pressure load must be associated with elements rather than nodes to apply it properly.

Nodes, element edges, and element faces can belong to multiple nodesets and sidesets. Nodesets
and sidesets can be individually displayed for visual inspection. See reference [6] for more
information.

Graphical Display Capabilities
CUBIT uses the Hoops graphic display environment to render images. CUBIT can display a
wireframe, hiddenline, or shaded representation of geometric and mesh entities. CUBIT can
also generate a PostScript file of any displayed image (see “Hardcopy Output” on page 51).
Complete control over the viewport parameters and the zoom magnification provide the user
with an intuitive modeling environment. Users can also perform screen picking and point-and-
click rotate, pan, and zoom operations.

Hardware Platforms
CUBIT is written in “standard” C++ and should execute on any Unix operating system. To date,
it has been compiled and used on Sun (both SunOS and Solaris), Hewlett-Packard (HP-UX
9.X), and Silicon Graphics workstations (IRIX 5.3).

▼ Future Releases
CUBIT is currently on a 6-month major release cycle (April and October); more current
versions are also avialable if required. The capabilities of CUBIT will be expanded and
enhanced on a regular basis as dictated by user needs and the developmental progress of new
meshing algorithms. Areas of concentration will include

• full-featured automatic hexahedral meshing using a combination ofplastering andwhisker-
weaving,

• quadrilateral and hexahedral adaptivity,

CHAPTER 1 Getting Started

26 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• enhanced geometric functionality such as overlapping geometry consolidation and more
robust geometry decomposition.

• improved control of the naming of geometric and mesh entities.

• improved usability, robustness, and functionality.

Extension of the CUBIT environment to new platforms will also be pursued according to user
needs.

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual27

Chapter 2: Tutorial
▼ The Tutorial…27

▼ Step 1: Beginning Execution…29

▼ Step 2: Creating the Brick…29

▼ Step 3: Creating the Cylinder…31

▼ Step 4: Adjusting the Graphics Display…31

▼ Step 5: Forming the Hole…32

▼ Step 6: Setting Body Interval Size…33

▼ Step 7: Setting Specific Surface Intervals…33

▼ Step 8: Setting Specific Curve Intervals…34

▼ Step 9: Surface Meshing…35

▼ Step 10: Volume Meshing…35

▼ Congratulations!…37

The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite
element mesh generation as well as provide a brief tutorial on the use of the
software package. This chapter is designed to demonstrate step-by-step instructions
on generating a simple mesh on a perforated block.

▼ The Tutorial
The following is a sample of the basics of using CUBIT to generate and mesh a geometry. By
following this tutorial, you will become familiar with the command-line interface and with as
much of the CUBIT environment as possible without stopping for detailed explanations. All the
commands introduced in this tutorial are thoroughly documented in subsequent chapters. Here
are a few tips in following the example in the tutorial

• Focus on instructions preceded with “Step” numbers. These step you through a series of
explicit activities that describe exactly what to do to complete the task.

• Refer to screen shots and other pictures that show you what you should see on your own
display as you progress through the tutorial.

CHAPTER 2 Tutorial

28 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• An example of the command line is shown below. In this tutorial, the command that you
should type will be preceeded by the word “Command” and a colon.

Command: This is a Command Line

The example given in this tutorial will demonstrate the use of the internal geometry generation
capability within CUBIT to generate a mesh on a perforated block. The geometry for this case
is a block with a cylindrical hole in the center. The Create, Brick, Cylinder and Subtract
commands are used to create solid model geometry with primitives and boolean operations. The
block is then meshed using paving and translation. The geometry to be generated is shown in
Figure 2-1. This figure also shows the curve and surface identification (ID) numbers of the

geometry. These ID numbers are used in the command lines shown with each step. The final
meshed body is shown in Figure 2-2 and also at the end of this chapter.

Figure 2-1 Geometry for Cube with Cylindrical Hole

Figure 2-2 Generated Mesh for Cube with Cylindrical Hole

15
17

18

19

28

20

27

16
21

22

26

23

24

25

Curve Labels

10

11

12

13

14

15

16

Surface Labels

CHAPTER 2 Tutorial

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual29

▼ Step 1: Beginning Execution
• Type “cubit” to begin execution of CUBIT. If you have not yet installed CUBIT, see

instructions for doing so in the “CUBIT Installation” Appendix. A CUBIT console window
will appear which tells the user which version is being run and the most recent revision date.
(See the following screen shot for example of window). This window relays information
about the success or failure of attempted actions.

• At the bottom of the CUBIT window you will be told where the commands entered in this
CUBIT session will be journalled. For example: “Commands will be journalled to
‘cubit01.jou’.

• Below that, you will be offered the command line prompt: “CUBIT>”.

• Commands are entered at that prompt, followed by the “Enter” key.

• You should also see a blank graphics display window.

▼ Step 2: Creating the Brick
Now you may begin generating the geometry to be meshed. You will create a brick of width 10,
depth 10 and height 10. The width and depth correspond to the x and y dimensions of the object
being created. The “width” or x-dimension is screen-horizontal and the “depth” or y-dimension
is screen-vertical. The height or z-dimension is out of the screen. The command to create an
object isCreate , followed by the type of geometry and its dimensions. Enter the following
command.

CHAPTER 2 Tutorial

30 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Command: Create Brick Width 10. Depth 10. Height 10.

• The cube should appear in your display window as shown below.

• Note that the journalled version of the command is echoed above the next command line
along with the confirmation message “brick body 1 successfully created.”

• The controller for the command line interface can tell from context when the user wants to
create an object, so the command wordCreate can be left out. The same result as above
would have been obtained by entering:

Command: Brick Width 10. Depth 10. Height 10.

• Try this after first first issuing aReset command as follows to remove all previous geometry
and previous mesh from computer memory.

Command: Reset

• The command line interpreter can also recognize shortened versions of commands if they are
unambiguous. The following command line would also have worked.

Brick Display

CHAPTER 2 Tutorial

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual31

Command: Br Wi 10. Dep 10. Hei 10.

• If the command line parser is not able to find an unambiguous match to one of your command
words, it will give an error message and offer a list of possible matches. For clarity, this
tutorial will use unabbreviated command words.

• If the brick being created is a true cube, only the width needs to be specified, so the following
command would also have worked. Try this after issuing aReset command.

Command: brick width 10

• Notice that the command line is not case-sensitive, soBrick andWidth do not need to be
capitalized.

▼ Step 3: Creating the Cylinder
Now you must form the cylinder which will be used to cut the hole from the brick:

Command: create cylinder height 12 radius 3

or, by leaving theCreate command as implicitly understood:

Command: cylinder height 12 radius 3

At this point you will see both a cube and a cylinder appear in the CUBIT display window.

▼ Step 4: Adjusting the Graphics Display
The picture on the graphics display can now be adjusted to verify that what you expected to
happen has indeed occurred. Issue the command

Command: from 3 4 5

This changes the viewpoint of the screen to a viewing location along the vector (3,4,5). The
command wordFrom stands for “view from.” The display should now look like the following
figure.

Brick with Cylinder Display

CHAPTER 2 Tutorial

32 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

At this point you may rotate the model to view its validity. The easiest method is to use the
mouse. TypeMouse on the command line. You should see the message: “Entering mouse-
based rotation/zooming/panning mode” and a circle should appear around the figure in the
graphics window. To rotate the figure about its y-axis, position the mouse pointer outside the
circle, hold the left mouse butoon down and move the mouse pointer around the circle. To rotate
it around the x- and z-axes, position the pointer inside the circle and hold the left button down
while moving the mouse. To exit the mouse-based mode of rotation, typeq.

In the display, the wireframe picture shows the relative locations of the bodies. Turning the
image to smooth shaded (as will be described in following steps) improves the perspective.

▼ Step 5: Forming the Hole
Now the cylinder can be subtracted from the brick to form the hole in the block. Issue the
following commands.

Command: Subtract 2 From 1

Note: Note that both original bodies are deleted in the boolean operation and replaced with
a new body (3) which is the result of the boolean operationSubtract .

CHAPTER 2 Tutorial

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual33

▼ Step 6: Setting Body Interval Size
The next step is to generate the surface mesh on one of the surfaces to be swept. The number of
increments must be set before meshing any geometry. This is done first for the entire body by
specifying a desired size interval. Recall that body number 3 is a 10 by 10 by 10 cube with a
cylindrical hole through it. We decide to specify an interval size of 1, which suggests 10
intervals on each side. Issue the following command.

Command: body 3 interval size 1.0

▼ Step 7: Setting Specific Surface Intervals
The cylindrical surface (the inside of the hole) must be mapped in order for the sweeping type
tools to work. Since this surface is periodic (contains no edge along the side of the cylinder) the
mapping algorithm uses the surface interval setting to determine how many elements are to be
mapped along the axis of the cylinder. The surface must first be identified. To see the surface
numbers, issue the following commands.

Command: label surface on

Command: display

• The first command turns the surface labels on, but they do not become visible until the
display command forces an update of the graphics screen. The surface labels can now be
seen.

1616

1515

1414

1313

1212

1111

1010

CHAPTER 2 Tutorial

34 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• The surface labels are positioned in the center of the geometric bounding box for each
surface. From the display it is evident that the cylindrical surface is surface 10. To set the
number of intervals to 10 on this surface only, issue the following command.

Command: surface 10 interval 10

▼ Step 8: Setting Specific Curve Intervals
The surface interval command also propagates downward to the edges. However, in this case we
want the circumference of the cylindrical ends of the surface to have 20 intervals instead of 10.
This is accomplished by issuing a command of the formCurve m Interval n , where m is the
curve ID and n is 20. Before we can do that, we need to identify the curves. To turn off the
surface labels and turn on the curve labels, issue the following commands.

Command: label surface off

Command: label curve on

Command: display

From the graphics display shown below, it is evident that curves 15 and 16 are the correct curve
ID’s.

To set the number of intervals on these curves to 20, issue the following command.

Command: curve 15 to 16 interval 20

Notice that we specified two curves, 15 and 16, by using the command syntax15 to 16 .

17

28

21

26
17

28

21

26

18

27
24

28
18

27
24

28

19

25

23

27

19

25

23

27

20

26

22
25

20

26

22
25

24

23

22

21
16

24

23

22

21
16

20

19

18

17
15

20

19

18

17
15

16

15

16

15

25

24

23

26

22

21
16

27

20

28

19

18

17
15

CHAPTER 2 Tutorial

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual35

▼ Step 9: Surface Meshing
Now all necessary intervals have been set, and the meshing can proceed. Begin by meshing the
front surface (with the hole) using the paving algorithm. This is done in two steps. First set the
scheme for that surface toPave, then issue the command toMesh . Since the surface to be
paved is number 11, issue the command:

Command: surface 11 scheme pave

With the meshing scheme specified, we proceed to mesh the surface.

Command: mesh surface 11

• The result of this meshing operation is shown below.

▼ Step 10: Volume Meshing
The volume mesh can now be generated. Again, the first step is to specify the type of meshing
scheme and the second step is to issue the order to mesh. The scheme chosen istranslate ,
which requires that source and target surfaces be specified. Issue the following command.

Command: volume 3 scheme translate source 11 target 12

With the scheme set, themesh command may be given:

CHAPTER 2 Tutorial

36 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Command: mesh volume 3

The final meshed body will appear in the display window

The type, quality, and speed of the rendered image can be controlled in CUBIT by using several
graphics mode commands, such asWireframe , Hiddenline , andSmoothshade . For
example:

Command: graphics mode hidenline

Command: display

The hidden line display is illustrated below. Next, try:

Command: graphics mode smoothshade

Command: display

The smoothshade display is also shown below.

For detailed information on these, see Chapter 3, Environment, “Image Rendering Control” and
“Viewing the Model.”

CHAPTER 2 Tutorial

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual37

▼ Congratulations!
You have created your first CUBIT mesh. The following chapters contain more detailed
information about using CUBIT and an in-depth description of the meshing algorithms
available.

Hiddenline Display Smoothshade Display

CHAPTER 2 Tutorial

38 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual39

Chapter 3: Environment
▼ Interface Choices…39

▼ Session Control…41

▼ Command Journalling…41

▼ Graphics…42

▼ Model Information…52

▼ Picking…60

▼ Help Facility…61

The CUBIT user interface is designed to fulfill multiple meshing needs
throughout the analysis process. The user interface options include a traditional
command line interface and batch mode operation. This chapter covers the
interface options as well as the use of journal files, control of the graphics, a
description of methods for obtaining model information, and an overview of the
help facility.

▼ Interface Choices

Command Entry
CUBIT can be run in an interactive or batch mode. In interactive mode, commands are entered
in the window from which CUBIT was executed (for information on the commands and options
used to execute CUBIT, see “Execution Command Syntax” on page 19). In batch mode
commands are read from a “journal” file, that is a file containing CUBIT commands. Commands
can also be read from a file during interactive execution.

The command line interface provides the user access to all CUBIT commands via keyboard
entry. When the command line version is executed, the command promptCUBIT> appears in
the UNIX shell window or terminal and a graphics window is created.

The CUBIT command line interface provides an EMACS-style line editing input package with
command history1. It allows the user to edit the current line and move through a list of previous

CHAPTER 3 Environment

40 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

commands. Commands replayed from a journal file are not saved in the history list. The
available editing commands are defined in Table 3-1.

No-Graphics Interface
The CUBIT code is available in a form, typically calledcubitb or the “no-graphics” version,
that performs no graphical display. Except for that characteristic,cubitb is identical to the
graphics version. The no-graphics version of CUBIT is invoked by entering ‘cubitb
<journal_file> ’ at the UNIX prompt1. The EMACS-style line editing input package described
in the previous section is also available in the no-graphics version.

1. The command line interface package used in CUBIT is Copyright 1991 by Chris Thewalt. The following copyright notice

appears in the source code: “Permission to use, copy, modify, and distribute this software for any purpose and without fee is

hereby granted, provided that the above copyright notices appear in all copies and that both the copyright notice and this

permission notice appear in supporting documentation. This software is provided “as is” without express or implied warranty”.

a. The notation ^X refers to holding down the control key and then typing the letter X.
Case is not significant.

b. See the documentation for your keyboard/workstation to determine which key sends
the DEL character.

c. NL is a newline, typically ^J, CR is a carriage return entered the normal way you end
a line of text.

1. See “Executing CUBIT” on page 19 for more information.

Table 3-1Command Line Interface Line Editing Keys

Keya Function

^A, ^E Move to beginning or end of line, respectively

^F, ^B Move forward or backward one position in the current line.

^D Delete the character under the cursor. Sends end-of-file if no characters on
the current line.

^H, DELb Delete the character to the left of the cursor.

^K Delete from the current cursor position to the end of the line

^P, ^N Move to the previous or next line in the history buffer.

^L Redraw the current line.

^U Delete the entire line.

NL, CRc Places current input on the history list, appends a newline and returns that
line to the CUBIT program for parsing.

? Provides “instant” help. If no text has been entered prior to typing the ‘?’, a
list of all valid keywords will be echoed. If some text has been entered,
either a list of all valid keywords matching the entered text is echoed, or if
the entered text only matches a single keyword, the syntax for that keyword
will be echoed. If the ‘?’ is entered inside the single or double quotes of a
filename, all files (with the default suffix) matching the entered text will be
echoed. The default suffixes are .sat for solid models, .jou for journal files,
.fsq for FASTQ files, .ps for hardcopy files, and .g for mesh files.

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual41

Batch Execution
Both the graphics and no-graphics version of CUBIT can be run in batch mode. That is, these
versions of the code can be run taking commands from a command file and terminating
execution when the end of the command file is reached. To initiate unattended operation, use the
-batch option with thecubit or cubitb command, and specify a journal file from which
commands are read. The journal file should contain theExport command to enable CUBIT to
write out the model to a Genesis database file.

▼ Session Control
Several commands are available to control the overall CUBIT environment:

• Exit . The CUBIT session can be discontinued with either of the following commands

Exit

Quit

• Reset. A reset of CUBIT will clear the CUBIT database of the current geometry and mesh
model, allowing the user to begin a new session without exiting CUBIT. This is
accomplished with the command

Reset

• Version To determine the software version number, execute theversion command. This
command reports the CUBIT version number, the date and time the executable was
compiled, and the version numbers of the ACIS solid modeler and the HOOPS library linked
into the executable. This information is useful when discussing available capabilities or
software problems with CUBIT developers.

• Command echo The echo of commands is controlled with the[set] echo {on | off}
command. By default, commands entered by the user will be echoed to the terminal. The
command[set] logging {on | off} file ‘filename’ can be used to additionally log all
information output by CUBIT, including the command echo, to the file specified by
filename .

▼ Command Journalling
Command journalling is used as a mechanism for saving sequences of CUBIT commands and
a means to control CUBIT from simple text files. Command or “journal” files can be created
within CUBIT, or can be created and edited directly by the user. They can also serve as a means
of user support by reproducing commands leading to a code error.

CUBIT Journal File Generation
By default, the journalling facility is on. A journal file is created automatically in the current
directory; the name of the journal file begins with the word “cubit ” followed by a number
between 01 and 99, followed by the characters “.jou ”. The first few journal file names are
cubit01.jou, cubit02.jou and cubit03.jou . The number following “cubit ”
will increment as more journal files are generated in that directory.

CHAPTER 3 Environment

42 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

If no journalling is desired, the user may issue the command[set] Journal Off or run CUBIT
with the -nojournal command line option. Turning journalling off should be done with care,
as the journal file can save model re-creation time when errors occur during a long session.

Most CUBIT commands entered during a session are saved. The exceptions are commands that
require interactive input (mouse, pick, zoom cursor), and theplay command.

In addition to the default journalling, specific command sequences can be saved to user assigned
files. To begin recording CUBIT commands to a file, use the command

Record ’<filename>’

Once initiated, all commands issued in CUBIT are copied to this file, as well as to the default
journal file (if journalling is turned on). Command recording to the record file is terminated with
the command

Record Stop

The record command is particularly useful when a new finite element model is being built and
alternate meshing strategies are being tested. Once the geometry has been defined, the record
option can be used to record initial meshing controls and subsequent meshing commands. The
mesh can be deleted, the recording terminated, and the process repeated to test alternate
meshing strategies. To compare trial results, the user need only delete the current mesh and
replay the journal file of the trial being considered.

Replaying Journal Files
To replay a journal file, issue the command

Playback ’<filename>’

The file will be read and commands in the file executed.Pause commands can be inserted in
the journal file to cause the command execution to pause at that point. Typing a return after the
pause command will continue execution. Playback commands can be nested. Note that the
filename must be enclosed in single quotes.

▼ Graphics
The graphics display window displays a graphical representation of the geometry and/or the
mesh. The quality and speed of rendering the graphics, the visibility, location and orientation of
objects in the window, and the labeling of entities can all be controlled by the user.

The geometry and mesh can be viewed from various camera positions and drawn in various
modes (wireframe, hiddenline, shaded, etc). This section will discuss: 1) the control of the
graphics window(s), 2) the control of the rendering parameters which affect the type, quality
and/or speed of rendering of the image, 3) the control of which objects to draw and the color of
drawn objects, 4) the desired labeling of objects on the image, 5) obtaining hard copy (e.g.
postscript files) of the image, and 6) video animation generation.

Graphics Window Control
The graphics window is where the meshing graphics will be displayed and is the default
viewport. The following attributes of the window can be controlled:

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual43

• WindowSize. The graphics window may be resized with the mouse, or with the commands

Graphics WindowSize Maximum

Graphics WindowSize <x_dimension> <y_dimension>

whereMaximum will make the graphics window as big as the screen and the
x_dimension andy_dimension are given in screen coordinates (pixels).

• Background Color. The window background color defaults to black but can be changed at
any time using the command

Color Background <color_name>

Color Background <color_number>

wherecolor_name is one of the colors listed in Appendix D, andcolor_number is an
integer ID identifying the color. The background color can also be set using theGraphics
menuColor dialog box as explained in section “Color” on page 50.

Multiple graphics windows can be created if desired. If multiple graphics windows are
generated, only one of the display windows is active at any point in time -- that is, user
commands which affect the graphics display only affect the currently active window. The
following user capabilities are provided:

• Create Window. Create a new window using the command

Graphics Window Create <window_id>

wherewindow_id is an integer graphics window identifier in the range 1-9 (window 0
always exists). When a window is created, it is initialized to the default graphics state.

• Delete Window. Delete an existing window (note: window 0 cannot be deleted) using the
command

Graphics Window Delete <window_id>

wherewindow_id is the integer graphics window identifier of the window to be deleted.

Set Current Active Window. Select the graphics window which is to be currently active
using the command

Graphics Window Active <window_id>

where window_id is the integer graphics window identifier of the selected graphics window
(range 0-9).

Image Rendering Control
The type, quality, and speed of the rendered image can be controlled in CUBIT using several
graphics mode types and rendering options. The graphics mode type is set by using the
Graphics Mode Type option menu. The available graphics mode types are:

• Wireframe . Wireframe drawing is the quickest mode, but it also can be the most confusing if
the mesh or the geometry is very complex. No hiddenline processing is done. The command
to set this mode is

Graphics Mode Wireframe

• HiddenLine. This option produces an accurate hiddenline representation of the mesh or
geometry. The command to set this mode is

Graphics Mode HiddenLine

CHAPTER 3 Environment

44 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• PolygonFill. This option is similar to flat shading, but uses a slightly different algorithm. The
command to set this mode is

Graphics Mode PolygonFill

• Painters1. This option produces a shaded image where each polygon is drawn in a single
shade. The polygons are drawn in a depth-sorted order. Although a correct rendering is
produced for most images, there are cases where an incorrect image may be rendered. This
mode is usually faster than the FlatShade and SmoothShade modes. The command to set this
mode is

Graphics Mode Painters

• FlatShade. This option produces images where each polygon is drawn in a single shade. The
image is slightly degraded with this option, but the speed of rendering is improved. The
command to set this mode is

Graphics Mode FlatShade

• SmoothShade. A smoothshaded image produces the highest quality picture, but at the most
expense. Colors are blended continuously over the drawn surfaces. The command to set this
mode is

Graphics Mode SmoothShade

• Dual. This mode is designed to show the dual of the mesh as generated during whisker
weaving. With this setting, the outside element edges are drawn as wireframe and the whisker
sheets are drawn in smooth shading. This allows for a nice image of the structure of the dual
of a hexahedral mesh. The command to set this mode is

Graphics Mode Dual

Graphics mode options control details of how the image is controlled between displays, and the
type of enhancements added to the regular drawing modes. All options default toOn at the start
of execution. The graphics mode options available in CUBIT are:

• Autocenter. This option automatically centers the model in the viewport. The command to
set this option is

Graphics Autocenter {On | Off}

• Autoclear. This option automatically clears the graphics window between displays, or
updates. The command to set this option is

Graphics Autoclear {On | Off}

• Border. This option draws a border around the current viewport. The command to set this
option is

Graphics Border {On | Off}

• Axis. This option controls the display of the axis or coordinate triad. The command to set this
option is

Graphics Axis {On | Off}

1. The terminology “painters” is used since it draws the scene similar to the method used by a painter who might paint closer

objects over more distant objects.

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual45

• LineWidth . This option controls the width of the lines used in the wireframe and hiddenline
displays. The command to set the line width is

Graphics LineWidth <width>

• Text Size. This option controls the size of text drawn in the graphics window. The size given
in this command is the desired size relative to the default size. The command to set the text
size is

Graphics Text [Size] <size>

All option settings take affect at the time they are selected, it is not necessary to apply the
changes. TheSet View Parameters is a short-cut method for popping-up the Graphics View
Dialog Box described in the next section.

Two additional commands,

graphics clear

graphics center

are available from the command line to perform a one-time only clear of the graphics window
or centering of the model in the viewport. They do not affect the setting of the autoclear and
autocenter toggles.

Viewing the Model
Figure 3-1.shows a schematic of the variables that effect the view of the object. Adjusting these

variables will effect the way the three-dimensional model is projected onto the two-dimensional
screen. These adjustments require you to update the display to see the results. The following
adjustments can be made by the user:

• View At Point. The point you are viewing or looking ‘at’ can be set using theX, Y, andZ
coordinates of theView ‘At’ text fields. To set the looking ‘at’ point using the command line,
issue the command

[View] At <x> <y> <z>

Figure 3-1 Schematic of From, At, Up, and Perspective Angle

Perspective Angle

View From View At

View Up

CHAPTER 3 Environment

46 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• View From Vector. The point you are viewing ‘from’ can be set using theX, Y, andZ
coordinates of theView ‘From’ text fields. If automatic centering (see “Image Rendering
Control” on page 43) is on, the input ‘from’ vector defines a relative viewpoint away from the
‘at’ point, in the direction of the ‘from’ vector. The magnitude of the ‘from’ vector is
computed so that the picture fits nicely on the screen. When automatic centering is off, the
‘from’ vector defines an absolute viewpoint. To set the viewing ‘from’ vector using the
command line, issue the command

[View] From <x> <y> <z>

• Up Vector. The up vector sets the orientation for the graphical display. In other words, along
the line which connects the ‘from’ and the ‘at’ point, the up vector specifies which direction
is displayed as up on the screen. This can be set using the command

[View] Up <x> <y> <z>

• Rotate. The rotation of the view can be specified by an angle about a world axis, or about a
screen axis vector positioned at the focus point (Screen) or the camera. Additionally rotations
can be specified about any general axis by specifying start and end points to define the general
vector. Theright hand rule is used in all rotations. To rotate about an axis, use the command

[Rotate <angle> About [Screen | World | Camera] {X | Y | Z}
[Animation Steps <number>]

The command defaults to the Screen coordinate system (rotations about a screen axis that is
translated to the focus point). The Animation Steps option is included in this command (and
all other rotation commands) to allow the user to perform a “smooth” rotation using several
steps. This will let the picture appear to start and stop the total rotationsmoothly. This is
particularly useful when producing a video animation sequence (“Video Animations” on
page 51) where a smooth sequence is desired. If the video system has been initialized, the
animation command will take a snapshot at each step of the rotation.

Continuous rotations about any axis can be performed by double clicking one of the+ or -
buttons. The view is changed in sequential steps by the rotation increment specified. The
screen is updated as fast as the picture can be processed. When the desired view is obtained
the continuous rotations can be stopped by clicking the mouse somewhere in the View dialog
box. These continuous rotations are not actually sent as commands to the parser, and as such
are not stored in the journal file. To save the final state of the viewing angle, push theGet
Current Values button in Figure 3-6 followed by theApply and Update button. This will
store the viewing parameters in the journal file. Continuous rotations are not available in the
command line version.

Rotations can also be performed about the line joining the two vertices of a curve in the
model, or a line connecting two vertices in the model. This is done with the commands1

Rotate <angle> About Curve <curve>
[Animation Steps <number>]

Rotate <angle> About Vertex <vertex_1> Vertex <vertex_2>
[Animation Steps <number>]

• Perspective. The perspective angle can be set to adjust the relative perspective distortion of
the view. A value of 0.0 will produce no distortion as if the viewing “from” location was at

1. See “Geometry Definition” on page 63 for definitions of Curve and Vertex

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual47

infinity. A larger value will produce more distortion. Values of about 15.0 degrees are
normal. The perspective angle is set using the command

Graphics Perspective Angle <angle>

A more convenient method of adjusting the perspective is with a simple on/off toggle. This
toggles the perspective angle between 0.0 and the current setting. The command to toggle
perspective on and off is

Graphics Perspective {On | Off}

• Zooming. The image can be zoomed to provide a close-up view of portions of the image. The
command used for mouse-based zooming is

[Graphics] Zoom Cursor

After entering the command, move the cursor to the graphics window and click the left
mouse button at both corners of the desired zoom area. The command for performing a zoom
is

[Graphics] Zoom <x_min> <y_min> <x_max> <y_max>

where the values specified are in screen coordinates (between 0 & 1). The Zoom Reset
command updates the zoom limits to a size appropriate to capture all currently defined
entities:

[Graphics] Zoom Reset

A simplified command line version of zoom has also been implemented that takes a single
argument. The command syntax is defined as

[Graphics] Zoom Screen <scale_factor>

where scale_factor scales the view distance. Values of scale_factor > 1.0 zoom in toward the
focus point while values of scale_factor < 1.0 zoom away out from the focus location. The
best way to think of this is to think of a magnifying glass, a 2x zoom would magnify an
object. Zooming can also be done on a particular entity in the model. For example a vertex or
a curve can be zoomed in on using the command:

[Graphics] Zoom {group|body|volume|surface|curve|vertex} <entity_id>

The commands

List View

View List

will list the current values of the At point, From point, Up vector, and Perspective angle in the
command line version.These are useful after doing multiple rotations, to journal a viewing
angle

• Mouse-based view manipulation. The viewing parameters can also be modified
interactively using the mouse. This is done by clicking and dragging the mouse while in
“mouse” mode. While in mouse mode, the left mouse button is for rotating, the middle for
zooming, and the right for panning. The best way to get a feel for how it works is to enter
mouse mode and start experimenting. To enter “mouse” mode, enter the following at the
CUBIT command line:

Mouse

Upon entering “mouse” mode, a list of options are displayed in the command line window.
These options provide alternative ways of viewing the model while modifying the viewing

CHAPTER 3 Environment

48 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

parameters. For example, if the model or mesh being viewed is very complex and detailed, the
time required to re-display the model may take too long for the mouse-based manipulation to
be effective. In this case, ‘b’ can be entered (while in mouse mode and while the mouse is
anywhere in the graphics window) at the keyboard to toggle bounding box display on. When
displaying in bounding box mode, only the bounding box or the model will be displayed while
dragging the mouse in the window.

A similar command for 2D viewing is also available. This command only provides panning and
zooming. The command is:

Mouse2D

Displaying Entities
The entities to be drawn in the current image can be controlled to limit the amount of
information presented on the screen. There are two distinct modes of getting entities to the
screen. The first is to set the visibility of the entities desired to be on and to turn the rest off. This
visibility control establishes a “display list” of items that will be included in the image every
time it is redrawn with adisplay command. The second method is animmediate mode drawing
capability. Using a number ofdraw commands, individual items can be drawn onto the current
picture. A draw command does not put the designated entities on the “display list” - it simply
draws their wire frame image over the top of the current image. This immediate mode drawing
is useful in highlighting specific nodes, faces, etc., but will not change the picture that is
displayed when the image is updated using thedisplay command. This section uses geometry
and mesh terms defined in “Geometry Definition” on page 63, “Mesh Definition” on page 81,
and “Finite Element Model Definition” on page 133. The reader may want to read those sections
prior to reading the following discussion.

Drawing Entities

The series ofDraw commands allow inspection of individual geometric and mesh entities.
Individual entities or ranges of entities can be displayed. The draw commands affect the
graphics system only temporarily and updating the display will show only those items actually
in the display list.

The command line equivalent to draw selective entities is:

draw {body | curve | edge | face | hex | volume |
node | nodeset | sideset | surface | vertex | group} <id_range>

If autoclear mode is enabled, eachdraw command will clear the screen prior to updating the
display. Ifautoclear mode is disabled, the specified entities will be added to the current set of
displayed entities. An explicitclear command may be issued at any time to clear the display.

Highlighting Entities

An entity can be highlighted without erasing the remainder of the displayed model using the
Highlight commands. These commands highlight the entity in the highlight color. The highlight
commands available on the command line are:

highlight {body | curve | surface | vertex | volume} <id_range>

Currently, the highlight color is defaulted to a light gray.

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual49

Setting Visibility

Visibility of the geometry and the mesh is controlled by the use of global settings as well
as through the use of individual (selective) geometric entity settings. For an entity to be
visible, both the global setting and its individual visibility (if any) must be set on. In addi-
tion for mesh entities, the global mesh visibility flag, and the mesh visibility for the own-
ing geometric entity, must be on as well.

• Global Settings

The following global settings can be used to adjust the visibility of groups of entities.

• Geometry . This controls the global visibility of geometry.

• Mesh . This controls the global visibility of mesh. If off, it overrides the specific global
settings below.

• Node . This controls the visibility of mesh nodes (small dots). Defaults to off.

• Edge. This controls the visibility of mesh edges (line segments).

• Face.This controls the visiblity of mesh faces (outlined by edges).

• Hex. This controls the visiblity of mesh hexes (outlined by edges). Defaults to off.

• Vertex . This controls the visibility of geometric vertices (small dots). Defaults to off.

• Hardpoint. This controls the visibility of mesh nodes

• NodeSet . This controls the visibility of NodeSets (by nodes in the NodeSets). In order
for NodeSets to be drawn, global node visibility must be on as well.

• SideSet . This controls the visibility of SideSets (by faces in the SideSets). In order for
the SideSets to be drawn, global face visibility must be on as well.

The commands for setting global visibility flags are:

Geometry [Visibility] [on|off]

Hardpoint visibility [on|off]

Mesh [Visibility] [on|off]

{Hex|Face|Edge|Node} Visibility [on|off]

Node [Visibility] [on|off]

NodeSet [Visibility] [on|off]

SideSet [Visibility] [on|off]

Vertex [Visibility] [on|off]

• Individual Geometric Entity Settings

Two visibility flags are attached to individual geometric entities: 1) a flag indicating
whether the geometry itself is to be included in the display list (visible), and 2) a flag to
indicate if the mesh attached to the geometry is to be visible. For each geometric entity,
the visibility of the item and any owned mesh can be set, or just the geometry visibility or
the mesh visibility can be set. The visibility for bodies, volumes and surfaces can also be
set with this interface.

CHAPTER 3 Environment

50 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

The commands for setting selective visibility flags are:

{body | volume | surface | sheet | group} <range> visibility {on | off}

{body | volume | surface | group} <range> geometry visibility {on | off}

{body | volume | surface | group} <range> mesh visibility {on | off}

In addition, the visibility of mesh entities attatched to genesis data can be controlled:

{Block | NodeSet | SideSet} <range> Visibility [on|off]

Color
The Color commands give the user customization control of the screen appearance of any
geometric entity and its owned mesh entities. The default color used for an entity is the color of
the owning entity1. For example, if the color of a curve is not specifically set, it inherits the color
of the owning surface. Mesh entity colors are determined by the owning geometry entity, unless
set specifically according to the nodeset, sideset, or mesh entity color commands. The user can
also control the color of the screen background.

The colors available at this time are listed in Appendix D. The commands to change colors are:

color {body | volume | surface | nodeset | sideset | block | sheet | group}
<id_range> <color name>

color {body | volume | surface | group} <id_range> mesh <color name>

color {body | volume | surface | group} <id_range> geometry <color name>

color {node | background} <color_name>

Entity Labeling
All geometric entities can be labelled with unique (to their geometric type) labels and,
optionally the number of mesh intervals assigned to the entity, to enable specific entity
identification. All mesh entities can also be labelled with unique (to their mesh entity type)
labels to enable specific entity identification. In addition, the names of the geometric entities can
also be used for the label. If the The labels are turned on or off by using theLabel commands.

The labels will be displayed on the entity’s centroid, which is helpful in the screen picking
operations. The screen picks try to locate the entity with the closest centroid to the actual screen
pick. Thus by turning entity labelling on, the user knows exactly where to click the pointing
device in order to pick a specific entity. Labels are also useful in determining which entities were
merged during a Feature Consolidation operation.

1. See “Topology” on page 63 and “Mesh Definition” on page 81 for a description of the ownership of geometric and

mesh entities.

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual51

The commands controlling labeling are:

label all {on | off}

label geometry {on | off}

label mesh {on | off}

label {body | volume | surface | curve | vertex} {on|off|name|interval|id}

Label {face | edge | hex | node} {on | off}

In addition, the size of text drawn to the graphics display, which includes entity labels, can be
adjusted with theGraphics Text Size command; the command line syntax for this command is:

Graphics Text Size <size_factor>

where<size_factor> is a scaling factor relative to the default text size.

Hardcopy Output
Thehardcopy command is used to capture graphics output to a PostScript or PICT file. Color
or monochrome PostScript and encapsulated PostScript files are available. The commands for
generating harcopy output are:

hardcopy ’<filename>’ [encapsulated|postscript|eps] [color|monochrome]

Hardcopy ‘<filename>’ pict [xsize <xpixels>] [ysize <ypixels>]

where xsize and ysize specify the pixel size of the created PICT image.

Video Animations
Several commands are available for generating a video recording of the graphics on the screen.
The actual video initialization and recording has been set to work with the system in the
graphics lab of the computational mechanics department. To initialize the video system, the
commands

Video Initialize [Frames <frames>]

Video Initialize ‘<base_filename>’ pict [xsize <xsize>] [ysize <ysize>]

are used. The first command will set up the recording devices, move the recorder to the first
available frame, and set the system ready to record the picture displayed on the workstation
screen next to the video recording equipment. The disk will be initialized to the specified
number of frames or 2000 if not specified. It has been found that resizing the window with the
following commands positions the graphics display in the proper position for optimal recording:

Graphics WindowSize Maximum

Graphics WindowSize 1170 820

The second command is used to create a separate PICT file of each frame. These PICT files can
then be converted into a QuickTime or MPEG animation file using external software. The
base_filename will have the frame number appended to the end to specify the sequence. The
default PICT size is 640 pixels horizontal by 480 pixels vertical.

The video animation can now be generated by taking sequential snapshots of the screen. Each
snapshot is captured by issuing the command:

Video Snap

CHAPTER 3 Environment

52 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Many of the meshing algorithms have been imbedded with flags that allow incremental snaps
during the meshing process. These flags are activated by the initialization of the video device.
This allows the generation of video animations of the meshing process rather easily. Often it is
useful during an animation sequence to spin the picture around for the viewer to see the
geometry and/or the mesh. These spins will appear choppy on the resulting video unless the
object starts and stops rotationsmoothly. The animated rotations described in the rotation
section on page 46 is designed to provide thissmooth rotation effect. These commands are also
useful for showing the model to others during demonstrations. For video animations, 30 to 60
steps are needed when making a full revolution. If the video system has been initialized, the
animation command will take a snapshot at each step of the rotation.

▼ Model Information
Information about the current CUBIT model can be obtained through theList commands. There
are five general areas for which this information can be obtained: Model Summary, Geometry,
Mesh, Special Entities, and Other. These are described in detail below. The descriptions will
include sample output for some of the commands. To provide a frame of reference, the output
will be for a 1x2x3 cube meshed with an average element size of 0.1 specified for the body. The
journal file used to create the model is shown in Table 3-1.

Model Summary Information
A brief summary of the current state of the model can be obtained from the list totals or list
model command. The same information results from either command and provides information
on the number of each type of geometric, mesh, and special entity in the current model. A
sample output is shown in Table 3-2.

Geometry Information
The commands related to listing information about the geometry of the model are

list names [group|body|volume|surface|curve|vertex|all]

list {group | body | volume | surface | curve | vertex} [ids]

list {group | body | volume | surface | curve | vertex} <id_range>
[geometry] [debug]

The first command will list names currently used in the model and their corresponding entity
type and id. If theall identifier is specified, all names in the model will be listed; if one of the
other identifiers is entered, only names for that specific entity type will be output. Sample output

Table 3-1 CUBIT Journal file used for List Output Examples

brick x 1 y 2 z 3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group “Surfaces” add surface 1 to 6

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual53

from the list names surface command is shown in Table 3-3. This output shows that, for
example, Surface 2 has the name ‘BackSurface ’.

The second command provides information on the number of entities in the model and their
identification numbers. For large models in which several geometry decomposition operations
have performed, this information is sometimes very useful. Sample output from the list surface
ids command is show in the top portion of Table 3-4. For this simple problem, the information

Table 3-2Sample Output from ‘List Model’ Command

CUBIT> list model

Model Entity totals:

 Geometric Entities:

 Total groups: 1

 Total bodies: 1

 Total volumes: 1

 Total surfaces: 6

 Total curves: 12

 Total vertices: 8

 Mesh Entities:

 Total Hex elements: 6000

 Total mesh faces: 7876

 Total mesh edges: 9854

 Total mesh nodes: 7161

 Special Entities:

 Total Element Blocks: 1

 Total SideSets: 1

 Total Nodesets: 1

 Total BoundaryLayers: 0

Table 3-3Sample Output from ‘List Names’ Command

CUBIT> list name surf

______Name______ Entity Id

BackSurface Surface 2

BottomSurface Surface 3

FrontSurface Surface 1

LeftSurface Surface 4

RightSurface Surface 6

TopSurface Surface 5

CHAPTER 3 Environment

54 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

is not very enlightening, output from a more complicated example is shown in the bottom
portion of Table 3-4.

The second geometry-related information command provides more detailed information for
each of the specific entities. This information will include the name and id of the entity, its
meshed status, the number of owned mesh entities (if it is meshed), the settings for various
meshing-related parameters (scheme, smooth scheme, size, and number of intervals), and a
summary of the next lower-dimension geometry entities that make up this entity. The optional
geometry identifier will additionally list the geometric bounding box for the entity. The
optionaldebug identifier provides additional solid model information that is typically only of
interest to developers of the geometry-related code. Table 3-5 through Table 3-10 show sample
output for each of the group, body, volume, surface, curve, and vertex listing options.

Mesh Information
The command related to listing information about the model mesh is:

list { hex | face | edge | node } <id_range>

The output from this command provides detailed information about the specified entities. This
information will include the id of the entity, its owning geometry entity, and other entity-specific
information. The hex output will indicate the Exodus Id1, the volume which owns the hex
element, and the eight corner nodes (in standard Exodus order). The face output lists the volume
or surface which owns the mesh face, its four corner nodes, and a list of hexes that possibly share

Table 3-4Sample Output from ‘List Surface Ids’ Command

CUBIT> list surf id
There are 6 surfaces in the model. Their ids are:
 1 to 6

CUBIT> list surf id
There are 108 surfaces in the model. Their ids are:
 192 to 266, 268 to 271, 273 to 301

Table 3-5Sample Output from ‘List Group’ Command

Group Entity ‘Surfaces’ (Id = 1)

 Owned Entities:

 ______Name______ ____Entity___ Scheme/Meshed Int Int Size

FrontSurface Surface 1 map/Y 1 0.100000

BackSurface Surface 2 map/Y 1 0.100000

BottomSurface Surface 3 map/Y 1 0.100000

LeftSurface Surface 4 map/Y 1 0.100000

TopSurface Surface 5 map/Y 1 0.100000

RightSurface Surface 6 map/Y 1 0.100000

Table 3-6Sample Output from ‘List Body’ Command

CUBIT> list body 1

Body Entity ‘Body 1’ (Id = 1)

 Owned Volumes:

 ______Name______ Id: Meshed: Use Count:

Volume 1 1 Yes 1

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual55

this face. The edge output lists the volume, surface, or curve which owns the mesh edge, its two
end nodes, the length of the edge, and a list of faces that possibly share this edge. The node
output lists the coordinates and the volume, surface, curve, or vertex that owns the node.

1. The id of the hex when written to the Exodus database, not the CUBIT id. The default value is -1 before writing the

Exodus database.

Table 3-7Sample Output from ‘List Volume’ Command

CUBIT> list volume 1

Volume Entity ‘Volume 1’ (Id = 1)

 Meshed: Yes

 Mesh Scheme: map (default)

 Smooth Scheme: equipotential

 Interval Count: 1

 Interval Size: 0.100000

 Block Id: 1

 Owned Surfaces: Mesh Scheme/ Interval:

 ______Name______ Id Meshed Smooth Scheme # Size

 Surface1 1 map/Y equipotential 1 0.100000

 Surface2 2 map/Y equipotential 1 0.100000

 Surface3 3 map/Y equipotential 1 0.100000

 Surface4 4 map/Y equipotential 1 0.100000

 Surface5 5 map/Y equipotential 1 0.100000

 Surface6 6 map/Y equipotential 1 0.100000

Table 3-8Sample Output from ‘List Surface’ Command

CUBIT> list surf 1

Surface Entity ‘FrontSurface’ (Id = 1)

 Meshed: Yes

 Total element faces: 200

 Total nodes (all inclusive): 231

 Mesh Scheme: map (default)

 Smooth Scheme: equipotential

 Interval Count: 1

 Interval Size: 0.100000

 Block Id: 0

 Total number of curves: 4

 Scheme/ Interval: Vertices:

______Name______ Id Meshed Length Number Size Factor Start, End

 Curve1 1 equal/Y 2 20 H 0.1 1/Y 2/Y

 Curve2 2 equal/Y 1 10 H 0.1 2/Y 3/Y

 Curve3 3 equal/Y 2 20 H 0.1 3/Y 4/Y

 Curve4 4 equal/Y 1 10 H 0.1 4/Y 1/Y

CHAPTER 3 Environment

56 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Table 3-11 through Table 3-14 show sample output for each of the hex, face, edge, and node
options.

Special Entity Information
Special entities include element blocks, sidesets and nodesets (boundary conditions), and
boundary layers. Information specific to whisker weaving and dicing, including whisker sheets,
whisker hexes, and dicer sheets, are also considered special entities. This information includes
the number of mesh entities in the special entity and a list of the geometry entities owned by the
special entity. Sample output for the list block, list sideset, and list nodeset commands are show
in Table 3-15, Table 3-16, and Table 3-17, respectively.

Table 3-9Sample Output from ‘List Curve’ Command

CUBIT> list curve 1 to 12 by 2

 Scheme/ Interval: Vertices:

______Name______ Id Meshed Length Number Size Factor Start, End

 Curve1 1 equal/Y 2 20 H 0.1 1/Y 2/Y

 Curve3 3 equal/Y 2 20 H 0.1 3/Y 4/Y

 Curve5 5 equal/Y 2 20 H 0.1 5/Y 6/Y

 Curve7 7 equal/Y 2 20 H 0.1 7/Y 8/Y

 Curve9 9 equal/Y 3 30 H 0.1 4/Y 7/Y

 Curve11 11 equal/Y 3 30 H 0.1 3/Y 8/Y

Table 3-10Sample Output from ‘List Vertex’ Command

CUBIT> list vertex 1 to 8

______Name______ Id Meshed X-coord Y-coord Z-coord

 Vertex1 1 Yes 0.500000 -1.000000 1.500000

 Vertex2 2 Yes 0.500000 1.000000 1.500000

 Vertex3 3 Yes -0.500000 1.000000 1.500000

 Vertex4 4 Yes -0.500000 -1.000000 1.500000

 Vertex5 5 Yes 0.500000 1.000000 -1.500000

 Vertex6 6 Yes 0.500000 -1.000000 -1.500000

 Vertex7 7 Yes -0.500000 -1.000000 -1.500000

 Vertex8 8 Yes -0.500000 1.000000 -1.500000

Table 3-11Sample Output from ‘List Hex’ Command

CUBIT> list hex 1000 to 6000 by 1000

 Hex ID Exodus ID Owned By Contains Nodes:

 1000 1000 Volume 1 2886 1358 28 126

 3057 1357 27 125

 2000 2000 Volume 1 3741 1353 23 121

 3912 1352 22 120

 3000 3000 Volume 1 4596 1348 18 116

 4767 1347 17 115

 4000 4000 Volume 1 5451 1343 13 111

 5622 1342 12 110

 5000 5000 Volume 1 6306 1338 8 106

 6477 1337 7 105

 6000 6000 Volume 1 7161 1333 3 101

 691 690 1 82

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual57

Other Information
Other non-geometry and non-mesh information is also provided through the list commands.
These include message output settings, memory usage, and graphics settings.

Table 3-12Sample Output from ‘List Face’ Command

CUBIT> list face 1 to 7876 by 1000

 Mesh Face Owned By Nodal Connectivity Shared by Hexes:

 1 Surface 6 1 3 101 82 6000

 1001 Surface 3 662 1072 1101 682 5820

 2001 Surface 5 2009 2010 2039 2038 3921

 3001 Volume 1 2143 2412 2583 2142 441 461

 4001 Volume 1 1208 3646 3665 1237 1700 1900

 5001 Volume 1 4577 1319 1318 4748 2960 2980

 6001 Volume 1 5777 5776 602 573 4183 4383

 7001 Volume 1 6638 6637 6808 6809 5389

Table 3-13Sample Output from ‘List Edge’ Command

CUBIT> list edge 1 to 9854 by 1000

 Edge Owned By Start/End Node Length Shared by Faces:

 1 Curve 10 1 3 0.100000 1 1271

 1001 Surface 6 543 542 0.100000 458 488 6331

 2001 Surface 2 1047 1046 0.100000 954 974 2300

 3001 Surface 4 1543 1542 0.100000 1458 1488 6230

 4001 Surface 5 1992 2021 0.100000 1982 1983 3852

 5001 Volume 1 2393 2222 0.100000 2830 2831 2836

 6001 Volume 1 3551 3532 0.100000 3854 3855 4018

 7001 Volume 1 4589 319 0.100000 4879 4880 4883 5043

 8001 Volume 1 5629 5458 0.100000 5905 5906 5909

 9001 Volume 1 6668 6497 0.100000 6930 6931 6936

Table 3-14Sample Output from ‘List Node’ Command

CUBIT> list node 1 to 7161 by 1000

 Node X-coord Y-coord Z-coord Owner

 1 0.500000 -1.000000 1.500000 Vertex 1

 1001 -0.100000 0.400000 -1.500000 Surface 2

 2001 0.200000 1.000000 1.300000 Surface 5

 3001 0.200000 0.900000 -1.000000 Volume 1

 4001 0.000000 -0.300000 -0.400000 Volume 1

 5001 -0.100000 0.400000 0.200000 Volume 1

 6001 -0.300000 -0.800000 0.800000 Volume 1

 7001 -0.400000 -0.100000 1.400000 Volume 1

Table 3-15Sample Output from ‘List Block’ Command

CUBIT> list block 1

Block 1 contains 6000 3D element(s) of type HEX8.

 Owned Entities:

 Volume 1 Meshed

CHAPTER 3 Environment

58 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Message Output Settings

There are several types of messages output by CUBIT that are of interest to CUBIT users and
developers. These messages and the type of information they convey are:

• Information- messages that contain information that is helpful to the user, but not critical to
the operation of the program.

• Warning - messages that signal problems that may or may not be important to the operation
of CUBIT.

• Error - messages signaling errors in the operation of CUBIT; these types of errors usually
result in the termination of the program.

• Debug -debugging messages used by CUBIT developers.

The printing of Information, Warning and Debug messages can be turned on or off with the
appropriate set command (Error messages are always printed). There are multiple Debug
message flags, each controlling debug output for a different part of CUBIT. The value of each
message flag or all message flags can be printed with theList Settings command. The
commands used to print the value of message flags are:

list {echo | info | warning | journal | debug | settings}

Message flags can also be set using command line options; the Warning and Information flags
are set with-warning={on|off} and -information={on|off} options, respectively. The
Debug flags are set with-debug=<setting> , where<setting> is a comma-separated list of
integers or ranges of integers. An integer range is specified by separating the beginning and the
end of the range by a hyphen. For example, to set debug flags 1, 3, and 8 to 10 on, the syntax
would be -debug=1,3,8-10. Flags not specified are off by default. Debug messages are typically
of importance only to developers and are not normally used in normal execution.

TheList Settings command lists the value of all the message flags, as well as the journal file
and command echo settings; an example of the output from this command is shown in Table 3-
18. The first several lines indicate the current settings of the debug flags, where the debug output
will be output if the flag is on, and a short description of the purpose of the debug flag. For
example, debug flag is enabled, its output will be written to the file ‘timing.log’ and the purpose
of the flag is to output timing information.

Following the debug flag information is the settings of the echo, info, journal, and warning flags.
Typically these should always be enabled. The final line of the output indicates whether logging
is enabled and if so, where the information will be output. If logging is enabled, all echo, info,

Table 3-16Sample Output from ‘List SideSet’ Command

CUBIT> list sideset 1

SideSet 1: contains 200 element sides.

 Owned Entities:

 Surface 2 Meshed

Table 3-17Sample Output from ‘List NodeSet’ Command

CUBIT> list nodeset 1

NodeSet 1: contains 231 nodes.

 Owned Entities:

 Surface 1 Meshed

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual59

warning, and error messages will be output both to the terminal and to the logging file. The other
options to the list command select specific subsets of the list settings output.

The settings of the info, warning, journal, logging, and debug flags is set via the following
commands:

[set] logging {on | off} file ‘filename’

[set] {info | warning | journal} {on | off}

[set] debug <id> {on | off} terminal

[set] debug <id> {on | off} file ‘filename’.

Graphical Display Information

The list view command provides information about the current settings of various graphics
parameters. Sample output from this command is shown in Table 3-19. See the description of
the See “Graphics” on page 42. for a description of this information.

Memory Usage Information

Information about CUBIT’s memory usage can be obtained from thelist memory command.
An optional identifier can be specified which will restrict the output to the memory usage for
those types of objects only. The command syntax is:

List Memory [‘<object type>’]

Sample output from the list memory command is shown in Table 3-20. This output is typically
only of interest to CUBIT developers, so no interpretation of the output will be given here. If
you need more details on this command, please contact one of the CUBIT developers..

Table 3-18Sample Output from ‘List Settings’ Command

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

 1 OFF terminal User Interface: If flag is enabled, filenames being

used for input will be echoed and each input line

will be echoed prior to being parsed.

 2 OFF terminal Whisker weaving information

 3 ON ‘timing.log’ Timing information for 3D Meshing routines.

 4 OFF terminal Testing of video generation - if on then

video specific drawing is enabled and related debug

statements will be printed.

... (several lines deleted) ...
45 OFF terminal Pillow Sheet debugging

46 OFF terminal Paver breakout detection (expensive)

echo = On

info = On

journal = On

warning = On

logging = On, log file = ‘test.log’

CHAPTER 3 Environment

60 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

▼ Picking
A limited command-line capability exists to pick geometric entities in the CUBIT model. The
user issues thePick command, then clicks on the entity to be identified; CUBIT then reports

Table 3-19Sample Output from ‘List View’ Command

CUBIT> list view

...Current View Parameters

 From: < 0.000000i 0.000000j 5.654066k> (absolute)

 At: < 0.000000i 0.000000j 0.000000k>

 Up: < 0.000000i 1.000000j 0.000000k>

 View: < 0.000000i 0.000000j 1.000000k> (From - At, normalized)

 Distance from ‘from’ to ‘at’ is 5.654066.

 Displayed view size is 4.115823 horizontal by 4.115823 vertical.

 Perspective Angle is 40.000000 degrees.

 Drawing Mode is ‘wireframe’.

 AutoCenter ON, AutoClear ON, Axis OFF, Border ON.

Table 3-20Sample Output from ‘List Memory’ Command

CUBIT> list memory

Dynamic Memory Allocation per Object

... (several lines deleted) ...

Object Name: DLList

 Object Size: 48 Allocation Increment: 4096

 Allocated Objects: 4096 (bytes) 196608 (4% of Total)

 Free Objects: 142 (bytes) 6816 (3%)

 Used Objects: 3954 (bytes) 189792 (96%)

Object Name: ArrayMemory

 Object Size: 32 Allocation Increment: 8192

 Allocated Objects: 16384 (bytes) 524288 (12% of Total)

 Free Objects: 2508 (bytes) 80256 (15%)

 Used Objects: 13876 (bytes) 444032 (84%)

Total Memory Allocation Information (bytes)

 Allocated Memory: 4153344

 Free Memory: 358160 (8%)

 Used Memory: 3795184 (91%)

Total non-pool ArrayBasedContainer memory allocation = 123338 (bytes)

Maximum non-pool ArrayBasedContainer memory allocated = 132415 (bytes)

CHAPTER 3 Environment

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual61

the id number and name of the picked entity in the command window. The following picking
commands are available:

Pick {curve | surface | lump | volume | body | dicersheet [list] [multiple]}

If the [list] option is used, information about that entity is listed in the command window as if
theList command had been issued. If the[multiple] option is used, then multiple entities can
be picked with one issue of thePick command. When the[multiple] option is used, CUBIT is
put into a mode where multiple picking can occur. To exit this mode, type‘q’ at the CUBIT
command line while the mouse is still in the graphics window.

▼ Help Facility
Two help systems are available in CUBIT: an window-based hypertext help facility and a text-
based help facility.The user can access the hypertext help facility by typinghyperhelp and the
text-based help facility by enteringhelp or ?. To attain further information about specific
commands, the user can enter a specific keyword afterhyperhelp , or specific keywords and
identifiers before or afterhelp or ?.

The text-based help facility prints the syntax for all commands that contain all of the specified
keywords and identifiers to the standard output window. Unrecognized words and numbers are
ignored. If no word is entered and recognized, the valid keywords are listed instead. For
example:

CUBIT> volume 3 label fish ?

Help for words: volume & label

Label Volume [on|off|name|id|interval|size|merge|firmness]

Volume <volume_id_range> Label

[on|off|name|interval|id|size|merge| firmness]

The window-based hypertext help facility is accessed by typinghyperhelp <keyword> . A
window should pop-up containing a representation of the command index portion of this
manual. Additional keyword parameters can be entered following the keyword to obtain more
specific help. For example:view at hyperhelp would provide help on theview at command
rather than general help on theview command. Your system must be configured to enable this
capability; contact the CUBIT development team for configuration instructions.

CHAPTER 3 Environment

62 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual63

Chapter 4: Geometry
▼ Geometry Definition…63

▼ Geometry Creation…66

▼ Geometry Manipulation…71

▼ Geometry Decomposition…75

▼ Geometry Consolidation…76

This chapter describes methods available in CUBIT to produce and manipulate
the geometry needed for meshing. Definitions of geometric entities and the
structure of the nonmanifold geometry represented by CUBIT are given. This is
followed by sections describing geometry importation/exportation, creation and
modification. Geometry consolidation, the process of generating cellular
topology from a manifold model, and webcutting, the process of subdividing a
three-dimensional solid into volumes that are each meshable, are also
described.

▼ Geometry Definition
All geometric entities that exist in the CUBIT environment are represented by a solid model. In
two-dimensional modeling systems, a list of connected directional line segments is sufficient to
provide a complete and unambiguous geometric definition. In three dimensions, only a solid
model representation can guarantee complete and unambiguous geometry. All meshing tools
currently available in CUBIT use this solid model geometry when generating the discretized
representation of the geometry, i.e., the mesh. ACIS is the solid modeling engine currently
used by CUBIT. However, CUBIT uses its own reference geometry (that overlays the ACIS

geometry) to represent a non-manifold cellular topology for mesh generation.

Topology
Topology refers to the manner in which geometric entities are connected within a solid model.
Within CUBIT, the geometric entities consist ofvertices, curves, surfaces, volumes, andbodies.
A collection of one or more of these entities can be created and is called agroup.They are
defined as follows:

CHAPTER 4 Geometry

64 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Vertex

A vertex occupies a single point in space. A vertex is used to bound a curve and to specify a
location for a node. A vertex which is located in the interior of a surface is called a hard point.
It is used to force a node to be located at that specific geometric position.

Curve

A curve is a line (not necessarily straight) which is bounded by at least one but not more than
two vertices. An example of a single vertex curve might be the curve which bounds an end cap
surface of a cylinder(both ends of the curve meet the same vertex). A curve is used to bound a
surface. Curves may be generated independently of surfaces and can be used to specify the
geometry for a sequence of (topologically one-dimensional) bar or beam elements.

Surface

A surface in CUBIT is a finite, bounded portion of some geometric surface (finite or infinite).
A set of surfaces bound the material in a volume. Each surface is bounded by a set of curves.
Surfaces must have a finite area and must at least be bounded by one curve to be meshed in
CUBIT. Surfaces may be generated independently of three-dimensional (solid) volumes -- such
free surfaces may be used to specify the geometry for shell elements. A periodic surface is a
surface which is not contained within a single exterior loop of edges. It is termed periodic
because the regular parameterization of the surface has a discontinuity -- a jump from0 to 2π −
− in the periodic direction.

Volume

Volumes are volumetric regions and are always bounded by one or more surfaces. CUBIT
currently cannot mesh a volume bounded by only one surface (e.g. a sphere) since such a surface
has no bounding curves.

Body

A body is simply a set of volumes. It differs from volumes only in the fact that booleans are only
performed between bodies, not between volumes. The simplest body contains one volume.

Group

A group is a collection of one or more topological entities (including other groups).

Groups
Groups provide a powerful capability for performing operations on multiple geometric entities
with minimal input. They can also serve as a means for sorting geometric entities according to
various criteria.

The command syntax to create or modify a group is:

group {id | “name”} add <list of topology entities>

For example, the command,

group “Exterior” add surface 1 to 2, curve 3 to 5

will create the group namedExterior consisting of the listed topological entities. Any of the
commands that can be applied to the “regular” topological entities can also be applied to groups.

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual65

For example,mesh Exterior , list Exterior , or draw Exterior . A topological entity can be
removed from a group using the command:

group <id> remove <list of topology entities>

When a group is meshed, CUBIT will automatically perform an interval matching on all
mapped, submapped, and trimapped surfaces in the group (including surfaces that are a part of
volumes or bodies in the group).

Grouping Sweepable Volumes

There is currently a limited capability to use groups to define the proper order of meshing for
sweepable volumes. As is explained later in the section“Scheme Designation” on page 105,
swept meshing relies on the contstraint that the source and target meshes are topologically
identical or the target surface is unmeshed. To help satisfy this constraint, a grouping method
may be used to group all of the volumes that form a “sweeping chain”, or in other words, it
groups the volumes in proper order of dependencies of meshing. For example, if the model was
a series of connected cylinders, the proper way to mesh the model would be to sweep each
volume starting at the top (or bottom) and continuing through each successive connected
volume. With larger models and with models that contain voluems that require many source
surfaces, the process of determing the correct sweeping ordering becomes tedious. To automate
this the following command was added:

group sweep volumes

This command will search the model for volumes whose meshing schemes have been previously
selected (either automatically or by the user), and group these volumes in a meshable order. The
command will automatically generate groups of volumes which can be used to mesh the
sweepable pieces.

Geometry Entity Identifier Ranges
The specification of geometric entities depends on identifying the objects by topology type, e.g.
Vertex, Curve, etc. Geometric entity id ranges can be specified using the normal id range
capabilities (see “Identifier Ranges” on page 23); id ranges for geometric entities

The following range parsing is also allowed for geometry entities:

<id_range> = all Selects all identifiers for a given

Cellular Topology
Cellular topology (a form of nonmanifold topology) allows the connection of any number of
surfaces to a curve. A typical manifold or 2-manifold model allows a maximum of two surfaces
to share a single curve. Cellular topology allows two adjacent volumes to share a common
surface between them as shown in Figure 4-1. It also allows the formation of dangling faces and
edges (Figure 4-2). These topological constructs are often required when generating meshes for
complex geometries.

Cellular topology’s advantage for mesh generation is that, when used properly, it eliminates the
problem of equivalencing the mesh entities that are supposed to be shared between adjacent
geometric entities (for instance, the common surface, Web, shown in Figure 4-1). It also

CHAPTER 4 Geometry

66 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

supports the formation of dangling faces and dangling edges as shown in Figure 4-2. This allows
the proper connection of beam, surface, and solid mesh elements.

▼ Geometry Creation
The examples in “Examples” on page 159 show solid model construction using several standard
techniques. One technique is to create primitives (e.g., bricks, cylinders, spheres, etc.) and to
then perform booleans (e.g., subtractions, intersections, and unions) on the primitives to
generate more complex geometric shapes. Another approach is to construct two-dimensional
planar geometry and then perform sweep operations (either along a path or about an axis) to
create three-dimensional solids. These geometry creation techniques can be combined to create
arbitrarily complex geometries.

The creation of geometric primitives, their manipulation and positioning will be discussed first
in this section, followed by a discussion of the boolean and sweep operations. Although CUBIT
provides some geometry creation capabilities, it does not claim to be a geometric modeling
package. In light of this, CUBIT allows the importation of geometry produced using several
external programs. Several of these packages and the supported file formats are discussed later
in this section.

Since the geometry acts as the template for discretization into a mesh, care must be taken to
ensure an appropriate representation for the problem being analyzed. Users will find that
building solid models of “real parts” will likely consist of a combination of the approaches
mentioned above.

Figure 4-1 Cellular Topology Between Volumes

Figure 4-2 Dangling Faces & Edges

WebLump 1 Lump 2

Lump

Dangling
Face

Dangling
Edge

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual67

Geometric Primitives
The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by providing
values to the parameters associated with the chosen primitive. For example, a cylinder is a basic
shape or primitive. A user can create an instance of a cylinder by specifying the parameters
associated with it --height and radius. Primitives available in CUBIT include the brick,
cylinder, torus, prism, frustum, pyramid, and sphere. These primitives can be generated and
used in boolean operations to produce very complex shapes. The geometric primitives can also
be used in boolean operations with geometry generated through other means (e.g., geometry
read in from other sources). When using the GUI, the geometric primitives can be generated
using thePrimitives suboption in theGeometry menu. Figure 4-3 shows a sample of the
available primitives.

Brick

The brick is a rectangular parallelepiped. There are three parameters that may be specified,
Width (x-dimension),Depth (y-dimension), andHeight (z-dimension). Each of these must
be strictly positive. If a parameter is left out, it defaults to the first ofWidth , Depth, orHeight
that was specified. In addition, a brick can be created with the dimensions a bounding box
(approximately the smallest box containing a given set of entities). The commands to generate
a brick primitive are:

[Create] Brick [{Width|X} <width>] [{Depth|Y} <depth>] [{Height|Z} <height>]

 [[Bounding Box] entity_type <id_range>]

Figure 4-3 CUBIT Geometry Primitives

Pyramid

Frustum

Torus

Cylinder

Brick

Prism

Sphere

(Cone)

CHAPTER 4 Geometry

68 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Any dimension explicitly given over-rides the dimensions of the bounding box, so for example
it is possible to create a brick bounding a set of surfaces and edges lying in the xz-plane, but
having aHeight of 1 with the following command:

brick z 1 bounding box surface 1 4 5 edge 2

The new body contains one volume, They will be given id numbers one greater than the
previously largest id. The brick will be aligned with the coordinate axes. The brick will be
centered about either the origin or the center of the bounding box if one was specified.

Cylinder

The cylinder is a constant radius tube with right circular ends. There are two parameters that
must be specified,Height (z-dimension), andRadius (x/y-dimension). The commands to
generate a cylinder primitive are:

[create] cylinder height <z-height> radius <x/y-radius>

[create] cylinder z <z-height> radius <x/y-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin and aligned with the length of the cylinder along the z-axis.

Note: A cylinder may also be created using thefrustum command with all radii set to the
same value.

Prism

The prism is an n-sided, constant radius tube with n-sided planar faces around the tube. There
are three parameters that must be specified,Height (z-dimension),Sides (number of sides)
and Radius (x/y-dimension). The radius defines the circle circumscribing the prism cross-
section. The commands to generate prism primitives are:

[create] prism height <z-height> sides <nsides> radius <x/y-radius>

[create] prism z <z-height> sides <nsides> radius <x/y-radius>

[create] prism height <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius>

[create] prism z <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius>

The new body contains one volume which will be given the next highest body ID number. The
prism will be centered about the origin and aligned with the height of the cylinder along the z-
axis. One of the planar, side (longitudinal) surfaces will be perpendicular to the X-axis. The
number of sides must be greater than or equal to three.

Note: A prism may also be created using thepyramid command with all radii set to the same
value.

Frustum

A frustum is a general elliptical right frustum. It can be thought of as a portion of a right
elliptical cone. The elliptical nature comes by allowing a different radius in the two principle
directions of the cone. There are four parameters that may be specified,Height (z-dimension),

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual69

Major Radius (x-radius),Minor Radius (y-radius) andTop Radius (x-radius at the top).
The top y radius is calculated based on the ratio of the major and minor radii. If onlyHeight
and Major Radius are specified, the other two radii are defaulted to the major radius value. If
all radii are equal, a frustum defaults to a simple cylinder. The commands to generate a frustum
are:

[create] frustum height <z-height> major [radius] <x-radius>
[minor [radius] <y-radius> top <top-x-radius>]

[create] frustum z <z-height> major [radius] <x-radius>
[minor [radius] <y-radius> top <top-x-radius>]

The new body contains one volume which will be given the next highest body ID number. The
frustum will be centered about the origin with the central frustum axis aligned with the z-axis.

Pyramid

A pyramid is a general n-sided prism. It can be thought of as a portion of a right elliptical cone.
The elliptical nature comes by allowing different circumscribing radii in the two principle
directions of the pyramid. There are five parameters that may be specified,Height (z-
dimension),Major Radius (x-radius),Minor Radius (y-radius) andTop Radius (x-radius
at the top). The topy radius is calculated based on the ratio of the major and minor radii given.
If only Height, Sides, and Major Radius are specified, the other two radii default to the
major radius value. If all radii are equal, a pyramid defaults to a simple n-sided prism. The
commands to generate a pyramid are:

[create] pyramid height <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

[create] pyramid z <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin with the central pyramid axis aligned with the z-axis.

Sphere

The sphere command generates a simple sphere. Only one parameter may be specified,
Radius . The command to generate a sphere is:

[create] sphere radius <radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin.

Since portions of spheres are commonly required, the capability to generate hemispheres,
quadrants, and octants is also provided. The command, which is an extension of the above
command, is:

[create] sphere radius <radius> [inner [radius] <inner_radius>]
[delete] [xpositive] [ypositive] [zpositive]

If the inner radius is specified, a hollow sphere will be created with a void whose radius is the
specified inner radius. The identifiers,xpositive , ypositive , andzpositive, specify which
portion of the sphere will be retained, or if thedelete identifier is present, the portion of the
sphere that will be removed. For example, to create an hemisphere in the positive x direction,
enter the command:

sphere radius 5 xpositive

CHAPTER 4 Geometry

70 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Torus

The torus command generates a simple torus. Two parameters must be specified,Major
Radius , or the radius of the spine of the desired torus, andMinor Radius , or the radius of the
cross-section of the ring. The minor radius must be less than the major radius. The command to
generate a torus is:

[create] torus major [radius] <major-radius> minor [radius] <minor-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin with the spline of the torus aligned perpendicular to the z-axis.

Importing Geometry
CUBIT can import geometry in several formats: ACIS text (SAT) files, FASTQ input decks,
and EXODUSII finite element data exchange format (with some limitations). Several
commercial CAD software packages can generate ACIS files directly, including MSC/ARIES,
HP PE/SolidDesigner, and AutoDesk Inc.’s AutoCAD Designer. Pro/Engineer models must be
translated into the ACIS SAT file format before being usable within CUBIT.

Importing ACIS Models

Externally-generated ACIS files can be read into CUBIT using a single command. The
command is:

Import Acis ’<acis_sat_filename>’

Note that the filename must be enclosed in single quotes. This command will create as many
bodies within CUBIT as there are bodies in the input file. Each CUBIT body will contain as
many volumes as there are LUMPs in the corresponding ACIS body.

Importing FASTQ Models

Support is available for reading a FASTQ file directly into CUBIT. FASTQ files are imported
into CUBIT using theImport Fastq command. The command is:

Import Fastq ’<fastq_filename>’

Note that the filename must be enclosed in single quotes.

All FASTQ commands are fully supported except for theBody command (which is ignored, if
present, as it is unnecessary), the “corn” (corner) line type, and some of the specialized mapping
primitive Scheme commands. Standard mapping, paving, and triangle primitive scheme
commands are handled. The pentagon, semicircle, and transition primitives are not handled
directly, but are meshed using the paving scheme. The FASTQ input file may have to be
modified if theScheme commands use any non-alphabetic characters such as ‘+’, ‘(‘, or ‘)’.
Circular lines with non-constant radius are generated as a logarithmic decrement spiral in
FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to
generate three dimensional geometry. CUBIT supports sweeping options to convert imported
FASTQ geometries into volumetric regions.

Importing EXODUSII Files

EXODUSII finite element data files can be imported under certain conditions. The capability to
generate new geometry from deformed mesh is available for 2D EXODUSII files (4, 8, or 9

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual71

node QUAD element types) have do not have enclosed voids (holes surrounded by mesh) and
have been originally generated with CUBIT and encoded with theNodeset Associativity
command. TheNodeset Associativity command records the topology of the geometry into
special nodesets which allow CUBIT to reconstruct a new solid model from the mesh even after
it has been deformed. The new solid model of the deformed geometry can be remeshed with
standard techniques or meshed with a sizing function that can also be imported into CUBIT
from the same EXODUSII file. CUBIT's implementation of the paving algorithm can generate
a mesh following a sizing function to capture a gradient of any variable (element or nodal)
present in the EXODUSII file.

All element blocks present in the EXODUSII file will be imported and represented with a
different solid in the model. If the EXODUSII model contains interior voids or has undergone
topology change during the analysis (“tearing” has occurred), an alternate method of
constructing a CUBIT model is available through theexofsq external translator. This
approaches handles tearing (topology changes) and voids but requires a manual edit of the
resulting FASTQ input deck to reapply the void. TheImport Free Mesh command does not
yet support models containing internal voids or tears.

The command line syntax to import EXODUSII data (can be deformed) is:

Import Free Mesh '<exodusII_filename>' Block <block_id> Time <time>

Note that the filename must be enclosed in single quotes.

Importing PRO/Engineer Models

The PRO/Engineer product can also be used to create CUBIT geometry. Converters have
beeen implemented which manage the translation of PRO/Engineer assembly data into ACIS

format.

This solution is being pursued to address user needs and requirements regarding standard
geometry formats at Sandia National Laboratories. Advantages to this creation method include
the availability of the large number of parts being designed under the PRO/Engineer format.
PRO/Engineer documentation and training is available at Sandia including consulting on an
as-needed basis. Disadvantages include the single direction translation through which these
parts must be sent to convert them to ACIS. Some difficulties with numerical accuracy
involving PRO/Engineer have been cited although no negative impact of this on CUBIT
meshing functionality has yet been observed.

Exporting Geometry
Geometry can also be exported from within CUBIT to other file formats. Currently, geometry
can be exported to the ACIS SAT and DEBUG file formats. The SAT format can be used to
exchange geometry between ACIS-compliant applications. The DEBUG format is merely a text
file that describes the saved geometric models, and can be used for debugging purposes. The
user can, optionally, specify which subset of bodies are to be exported. The commands are:

Export Acis ‘<acis_sat_filename>’ [Body <body_id_range>]

Export Acis Debug ‘<acis_sat_filename>’ [Body <body_id_range>]

Note that the filename is enclosed in single quotes. If theBody keyword is not specified, then
all the bodies are saved.

CHAPTER 4 Geometry

72 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

▼ Geometry Manipulation
Bodies can be translated, rotated, reflected, scaled, and copied in order to position them
correctly before performing other tasks associated with generating a model. Boolean, sweep and
imprint operations can also be performed. The transform operations which translate, reflect,
scale, rotate and copy are described first in this section, followed by a description of the boolean
operations intersect, subtract and unite, and, finally, the sweep and imprint operations.

The translate, reflect, scale, and rotate functions donot create new geometry, whereas the copy,
intersect, subtract, unite, sweep and imprint functionsdo create new geometry (except for the
copy operation, the original bodies are removed and new bodies are created).

Transform Operations
Copy

The copy command copies an existing body to a new body without modifying the existing body.
A copy can be made of several bodies at once, and the group can be translated with a specified
offset, or rotated about a given vector. The commands for copying bodies are:

body <range> copy [move <x-offset> <y-offset> <z-offset>]

body <range> copy [reflect {x | y | z}]

body <range> copy [reflect <x-comp> <y-comp> <z-comp>]

body <range> copy [rotate <angle> about {x | y | z}]

body <range> copy [rotate <angle> about <x-comp> <y-comp> <z-comp>]

body <range> copy [scale <scale-factor>]

If the copy command is used to generate new bodies, a copy of the original mesh generated in
the original body can also be copied directly into the new body. This is currently limited to
copies that do not interact with adjacent geometry. For details on mesh copies, see “Mesh
Importing and Duplicating” on page 127.

Move

Themove command moves a body by a specified offset. The command to move bodies is:

Body <body_id_range> [Copy] Move <dx> <dy> <dz>

Body <body_id_range> [Copy] Move {x|y|z} <distance>...

If the copy option is specified, a copy is made and the copy is moved by the specified offset.

It is also possible to move bodies to absolute locations:

Move entity <id_range> location entity <id> [except [x] [y] [z]]

Move entity <id_range> location [x <val>] [y <val>] [z <val>] [except [x] [y] [z]]

Here entity is {vertex|curve|surface|volume|body}, and actually any combination of entities may
e specified. This command moves the center of the entities to the specified location. (Note that
bodies are integral, so moving an entity also moves all other entities that are in the same body.)
“Except” is used to preserve the x, y, or z plane in which the center of the entity lies.

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual73

Scale

The scale command resizes the body without adding any new geometry. The body will be
scaled about its centroid. The command to scale bodies is:

body <range> [copy] scale <scale>

If the copy option is specified, a copy is made and scaled the specified amount.

Rotate

Therotate command rotates a body about a given axis without adding any new geometry. If the
Angle or anyComponents are not filled in they are defaulted to be zero. When using the
command interface, a range of bodies to be rotated can be specified, as well as a rotation about
one of the cartesian axes:

body <range> [copy] rotate <angle> about {x | y | z}

body <range> [copy] rotate <angle> about <x-comp> <y-comp> <z-comp>

If the copy option is specified, a copy is made and rotated the specified amount.

Reflect

Thereflect command mirrors a body about a plane normal to an arbitrary vector without adding
any new geometry. The commands to reflect bodies can be specified as well as directly
specifying a plane normal to one of the coordinate axes:

body <range> [copy] reflect <x-comp> <y-comp> <z-comp>

body <range> [copy] reflect {x | y | z}

If the copy option is specified, a copy is made and reflected the specified amount.

Restore

The restore command removes all previous geometry transformations from the specified body.
The command to restore bodies is:

body <range> restore

Boolean Operations
Boolean operators allow boolean interactions (e.g., intersection, union, etc.) between bodies to
produce a new body. The boolean operators available in CUBIT for modifying bodies are
intersect, subtract and unite.

Intersect

Theintersect command generates a new body composed of the space that is shared by the two
bodies being intersected. Both of the original bodies will be deleted and the new body will be
given the next highest body ID available. The command is:

Intersect <body1_id> with <body2_id>

CHAPTER 4 Geometry

74 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Subtract

The subtract operator will subtract one body from another. The order of subtraction is significant
-- body2 is subtracted from body1. Both of the original bodies will be deleted and the new body
will be given the next highest body ID available. The command is:

Subtract <body1_id> from <body2_id>.

Unite

The unite operator will combine two or more bodies into a single body. The original bodies will
be deleted and the new body will be given the next highest body ID available. The commands
are:

Unite <body1_id> with <body2_id>

Unite Body {<range> | all}

The second form of the command permits the uniting of multiple bodies in a single operation.
If theall option is entered instead of a list of body ids, all bodies in the model will be united into
a single body.

Sweep Operations
CUBIT now provides the ability to create and modify three-dimensional solids using the sweep
operation. Sweeping of only planar surfaces, belonging either to two- or three-dimensional
bodies, is allowed -- non-planar faces are not supported at this time.

In the following sweep commands:

The optionaldraft_angle parameter specifies the angle at which the lateral faces of the swept
solid will be inclined to the sweep direction. It can also be described as the angle at which the
profile expands or contracts as it is swept. The default value is 0.0.

The optionaldraft_type parameter is an ACIS-related parameter and specifies what should be
done to the corners of the swept solid when a non-zero draft angle is specified. A value of 0 is
the default value and implies an extended treatment of the corners. A value of 1 is also valid and
implies a rounded (blended) treatment of the corners.

• This command allows the user to sweep a planar surface a specified distance in the direction
specified by the vector:

sweep surface {<surface_id_range> | all}
vector <x_vector y_vector z_vector>
[distance <distance_value>]
[draft_angle <degrees>]
[draft_type <0 | 1>]

If the distance of the sweep is not explicitly provided, the face is swept a distance equal to the
length of the specified vector.

• This command allows the user to sweep a planar surface about a specified axis that is in the
plane of the surface being swept -- the angle of the sweep operation must be specified:

sweep surface {<surface_id_range> | all}
axis {<xpoint ypoint zpoint xvector yvector zvector> | xaxis | yaxis | zaxis}
angle <degrees>
[steps <number_of_sweep_steps>]

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual75

[draft_angle <degrees>]
[draft_type <0 | 1>]

Theaxis of revolution must lie in the plane of the surfaces being swept. This axis can be chosen
to be either the global coordinate axes (xaxis , yaxis or zaxis) or can be specified by a point
(xpointt , ypoint , zpoint) and a vector (xvector , yvector , zvector). Thesteps parameter
defaults to a value of 0 which creates a circular sweep path. If a positive, non-zero value (say,
n) is specified, then the sweep path consists of a series ofn linear segments, each subtending an
angle of[(sweep_angle) / (steps-1)] at the axis of revolution.

Note: Specifying multiple surfaces that belong to the same body will not work as expected,
as ACIS performs the sweep operationin place. Hence, if a range of surfaces is
provided, they ought to each belong to a different body.

The sweep operations have been designed to always produce valid solids of positive volume,
even though the underlying solid modeling kernel libary that actually executes the operation,
ACIS, allows the generation of solids of negative volume (i.e., voids) using a sweep.

Appendix B contains an example that demonstrates the use of the sweep operations to generate
and modify three-dimensional solids.

Imprint Operation
It is important to maintain continuity of meshes across the bounding topological entities shared
by neighboring bodies. This requires that when neighboring bodies abutt each other, the
topology of the shared region in space must be identical on either side of this shared boundary.
The process of merging these topological entities (described in the section, “Geometry
Consolidation” on page 76) creates single entities that are shared by these neighboring bodies.

The imprint operation provides the user with the ability to ensure that identical topology exists
where neighboring bodies abutt each other. The command is:

Imprint <body1_id> with <body2_id>

Such animprint operation is often followed by amerge operation. This ensures that the
duplicate topological entities created by theimprint operation between these two bodies are
removed, thereby creating nonmanifold topological entities.

▼ Geometry Decomposition
The ability to decompose ACIS geometry now exists in CUBIT. This feature is required to
facilitate the generation of a mesh for three-dimensional solids, as fully automatic mesh
generation of arbitrary solids is not yet possible in CUBIT. The relevant commands are,
webcut anddecompose .

Web Cutting
Due to a decision not to use the ACIS Cellular Topology Husk, the decomposition of a body is
effected through the use of boolean operations and results in the creation of new, manifold
bodies. To facilitate mesh compatibility between neighbouring bodies, imprint operations are
optionally performed to ensure that the topology between them matches -- this is the default.

CHAPTER 4 Geometry

76 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Also, bodies are optionally merged at the end of a webcut operation, resulting in the creation of
nonmanifold geometric reference entities, shared by neighboring bodies -- this is the default. It
is important to note that the underlying ACIS bodies remain manifold throughout these
operations.

New geometry is generated during a webcut operation and the original bodies are deleted. A
body being webcut is decomposed into two new bodies -- one that is the result of a subtract
boolean operation between the original body and the cutting tool body, and another that is the
result of an intersect boolean operation between the original body and the cutting tool body.

In each of thewebcut commands, the user specifies which set of bodies to be cut, a cutting tool
(either as an existing body or by providing sufficient information to allow CUBIT to generate
one), and a set of optional parameters specifying that the imprint and merge operationsnot be
performed (by default, both these operationsare performed after the boolean operations).

The syntax of the webcut commands are as follows -- each command provides the user with a
different mechanism for specifying thecutting tool:

• The user can specify aninfinite cutting plane by providing three non-colinear, existing
vertices (to be able to perform the boolean operations, an infinite cutting tool body is created
from this infinite cutting plane, as ACIS does not perform boolean operations on half-spaces):

webcut body {<body_id_range>|all}
plane
vertex <v1_id> vertex <v2_id> vertex <v3_id>
[noimprint] [nomerge]

• The user can also provide aninfinite cutting plane by specifying an existing, planar surface
(to be able to perform the boolean operations, an infinite cutting tool body is created from this
infinite cutting plane, as ACIS does not perform boolean operations on half-spaces):

webcut body {<body_id_range>|all}
plane
surface <surface_id>
[noimprint] [nomerge]

• The user can specify that an existing body be used as thecutting tool. This cutting tool body
is, itself, unaffected by the webcut operation, and is, unlike the other cutting tool bodies, not
extended to beinfinite in size:

webcut body {<body_id_range>|all}
tool <tool_body_id>
[noimprint] [nomerge]

Appendix B contains an example that demonstrates the use of webcutting operations.

Body-Based Decomposition
Primitive geometry decomposition can be performed using the geometry boolean operations
available in CUBIT. An accelerated version of this type of operation is provided as well. If two
ACIS bodies overlap in space, they can be decomposed into three separate bodies using the
Decompose command (one body contains the overlapping region and the other two bodies
contain the non-overlapping portions of the original bodies being decomposed):

Decompose <body_id> with <body_id>

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual77

The three bodies resulting from this operation will have manifold surfaces; geometry
consolidation should be used if these surfaces are to be represented with a single mesh
(see“Geometry Consolidation” on page 76).

▼ Geometry Consolidation
Geometry consolidation is a means of enforcing mesh continuity and avoiding mesh node
equivalencing between neighboring bodies that abutt. When a manifold solid model is
constructed, it may contain any number of volumes that can belong to a single body. This does
not imply that these volumes areaware of each other -- CUBIT has no record or history of how
the volumes from a body were created and what their spatial relationships may be. To determine
these spatial relationships, some simple feature recognition concepts have been implemented to
detect proximity between geometric entities, and toconsolidate any redundant entities.

Such overlapping, redundant geometry, though not really redundant in a solid modeling sense,
can cause problems when trying to generate a consistent mesh. From a meshing standpoint (in
which a contiguous mesh is required between volumes) if two surfaces overlap spatially, the
redundancy must be resolved by consolidating these two surfaces into a single one that is shared
by the neighboring bodies. This requirement is illustrated in Figure 4-4. This figure depicts an
“L” block, which can easily be meshed with a sweep operation. However, for the purposes of
demonstrating the utility of geometry consolidation, we will first decompose it into two bodies
using thewebcut command (the result of the operation is shown in Figure 4-5).

For a contiguous mesh, CUBIT requires adjacent volumes to share identical surfaces where they
meet. The geometry consolidation tool in CUBIT is designed to recognize the spatial equality
of surfaces that overlap exactly and force them to use one surface mesh between them. This
mesh sharing approach avoids the need to equivalence nodes and preserves the required mesh
continuity. After the model in Figure 4-4 is decomposed into the model in Figure 4-5, surfaces
1 and 2 meet thespatially equivalent requirement. They can now be consolidated and treated as
a single surface for meshing purposes. For the surfaces to be deemedspatially equivalent, the
curves and vertices that constitute the boundaries of the consolidated surfaces need to be
spatially equivalent, as well.

Note: Assemblies that are imported from external solid modelers (e.g., Aries

ConceptStation, PRO/Engineer, and the ACIS Test harness) will need to be inspected
to ensure that the adjacent solids have matching topology. Some of these external
modelers use internal geometry engines other than ACIS (e.g., PRO/Engineer does
not utilize ACIS); when using geometry that was created in PRO/Engineer, it is
critical to set the accuracy within PRO/Engineer to the highest level possible before
creating the geometry that is subsequently to a file. The standard level of accuracy
within ACIS is much higher than that of PRO/Engineer (10−6 vs. 10−3). CUBIT relies
on simple geometric reasoning to identify matching surfaces and curves, and this
technique is sensitive to the accuracy of the models being processed. Since Aries

ConceptStation is based on ACIS, it does not suffer from accuracy problems due to
varying geometric tolerances.

CHAPTER 4 Geometry

78 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

General Geometry Consolidation
When a model fully complies with the matching topology requirement, it is ready for full
geometry consolidation of redundant geometric entities. TheMerge all command searches all
bodies in the model for matching surfaces, then for matching curves, and finally for matching
vertices. When a match is found, CUBITmerges the two matching entities in its model database.

During such a merge operation, one of the topological entities being merged is removed from
the database (typically the one with a higher numerical ID value) and the other is retained. All
topological entities that previously referred to the one that was removed will be modified to now
refer to the one that was retained.

Note: It is critical to complete geometry consolidation before any meshing of the affected
geometry is initiated. If geometric entities are merged subsequent to meshing
operations, some of the associated mesh entities may be lost.

Figure 4-4 Solid Model Prior to Decomposition

Figure 4-5 Solid Model After Decomposition

CHAPTER 4 Geometry

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual79

General geometry consolidation is performed with the following commands:

Merge all

Merge body <body_id> with [body] <body_id>

Merge body <body_id_range>

The first command merges the topological entities ofall bodies in the CUBIT model, whereas
the latter two commands allow the user to merge the topological entities of a specified subset of
the bodies in the CUBIT model.

Selective Geometry Consolidation
When models need to retain redundant geometric entities (such as redundant curves that are
required to model slide lines), a more selective mode of geometry consolidation needs to be
used. Selective geometry consolidation can be initiated between any set of user-specified
surfaces or curves. The consolidation process will be limited to the specified entities and the
entities connected to them.

The commands for selective geometry consolidation are as follows.

Merge curve <curve_id> with [curve] <curve_id>

Merge curve <curve_id_range>

Merge all curves

Merge surface <surface_id> with [surface] <surface_id>

Merge surface <surface_id_range>

Merge all surfaces

▼ Geometry Attributes
Each topological entity has attributes attached to it. These attributes specify aspects of the entity
such as the color that entity is drawn in and the meshing scheme to be used when meshing that
entity. This section describes those geometry attributes that are not described elsewhere in this
manual.

Entity Names
Topological entities (including groups) are assigned integer identification numbers in CUBIT in
ascending order, starting with 1. Each new entity created within CUBIT receives a unique id.
However, topological entities can also be assigned names, and these names can be propagated
explicitly by the user. The following command assigns names to topological entities in CUBIT:

{Group|Body|Volume|Lump|Surface|Curve|Vertex} Name ‘<entity_name>’

Each topological entity is given a unique default name when it is first created. Its default name
consists of the name of the corresponding topological entities (body, volume, surface, curve, or
vertex), followed by the ID number of the entity. For example, curve number 21 will have a
default name, “curve21”. The name of each topological entity appears in the output of theList
command.

CHAPTER 4 Geometry

80 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Topological entities can be identified either by the entity type followed by an identification
number or by a unique name. Such a name can be used anywhere that a entity type and id may
be used. For example, if surface 3 is named CHAMFER1, the command “mesh CHAMFER1”
has the same result as the command “mesh surface 3”.

A topological entity may have multiple names, but a particular name may only refer to a single
entity. If the geometry is imported from an ACIS SAT file that has the attributesattrib-gtc-
name1, the name of the corresponding CUBIT entity will be set to the text string stored in that
ACIS attribute.

Note: In a merge operation, the names of the deleted entity will be appended to the names of
the surviving entity.

The commands are:

Label {body|volume|surface|curve|vertex} {name|id|on|off}

Label geometry {name|id|on|off}

Label {name|id|on|off}

Control the type of labels displayed for an entity. Ifname is specified, the entities name will be
used in the display; ifid or on are specified, the entities id number will be displayed. The
second and third forms of the command specify the labeling format for all geometry entities
with a single command. The name of an entity can be set using the command

name {group|body|volume|surface|curve|vertex} <id> `entity_name’

A list of all names currently assigned and their corresponding entity type and id (optionally
filtered by entity type) can be obtained with the command

list names [{group|body|volume|surface|curve|vertex|all}]

1. The attribute used to specify the names in the ACIS SAT file will probably change in the near future.

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual81

Chapter 5: Mesh Generation
▼ Mesh Definition…81

▼ Mesh Attributes…82

▼ Curve Meshing…87

▼ Surface Meshing…91

▼ Volume Meshing…105

▼ Mesh Editing…124

▼ Mesh Importing and Duplicating…127

▼ Mesh Quality…128

The methods used to generate a mesh using existing geometry are discussed in
this chapter. The definitions used to describe the process are first presented,
followed by descriptions of curve, surface, and volume meshing techniques. The
chapter concludes with a description of the mesh editing and other
miscellaneous capabilities.

▼ Mesh Definition
The mesh consists of entities similar in hierarchy to the geometry described in the previous
chapter. The mesh entities includenodes(locations in space),edges (bar elements),faces
(quadrilateral or shell elements), andbricks (hexahedral elements). Each mesh entity is
associated with a geometry entity which owns it. This associativity allows the user to mesh,
display, color, and attach attributes to the mesh through the geometry. For example, setting a
mesh attribute on a surface affects all mesh entities owned by that surface.

Mesh Hierarchy
Mesh hierarchy refers to the manner in which mesh entities are connected within the mesh.
Once a mesh is formed, the mesh entities define a discretized version of the geometry. The nodes
required by higher-order elements are generated subsequent to the initial discretization;
however, they are generated in the correct position based on the underlying geometry.

Node

A node is a single point in space. A node may be owned by (contained by) a vertex, curve,
surface, or volume.

CHAPTER 5 Mesh Generation

82 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Edge

An edge is defined by a minimum of two nodes. Additional nodes may exist on the edges of
higher-order elements. An edge may be owned by a curve, surface, or volume.

Face

A face is defined by four connected edges. A face may be owned by a surface or volume.

Hex

A hex is a hexahedral element (six connected faces). A hex is owned by the enclosing volume.

Mesh Generation Order of Procession
The mesh for any given geometry is usually generated hierarchically. For example, if the user
issues a command to mesh a volume, first its vertices are meshed with nodes, then curves are
meshed with edges, then surfaces are meshed with faces, and finally the volume is meshed with
hexes. Vertex meshing is of course trivial and thus the user is given no control over this process.
However, curve, surface, and volume meshing can be directly controlled by the user. The
scheme command specifies the meshing algorithm which will be used in meshing each of
these geometric entities and the block command specifies the type of elements which will be
generated by the meshing algorithm.

▼ Mesh Attributes
Each geometric entity has mesh attributes which specify information such as meshing scheme,
mesh density, mesh distribution (equal or biased), and element type. Unless otherwise specified
by the user (see page 94), the default meshing attributes listed in Table 5-1 will be used.:

Meshing Schemes
The mesh scheme attribute specifies the meshing algorithm that will be used to generate the
mesh on each geometric entity. Note that the meshing scheme can be specified independently
for curves, surfaces, and volumes; however, the meshing schemes for all surfaces on a volume
must be compatible with the meshing scheme specified for that volume. For example, the
Project, Translate, and Rotate volume meshing schemes require that some of the volume

Table 5-1 Default Meshing Attributes

Geometric
Entity

Default Attributes

Scheme Element Type Intervals

Curve Equal 2-node Bar 1

Surface Map 4-node Quadrilateral —

Volume Map 8-node Hexahedral —

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual83

surfaces be meshed using the Mapping scheme. The currently supported meshing schemes are
listed in Table 5-2.

Automatic Scheme Selection

For Volume and Surface geometries the user may allow CUBIT to automatically select the
meshing scheme. Automatic selection is based on several constraints, some of which are
controllable by the user. The algorithms to select meshing schemes will use topological and

Table 5-2 Valid Meshing Schemes for Curves, Surfaces, and Volumes

Scheme Description

 Curve Meshing Schemes

Equal linear distribution of nodes along a curve based on arc length of the curve (default)

Biased the distribution of nodes along a curve by biasing the nodal positions toward one of the
curve ends given a growth factor

Featuresize nodes on the curve are spaced proportional to the smallest straight-line distance to
another facet of geometry (vertex, curve, or surface) that doesn’t contain the curve or one
of the curve’s vertices

 Surface Meshing Schemes

Map standard surface mapping transformation [7] (default)

SubMap mesh-based auto-decomposition of surface into mappable subregions to produce overall
regular mapped mesh

TriMap generate triangular elements at sharp corners or specified vertices and mesh the remain-
ing surface using the standard mapping transformations

Pave advancing front algorithm for general surfaces including those with holes [1]

TriPave generate triangular elements at sharp corners or specified vertices and mesh the remain-
ing surface using the paving algorithm

Triangle meshing primitive for three-sided regions

Circle meshing primitive for “circular” regions with graded boundary

 Volume Meshing Schemes

Map standard volumetric mapping transformations [7] (default)

SubMap mesh-based auto-decomposition of volume into mappable sub-volumes to produce a reg-
ular mapped mesh

Project 2&1/2D Sweeping Algorithm—general purpose sweep path, accepts draft angles

Translate 2&1/2D Sweeping Algorithm—along a vector

Rotate 2&1/2D Sweeping Algorithm—about a central axis, requires non-zero inner radius

Plaster Research algorithm for automatic hexahedral volume meshing

Weave Research algorithm for automatic hexahedral volume meshing

CHAPTER 5 Mesh Generation

84 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

geometric data to select the best meshing tool. The command to invoke automatic scheme
selection is:

<Surface|Volume|Group> <range> Scheme Auto

Specifically for surface meshing, mesh density (see page 86) specifications will affect the
scheme designation. For this reason it is recommended that the user specify the mesh density
before calling automatic scheme selection. If the user later chooses to change the interval
assignment, it may be necessary to call scheme selection again. For example, if the user assigns
a square surface to have 4 intervals along each curve, scheme selection will choose the surface
mapping algorithm. However if the user designates opposite curves to have different intervals,
scheme selection will choose paving, since the mapping tool can’t do element transitioning. In
cases where a general interval size for a surface or volume is specified and then changed, scheme
selection will not change. For example, if the user specified an interval size of 1.0 a square
10X10 surface, scheme selection will choose mapping. If the user changes the interval size to
2.0, mapping will still be chosen as the meshing scheme from scheme selection. If a mesh
density is not specified for a surface, a size based on the smallest curve on the surface will be
selected.

When automatic scheme selection is called for a volume, surface scheme selection is invoked
on the surfaces of the given volume. Automatic volume scheme selection depends heavily on
the selection of the surface schemes so these must be selected first, this is done automatically.
Mesh density selections should also be specified before automatic volume scheme selection is
invoked due to the relationship of surface and volume scheme assignment.

Surface scheme selection will choose betweenPave, Submap, Triangle, andMap meshing
schemes. Volume scheme selection chooses betweenMap, Submap and Project meshing
schemes.

Surface scheme selection will always result in selecting a meshing scheme due to the existence
of the paving algorithm, a general surface meshing tool. Volume scheme selection is limited
however to selecting schemes for 2.5D geometries, with additional tool limitations (i.e. project
can currently only sweep from several sources to a single target,not multiple targets). If volume
scheme selection is unable to select a meshing scheme, the mesh scheme will remain as the
default.

Volume scheme selection can fail to select a meshing scheme for two reasons. First, the volume
is not 2.5D and further decomposition (see “Geometry Decomposition” on page 75) of the
model is needed. This can be useful for guiding decomposition and reduce the need for the user
to visually inspect each volume in the model and save his/her resources for focusing on areas
that are unmeshable.

Second, volume scheme selection may fail due to improper surface scheme selection. Volume
schemes such asMap, Submap, and Project require certain surface meshing schemes, as
mentioned previously. Commonly, a linking surface’s meshing scheme on a 2.5D volume will
be selected asPave or Triangle incorrectly due to the “fuzziness” of the surface’s boundary. A
fuzzy surface boundary is where the surface is not by geometric description “blocky” and more
general in shape. The user can over come this by several methods. First, the user can manually
set the surface scheme for the “fuzzy” surface and retry volume scheme selection. Second, the
user can manually set the “vertex types” for the surface (see page 91). Third, the user can
increase the angle tolerance for determining “fuzziness.” The command to change scheme
selection’s angle tolerances is:

[set] Scheme Auto Fuzzy Tolerance {value} (value in degrees)

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual85

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as
the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in general mapping and
submapping will be chosen more often. If the user enters 0 degrees, only surfaces that are
“blocky” will be selected to be mapped or submapped, and in general paving will be chosen
more often.

In general automatic scheme selection reduces the amount of user input. Generally if the user
knows the model consists of 2.5D meshable volumes, three commands to generate a mesh after
importing or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The following non-trivial, academic model was meshed using these three commands, part of the
model is not shown to reveal the internal structure of the model.

Figure 5-1 Model Meshed Using Automatic Scheme Selection

Scheme Firmness

Meshing schemes may be selected through three different approaches. They are: default
settings, automatic scheme selection, and user specification. The user may query the model
about a surface or volume to determine what approach was used to set the scheme (see “Model
Information” on page 52). Some algorithms, such as automatic scheme selection depend on the
“firmness” of the scheme or how the scheme was selected. For instance, if a surface’s meshing
scheme was selected by the user, scheme selection will respect that decision and consider the

CHAPTER 5 Mesh Generation

86 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

meshing scheme to beHARD set, and will not alter it. If the scheme was set internally by
CUBIT, either through scheme selection itself or some other means, it will be treated asSOFT,
meaning it will only alter the scheme if any parameters (vertex types, or interval settings) have
changed. If the scheme is theDEFAULT , scheme selection will decide the most appropriate
scheme. The user is given ultimate control over these settings by the command:

<Surface|Volume> <range> Scheme {Default|Soft|Hard}

This may be useful if the user is working on several different areas in the model. Once she/he is
satisfied with an area’s scheme selection and doesn’t want it to change, the firmness command
can be given to hard set the schemes in that area. Or if some surfaces were hard set by the user,
and the user now wants to set them through automatic scheme selection then she/he may change
the surface’s scheme firmness to soft or default.

Mesh Density Specification
Interval settings control the discretization density of the generated mesh. The number of
intervals, or discretizations, can be set on a body, volume, surface, or curve. A related setting,
the interval size, specifies thelength of element edges on a curve, rather than the number of
intervals. An advantage of the interval size option is that consistent element sizes can be
specified throughout the mesh. Manual interval setting commands are described in “Curve
Meshing” on page 87.

Appropriate interval assignment is critical to produce high quality meshes using the map,
submap, and triangle surface meshing schemes. When the scheme designation for a surface is
Map, Submap, or Triangle, or the scheme designation for a volume isMap, Submap, Project,
Translate, or Rotate automated interval assignment tasks are performed prior to meshing the
surface or volume. Use the following command automatically assign compatible intervals to a
collection of entities:

Match Intervals entities

Here entities can be any mixed collection of groups, bodies, volumes, surfaces and curves.

TheMap, Submap, Project, Translate, Weave, PlasterandRotatevolume meshing algorithms
automatically execute the automated interval assignment algorithm and do not require explicitly
issuing the match intervals command unless it is desired to match intervals on a group of
surfaces or group of volumes simultaneously. Both the volume meshing commands and the
manual (match intervals) command formulate a list of surfaces that are to have automated
interval assignment tasks performed (based on meshing scheme). The list of surfaces is then sent
to the automated tool which determines dependencies between intervals on curves and assigns
compatible intervals according to the meshing scheme.

The automated interval assignment algorithm calculates a solution as close as possible locally
to the initial specified intervals settings, while satisfying global dependencies and compatibility
constraints. When the actualnumber of intervals is specifically set by an explicit “curve <range>
intervals <value>” command, the intervals are a constraint and designated hard set” and not
adjusted. Otherwise, or when the intervalsize is specified, it is assumed that the user is
specifying an approximate number of intervals to be placed on a curve rather than an absolute
number. These intervals are goals and are designated “soft set” and can be adjusted. If the
number of intervals on a curve is not even implicitly specified by the user, it is assumed that the
user has no preference for the number of intervals. The curve has no goal and is designated
“default”, and matching may set intervals arbitrarily. Adjustments to “soft set” curves are
minimized on a local basis by the automated interval assignment algorithm while satisfying

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual87

dependencies and compatibility constraints. The user may also explicitly set the level of
firmness (default, soft, or hard) for the curves of an entity, overriding any previous settings. The
user may also require an even number of intervals on a curve.

The automated interval assignment algorithm finds one good feasible solution from among the
possibly infinite number of interval solutions. However, if many curves are hard-set or already
meshed, there may be no solution. Also, a solution might not exist due to the way the local
selections of corners and sides of surfaces interact globally. To improve the chances of finding
a solution, it is suggested that curves be soft-set whenever that is acceptable to the user. The user
may attempt to find and fix the global corner and side picking problems by specifying vertex
types, but this can be a difficult and tedious process. A simpler solution is for the user to make
the constraints easier by selecting scheme pave instead of the structured algorithms for some
surfaces.

The following sections define the constraints that the automated interval assignment algorithm
follows for the Map, Submap, and Triangle, and Pave meshing schemes.

Element Types
CUBIT supports several element types, including bars, beams, quadrilaterals, shells, and
hexahedrons. Two- and three-node bar and beam elements; four-, eight-, and nine-node
quadrilateral and shell elements; and eight-, twenty-, and twenty-seven node hexahedral
elements are available. Multiple element types can be used in a single CUBIT model. TheBlock
commands are used to set element types. These are described in “Element Block Specification”
on page 134. The local element node numbering is as specified in the Exodus II specification
and shown in Figure 5-2.

Note: The type of elements to be generated on a geometric entity must be specified prior to
meshing the geometric entity unless the defaults listed in Table 5-1 are desired.

▼ Curve Meshing
Curve meshing discretizes the curve, creating nodes and edges. During curve meshing the user
controls the density of nodes/edges (or intervals) along the curve and the relative spacing or bias
of the nodes along the edge.

Truss, Beam, Shell (2D) Quadrilateral, Shell (3D) Hexahedral

Figure 5-2 Local Node Numbering for CUBIT Element Types

1 3 2

1 2

34

5

6

7

8
9

1 2

34

5 6

78

9

10

11

1213 14

1516
17

18

19

20

21

CHAPTER 5 Mesh Generation

88 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Interval Firmness and Parity
Thefirmness of intervals may behard, soft, ordefault. Hard-set intervals are never adjusted by
the meshing algorithms—even when such an adjustment may produce a better mesh. Soft-set
intervals are a goal and may be adjusted up or down slightly. Default intervals are set arbitrarily
by the meshing and interval matching algorithms, depending on external factors. The number
of intervals on a curve will not be adjusted after that curve has been meshed, either explicitly or
as the result of meshing a surface or volume containing that curve. Intervals can be changed if
the existing mesh is first deleted. Higher-firmness interval setting commands take precedence
over lower-firmness commands, so that a hard-set interval is not changed by any subsequent
soft-setting commands. Among a firmness class, the last-issued command takes precedence.
E.g. if a curve has its intervals hard-set to 10, then a command to set the containing volume’s
intervals to 3 will have no effect on the curve, but a command to hard-set the curve’s intervals
to 12 will change the curve’s intervals. The explicit commands to change the firmness is:

{curve|surface|volume|body|group} Interval {Default | Soft | Hard}

The user can also constrain the parity of intervals on curves:

{curve|surface|volume|body|group} <id_range> Interval {Even | Odd}

If “even” is specified, then during subsequent interval setting commands and during interval
assignment, curves areforced to have an even number of intervals. If the current number of
intervals is odd, then it is increased by one to be even. If “odd” is specified then intervalsmay
be either even or odd. Unless user specified, curves are “odd”. Setting intervals to even is useful
in e.g. problems where adjoining faces are paved one by one without global interval assignment.

Standard Node Density
The density of edges along curves is specified by setting the actual number of intervals or by
specifying a desired average interval size. The number of intervals or interval size can be
explicitly set curve by curve, or implicitly set by specifying the intervals or interval size on a
surface or volume containing that edge. For example, setting the intervals for a volume sets the
intervals on all curves in that volume. All curves are initially default, and any command that
changes intervals (including interval assignment) upgrades the firmness to at least soft. Note
that if higher-order elements are being generated, the number of intervals and interval size refer
to the edge of an element, not necessarily to the spacing of nodes along that edge.

The commands to specify the number of intervals at the command line are:

{curve|surface|volume|body|group} <range> interval <intervals>

whererange may be a single integer or a range of integers. Intervals are soft-set, unless “curve”
is specified in which case they are hard-set. The following commands also soft-set intervals.
Interval size may be specified at the command line using similar commands:

{curve|surface|volume|body|group} <range> size <interval_size>

The user may also specify that the size is the arc length of the smallest curve:

{curve|surface|volume|body|group} <range> size smallest curve

Relative Element Edge Lengths
The relative length of element edges along a curve is specified using the curve scheme. Two
curve schemes are currently supported:equal andbias . Theequal scheme generates elements

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual89

with equal length edges along the curve. Thebias scheme requires the specification of abias
factor which designates a geometric progression of element edge lengths along the edge. For
example, a bias factor of 0.9 will make (as much as possible) each edge along the curve 0.9 times
the length of the previous edge, starting at the first vertex1. The default bias factor is 1.0.

The command used to specify the curve scheme at the command line is:

curve <range> scheme {equal | bias} factor <factor>

Thefactor must be provided if using the bias scheme. Unless a factor of 1.0 is used, this scheme
will result in a curve mesh that has mesh nodes distributed in a geometric progression which
will be concentrated toward one end of the curve using the progression calculation described
above. If a curve meshed with the bias scheme needs to have its nodes distributed towards the
opposite end, it can be easily editted using thereversebias command.The command used to
reverse the bias at the command line is:

curve <range> reversebias

Reversing the curve bias using this command is equivalent to setting a bias factor equal to the
inverse of the original bias factor.

Sizing Function-Based Node Density
The ability to specify the number and location of nodes based on a general field function is also
available in CUBIT. With this capability the node locations along a curve can be determined by
some field variable (e.g. an error measure). This provides a means of using CUBIT in adaptive
analyses. To use this capability, a sizing function must have been read in and associated to the
geometry (see “Adaptive Surface Meshing” on page 97 for more information on this process).
After a sizing function is made available, the following scheme will mesh the curve adaptively:

curve <range> scheme stride

Featuresize Function Node Density
The user may also automatically bias the mesh from small elements near complicated geometry
to large elements near expanses of simple geometry. Meshing a curve with scheme featuresize
places nodes roughly proportional to the distance from the node to a piece of geometry that is
foreign to the curve. Foreign means that the geometric entity doesn’t contain the curve, or any
of its vertices; that is, the entity’s intersection with the curve is empty. It is known that
featuresize is a continuous function that varies slowly. Featuresize meshing is very automatic
and integrated with interval matching. Featursesize meshing works well with paving, and in
some cases with structured surface-meshing schemes as well.

curve <range> scheme featuresize

If desired the user may specify the exact or goal number of intervals with a size or interval
command, and then the featuresize function will be used to space the nodes. Also, the
featuresize function may be scaled by the user to produce a finer or coarser mesh. The default
scaling factor ordensity is 1. Note that higher densities also reduce the slope of the function. A

1. The first vertex of a curve can be determined with thelist curve <id> command.

CHAPTER 5 Mesh Generation

90 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

density of 2 usually gives a good quality mesh. A density below about 0.5 could produce rapid
transitions and poor mesh quality.

curve <curve_id_range> density <density_factor>

Figure 5-3 Curves meshed with featuresize.

Meshing the Curve
Once the appropriate interval and scheme settings have been made, the curve can be meshed. At
the command line, the appropriate command is:

mesh curve <range>

The resulting mesh will be drawn on the screen in the mesh color designated for the curve.
Figure 5-4 shows the result of meshing two edges with equal and bias schemes.

Figure 5-4 Equal and biased curve meshing

Paved, density 1 Paved, density 2 Submapped, density 1

Equal BiasedEqual

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual91

▼ Surface Meshing
Surface meshing discretizes a surface into nodes, edges, and faces. When meshing a surface, the
bounding curves of the surface are first meshed (if not already meshed). The nodes on those
curves are then used as the initial data for the surface meshing. Surface meshing algorithms
include mapping, paving, submapping, special versions of mapping and paving which handle
sharp corners by inserting trianglular elements into the corners before proceeding, primitives,
and a technique to apply boundary layers, or rows of aspect-controlled elements, to the surface
before closing with the paving algorithm. While not a requirement to generate a well-formed
mesh, users have the option to specify how vertices on a surface will be used by some of the
surface meshing algorithms (See “Surface Vertex Types” on page 91). A related discussion on
the constraints of the mapping and submapping surface schemes is presented to provide the user
with background information about which geometries are most appropriate for these meshing
schemes (See “Mapping and Submapping Interval Constraints” on page 91).

Surface Vertex Types
Often meshing algorithms, in particular algorithms based on the mapping process, must classify
the vertices of a surface or volume to produce a high quality mesh. For example, a surface
mapping algorithm must identify the four vertices of the surface that best represent the surface
as a rectangle. The submapping, triangle primitive, trimap, and tripave meshing schemes have
similar vertex identification needs. Although the surface vertex type can usually be assigned
automatically, there are sometimes ambiguous cases or special cases in which the user needs to
manually specify the classification of a particular vertex to help improve the resulting mesh. The
user may also wish to force a vertex to be of a certain type (see Figure 5-5) to achieve a particular
mesh characteristic which would not be produced using the automatic approach. The command

Surface <surface_id> Vertex <vertex_id> Type {end|side|corner|reversal}

Surface <surface_id> Vertex <vertex_id> Type {triangle|notriangle}

is used to manually specify the classification of a particular surface vertex. Note that a vertex
may be connected to several surfaces and its classification can be different for each of those
surfaces. Figure 5-5 illustrates the vertex angle types. Note that one element will be inserted at
an end vertex, two elements at a side vertex, three elements at a corner vertex, and 4 elements
at a reversal vertex.

Note: The Surface Vertex Type command does not need to be given in order to mesh a
surface, however in some cases, it can improve the quality of the generated mesh.

Mapping and Submapping Interval Constraints
For surfaces with mapping schemes, first the designation of a “logical rectangle’ fit to the
surface is made. The mapping algorithm selects four vertices that will best transform the surface
into a logical quadrilateral. These four vertices are chosen as “logical corners” and curves
falling between these vertices are grouped as a “logical side.” In Figure 5-6, thelogical corners
selected by the algorithm are indicated by arrows. Between these vertices thelogical sides are
defined (see Table 5-1).

CHAPTER 5 Mesh Generation

92 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Figure 5-5 Illustration of Angle Types

Figure 5-6 SchemeMap Logical Properties

END

REVERSAL

CORNER

SIDE

(~90 deg.)

(~360 deg.)

(~180 deg.)

(~270 deg.)

3

4

5

1

6

SurfaceA

2

Logical
Corners

Logical
Corners

7

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual93

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh

shown in the right portion of Figure 5-6 (i.e. The number of intervals on logical side 1 is equated
to the number of intervals on logical side 3).

The process is similar for volume mapping except that a logical hexahedron is formed from
eight vertices.

For surfaces with scheme submap the designation of the “logical rectangle” is different from
that of scheme map rectangle. Curves on the surface are traversed and grouped into “logical
sides” by a classification of the curves position in a local “i-j” coordinate system. The local “i-
j” coordinate system is defined by a traversal of the surface boundary curves. The traversal of
the boundary and classification of curves is based on the interior surface angles at each vertex
on the surface. Example, curve1 may be arbitrarily defined in the coordinate system as [+i], a
90 degree turn defines curve2 as [+j], another 90 degree turn defines curve3 as [-i], a 270 degree
turn defines curve4 as [+j] and so on. The logical sides are then defined by grouping all curves
with the same classification into one side. Therefore all [+i’s] are grouped as one side and all
[+j’s] are grouped as another side and so forth. These four sides then define the “logical
rectangle” that is used to formulate constraint equations (i.e. side 1 [+i’s] are equated to side 3
[-i’s] and side 2 [+j’s] are equated to side 4 [-j’s]). Figure 5-7 shows one example of this logical

classification technique.

Table 5-1Listing of logical sides

Logical Side Curve Groups

Side 1 Curve 1

Side 2 Curve 2

Side 3 Curve 3, curve 4, curve 5

Side 4 Curve 6

Figure 5-7 SchemeSubmap Logical Properties

2

3

4

5

6

7

[+j]

[-i]

[+j]

[+i]

[-i][-j]

1

CHAPTER 5 Mesh Generation

94 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Scheme Designation
The algorithm to be used for surface meshing is designated as the scheme of the surface.
Currently supported surface mesh schemes areMap (mapping algorithm),Pave (paving
algorithm),Submap (mapping algorithm with geometry decomposition),TriMap (generate
triangular elements, map remainder),TriPave (generate triangular elements, pave remainder),
Circle (graded circle primative), andTriangle (triangle primitive). Each of these algorithms are
briefly described below. The default scheme for a surface isMap. The default scheme may be
changed by the command

Surface Default Scheme {map | pave | submap | triangle}

The scheme is set with the command

Surface <range> Scheme {map | pave | submap | triangle | trimap | tripave |
dice}

Surface Mapping

The surface mapping capability in CUBIT is based on a standard transfinite interpolation
(mapping transformations) [7]. The transformations work robustly and yield high quality
meshes in regions with roughly four opposing sides. The surface may have any number of
curves defining the sides and still produce a high-quality mesh. Figure 5-8 illustrates a mapped
mesh on a NURB surface using two biased and two equal curve meshes on the region’s
boundary.

Figure 5-8 Mapped and paved surface meshing

Paving

Paving (see reference [1]) allows the meshing of an arbitrary three-dimensional surface with
quadrilateral elements. The paver supports interior holes, arbitrary boundaries, hard lines, zero-
width cracks and hard points. It also allows for easy transitions between dissimilar sizes of
elements. Figure 5-8 shows the same surface meshed with mapping (left) and paving (right)
schemes using the same discretization of the boundary curves.

When meshing a surface geometry with paving, clean-up and smoothing techniques are
automatically applied to the paved mesh. These methods improve the regularity and quality of

Mapped Paved

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual95

the surface mesh. Often the type of smoothing method used during this process will affect the
resulting mesh quality. By default the paving method uses its own smoothing methods that are
not directly callable from CUBIT. Using one of CUBIT’s callable smoothing methods in place
of the default method will improve mesh quality, sometimes dramatically depending on the
surface geometry and specific mesh characteristics. If the user finds that poor element quality is
being produced by the paver, switching the smoothing scheme will often help. This is done by
the command:

[set] Paver Smooth Method {Default|Smooth Scheme}

Where if the option “Smooth Scheme” is selected, the smoothing scheme specified for the
surface will be used in place of the paver’s “in house” smoother. See “Mesh Smoothing” on
page 124 for more information about the callable smoothing schemes in CUBIT.

After the clean-up and smoothing techniques have been used, the quality of the paved mesh is
inspected for extreme element quality namely inverted, flat-sided, concave, or triangular shaped
elements. If these elements exist on the surface, a warning is reported to the user identifing the
poorly formed element. It should be noted that at this point all possible efforts were exerted to
improve these elements, but the result was unsuccessful. The user does however have several
options should this occur. The first option is to inspect the mesh and perhaps discover a method
to better assign intervals (usually increasing interval size will give the paver a better chance for
success). Another method would be to manually decompose the surface to produce an easier
surface to mesh. Yet another is to try to move the nodes on the surface manually or collapse faces
on the surface mesh. See “Mesh Deletion” on page 126 and “Node and NodeSet Repositioning”
on page 127.

In general, creation of these elements is rare and generally limited to thin surfaces with coarse
mesh sizes. Efforts are continueing in trying to improve and remove these problems.

Surface Submapping

Submapping is a meshing tool based on the surface mapping capability discussed previously.
This tool is suited for mesh generation on surfaces which can be decomposed into mappable
subsurfaces. This algorithm uses a limited decomposition method to break the surface into
simple mappable regions. Submapping is not limited by the number of corners or reversals in
the geometry or by the number of edges. The submap tool, however is best suited for surfaces
that are fairly blocky or surfaces that contian interior angles that are close to Cartesian.

After submapping has subdivided the surface and applied the mapped meshing technique
mentioned above, the mesh is smoothed to reduce the sharpness of the decomposition. Because
the decomposition is mesh based, no geometry is created in the process and the resulting interior
mesh can be smoothed. This increases the conformity of the mesh to the surface. Sometimes the
smoothing can decrease the quality of the mesh, in this case the following command can turn
off the automatic smoothing before meshing:

Surface <id> SubMap Smooth <on|off>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 5-9. The
left side of this figure shows the topology assumed by the submapping algorithm and the right
side shows the resulting mesh and the vertex classifications. An alternative interpretation of the
topology is shown in Figure 5-10.

Surface submapping also has the ability to mesh periodic surfaces such as cylinders. The
requirment for meshing these surfaces is that the top and bottom of the cylinder must have

CHAPTER 5 Mesh Generation

96 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

matching intervals. The intervals between the top and bottom of the cylinder can be set
specifically by the command:

Surface <id> Periodic Interval <intervals>

The intervals in the middle can also be set by assigning an interval size to the surface. No special
commands need to be given to submap a periodic surface, the algorithm will automatically
detect this. Currently, periodic surfaces with interior holes arenot supported. An example of a
periodic surface meshed with submapping is shown in Figure 5-11.

Meshing Primitives

Several basic shapes can be meshed as primitives using an internal decomposition technique to
decompose the shape into mappable segments. The triangle and circle primitives are currently
the only surface meshing primitive available in CUBIT.

• Triangle Primitive

Thetriangle scheme indicates that the region should be meshed as a triangle. The definition of
the triangle is general in that surfaces containing 3 natural corners can often be meshed
successfully with this algorithm. For instance, the surface of a sphere octant is handled nicely
by the triangle primitive. The algorithm requires that there be at least 6 intervals (2 per side)

Figure 5-9 Submapping Example

Figure 5-10 Alternate Submapping Topology Interpretation

Transformed Geometry by
Surface Vertex Type Command SideSide

End End

Transformed Geometry by
Surface Vertex Type Command Side

End End
Side

Sides

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual97

specified on the curves representing the perimeter of the surface and that the sum of the intervals
on any two of the triangle’s sides be at least two greater than the number of intervals on the
remaining side. Figure 5-12 illustrates a triangle mesh on a 3D surface.

Figure 5-12 Triangle and Circle Primitive Meshes

• Circle Primitive

TheCircle scheme indicates that the region should be meshed as a circle. A “circle”consists of
a single bounding curve containing an even number of intervals. Thus, circle can be applied to
circles, ellipses, ovals, and regions with “corners” (e.g. polygons). The bounding curve should
enclose a convex region. Non-planar bounding loops can also be meshed using the circle
primitive provided the surface curvature is not too great. The mesh ressembles that obtained via
polar coordinates except that the the cells at the “center” are quadrilaterals, not triangles (see
Figure 5-12). Radially grading of the mesh may be achieved via the optional [intervals] input
parameter. See Ref. XXX for the theory of the circle primitive.

Adaptive Surface Meshing
Adaptive surface meshing in CUBIT produces a function following mesh which sizes elements
based on the value of the driving function at the spatial location at which the element is to be
placed. Adaptive surface meshing is performed using the paving algorithm in combination with
an appropriate sizing function. The types of sizing functions that can be used are curvature,

Figure 5-11 Periodic Surface Meshing with Submapping

CHAPTER 5 Mesh Generation

98 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

linear, interval, inverse, super, test, and Exodus-based field function. These are each described
in the following paragraphs.

The procedure for adaptively meshing a surface is to designate paving as the mesh scheme for
that surface, assign sizing function types, and mesh the surface. The command syntax of these
commands is:

Surface < id > Scheme Pave

Surface < id > Sizing Function Type { Curvature | Linear | Interval | Inverse |
Super | Test | Exodus }

Mesh Surface <id>

TheCurvature sizing function determines element size based on the curvature evaluation of a
surface at the current location. Two surface curvature values (taken perpendicular to each other)
are compared at the location of interest, and the largest is used as the sizing function for the
mesh. Figure 5-13 shows a solid with a highly deformed surface which displays rapid change

of surface curvature at several locations. Figure 5-14 depicts a normal paved mesh of this
surface using a common size on all bounding curves and no sizing function in the interior. The
total number of quadrilateral shell elements for this case is 1988. Figure 5-15 shows a mesh
which was generated with the curvature sizing function option. The mesh is graded denser in
the regions of quickly changing curvature, such as at the tops of the hills and at the bottom of
the valley. Due to the intense interrogation of the underlying geometric modeler which the
curvature method relies on, this option can be very computationally expensive.

TheLinear class of sizing functions determines element size based on a weighted average of
edge lengths for mesh edges bounding the surface being meshed. There are several variants of
this class of sizing function. TheLinear function bases edge length at a location on the lengths
of edges bounding the surface weighted by their inverse distance from the current location. The
result of this weighting is a more gradual change in mesh density during a transition between
dense and coarse mesh. Figure 5-16 shows the same NURB surface mesh but with intervals of
34 on two curves and intervals of 16 on the remaining two bounding curves and no sizing
function. It can be observed that the mesh progresses more rapidly inward from the coarser
meshed curves, which locates the transition region much closer to the finer meshed curves. To
combat this, theLinear function weights the sizing of new elements such that these transitions

Figure 5-13 NURB solid with high surface curvature change

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual99

Figure 5-14 NURB mesh with no interior sizing function

Figure 5-15 NURB mesh with curvature sizing function

Figure 5-16 NURB mesh with no sizing function, 34 by 16 density

CHAPTER 5 Mesh Generation

100 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

occur slower. Figure 5-17 displays the same NURB geometry with the same bounding curve

mesh density using the linear sizing function.

The Interval function is similar to theLinear function, but bases edge length at a location on
thesquared lengths of edges bounding the surface weighted by their inverse distance from the
current location (see Figure 5-18).

TheInverse function is also similar to theLinear function, but this method bases edge length
at a location on theinverse lengths of edges bounding the surface weighted by their inverse
distance from the current location (see Figure 5-19). The difference between the three linear
sizing functions is sometimes subtle, but is driven by the geometry being meshed since the
influence of these functions is strongly controlled by the number, positioning, and mesh density
of the bounding curves relative to the interior surface area.

TheSuper sizing function computes both theCurvature and theLinear function and takes
the smaller value of the two (see Figure 5-20).

Figure 5-17 NURB mesh with linear sizing function, 34 by 16 density

Figure 5-18 NURB mesh with interval sizing function, 34 by 16 density

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual101

TheTest sizing function is a hardwired numerical function used to demonstrate the transitional
effect of sizing function-based and adaptive paving. The function is a periodic function which
is repeated in 50x50 unit intervals on a 2D surface in the first quadrant (x > 0, y > 0, z = 0). A
square mesh which was generated using this function is shown in Figure 5-21. Another example
is shown in Figure 5-22.

The ability to specify the size of elements based on a general field function is also available in
CUBIT. With this capability the desired element size can be determined using a field variable
read from a time-dependent variable in an Exodus file. Either node-based or element-based
variables can be used. Importing a field function and associating it with a surface, and
normalizing that function are done in two separate steps to allow renormalization without
having to read the mesh in again. Currently, field functions are imported from element and node-
based ExodusII data. Thus, a field function is a time-dependent element variable in an ExodusII
file. The mesh block containing the corresponding elements must be imported along with the
field function data. For details on the adaptive paving algorithm, see [Ref].

Exodus variable-based adaptive paving is accomplished in CUBIT in several steps:

Figure 5-19 NURB mesh with inverse sizing function, 34 by 16 density

Figure 5-20 NURB mesh with super sizing function, 34 by 16 density

CHAPTER 5 Mesh Generation

102 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• Surface mesh scheme set to Pave. Bounding curve mesh schemes can also optionally be set to
Stride.

• An Exodus mesh and time-dependent variable for that mesh is read into CUBIT.

• The mesh and variable data are associated to geometry.

• The Exodus variable is normalized to give localized size measures, and the surface sizing
function type is designated.

• Surface is meshed.

Figure 5-21 Test sizing function mesh for square geometry

Figure 5-22 Test sizing function for spline geometry

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual103

The following command is used to read in a field function and its associated mesh:

Import Sizing Function ’<exodusII_filename>’ Block <block_id>
Variable ‘<variable_name>’ Time <time_val> [Deformed]

where<block_id> is the element block to be read,<variable_name> is the Exodus time-
dependent variable name (either element-based or nodal-based), and<time_val> is the
problem time at which the data is to be read, theDeformed keyword indicates whether
deformation has been accounted for on the new model (for information on creating deformed
2D geometry from EXODUSII data, see “Importing EXODUSII Files” on page 70) and needs
to be accounted for in the sizing function data. When this command is given, the nodes and
elements for that element block are read in and associated to geometry already initialized in
CUBIT (for information on associating mesh to geometry, see [ref]). Note that when a sizing
function is read in, the mesh is stored in an ExodusMesh object for the corresponding geometry,
and therefore the geometry is not considered to be meshed. Also note that if deformation is not
being modelled, the geometry to which the mesh is being associated must be in the same state
as it was when that mesh was written (see “Mesh Importing and Duplicating” on page 127 for
more details on importing meshes).

Once the field function has been read in and assigned to a surface, it can be normalized before
being used to generate a mesh. The normalization parameters are specified in the same
command that is used to specify the sizing function type for the surface. The syntax of this
command is:

Surface < id > Sizing Function Type Exodus
[Min <min_val> Max <max_val>]

If normalization parameters are specified, the field function will be normalized so that its range
falls between the minimum and maximum values input. Subsequent normalizations operate on
the normalized data and not on the original data. If an element-based variable is used for the
sizing function, each node is assigned a sizing function that is the average of variables on all
elements connected to that node. Nodal variables are used directly.

After the sizing function normalization, the surface can be meshed using the normal meshing
command

Mesh Surface <id>

For example, the left image in Figure 5-23 depicts a plastic strain metric which was generated
by PRONTO-3D [18], a transient solid dynamics solver, and recorded into an ExodusII data file.
When the file is read back into CUBIT, the paving algorithm is driven by the function values at
the original node locations, resulting in an adaptively generated mesh [19]. The right image in
Figure 5-23 depicts the resulting mesh from this plastic strain objective function.

Boundary Layer Meshing
The Boundary Layer meshing scheme is an algorithm designed to insert rows of elements
around the boundary of a surface before meshing the interior. The aspect ratios of these elements
can be carefully controlled. This capability is specifically designed for fluid simulations
involving a boundary layer. With this tool, the total boundary layer thickness and relative
thicknesses of each of the rows can be specified.

A boundary layer is specified as a set of parameters, with a boundary layer ID. This set of
parameters is then attached to curve/surface pairs in the geometry. Thus a curve may have a row
of boundary layer elements next to it on one of the surfaces it bounds, but not on another. A

CHAPTER 5 Mesh Generation

104 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

boundary layer is currently defined using a combination of four of the five possible parameters.
These parameters are shown in Figure 5-24.

• First Layer Depth. This parameter specifies the physical depth of the first layer of elements.
This is a required parameter.

• Growth Factor. This parameter specifies the relative difference of each subsequent layer’s
depth. For instance, a factor of 1.2 makes each layer 1.2 times the preceding layer’s depth.
This is an required parameter unless the second layer depth is specified.

• Total Depth. This parameter specifies the total depth of all the boundary layers. Either the
total depth or the number of layers must be specified.

• Number of Layers. This parameter specifies the total number of layers in the boundary
layer. Either the number of layers or the total depth must be specified.

• Sublayer Depth. This parameter specifies the physical depth of the sublayer of elements.
This is an optional parameter. If it is specified a sublayer of elements (not counted in the
“number of layers” parameter) is added.

Figure 5-23 Plastic strain metric and the adaptively generated mesh

Figure 5-24 Boundary Layer Parameters

Total Depth
First Layer Depth

Second Layer Depth

Number of Layers = 4

First Layer Depth

Total Depth
Sublayer Depth

Number of Layers

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual105

A boundary layer is created with either of the following commands:

BoundaryLayer <range> First [Layer] <depth> Growth [Factor] <growth>
Total Depth <depth> [Sublayer <depth>]

BoundaryLayer <range> First [Layer] <depth> Growth [Factor] <growth>
Layers <count> [Sublayer <depth>]

Note: If the growth factor, total depth, and number of rows are specified together, then the
boundary layer definition is overspecified, and the total depth will be ignored.

The boundary layer is attached to curve/surface pairs with the command:

BoundaryLayer <layer_id> Surface <range> Curve <range>

Generating the Surface Mesh
Once the desired scheme has been chosen, and any boundary layers for the surface defined and
attached, the surface can be meshed. If the user wishes to receive a different element type than
the default (four node quads) for surface meshing, this specification needs to be set prior to
creating any surface meshes. The command to mesh a surface is:

mesh surface <range>

The resulting mesh will be drawn on the screen in the mesh color designated for the surface.

▼ Volume Meshing
Volume meshing discretizes the volume into nodes, edges, faces, and hexahedral elements.
When meshing a volume, the bounding surfaces of the volume are first meshed (if not already
meshed). Available volume meshing algorithms aremapping, submapping, project,
translate, rotate, plaster, and whisker weaving (plaster and whisker weaving are
currently under development and as such are not recommended for production use). The
StairTool meshing algorithm is also available, but generates a volume-surrounding mesh rather
than a volume-filling mesh.

Scheme Designation
The algorithm to be used for volume meshing is designated as the scheme of the volume.
Currently, valid schemes are:

Map Create mesh using mapping transformations.

Submap Create mesh by breaking geometry into several connected regions which are then
automatically meshed using mapping transformations.

Project Create mesh by projecting the mesh from one surface to another.

Translate Create mesh by translating the mesh from a source surface along the vector from
the source surface to the target surface.

Rotate Create mesh by rotating about an axis from the source surface to the target surface.

Plaster Fill the volume in a free meshing inward approach—currently being researched..

Stair Surround the volume with a non-intersecting, structured shell of quadrilaterals.

CHAPTER 5 Mesh Generation

106 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Weave Attempt to generate whisker weaving sheets to fill the volume—currently being
researched.

Dice Refine an existing mesh by splitting each existing element into a specified number of
smaller elements.

Each of these algorithms are briefly described below. The default scheme for a volume isMap.
The default scheme for volume meshing can be changed by the command:

Volume Default Scheme {map | submap | plaster | weave}

The scheme is set with any of the following commands:

Volume <range> Scheme {map | submap | weave | plaster | pyramid | stair |
dice}

Volume <range> Scheme {project | translate | rotate} Source <id> Target <id>

Volume Mapping

The volume mapping capability in CUBIT is based on the same transfinite interpolation
mapping transformations [7] which were discussed in the surface meshing section (See
“Surface Mapping” on page 94). Volume mapping is designed to work on volumes that can
represent a logical cube (they have six logical surfaces and eight logical vertices) as determined
by their surface mesh (if the surface mesh contains any irregular nodes, or non-corner nodes that
are connected to more or less than four other surface nodes, then mapping transformations
cannot be used to generate a volume mesh). There may be more or less actual surfaces, as long
as the logical surfaces can be determined. For example the union of two blocks shown in Figure
5-25 contains eight surfaces, but it is easy to see that four side surfaces can be logically

combined to form two surfaces of the logical cube and mapping can be performed successfully.
A model which contains less than six surfaces but can be mapped is the quarter cylinder shown
in Figure 5-26 which has only five surfaces. However, the cylindrical surface can be logically
dissected to form two of the logical surfaces, and this volume can also be meshed successfully.
The volume mapper in CUBIT needs no input from the user to determine which of the surfaces
need logical dissection and/or combination. The surface mesh, as described below, dictates
these choices.

The pattern of the surface mesh will dictate whether a volume can be mapped. On any mappable
volume mesh, the surface mesh must contain only 8 trivalent nodes (nodes attached to only 3

Figure 5-25 Volume mapping of an 8-surfaced volume.

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual107

quadrilateral faces on the surface). All other nodes must be quadvalent (4 elements attached to
the node). These 8 trivalent nodes form the corners of the cube to be mapped. In Figure 5-27

the surface mesh of an 8-surfaced volume is shown. The logical edges of the surface mesh are
highlighted. Notice that not all the geometric edges are used as logical edges for meshing. These
logical edges meet at the trivalent nodes of the surface mesh (the corners). This combination of
8 trivalent and the rest quadvalent nodes on the surface can only produce a logical cube. Thus,
the user need only insure that the surface mesh has the right characteristics for volume mapping
to succeed.

Volume Submapping

Volume submapping is an automated mapping method that uses a mesh based decompostion
method to automatically subdivide the volume into mappable sub-volumes. These mappable
sub-volumes are defined by mesh boundaries which are then automatically sent to the volume
mapper for hexahedral meshing. The sub-volumes are created by meshing virtual surfaces on
the interior of the volume. These dissections are created by ‘i-j-k’ space logic (See “Mapping
and Submapping Interval Constraints” on page 91 for a discussion of ‘i-j’ space operations). An

Figure 5-26 Volume mapping of a 5-surfaced volume

Figure 5-27 Surface mesh of an 8-surfaced volume highlighting the logical edges used
for volume mapping.

CHAPTER 5 Mesh Generation

108 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

example of this can be seen in Figure 5-28, where the volume has been separated into two pieces

with a virtual surface. The virtual surface will not be visible to the user during or after the
meshing process. Volume submapping is limited to geometries that meet the following two
criteria: 1) the bounding surfaces have been meshed with surface submapping or mapping, and
2) three, five, and six valent nodes occur only at junctions where surfaces meet.

The command for setting the volume meshing scheme to be submapping is:

volume <volume_id_range> scheme submap

An example of a volume meshed with Volume Submapping is shown in Figure 5-29.

Sweeping (Project, Translate, and Rotate)

The CUBIT volume sweeping capability is divided into three algorithms (Project, Translate, and
Rotate) which each generate a volume mesh by extruding hexahedrons from a previously

Figure 5-28 Example of internal virtual surface creation

Figure 5-29 Hexahedral mesh generated by volume submapping

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual109

meshed source surface to a topologically similar target surface. Topologically similar includes
relationships such as a rectangular surface being extruded into an elliptical surface as long as
the two surfaces contain the same number of boundaries or loops1.

The geometric requirements for a sweeping operation are that the volume be “2 and 1/2 D,” or
extrudable. This requirement is typically satisfied if the surfaces linking the source surface and
target surface can be meshed with compatible mapping transformations (See “Surface
Mapping” on page 94.), where the “compatible” qualifier means that the edges linking the
source surface to the target surface have the same number of intervals. The source surface may
be meshed using any of the meshing methods described in “Surface Meshing” on page 91. The
smoothed topology of the source surface mesh will be reproduced on the target surface unless
the target surface is already meshed. In this case, the target surface mesh must have the same
topology and connectivity as the source target mesh. It is much more efficient to let the sweeping
meshing algorithms mesh the target source face if at all possible.

The procedure for the sweeping volume mesh generation algorithms is as follows: first the
attributes (interval settings, element type, etc.) of the volume should be set, and then the surfaces
which will act as the source and target must be selected. When the command to mesh the volume
is executed, the sweeper will mesh the source surface, and then the linking surfaces. The
sweeping algorithms will then project a layer at a time, progressing through the unmeshed
volume. The difference between the three sweeping algorithms is the method used to project the
nodes and elements from one layer to the next. These details will be discussed in the following
sections.

• Project

Theproject sweeping algorithm is a modified version of the plastering hex element projection.
The sweep path can be completely general. The nature of the swept region can also be general
in that it can contain draft angles and non-symmetric transformations. Figure 5-30 displays
swept meshes involving mapped and paved source surfaces. The project algorithm can also

1. The number of loops on a surface refers to the number of boundaries it has. A surface always has at least one boundary, the set

of curves which bound it externally. Some surfaces also have internal boundaries, or loops, in the form of holes.

Figure 5-30 Project Volume Meshing

Source
Surface

Target
Surface

Source
Surface

Target
Surface

CHAPTER 5 Mesh Generation

110 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

handle multiple surfaces linking the source surface and the target surfaces. An example of this
is shown in Figure 5-31. Note that for the multiple surface meshing case, the interval
requirement is that the total number of intervals along each multiple edge path from the source
surface to the target surface must be the same for each path.

The project algorithm proceeds by determining a “projection node” for each node on the
boundary of the current “layer.” A node’s projection node is the node directly “above” (in the
sense of up being closer to the target surface than the source surface). An approximate planar
surface is then generated through these nodes. For each node interior to the boundary of the
volume, an average “projection vector” is calculated by determining which neighboring nodes
have existing projection nodes and averaging the vector from these nodes to their projection
nodes. The interior nodes are then calculated by projecting from the interior nodes along the
average projection vector to the approximate planar surface calculated earlier. The interior
nodes are ordered in a manner to maximize the number of neighboring nodes with existing
projection nodes. This process is repeated for each interior node on the current layer. After all
projection nodes have been created, a new layer of hexes is created and smoothed. The process
then repeats for the next layer.

If the approximate planar surface does not closely match the surface defined by the boundary
projection nodes, the interior projection nodes are created simply by projecting along the
average projection vector; the intersection with the planar surface is not calculated.

The project algorithm is very general in that it can create a mesh on almost any extrudable
volume; however, this generality has some disadvantages in that it does not use any global
information about the actual generation of the volume. It simply projects a layer at a time in
moving from the source surface to the target surface. Because of this, and the smoothing that is
done after each layer is created, features that are present in the source surface mesh sometimes
tend to get smoothed out or smeared by the time the mesh reaches the target surface mesh. The
project algorithm is also slower and requires more memory than the translate and rotate
algorithms since it must calculate a local projection for each node and maintain the information
required by the smoothing algorithms.

Figure 5-31 Multiple Surface Project Volume Meshing

Target Surface

Linking Surfaces

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual111

• Translate

The translate sweeping algorithm is a more restricted version of theproject algorithm. It is
used when the source surface and target surface have exactly the same geometry and are parallel.
If it is possible to translate the source surface along a vector and have it completely overlay the
target surface, this algorithm can be used.

Thetranslate algorithm proceeds by calculating the vector from the source surface to the target
surface. The thickness of each layer is then calculated as the distance from a boundary node on
that layer to that node’s projection node. This distance is the same for each node on the current
layer since the source surface and the target surface (and therefore, each layer) are parallel. Each
interior node is then projected that thickness along the vector. This process is repeated for each
layer in the volume. No smoothing is performed on the generated volume mesh.

• Rotate

Therotate sweeping algorithm is also a restricted version of theproject algorithm. It is used
when the source surface and target surface are exactly the same and are connected by a conic or
toroidal surface. If it is possible to rotate the source surface about a single axis and have it
completely overlay the target surface, this algorithm can be used. This algorithm cannot be used
if the rotation axis contacts either the source surface or the target surface, that is, there must be
a hole through the center of the generated mesh.

Therotate algorithm proceeds by calculating the axis of rotation from the source surface to the
target surface. The thickness of each layer is calculated from the amount of rotation from a
boundary node on that layer to that node’s projection node. This rotational distance is the same
for each node on the current layer. This process is repeated for each layer in the volume. No
smoothing is performed on the generated volume mesh.

Plastering

Plastering uses the discretized surface and begins to lay elements into the interior of the volume.
This continues until the volume fills, with adjustments made to the exterior surface mesh as
deemed necessary. This algorithm is currently under development and not suggested for use
although it may be tested if desired. It should currently perform well for blocky structures where
the surface mesh will form a valid boundary for an interior hex mesh. Some examples of these
structures are shown in Figure 5-32. These structures allow very straightforward hex element
connectivity and do not contain any irregular nodes (nodes that are shared by other than four
element edges in a given layer).

The command for setting the volume meshing scheme to be plastering is:

volume <volume_id_range> scheme plaster

A partial mesh can be created instead of meshing the complete geometry. The number of hex
elements or the number of completed layers inward can be specified at the command line when
giving the mesh command by using the following syntax:

mesh volume <volume_id_range> hexes <number_hexes>

or

mesh volume <volume_id_range> layers <number_layers>

CHAPTER 5 Mesh Generation

112 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Stair Tool

The StairTool meshing algorithm surrounds a volume with a non-intersecting, structured, all-
quadrilateral shell mesh. The structured quadrilateral shell mesh is axis-aligned, with number
of intervals in each coordinate direction user-specified. This mesh is computed using a ray-firing
technique combined with face-body intersection checking. StairTool meshes are useful for finite
volume methods with applications in electromagnetic and radar cross section modeling.

The StairTool creates a mesh which does not actually lie on a volume; in fact, after stair-meshing
a volume, one could conceivably mesh the surfaces and interior of that volume as well.
Therefore, StairTool actually creates another body, which is used to hold the mesh. This body
is sized to be slightly larger than the bounding box of the original volume, and can be thought
of as containing a structured mesh. The StairTool algorithm computes which hexes in this mesh
intersect or lie inside the volume, and marks those hexes. The outside shell of these hexes
defines the non-intersecting, structured shell mesh output by the StairTool.

The output from the StairTool is stored as a list of quadrilateral elements on the volume created
by the StairTool. To output this set of quadrilaterals to an ExodusII file, a new element block
must be created with an element type of SHELL4. This block is automatically created by the
StairTool, and by default is given an id identical to the new volume’s id. This block id can be set
by the user.

The following commands are used to control the StairTool meshing algorithm:

body <body_id_range> stair interval { [x <int>] [y <int>] [z <int>] | int }

Sets the number of intervals in the x, y and/or z directions, or, alternatively, sets the number of
intervals in all directions. The brick volume surrounding the original volume will have the
specified number of intervals in each direction. This command controls the relative size of the
quadrilateral elements in the shell mesh.

body <body_id_range> stair block <block_id>

Figure 5-32 Plastering Examples

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual113

This command sets the id of the SHELL4 element block used to write out the quadrilateral shell
mesh.

volume <volume_id_range> scheme stair

Designates a volume to be surrounded by the quadrilateral shell mesh. The volume is meshed
using the normal meshing command.

Figure 5-34 shows an example where the Thunderbird is surrounded by an axis-aligned,

structured, non-intersecting shell of quadrilaterals.

Whisker weaving

Whisker weaving is based on information contained in the Spatial Twist Continuum (STC),
which is the geometric dual of an all-hexahedral mesh. Whisker weaving begins with a three
dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral
element connectivity advancing from the boundary inward. After the generation of hex mesh
connectivity in dual space, this connectivity is then converted into an actual mesh and smoothed
to fit the volume. For more details about the whisker weaving algorithm, see [Ref].

The whisker weaving algorithm is under research and development, and its capabilities are
limited at the time of writing. Examples of meshes generated using the whisker weaving
algorithm are shown in Figure 5-34.

To mesh a volume with whisker weaving, the following steps must be taken:

• Set the meshing scheme for the volume to weave.

• Set the smoothing scheme for the volume to Laplacian.

• “Weave” the volume, generating a collection of interdependent “sheets” that are dual to the
hex-mesh connectivity.

• Make local connectivity modifications, to improve mesh quality.

Figure 5-33 StairTool mesh.

Figure 5-34 Whisker weaving meshes.

CHAPTER 5 Mesh Generation

114 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• Convert connectivity information to an actual mesh.

Whisker weaving basic commands

This section assumes that there is already a standard volume defined by a geometric model in
CUBIT. There is also the option of importing a surface mesh to define the geometry; see
“Example:” on page 120.

The basic commands for meshing a volume using whisker weaving are the following. The
volume is woven by setting the scheme and issuing the command to mesh the volume:

Volume <volume_id_range> Scheme Weave

Mesh volume <volume_id_range>

Before generating the primal, that is before constructing hexes, the user has the chance to
observe, experiment, and resolve knives and other degeneracies in the weave (these options will
be described in the next few sections). After inspecting the weave, and assuming there are no
degeneracies besides knives and doublets in the weave1, the primal is generated by setting the
volume smooth scheme and issuing the primal command:

Volume <volume_id_range> Smooth Scheme Laplacian

Primal Volume <volume_id>

The resulting mesh can be inspected, modified, and written to a Genesis file using all the typical
operations described elsewhere in this mnual.

Viewing the Weave

The connectivity information generated by whisker weaving is represented as a series of
interdependent, 2D sheets. To view the collection of sheets for a volume, the following
command is used:

Draw Arrangement <volume_id>

A particular sheet may be drawn using the command

Draw Sheet <sheet_id>

An example sheet diagram is shown in Figure 5-35 left. The id number for the sheet is drawn in
the upper right corner of the diagram. The outer boundary of the sheet represents a “loop” or
cycle of mesh quadrilaterals on the geometric boundary2 as in Figure 5-35 right. The loop is
intersected by chords, each labeled with the face id (outside the loop) and the other sheet number
(inside the loop). Hexahedra on the chords are labeled with the hex id number. Self-intersecting
chords and knife chords are drawn in a different color from the other chords; the exact color
depends on the volume’s mesh color. The user can highlight a chord on a particular sheet with
the command

Draw Chord <face_id>

This command highlights the chord on its first sheet; preceding the<face_id> with a minus
sign highlights the chord on its second sheet.

1. Degeneracies (knives, doublets, etc) are generated as a natural part of whisker weaving, and some are left in the mesh for

resolution after weaving is complete. Some of these degeneracies must be resolved before a primal can be constructed; see

“Resolving whisker weaving degeneracies” on page 115.

2. Some sheets have more than one loop; additional loops are shown as inner boundaries on the sheet diagram.

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual115

The quadrilaterals forming the loop(s) of a sheet are drawn by the following command; see
Figure 5-35 right.

Draw Loop <sheet_id>

Groups of STC entities can be displayed in separate graphics windows. The window positions
may default to on top of one another, so the user may have to move a window before realizing
that there are windows underneath it. To enable this option, use the command

Set Windows On

The user can obtain more information about various STC entities by using the listing
commands. The following commands list information about sheets, chords, sheetchords, hexes,
and doublets, respectively:

List Sheet <sheet_id>

List Chord <chord_beginning_face_id>

List Schord <chord_beginning_face_id>

List Whex <hex_id>

List Doublets

For information about the output of these commands, contact the CUBIT development team.

Resolving whisker weaving degeneracies

Sometimes the STC or weave contains invalid connectivity, also referred to asdegeneracies.
Care is taken to resolve these degeneracies automatically, but sometimes there is a choice for
the user, and in some cases the automatic resolution has not yet been implemented. The options
in this section are used to resolve a number of types of degeneracies.

• Knife resolution

A knife element is a degenerate hexahedron with one face collapsed by merging a pair of
opposite nodes. In the weave, a knife appears as the middle hex of a chord whose beginning and
ending face are the same. In actuality, this chord passes through the same face on both ends,
passes through the same hexes in the same order, and then terminates inside the volume at the
knife element.

Figure 5-35 Example sheet diagram (left) and corresponding loop (right).

10142

97
133

159

135

99

62
12150

13
149

86
121

135

110

74

31
11
148

28

72

102
86

927887
97

101
79

91

142
107

71
27

10
138

7
45

8
59

101
117

127

144

107
1592 42

84
1101441421391

1490

78
114

133
11779189

1588
12

87 16
86 1

85

91 127
159

190

92

14
84

11
83

87
114

190
121 102

1682

71
74

84

99

72
855

27
31

42

62

28
7 41

6

9090

8989

8888
87878686

8585

8484

8383

8282

5555

4141

142142
150150 149149 148148 138138

4545

5959

9292

9191

CHAPTER 5 Mesh Generation

116 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Knives may be resolved by pushing them or pulling them through the mesh [Ref], or knives may
be left in place and a hex-plus-knives mesh can be generated. Pulling knives, or collapsing them,
is the most robust, but always changes the surface mesh and sometimes generates other
degeneracies. Knife driving in the normal manner is not always possible. An alternative
algorithm for driving knives, called “superdrive”, is also being investigated. Superdriving
results in STC invalidities whose automatic resolution is not currently implemented.

If the user wants a mesh without any knives, the simplest thing to do is collapse all the knives
before primal construction, using the command:

Whiskerknife Collapse all

Better mesh quality may be obtained by driving knives together or to the surface mesh instead,
using the command

Whiskerknife Drive all

Knives are first collapsed to just inside the surface, in order to maximize the chance of being
able to drive them in the normal fashion. If its impossible to drive a knife, then it is collapsed.

The following command may be used to collapse or drive knives for entire sheets:

Whiskerknife {Drive|Collapse} [Sheet] [<sheet_id_range> | All] [One]

If none of the options are specified, the first knife found is resolved (by driving or collapsing).
If individual sheets are specified, then all, or if the keyword “one” is specified then just one, of
the knives on those sheets are resolved. If the range is “all”, then all sheets have all knives
resolved. Note that collapsing a knife results in the creation of a new sheet, and other knives on
the original sheet may end up on the new sheet.

The following commands may be used to collapse knives individually:

Whiskerknife Collapse Chord <face_id> [Number <n>]

This collapses the knife whose base chord begins at the specified face. If the number option is
used, the knife is collapsed<n> hexes.

To drive a knife, the following command is used:

Whiskerknife Drive Chord <face_id> [Report]

This causes the specified knife to be resolved by driving if possible, otherwise by collapsing. If
the report option is used, a tree of possible drives for the knife chord is given. The knife is not
backed up first, but this can be done manually with theWhiskerknife Collapse Chord
Number <n> command, with<n> set to exactly the number of hexes on the chord. The
possible drive path(s) are reported using paths of STC edges on the sheet diagram. Each edge is
also reported to the list output as a pair of vertices, each vertex dual to either a hex or a surface
mesh face. The user then chooses one of the locations reported, and tells CUBIT to drive the
knife to that location.

Whiskerknife Drive Chord <face_id> [Hex|Face <a1> Hex|Face <a2> Hex|Face
<b1> Hex|Face <b2>]

The optional parameters specify a specific quadruple of entities for the knife to drive to, from
its current location. It is recommended that the user specify only locations obtained by the
Whiskerknife Drive Chord <face_id> Report command.

Another option for resolving knives is called “superdrive”. This method converts the knife to a
related degenerate element which can be driven more easily through a mesh. This technique
produces degenerate elements in the wake, but can be used to drive knives on the same sheet

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual117

together. The degenerate elements in the wake can be resolved using pillowing, described in the
next section. To allow the use of superdriving with any of the drive commands described above,
set the following option:

Set Superdrive {On|Off}

Knives can also be created in a mesh by collapsing a face on the surface of a completed weave.
This capability is useful for studying knife behavior in particular situations. To produce a knife
by collapsing a surface face, use the following command:

Whiskerknife Collapse Chord <face_id> [Node <node_id>] [Number <n>]

If a node is specified, then the face is collapsed by merging that node with the node at the
opposite corner of the face, otherwise the node pair is chosen at random. The base face of the
new knife chord will be the other surface face of the chord through the collapsed face. If<n> is
specified, that many hexes on the knife chord are collapsed (<n> may be set to zero); otherwise,
the chord is completely collapsed.

• Doublet Resolution

Doublets are two faces sharing two edges, or two hexes sharing two faces (which implies the
former case). Surface doublets are formed when two faces of a hex share an edge and lie on the
same planar or near-planar surface. Doublet resolution sometimes changes the surface mesh. To
resolve doublets in a weave, first construct the primal. Doublets that occur in any mesh within
CUBIT, including those arising from whisker weaving and plastering, may be resolved with the
following command:

Pillow Volume <volume_id>

Pillowing doublets deletes any sheets for the volume. The basic strategy is to use abstract pillow
sheets to locally refine the mesh, putting a layer or two of hexes between the shared faces, or
between the surface doublet faces and the hex that contains them.

Pillowing doublets may be performed in meshes that contain knives. The user should be aware
that knives by definition contain two faces sharing two edges, and since both of these faces lie
in the same “hex” (i.e. the knife), pillowing doublets cannot remove such doublets.

• Degeneracy Resolution Using Pillow Sheets

Pillow sheets, which are sheets with no loops lying entirely inside the volume, are useful for
resolving a variety of degeneracies produced by whisker weaving. They may also be useful for
adaptive mesh refinement. For example, through-cells and through-chords, STC entities that
pass completely through the volume from one part of the surface mesh to another, can be
resolved with pillow sheets1.

The placement of pillow sheets to resolve various types of degeneracies is still being researched.
In some cases, pillow sheets can be placed automatically; in other cases, the pillow sheets must
be allocated , then placed to separate specific entities in the STC, and then inserted and verified
manually by the user.

1. Through-chords are chords which extend across the sheet without intersecting any other chords. Through-2-cells are 2-cells

containing 2 or more distinct edges on the loop. Through-3-cells, which cannot be observed directly on a single sheet diagram,

are 3D analogies of through-2-cells. See [Ref] for more details.

CHAPTER 5 Mesh Generation

118 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

To automatically insert a pillow sheet that hugs the surfaces of the specified volume, in effect
inserting a buffer layer of hexes and cutting all cells that touch the surface, including though-
cells, the following command is used:

Pillow Weave <volume_id_range> Buffer

An example of a non-distinct STC entity invalidity is a 2-cell that contains the same STC edge
twice. This corresponds to a mesh edge being contained twice by a mesh quadrilateral. These
types of invalidities are detected and resolved automatically with pillow sheets by the following
command.

Pillow Weave <volume_id_range> Automatic

The user can insert pillow sheets interactively to resolve degeneracies and refine the mesh before
primal construction. A sequence of commands is used to allocate the pillow sheet, place it, then
insert it in the weave. The commands (in sequence) are

Pillow Weave <volume_id> Create

This creates a vacuous pillow sheet. The id of the new pillow sheet is reported.

A pillow sheet is placed next to specified faces, and surrounding specified hexes, using the
following commands:

Pillow Sheet <sheet_id> Face <face_id1> [<face_id2>...]

Pillow Sheet <sheet_id> Hex <hex_id1> [<hex_id2>...]

After specifying the placement of the pillow sheet, the sheet is inserted in the weave, cutting
around the prespecified hexes and cutting next to the prespecified faces, using the following
command:

Pillow Sheet <sheet_id> Cut

The following commands perform datastructure cleanup and correctness verification for the
pillow sheet:

Pillow Sheet <sheet_id> Orient

Pillow Sheet <sheet_id> Verify

Weaving without geometry

Typically, whisker weaving is used to mesh a solid model which resides in the CUBIT database.
However, whisker weaving can also work from a quadrilateral mesh defining the boundary of
the volume to be meshed. This surface mesh can be read directly into CUBIT using the
following command:

Import Geometry Mesh ‘<exodusII_filename>’ Block <block_number>

This command creates one volume and one surface, regardless of any geometric “corners” or
“edges”. No curves or vertices are created. The id’s of the volume and surface are reported to
the list output. Currently their is no body containing the volume. In addition, a large brick
containing the extremes of the surface mesh is created, and assigned to a new volume. This brick
is used for graphics auto scaling.

The resulting volume may be looped and meshed with whisker weaving. Meshing the volume
using whisker weaving works as before, with the exception that whiskerknife collapsing doesn’t

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual119

work well (because it involves changing the surface mesh). Smoothing is also limited for this
reason.

Miscellaneous Whisker Weaving Options

Most of these options are of interest only to developers, but a sophisticated user may want to
experiment with some of them.

• Whisker Weaving Sub-Command Interface

Whisker weaving can be viewed and controlled in a fine-grained fashion using the whisker
weaving sub-command interface. This interface is of interest mainly to developers, but it can be
useful for observing and debugging whisker weaving at a low level. To enable the sub-command
interface, execute the following command before weaving begins:

Set Query On

This causes whisker weaving to pause after every whiskerhex is woven, and draw the three
sheets passing through that hex. The user can then enter a series of commands for inspecting the
STC information or for controlling the progress of weaving. The commands avialable at the sub-
command line interface are listed in Table 5-1, and are listed by pressing ‘h’ for help. The sub-
command interface can be disabled by entering the ‘t’ command.

Table 5-1. Whisker weaving sub-command line interface commands.

Syntax Command

2 <int> construct 2-cells for sheet <int>

a activate mouse panning/zooming mode

b break to command line

c continue hexing

d <int> draw sheet <int> (0 for all sheets)

e drive all wedges (after weaving)

f <int> drive one wedge on sheet <int> (0 for first encountered)

g <f> <v> set debug flag f to value v

j skip chord joins for next hex

l <m> <n> locate chord with face m, n’th sheet

m <int> smooth sheet <int>

o <int> <double> outwardly expand sheet <int> drawing by <double> [> 0.0]

q <3 ints> quadrant draw 3 sheets

s <int> sleep for <int> hexes

t toggle sheet printing and continue

CHAPTER 5 Mesh Generation

120 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• Explicit Looping

Creating the loops, which are the STC of the surface mesh, is the first step of weaving. Normally
the loops are created at the start of whisker weaving; however, the user may explicitly create
loops if desired. This may be done regardless of whether the volume’s meshing scheme is
weaving, so the user can examine the STC before deciding on the meshing scheme. The
following command is used to loop the volume:

Loop Volume <volume_id>

Each loop is created by traversing from one edge of a quadrilateral to the opposite side, until the
first edge is reached again. The sheets and loops may be viewed with the basic commands
described in “Viewing the Weave” on page 114. Looping, and hence weaving, currently only
work with manifold geometry.

• Deleting loop self-intersections

A loop self-intersection is a quadrilateral that a single loop passes through twice, once through
each pair of opposite edges. Such quadrilaterals are very common in irregular surface meshes.
Self-intersections have a number of consequences, for example knives only arise on chords that
start at self-intersections. If looping has already been done, self-intersections can be removed
with the command:

Delete Intersections <volume_id_range>

Alternatively, setting a flag will run a surface-mesh modification algorithm as the last step of
looping a volume. This flag is set using the command:

Set Uncross On

The algorithm used to remove self-intersections collapses certain surface faces, so that no loop
of the surface STC self-intersects. This algorithm employs a heuristic so that in practice only
about the square root of all self-intersecting quadrilaterals need to be collapsed. The heuristic
also tries to make the surface mesh connectivity as regular as possible.

Deleting self-intersections removes some of the complexity of the surface mesh, but it’s not
clear that this benefits the whisker weaving algorithm. This will be an area of further research.

Example:

brick width 10

volume 1 interval 3

mesh surface 1 to 6

block 1 surface 1 to 6

export genesis “block3-3-3.gen”

display

v <int> validate sheet <int> (0 for all sheets)

z dump postscript file to ‘out.ps’

Table 5-1. Whisker weaving sub-command line interface commands.

Syntax Command

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual121

pause

reset

import geometry mesh “block3-3-3.gen” block 1

display

volume 1 scheme weave

set primal on

set query off

volume 1 smooth scheme laplacian

mesh volume 1

display

• Weaving database while plastering

The whisker weaving database may provide insight when running unstructured hexahedral
meshing algorithms other than whisker weaving, in particular plastering. To enable the creation
of whisker weaving data during the operation of plastering, the following command is used:

Set Weavedata On

STC entities can be drawn after each hex is generated by plastering; to enable this option, the
following command is used:

Set Step On

To draw either the arrangement of all of the STC sheets and/or the three sheets passing through
the hex just created, the following commands are used, respectively:

Set Arrangement {On|Off}

Set Sheets {On|Off}

Note that the sheets and the arrangement can be drawn in separate windows, using theSet
Windows On command described earlier.

Dicing

There are situations in which it is advantageous to generate the desired finite element mesh by
first generating a coarse mesh and then refining that mesh. This is true for several reasons:

• It is often easier to control details of the structure of a coarse mesh than a fine one.

• Coarse meshes take less time to generate. This allows modifications to be made more
quickly.

• Some mesh generation algorithms require large amounts of memory for each element in the
mesh. This can lead to limits on the resolution that can be attained with a given algorithm.

The dicing algorithm maintains the overall structure defined by a coarse mesh while increasing
the resolution of the mesh. Refinement is done in such a way as to generate additional elements
quickly while utilizing computer memory efficiently. Dicing can be applied to volume meshes
and surfaces meshes. It is expected that dicing will be most commonly used to refine volume
meshes, so it is presented here. The same principles and commands also apply to surface dicing.

The volume mapping algorithm is best-suited for hexahedral regions. Therefore, each element
in an all-hexahedral mesh is a mappable subregion of the volume in which it is located. Dicing
refines coarse meshes by treating each element in the coarse mesh as a mappable sub-region.

CHAPTER 5 Mesh Generation

122 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Each coarse element is replaced by a structured grid of fine elements generated by a mapping
algorithm. A simple example is shown in the following figures:

• Dicer Sheets and Refinement Intervals

The number of elements that will replace each coarse element is determined by the element’s
refinement intervals. Arefinement interval is the number of fine mesh edges that will replace a
given coarse mesh edge. A different refinement interval can be set for edges along each axis in
the coarse element’s natural coordinate system. In the example above, the volume has a
refinement interval of two in one direction and six in the other two directions.

To generate a conformal mesh, groups of coarse mesh edges must have the same refinement
interval. Specifically, mesh edges on opposite sides of a mesh face must have the same
refinement interval. Because mesh edges can be a part of multiple mesh faces, refinement
interval dependencies propagate through the mesh. Groups of coarse edges that must have the
same refinement interval are calledDicer Sheets. Coarse mesh edges are automatically grouped
into Dicer Sheets when necessary.

• Dicing Basic Commands

Before Dicing can be applied to a mesh, a coarse mesh must first be generated using one of the
algorithms described in the chapter on mesh generation. Once a coarse mesh exists, refining
that mesh with Dicing is very similar to generating a mesh with other algorithms. The scheme
for the entity whose mesh will be refined is first set toDice:

{volume | surface} <id_range> Scheme Dice

The refinement interval for the entity is then set:

{volume | surface | curve} <id_range> Interval <refinement interval>

When an interval is set for a given entity, each DicerSheet with at least one edge in or on that
entity has its refinement interval set to the specified number. The last command affecting a
given DicerSheet determines that DicerSheet’s refinement interval. As an example, assume that
the refinement interval for a volume is set to 3. Setting the refinement interval for one of that
volume’s curves to 5 would change the refinement interval for all DicerSheets passing through
the specified curve. However, if the same operations were performed in the opposite order (first
set the interval on the curve to 5, then set the interval on the volume to 3), ALL Dicer Sheets
would have a refinement interval of 3.

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual123

If no refinement interval is specified, the default refinement interval is used. The default interval
is initially set to two, but it can be set to any integer value. The default refinement interval is set
with the following command:

DicerSheet Default Interval <interval>

After refinement intervals have been set, a fine mesh can be generated with the following
command:

Mesh {volume | surface} <id_range>

At this point, only the fine nodes have been generated, not the fine elements. In order to see the
fine mesh, node visibility must be turned on:

Node Visibility On

After viewing the fine nodes, the coarse mesh may be replaced with the fine mesh:

Replace Mesh {volume | surface} <id_range>

• Additional Dicing Commands

Several utilities have been developed to assist the user during the refinement process.

Coarse mesh edges may be grouped into Dicer Sheets, even if the scheme for that entity is not
Dice, using the following command:

{volume | surface} <id_range> Initialize Dicer

It is often useful to determine which DicerSheet a coarse mesh edge belongs to, and which other
edges belong to the same DicerSheet. With the following command, the mouse may be used to
click on a coarse edge in the graphics window. The number of the DicerSheet the edge belongs
to will be printed, and all edges in the same DicerSheet will be highlighted:

Pick DicerSheet [multiple]

All the edges in the specified Dicer Sheet may be highlighted with the following command:

Highlight DicerSheet <id_range>

The refinement interval for a specific DicerSheet can be set individually with the following
comand:

DicerSheet <id_range> Interval <interval>

The following command deletes the fine nodes generated by the Dicer. This command only
works before using theReplace Mesh command. Fine nodes that rely on the deleted fine
nodes are also deleted. For example, if the fine nodes on a surface are deleted, the fine mesh on
any attached volumes is invalid. The fine nodes in those volume are therefore deleted along with
the nodes on the surface. If the optionalPropagate keyword is used, the fine mesh will be
deleted from any child entities as well.

Delete Fine Mesh {volume | surface | edge} <id_range> [Propagate]

To list the number of DicerSheets in the model, along with their ID numbers, type:

List DicerSheet

To list information about a specific DicerSheet, type:

List DicerSheet <id>

CHAPTER 5 Mesh Generation

124 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Generating the Volume Mesh
Once the desired scheme has been chosen, the volume can be meshed. If the user wishes to
receive a different element type than the default (eight-node hexahedrons) for volume meshing,
this specification needs to be set prior to creating any volume meshes. The command to mesh a
volume is:

mesh volume <range> | All

A body can contain a number of volumes, although it normally only contains one. The following
command will mesh each volume owned by the body (bodies) specified:

mesh body <range> | All

The resulting mesh will be drawn on the screen in the mesh color designated for the volume
which was meshed.

▼ Mesh Editing
Mesh editting capability exists in the areas of mesh smoothing, mesh deletion, and movement
of specific nodes and nodesets. A limited capability to modify portions of a mesh is provided to
allow the user to make judgements about the level of smoothing required for volumetric meshes.
Since the models to be meshed vary widely, and since CUBIT does not contain a sophisticated
geometry recognizer, CUBIT is unable to make decisions regarding the type of smoothing
algorithm to employ. Certain algorithms work well for classes of problems and fail for others.
There seems to be no perfect smoothing algorithm, therefore the decision of which type of
smoother to use is left to the user.

Mesh Smoothing
Surface smoothing

Surface smoothing algorithms currently consist of a variety of equipotential stencils,length-
weighted laplacian, and centroid area pull. The nature of equipotential smoothers is one of
weight equalization between adjacent nodes. For a generic, area, or Jacobian-based weighted
smooth, this is roughly similar to equalizing areas between adjacent elements. The techniques
behave well for regular or irregular grids on non-periodic surfaces, but are not yet released for
periodic surfaces such as cylinders, spheres, (some) nurbs, and tori.

The Laplacian smoothing approach calculates an average element edge length around the mesh
node being smoothed to weight the magnitude of the allowed node movement [8]. Therefore
this smoother is highly sensitive to element edge lengths and tends to average these lengths to
form better shaped elements. However, similar to the mapping transformations, the length-
weighted Laplacian formulation has difficulty with highly concave regions8.

The Centroid Area Pull smoothing approach attempts to create elements of equal area by. Each
node is pulled toward the centroids of adjacent elements by forces proportional to the respective
element areas [8].

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual125

Smoothing is implemented like the meshing, where the scheme is set first and the action
performed later, with separate commands. The command line syntax for setting the smoothing
scheme for a surface is as follows:

Surface <range> Smooth Scheme Equipotential [Fixed]
[Weight {Jacobian | Area | Inverse [Area]}

Surface <range> Smooth Scheme Laplacian [Fixed]

Surface <range> Smooth Scheme Centroid Area Pull[Fixed]

If the Weight keyword is not specified, aGeneric weighting is used by default. TheFixed
keyword forces the nodes lying on the bounding curves of a surface to remain stationary instead
of “floating” along the equation of the curve until all nodes have converged. Note that this
restriction limits the amount of impact the smoothing operation can have on the surface mesh.

To smooth a surface based on the previously set scheme, the following command is used:

Smooth Surface <range> [global]

If no scheme has been set, the Equipotential scheme is used by default. The optional global
identifier is only valid with the laplacian and centroid area pull smoothing schemes. If entered,
all surfaces specified by range will be smoothed at one time. If global is not specified, the
surface will be smoothed sequentially.

Volume smoothing

Two volume smoothing algorithms are currently available in CUBIT. The first type of user
controlled smoother is the length-weighted Laplacian. This smoothing approach calculates an
average element edge length around the mesh node being smoothed to weight the magnitude of
the allowed node movement [8]. Therefore this smoother is highly sensitive to element edge
lengths and tends to average these lengths to form better shaped elements. However, similar to
the mapping transformations, the length-weighted Laplacian formulation has difficulty with
highly concave regions8.

The second type of smoother is a variation of the equipotential [8] algorithm that has been
extended to manage non-regular grids [9]. This method tends to equalize element volumes as it
adjusts nodal locations. The advantage of the equipotential method is its tendency to “pull in”
badly shaped meshes. This capability is not without cost: the equipotential method may take
longer to converge or may be divergent. To impose an equipotential smooth on a volume, each
element must be smoothed in every iteration—a typically expensive computation. While a
Laplacian method can complete smoothing operations with only local nodal calculations, the
equipotential method requires complete domain information to operate.

Smoothing is implemented like the meshing, where the scheme is set first and the action
performed later, with separate commands. The command line syntax for setting the smoothing
scheme for a volume is as follows:

Volume <range> Smooth Scheme
{Laplacian | Equipotential} [Fixed]

The Fixed keyword force the nodes lying on the bounding surfaces of a volume to remain
stationary instead of “floating” along the equation of the surface until all nodes have converged.
Note that this restriction limits the amount of impact the smoothing operation can have on the
volume mesh.

CHAPTER 5 Mesh Generation

126 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

To smooth a volume based on the previously set scheme, the following command is used:

Smooth Volume <range>

If no scheme has been set, theEquipotential scheme is used by default.

While future objectives include investigation into weighting schemes to explicitly control mesh
flow according to user-defined field or element functions, a simple hex weighting function exists
which demonstrates the potential of the equipotential smoothers. This command applies a user
specified weight to a group of hex elements, in this case, the elements which contain a mesh face
which belongs to a specified geometric surface. By adjusting the weight and running the
smoother, one can expand or compact the elements being weighted. This capability may be used
eventually to control adaptive hex element meshing, and to assist the free-form three-
dimensional volumetric algorithms in their efforts to maintain element quality. The command
syntax for applying the hex element weights is as follows:

Weight Hexes Surface <range> <weight>

Mesh Deletion
Complete mesh removal

The command to remove all existing mesh entities from the model is:

delete mesh

Partial mesh removal

Additional commands are available for deleting only selected portions of the mesh in the current
CUBIT model. Partial delete capabilities exist for volumes, surfaces, curves, and vertices. Only
the mesh which is owned by or is dependent on the specified geometry will be removed.

The routines are intelligent in the respect that if a mesh delete command is executed for a
surface, curve, or vertex which belongs to one (or more) fully meshed volumes, CUBIT will
delete all mesh entities which must be deleted as a result: for example, if one node on the vertex
is deleted, then the mesh which lies on the connected curves to that vertex is incomplete and will
be deleted, and then the surface mesh which relied on the curves must will also be deleted, and
finally the interior hex elements within the volume. The command syntax for these commands
is as follows:

delete mesh volume <range> [Propagate]

delete mesh surface <range> [Propagate]

delete mesh curve <range> [Propagate]

delete mesh vertex <range> [Propagate]

These commands automatically cause deletion of mesh on higher dimensional entities owning
the target geometry, but they do not cause a deletion of the mesh on lower dimensional ones. For
example, deletion of mesh on a surface would not affect the mesh on the curves and vertices
bounding that surface. To force mesh deletion on all such lower dimensional geometries, add
the command “propagate” at the end of the command line. This forces the delete mesh
command to propagate downward to all lower level entities until the vertices are reached. An
exception to this chain of propagation occurs if a geometry is reached that is owned by another
higher level geometry which is still meshed. This exception prevents inadvertent destruction of
neighboring meshes.

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual127

Individual mesh face removal

Mesh faces can be deleted individually using theDelete Face command. This command closes
a face by merging two mesh nodes indicated in the input. The syntax for this command is:

Delete Face <face_id> Node1 <node1_id> Node2 <node2_id>

This command is provided primarily for developers’ use, but also provides the user fine control
over surface meshes. At the present time, this command works only with faces appearing on
geometric surfaces and should be used before any hex meshing is performed on any volume
containing the face to be deleted.

Node and NodeSet Repositioning
A capability to reposition nodesets and individual nodes is provided. This capability will retain
all the current connectivity of the nodes involved, but it cannot guarantee that the new locations
of the moved nodes do not form intersections with previously existing mesh or geometry. This
capability is provided to allow the user maximum control over the mesh model being
constructed, and by giving this control the user can possible create mesh that is self-intersecting.
The user should be careful that the nodes being relocated will not form such intersections.

The user can reposition nodes appearing in the same nodeset using theNodeSet Move
command. Moves can be specified using either a relative displacement or an absolute position.
The command to reposition nodes in a nodeset is:

nodeset <id> move <delta_x> <deleta_y> <deleta_z>

nodeset <id> move to <x_position> <y_position> <z_position>

The first form of the command specifies a relative movement of the nodes by the specified
distances and the second form of the command specifies absolute movement to the specified
position.

Individual nodes can be repositioned using the Node Move comand. Moves are specified as
relative displacements. The command syntax is:

Node <range> Move <delta_x> <deleta_y> <deleta_z>

▼ Mesh Importing and Duplicating
Limited capability exists to instantiate new mesh by importing mesh from an external file and
by copying mesh from inside the current mesh model.

Importing mesh from an external file
A limited capability exists to read in a previously created mesh from an existing ExodusII file
and associate the mesh (retaining full functionality for additional meshing or smoothing
operations which depend on the imported mesh) with matching geometry in the CUBIT model.
This command is useful for continuing a previous meshing problem at the point it was
terminated rather than regenerating the entire mesh from the beginning. The geometry which
matches the original mesh must be present in the model for the command to work.

Two methods have been implemented for associating a mesh with a geometry. The first method
is proximity-based, that is it compares node positions with those of vertices, curves, etc., to

CHAPTER 5 Mesh Generation

128 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

determine the nodal associativity. This method has been known to fail when computing
ownership on periodic curves and surfaces, and may not be robust in cases where the proximity
test is not sufficiently restrictive. This method has been retained mainly for compatability with
old meshes.

The second associativity method is based on logical associativity data stored in the ExodusII
file. Each geometry entity has a corresponding nodeset which contains the nodes owned by that
entity, and nodesets are associated back to geometry entities using geometry entity names (see
“Entity Names” on page 79). (To store associativity information in the ExodusII file, the
NodeSet Associativity command must be entered before issuing theExport Genesis
command; see “Nodeset Associativity Data” on page 136.) Note that before importing a mesh
to be associated with a geometry, the geometry must be in the same state it was in when the mesh
block was written. That is, the topology must be the same, and there must be corresponding
named geometry entities for each of the entities owning mesh in the original problem. This can
be done either by executing the same geometry generation sequence, or by arriving at the
geometry using a different method and explicitly naming the geometry entities to match those
in the original problem. Only the names are used to find matching geometry entities (i.e. no
check is made to ensure that the entity types match).

The same command line syntax is used for both associativity methods. The second (logical)
method is attempted first; if the logical associativity information is not located in the ExodusII
file, the second method is used. The command line syntax for importing a mesh into CUBIT is:

Import Mesh ’<exodusII_filename>’ Block <block_id> Volume <volume_id>

Duplicating mesh
If the geometry to be meshed was generated using the body copy command explained in “Copy
Bodies” on page 52, then the mesh from the original geometry can be copied directly to the new
geometry using the command

copy mesh {volume|surface} <id1> onto {volume|surface} <id2>

Note that if the copied bodies have had any features merged (co-incident surfaces or curves
joined), then the new bodies will no longer be merged, and the co-incident surfaces and curves
will exist once again. TheCopy Mesh command similarily will not maintain the merged
feature structure, and mesh will appear on both co-incident surfaces if multiple bodies were
copied which share surfaces. The solution is to perform merging on bodies after they have
copied, and to only useCopy Mesh for volumes and surfaces which do not share any co-
incident features with adjacent geometry.

▼ Mesh Quality
The ‘quality’ of a mesh can be assessed using the element quality functions. These functions
calculate several element shape factors which may have an affect on the accuracy of the finite
element results calculated using the element.

Background
The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper,
warpage, element area, and stretch. The calculations are based on an article by John Robinson
entitled “CRE method of element testing and Jacobian shape parameters,” Eng. Comput., 1987,

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual129

Vol. 4. An illustration of the shape parameters is shown in Figure 5-36 The warpage is calculated

as the Z deviation from the ‘best-fit’ plane containing the element divided by the minimum of
‘a’ or ‘b’ from Figure 5-36. The stretch metric is calculated by dividing the length of the shortest
element edge divided by the length of the longest element diagonal.

The hexahedral element quality metrics that are calculated are aspect ratio, skew, taper, element
volume, stretch, and diagonal ratio. The calculation of these metrics is similar to that used for
the quadrialteral elements. A good illustration and discussion of the mode shapes for an eight-
node hexahedral element can be found in Chapter 3 of L. M. Taylor and D. P. Flanagan,
“PRONTO 3D: A Three-Dimensional Transient Solid Dynamics Program,” SAND87-1912.

Command Syntax
The commands to access the quality metrics are:

quality <entity_list> [global]

quality <entity_list> [global] display|draw ‘metric_name’

The global identifier indicates that all specified entities are to be treated as a single entity
instead of as several distinct entities. Valid values for themetric_name identifier are:Aspect
Ratio , Skew, Taper , Element Area (Quad Only),Element Volume (Hex Only),
Warpage (Quad Only),Stretch , andDiagonal Ratio (Hex Only). The example section
below shows the typical output.

Figure 5-36 Illustration of Quadrilateral Shape Parameters (Quality Metrics)

Base line

Aspect Ratio = a/b

a
b

Skew = sin(A)

A

T1

T1 T1

T1

Taper = T1 & T2

T2

T2
T2

T2

CHAPTER 5 Mesh Generation

130 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Command Examples
quality surf all global

-- lists quality summary for all surfaces in model. One summary

quality surf all
-- lists quality summary for all surfaces in model. One summary per entity

quality group 1
-- lists quality for the RefEntities in the group. Determines the highest common
dimension (hex/quad).

quality surf 1 surf 2 surf 9
-- lists summary for surfaces1,2, and 9

quality surf all global draw ‘Aspect Ratio’
-- Draws color-coded plot of the aspect ratios of the element faces.

Example Output
The typical summary output from the commandquality surface 1 is shown in Table 5-1.
Figure 5-37a shows the histogram output corresponding to the above summary . The colored

Table 5-1Sample Output for ‘Quality’ Command

Surface 1 Element Metrics:

 Function Name Average Std Dev Minimum (id) Maximum (id)

 --------------- --------- --------- -------------- -------------

 Aspect Ratio 1.272e+00 2.336e-01 1.000e+00 (86) 2.200e+00 (433)

 Skew 2.035e-01 1.790e-01 7.168e-04 (121) 7.778e-01 (280)

 Taper 1.529e-01 1.048e-01 4.783e-03 (254) 6.842e-01 (70)

 Warpage 0.000e+00 0.000e+00 0.000e+00 (1) 0.000e+00 (1)

 Element Area 5.244e-04 5.683e-04 3.305e-05 (154) 2.371e-03 (229)

 Stretch 7.467e-01 1.136e-01 2.983e-01 (433) 9.648e-01 (310)

CHAPTER 5 Mesh Generation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual131

element display resulting from the commandquality surface 1 draw ‘Skew’ is shown in
Figure 5-37b. In addition, a legend () is output to the terminal.

Quality Surface 1 Quality Surface 1 Draw ‘Skew’

Figure 5-37 Illustration of Quality Metric Graphical Output

Table 5-1Element Quality Plot Legend

Magenta ranges from 7.168e-04 to 1.117e-01 (127 entities)
 Blue ranges from 1.117e-01 to 2.227e-01 (82 entities)
 Cyan ranges from 2.227e-01 to 3.338e-01 (41 entities)
 Green ranges from 3.338e-01 to 4.448e-01 (35 entities)
 Yellow ranges from 4.448e-01 to 5.558e-01 (20 entities)
 Orange ranges from 5.558e-01 to 6.668e-01 (11 entities)
 Red ranges from 6.668e-01 to 7.778e-01 (8 entities)

1007550250

72

54

36

18

0

2.983e-01 to 9.648e-01
Stretch

1007550250

151

113

75

37

0

3.305e-05 to 2.371e-03
Element Area

1007550250

324

243

162

81

0

0.000e+00 to 0.000e+00
Warpage

1007550250

95

71

47

23

0

4.783e-03 to 6.842e-01
Taper

1007550250

93

69

46

23

0

7.168e-04 to 7.778e-01
Skew

1007550250

105

78

52

26

0

1.000e+00 to 2.200e+00
Aspect Ratio

CHAPTER 5 Mesh Generation

132 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual133

Chapter 6: OvFinite Element Model
Definition and Output

▼ Finite Element Model Definition…133

▼ Element Block Specification…134

▼ Boundary Conditions: Nodesets and Sidesets…136

▼ Setting the Title…137

▼ Exporting the Finite Element Model…137

This chapter describes the techniques used to complete the definition of the finite
element model and the commands to export the finite element mesh to an Exodus
database file. The definitions of the basic items in an Exodus database are
briefly presented, followed by a description of the commands a user would
typically enter to produce a customized finite element problem description.

▼ Finite Element Model Definition
Sandia’s finite element analysis codes have been written to transfer mesh definition data in the
ExodusII [6] file format. CUBIT is one code in a suite of computer codes that supports the
ExodusII format for the preprocessing and postprocessing of finite element analyses [14]. The
ExodusII database exported during a CUBIT session is sometimes referred to as a Genesis
database file which is the term used to refer to a subset of an Exodus file containing the problem
definition only, i.e., no analysis results are included in the database.

A Genesis database consists of the following basic entity types: Element Blocks, Nodesets,
Sidesets, and Property Names..

Element Blocks
Element Blocks (also referred to as simply,Blocks) are a logical grouping ofelements all having
the same basic geometry and number of nodes. All elements within an Element Block are
required to have the same element type. Access to an Element Block is accomplished through
the use of a single integer ID known as the Block ID. Typically, Element Blocks are used by
analysis codes to associate material properties and/or body forces with a group of elements.

Nodesets
Nodesets are a logical grouping ofnodes also accessed through a single ID known as the
Nodeset ID. Nodesets provide a means to reference a group of nodes with a single ID. They are

CHAPTER 6 OvFinite Element Model Definition and Output

134 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

typically used to specify load or boundary conditions on the CUBIT model or to identify a group
of nodes for a special output request in the finite element analysis code.

Sidesets
Sidesets are another mechanism by which constraints may be applied to the model. Sidesets
represent a grouping ofelement sides and are also referenced using an integer Sideset ID. They
are typically used in situations where a constraint must be associated with element sides to
satisfactorily represent the physics (for example, a contact surface or a pressure.).

Property Names

▼ Element Block Specification
Element blocks are the method CUBIT uses to group related sets of elements into a single entity.
Each element in an element block must have the same dimensionality, type, number of nodes,
and number of attributes. Element Blocks may be defined for volumes, surfaces, and curves.
Multiple volumes, surfaces, and curves can be contained in a single element block, but a
volume, surface, or curve can only be in one element block. Element blocks are defined with the
following Block commands.

Block <block_id> {Curve | Surface | Volume} <range>

Block <block_range> Element Type <type>

Block <block_range> Attribute <value>

Theblock_id and the geometry type (curve, surface, or volume) which will be a member of
this block

The number following the element name denotes the number of nodes in the element. For
example, theHex27 element is a 27-noded hexahedral element with mid-side, mid-face, and
mid-volume nodes. The Shell and Bar elements require the specification of anAttribute 1 value
which defines the thickness or cross-sectional area of the element for use in the finite element
code2. The attribute defaults to 1.0 if not specified. The commands to perform these functions
using the command line are:

Where the first command defines ablock_id containing the specified geometric entities, the
second command sets theElement Type for that block and the third command sets the
Attribute for those elements.

Note: Higher order element blocksmust be specified prior to meshing since additional nodes
are inserted as part of the meshing processonly if an Element Block’s element type
calls for them.

1. Only zero or one attributes can be defined at the current time. This limitation will be removed in a future version.

2. The thickness and cross-section attribute values are not used internally in CUBIT, they are merely flags which are written to the

EXODUS file to be used by subsequent codes. The documentation for the code which will be reading the EXODUS file should

be consulted to determine the correct specification and use of the attribute value for the Shell and Bar elements.

CHAPTER 6 OvFinite Element Model Definition and Output

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual135

Default Element Types, Block IDs, and Attributes
The following defaults will be used unless otherwise specified or modified:

Volume: The default block ID will be set to the Volume ID and 8-node hexahedral elements
will be generated.

Surface: The block ID will be set to 0 and 4-node shell elements will be generated.

Curve: The block ID will be set to 0 and 2-node bar elements will be generated.

Meshing could then be accomplished and the desired finite element model exported to the
Genesis database.

Element Block Definition Examples
Multiple Element Blocks

Multiple element blocks can and almost always are combined when generating a finite element
mesh. For example if the finite element model consists of a block which has a thin shell encasing
the volume mesh, the following block commands would be used:

Block 100 Volume 1
Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01
Mesh Volume 1
Export Genesis ‘block.g’

Which defines two element blocks (100 and 200). Element block 100 is composed of 8-node
hexahedral elements and element block 200 is composed of 4-node shell elements on the surface
of the block. The “thickness” of the shell elements is 0.01. The finite element code which reads
the Genesis file (block.g) would refer to these blocks using the element block IDs 100 and 200.
Note that the second line and the fourth line of the example are not required since both
commands represent the default element type for the respective element blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the example
would be omitted and theMesh Volume 1 line would be changed to, for example,Mesh
Surface 1 To 6.

Two-Dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar to
FASTQ. The usermust first assign the appropriate surfaces in the model to an element block.
Then aQuad* type element may be specified for the element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will result.
In writing a two-dimensional Genesis database, CUBITignores all z-coordinate data.
Therefore, the user must ensure that the Element Block is assigned to a planar surface lying in
a plane parallel to the x-y plane. Currently, theQuad* element types are the only supported
two-dimensional elements. Two-dimensional shell elements will be added in the near future if
required.

CHAPTER 6 OvFinite Element Model Definition and Output

136 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

▼ Boundary Conditions: Nodesets and
Sidesets

Boundary conditions such as constraints and loads are applied to the finite element model
through nodesets and sidesets. Nodesets can be created from groups of nodes categorized by
their owning volumes, surfaces, or curves. Nodes can belong to more than one nodeset. Sidesets
can be created from groups of element sides or faces categorized by their owning surfaces or
curves. Element sides and faces can belong to more than one sideset. Nodesets and Sidesets can
be viewed individually through CUBIT by employing theDraw Nodeset andDraw Sideset
commands.

Nodesets and Sidesets may be assigned to the appropriate geometric entities in the model using
the following commands in the command line:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex} <range>

Sideset <sideset_id> {Curve | Surface} <range>

When using the GUI version of CUBIT, nodesets and sidesets are specified by accessing their
respective dialog boxes from theConstraints menu. The Nodesets menu item will display the
Nodeset Dialog and the Sidesets menu item will display the Sideset Dialog. The top portion of
both of these are shown in ; the bottom portion is a standard picker window. The Geometry Type
option menu can be set toBody , Volume , Surface , or Curve . The user-specified output
identification number for the nodeset or sideset is entered in theNodeset ID or Sideset ID
text field. This is the number which will be used to identify this boundary condition in the
exported EXODUSII file. The geometric entities to which this boundary condition is to be
applied is then specified using the normal picking syntax.

Nodeset Associativity Data
Nodesets are also used to store geometry associativity data in the ExodusII file. This data can
be used to associate the corresponding mesh to an existing geometry in a subsequent CUBIT
session. This functionality can be used either to associate a previously-generated mesh with a
geometry (“Mesh Importing and Duplicating” on page 127), or to associate a field function with
a geometry for field function-based meshing “Adaptive Surface Meshing” on page 97).

The command syntax used to control whether or not associativity data is written to the ExodusII
files is the following:

NodeSet Associativity { on | off }

Associativity data is stored in the ExodusII file in two locations. First, a nodeset is written for
each piece of geometry (vertices, curves, etc) containing the nodes owned for that geometry.
Then, the name of each geometry entity is associated with the corresponding nodeset by writing
a property name and designating the corresponding nodeset as having that property. Nodeset
numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base

CHAPTER 6 OvFinite Element Model Definition and Output

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual137

numbers for various orders of geometric entities are shown in Table 6-1. For example, nodes

owned by curve number 26 would be stored in associativity nodeset 40026.

Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are
also stored. For example, the associativity nodeset for a surface would contain all nodes owned
by that surface as well as the nodes on the bounding curves and vertices.

▼ Setting the Title
CUBIT will automatically generate a default title for the Genesis database. The default title has
the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title ’<title_string>’

CUBIT’s parser requires that strings be enclosed in single quotes, for example‘This is a
string’ .

▼ Exporting the Finite Element Model
A Genesis database can be output using theExport option of theFile Menu. Only Exodus II
format is currently supported1. A file can also be output using the following command:

Export Genesis ’<filename>’

The Export Genesis command automatically creates aunique Element Block for every volume
that is meshed (assuming the user has not entered any Block commands overriding this default
behavior). Users can selectively control which blocks are output to the Genesis file since
Element Blocks willnot be created for any volumes that are not meshed.

1. Actually, there are two other formats provided for specialized applications. These formats are Xpatch and FRED. The

command to create these file formats isExport Xpatch|FRED ‘<filename>’ . If you need more information about these file

formats, contact a CUBIT developer.

Table 6-1.Nodeset id base numbers for geometric entities

Geometric Entity Base Nodeset Id

Vertex 50000

Curve 40000

Surface 30000

Volume 20000

CHAPTER 6 OvFinite Element Model Definition and Output

138 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual139

Appendix A: Command Index
▼ Command Syntax…139

▼ Commands…139

In this section the commands available in CUBIT are listed in alphabetical
order. There may be more than one command available under a given command
definition, since some commands can be executed singly or over a range of
objects.

▼ Command Syntax
Each command will be first listed by a command heading, which will be phrased in standard
terminology and will typically be very close to the computer syntax for the particular command.
Underneath the command heading, each variation of the command will be listed, to document
commands which can be applied to single objects as well as a range of objects. At the end of
each command heading is a page number cross-reference to the location in the main document
where the command is documented.

Command listings will ask for four types of command arguments: arguments include integers
(6, 1, 3, etc., these are typically id’s), reals (1.4, 2.35, etc., typically floating point quantities
such as angles, spatial coordinates), strings (jjrome.jou, part.g, etc.), and logicals (1, 0, on, off,
etc.).

Detailed descriptions of most commands and their usage can be found within the main sections
of this document. A few of the special purpose commands are not documented elsewhere and
only their syntax is shown below. These commands will be fully-documented after the
functionality and generality are improved.

▼ Commands
At page 45

[View] At <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Block Attribute page 134
Block <block_id_range> Attribute <attribute>

Block Element Type page 134
Block <block_id_range> Element Type <element_type_name>

Block Geometry Type page 134
Block <id> {volume | surface | curve } <block_id_range>

Block Label…Body Visibility Command Index

140 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Block Label
Block <block_id_range> Label { on | off }

Block Visibility page 49
Block <block_id_range> Visibility { on | off }

Body Copy page 72
Body <body_id_range> Copy [Move <x> <y> <z>]
Body <body_id_range> Copy [Reflect {x|y|z}]
Body <body_id_range> Copy [Reflect <x> <y> <z>]
Body <body_id_range> Copy [Rotate <angle> About {x|y|z}]
Body <body_id_range> Copy [Rotate <angle> About <x> <y> <z>]
Body <body_id_range> Copy [Scale <scale>]

Body Geometry Visibility page 50
Body <body_id_range> Geometry { on | off }
Body <body_id_range> Geometry Visibility { on | off }

Body Interval page 88
Body <body_id_range> Interval <interval>
Body <body_id_range> Interval {Hard|Soft|Default}
Body <body_id_range> Interval {Even|Odd}

Body Label
Body <body_id_range> Label {on | off | name | id | interval}

Body Mesh Visibility page 50
Body <body_id_range> Mesh { on | off }
Body <body_id_range> Mesh Visibility { on | off }

Body Move page 72
Body <body_id_range> [Copy] Move <x> <y> <z>

Body Reflect page 73
Body <body_id_range> [Copy] Reflect {x|y|z}
Body <body_id_range> [Copy] Reflect<x> <y> <z>

Body Restore page 73
Body <body_id_range> Restore

Body Rotate page 73
Body <body_id_range> [Copy] Rotate <angle> About {x|y|z}
Body <body_id_range> [Copy] Rotate <angle> About <x> <y> <z>

Body Scale page 73
Body <body_id_range> [Copy] Scale <scale>

Body Size page 88
Body <body_id_range> Size [<size> | Smallest Curve]

Body Visibility page 50
Body <body_id_range> { on | off }
Body <body_id_range> Visibility { on | off }

Command Index BoundaryLayer…Color SideSet

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual141

BoundaryLayer page 105
BoundaryLayer <layer_id_range> First [Layer] <depth> Growth [Factor] <growth>

Total Depth <depth> [Sublayer <depth>]
BoundaryLayer <layer_id_range> First [Layer] <depth> Growth [Factor] <growth>

Layers <count> [Sublayer <depth>]

BoundaryLayer Surface page 105
BoundaryLayer <layer_id> Curve <curve_id_range>

Surface <surface_id>

Brick page 67
[Create] Brick Width <width> [Depth <depth> Height <height>]

Check
Check {bodies|surfaces|curves}

Color Background page 43
Color Background <color_name>
Color Background <color_id>

Color Block page 50
Color Block <block_id_range> <color_name>

Color Body page 50
Color Body <body_id_range> <color_name>
Color Body <body_id_range> <color_id>

Color Body Geometry page 50
Color Body <body_id> Geometry <color_name>
Color Body <body_id> Geometry <color_id>

Color Body Mesh page 50
Color Body <body_id_range> Mesh <color_name>
Color Body <body_id_range> Mesh <color_id>

Color Group
Color Group <group_id_range> <color_name>
Color Group <group_id_range> <color_id>

Color Group Geometry
Color Group <group_id_range> Geometry <color_name>
Color Group <group_id_range> Geometry <color_id>

Color Node page 50
Color Node <color>

Color NodeSet page 50
Color NodeSet <nodeset_id_range> <color>

Color SideSet page 50
Color SideSet <sideset_id_range> <color>

Color Surface…Create Prism Command Index

142 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Color Surface page 50
Color Surface <surface_id_range> <color>
Color Surface <surface_id_range> <color_id>

Color Surface Geometry page 50
Color Surface <surface_id_range> Geometry <color>
Color Surface <surface_id_range> Geometry <color_id>

Color Surface Mesh page 50
Color Surface <surface_id_range> Mesh <color>
Color Surface <surface_id_range> Mesh <color_id>

Color Volume page 50
Color Volume <volume_id_range> <color>
Color Volume <volume_id_range> <color_id>

Color Volume Geometry page 50
Color Volume <volume_id_range> Geometry <color>
Color Volume <volume_id_range> Geometry <color_id>

Color Volume Mesh page 50
Color Volume <volume_id_range> Mesh <color>
Color Volume <volume_id_range> Mesh <color_id>

Color Sheet page 50
Color Sheet <sheet_id_range> <color>
Color Sheet <sheet_id_range> <color_id>

Comment
Comment ‘text written to journal file’

Copy Mesh page 128
Copy Mesh Surface <surface_id> Onto Surface <surface_id>
Copy Mesh Volume <volume_id> Onto Volume <volume_id>

Create Brick page 67
[Create] Brick Width <width> [Depth <depth> Height <height>]

Create Cylinder page 68
[Create] Cylinder Height <height> Radius <radius>
[Create] Cylinder Height <height> Major Radius <radius> Minor Radius <radius>

Create Frustum page 69
[Create] Frustum Height <height> Major Radius <radius>

Minor Radius <radius> [Top <top_radius>]
[Create] Frustum Height <height> Radius <radius> [Top <top_radius>]

Create Prism page 68
[Create] Prism Height <height> Sides <sides> Major <radius>

Minor <radius>
[Create] Prism Height <height> Sides <sides> Radius <radius>

Command Index Create Pyramid…Delete Body

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual143

Create Pyramid page 69
[Create] Pyramid Height <height> Sides <sides> Major <radius>

Minor <radius> Top <radius>
[Create] Pyramid Height <height> Sides <sides> Radius <radius>

Create Sphere page 69
[Create] Sphere Radius <radius>
[Create] Sphere Radius <radius> [Inner Radius <inner_radius>]
 [xpositive] [ypositive] [zpositive] [delete]

Create Torus page 70
[Create] Torus Rad1 <R1> Rad2 <R2>

Curve Interval page 88
Curve <curve_id_range> Interval <interval>
Curve <curve_id_range> Interval {Hard|Soft|Default}
Curve <curve_id_range> Interval {Even|Odd}

Curve Label
Curve <curve_id_range> Label {on | off | name | id | interval}

Curve DicerSheet Interval
Curve DicerSheet Interval <interval>

Curve Reverse Bias page 89
Curve <curve_id_range> ReverseBias

Curve Scheme Curvature
Curve <curve_id_range> Scheme Curvature

Curve Scheme Bias page 89
Curve <curve_id_range> Scheme Bias Factor <growth_factor>

Curve Scheme Equal page 89
Curve <curve_id_range> Scheme Equal

Curve Scheme FeatureSize page 89
Curve <curve_id_range> Scheme FeatureSize

Curve Size page 88
Curve <curve_id_range> Size [<size> | Smallest Curve]

Cylinder page 68
[Create] Cylinder Height <height> Radius <radius>
[Create] Cylinder Height <height> Major Radius <radius> Minor Radius <radius>

Decompose page 76
Decompose <body_id> With <body_id>

Delete Body
Delete Body <body_id_range>

Delete Face…Draw NodeSet Command Index

144 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Delete Face page 127
Delete Face <face_id> Node1 <node1_id> Node2 <node2_id>

Delete Fine Mesh
Delete Fine Mesh {volume | surface | curve} <id_range> [propagate]

Delete Mesh page 126
Delete Mesh
Delete Mesh Vertex <vertex_id_range>
Delete Mesh Curve <curve_id_range>
Delete Mesh Surface <surface_id_range>
Delete Mesh Volume <volume_id_range>
Delete Mesh Body <body_id_range>
Delete Mesh Group <group_id_range>
Delete Mesh {Group | Body | Volume | Surface | Curve} <id_range> Propagate

DicerSheet Interval
DicerSheet <id_range> Interval <interval>
DicerSheet Default Interval <interval>

Display page 42
Display

Draw Block page 48
Draw Block <block_id_range>

Draw Body page 48
Draw Body <body_id_range>

Draw Curve page 48
Draw Curve <curve_id_range>

Draw Edge page 48
Draw Edge <edge_id_range>

Draw Face page 48
Draw Face <face_id_range>

Draw Group
Draw Group <group_id_range>

Draw Hex page 48
Draw Hex <hex_id_range>

Draw Loop Undocumented
Draw Loop <loop_id_range>

Draw Node page 48
Draw Node <node_id_range>

Draw NodeSet page 48
Draw NodeSet <nodeset_id_range>

Command Index Draw SideSet…Graphics Clear

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual145

Draw SideSet page 48
Draw SideSet <sideset_id_range>

Draw Surface page 48
Draw Surface <surface_id_range>

Draw Vertex page 48
Draw Vertex <vertex_id_range>

Draw Volume page 48
Draw Volume <volume_id_range>

Echo page 59
[Set] Echo {on | off}

Exit page 41
Exit
Quit

Export page 137
Export Fred ‘<filename>’
Export Genesis ‘<filename>’
Export Xpatch ‘<filename>’

From page 46
[View] From <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Frustum page 69
[Create] Frustum Height <height> Major Radius <radius>

Minor Radius <radius> [Top <top_radius>]
[Create] Frustum Height <height> Radius <radius> [Top <top_radius>]

Geometry Visibility page 49
Geometry { on | off }
Geometry Visibility { on | off }

Graphics Autocenter page 44
Graphics Autocenter {on | off}

Graphics Autoclear page 44
Graphics Autoclear {on | off }

Graphics Axis page 44
Graphics Axis {on | off}

Graphics Border page 44
Graphics Border {on | off}

Graphics Center page 45
Graphics Center

Graphics Clear page 45
Graphics Clear

Graphics LineWidth…Group Command Index

146 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Graphics LineWidth page 45
Graphics LineWidth <width>

Graphics Mode page 43
Graphics Mode FlatShade
Graphics Mode HiddenLine
Graphics Mode PolygonFill
Graphics Mode Painters
Graphics Mode SmoothShade
Graphics Mode WireFrame
Graphics Mode Dual

Graphics Pan
[Graphics] Pan {Left | Right | Up | Down} <factor> Animation Steps <number>
[Graphics] Pan Cursor Animation Steps <number>

Graphics Perspective page 47
Graphics Perspective {on | off}

Graphics Perspective Angle page 47
Graphics Perspective Angle <view_angle_in_degrees>

Graphics Status
Graphics Status {on|off}

Graphics Text Size page 51
Graphics Text Size <size_factor>

Graphics Window
Graphics Window Active <window_number>
Graphics Window Create <window_number>
Graphics Window Delete <window_number>

Graphics WindowSize page 43
Graphics WindowSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum

Graphics Zoom page 47
[Graphics] Zoom <X_min> <Y_min> <X_max> <Y_max>

Animation Steps <number>
[Graphics] Zoom Cursor Animation Steps <number>
[Graphics] Zoom Reset
[Graphics] Zoom Screen <Scale_Factor> Animation Steps <number>
[Graphics] Zoom {group|body|volume|surface|curve|vertex} <entity_id>

Group
Group ‘group_name’ Add <list_of_entity_ranges>
Group <group_id> Add <list_of_entity_ranges>
Group ‘group_name’ Remove <list_of_entity_ranges>
Group <group_id> Remove <list_of_entity_ranges>

Command Index Group Interval…Intersect

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual147

Group Interval
Group <group_id_range> Interval <interval>
Body <group_id_range> Interval {Hard|Soft|Default}
Body <group_id_range> Interval {Even|Odd}

Group Geometry Visibility
Group <group_id_range> Geometry Visibility { on | off }

Group Mesh Visibility
Group <group_id_range> Mesh Visibility { on | off }

Group Label
Group <group_id_range> Label { on | off | interval | id | name }

Group Size
Group <group_id_range> Size [<size> | Smallest Curve

Group Sweep Volumes page 65

Hardcopy page 51
Hardcopy ’<filename>’ [encapculated|postscript|eps] [color|monochrome]
Hardcopy ‘<filename>’ Pict [XSize <xsize>] [YSize <ysize>]

Help page 61
Help
Help <keyword>
<keyword> Help

Highlight
Highlight {volume | Surface | Curve | Vertex | DicerSheet} <id_range>

Hyperhelp page 61
Hyperhelp <keyword>
<keyword> [<identifier>] Hyperhelp

Import Acis page 70
Import Acis ’<acis_filename>’

Import Fastq page 70
Import Fastq ’<fastq_filename>’

Import Geometry Mesh page 118
Import Geometry Mesh ‘<exodusII_filename>’ Block <block_number>

Import Mesh page 128
Import Mesh <exodusII_filename> Block <block_id>

Volume <volume_id>

Import Sizing Function page 103
Import Sizing Function ’<exodusII_filename>’ Block <block_id>

Variable ‘<variable_name>’ Time <time_val>

Intersect page 73
Intersect <body_id> With <body_id>

Journal…List (Other) Command Index

148 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Journal page 41
[Set] Journal {on | off}

Label page 51
Label {on | off | interval | id | name }
Label All { on | off | interval | id | name }
Label Body { on | off | interval | id | name }
Label Curve { on | off | interval | id | name }
Label Edge { on | off | interval | id | name }
Label Face { on | off }
Label Geometry { on | off | interval | id | name }
Label Group { on | off | interval | id | name }
Label Hex { on | off }
Label Mesh { on | off }
Label Node { on | off }
Label Surface { on | off | interval | id | name }
Label Vertex { on | off | interval | id | name }
Label Volume { on | off | interval | id | name }

List (Geometry/Mesh Related) page 52
List Body <body_id_range> [{geometry|debug}]
List Curve <curve_id_range> [{geometry|debug}]
List DicerSheet [<id_range>]
List Face <mesh_face_id_range>
List Group <group_id_range> [{geometry|debug}]
List Hex <hex_id_range>
List Names [{Group|Body|Volume|Surface|Curve|Vertex}]
List Node <node_id_range>
List Surface <surface_id_range> [{geometry|debug}]
List Totals
List Model
List Vertex <vertex_id_range> [{geometry|debug}]
List Volume <volume_id_range> [{geometry|debug}]

List (Other) page 58
List Debug
List Echo
List Information
List Journal
List Logging
List Memory `<ClassName>’
List Memory
List Settings
List View
List Warning

Command Index Merge…Node Visibility

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual149

Merge page 79
Merge All
Merge All Curves
Merge All Surfaces
Merge Body <body_id> With Body <body_id>
Merge Body <body_id_range>
Merge Curve <curve_id> With <curve_id>
Merge Curve <curve_id_range>
Merge Surface <surface_id> With <surface_id>
Merge Surface <surface_id_range>

Mesh Body page 124
Mesh Body <body_id_range>
Mesh Body All

Mesh Curve page 90
Mesh Curve <curve_id_range>
Mesh Curve All

Mesh Group
Mesh Group <group_id_range>
Mesh Group All

Mesh Surface page 105
Mesh Surface <surface_id_range>
Mesh Surface All

Mesh Visibility page 49
Mesh { on | off }
Mesh Visibility { on | off }

Mesh Volume page 124
Mesh Volume <volume_id_range>
Mesh Volume <volume_id_range> Hexes <number_of_hexes>
Mesh Volume <volume_id_range> Levels <number_of_levels>
Mesh Volume All

Mouse
Mouse

Mouse2D
Mouse2D

Name
Name {Group|Body|Volume|Surface|Curve|Vertex} <id> `entity_name’

Node Move
Node <node_id_range> Move <delta_x> <delta_y> <delta_z>

Node Visibility page 49
Node { on | off }
Node Visibility { on | off }

NodeSet Associativity…Plot Command Index

150 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

NodeSet Associativity page 136
NodeSet Associativity { on | off }

NodeSet Curve page 136
NodeSet <nodeset_id> Curve <curve_id_range>

NodeSet Label
NodeSet <nodeset_id_range> Label {on|off}

NodeSet Move page 127
NodeSet <nodeset_id> Move <X> <Y> <Z>
NodeSet <nodeset_id> Move To <X> <Y> <Z>

NodeSet Surface page 136
NodeSet <nodeset_id> Surface <surface_id_range>

NodeSet Vertex page 136
NodeSet <nodeset_id> Vertex <vertex_id_range>

NodeSet Visibility page 49
NodeSet { on | off }
NodeSet Visibility { on | off }
NodeSet <nodeset_id_range> { on | off }
NodeSet <nodeset_id_range> Visibility { on | off }

NodeSet Volume page 136
NodeSet <nodeset_id> Volume <volume_id_range>

Pan
[Graphics] Pan {Left | Right | Up | Down} <factor> Animation Steps <number>
[Graphics] Pan Cursor Animation Steps <number>

Pause page 42
Pause

Pick
Pick {Curve|Surface|Volume|Body|DicerSheet [List] [Multiple]}

Pillow Volume page 117
Pillow Volume <volume_id>

Pillow Weave page 118
Pillow Weave {Automatic|Buffer|Create}

Pillow Sheet page 118

Pillow Sheet { Face <face_id1> [<face_id2>...] | Hex <hex_id1> [<hex_id2>...] | Cut
| Orient | Verify}

Playback page 42
Playback ‘<journal_filename> ‘

Plot
Plot

Command Index Prism…Set

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual151

Prism page 68
[Create] Prism Height <height> Sides <sides> Major <radius>

Minor <radius>
[Create] Prism Height <height> Sides <sides> Radius <radius>

Pyramid page 69
[Create] Pyramid Height <height> Sides <sides> Major <radius>

Minor <radius> Top <radius>
[Create] Pyramid Height <height> Sides <sides> Radius <radius>

Quality
Quality <entity_list> [Global]
Quality <entity_list> [Global] Display|Draw `Metric Name’

Quit page 41
Quit
Exit

Record page 42
Record ’<journal_filename>’

Record Stop page 42
Record Stop

Replace Mesh
Replace Mesh {group | volume | surface} <id_range>

Reset page 41
Reset
Reset Blocks
Reset Genesis
Reset Nodesets
Reset SideSets

Rotate page 46
Rotate <degree> About [Screen | World | Camera] {x | y | z}

 Animation Steps <number>
Rotate <degree> About Curve <curve_id> Animation Steps <number>
Rotate <degree> About Vertex <axis_start_vertex_id>

 Vertex <axis_end_vertex_id> Animation Steps <number>

Set page 59
[Set] Debug <flag_id> {on|off} [{File ‘filename’ | Terminal}]
[Set] Echo {on | off}
[Set] Info {on | off}
[Set] Journal {on | off}
[Set] Logging {on | off} [{File ‘filename’ | Terminal}]
[Set] Warning {on | off}

Set…Surface Angle Command Index

152 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Set page 59
Set Uncross On
Set Weavedata On
Set Step On
Set Arrangement {On|Off}
Set Sheets {On|Off}

Set page 115
Set Windows On

Set page 117

Set Superdrive {On|Off}

Sheet Visibility page 49
Sheet <sheet_id_range> Visibility { on | off }

SideSet Curve page 136
SideSet <sideset_id> Curve <curve_id_range>

SideSet Label
SideSet <sideset_id_range> Label { on | off }

SideSet Surface page 136
SideSet <sideset_id> Surface <surface_id_range>

SideSet Visibility page 49
SideSet { on | off }
SideSet Visibility { on | off }
SideSet <sideset_id_range> { on | off }
SideSet <sideset_id_range> Visibility { on | off }

Smooth Group
Smooth Group <group_id_range>

Smooth Surface page 125
Smooth Surface <surface_id_range> [Global]

Smooth Volume page 126
Smooth Volume <volume_id_range>

Sphere page 69
[Create] Sphere Radius <radius>
[Create] Sphere Radius <radius> [Inner Radius <inner_radius>]
 [xpositive] [ypositive] [zpositive] [delete]

Subtract page 74
Subtract <body_id> From <body_id>

Surface Angle
Surface <surface_id_range> Angle <angle_degrees>

CHAPTER

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual153

Surface Default Scheme
 Surface Default Scheme {map | pave | submap | triangle}

Surface DicerSheet Interval
Surface <id_range> DicerSheet Interval <interval>

Surface Geometry Visibility page 50
Surface <surface_id_range> Geometry Visibility { on | off }

Surface Interval page 88
Surface <surface_id_range> Interval <intervals>
Surface <surface_id_range> Interval {Hard|Soft|Default}
Surface <surface_id_range> Interval {Even|Odd}

Surface Label
Surface <surface_id_range> Label {on | off | name | id | interval}

Surface Mesh Visibility page 50
Surface <surface_id_range> Mesh Visibility { on | off }

Surface Periodic Interval
Surface <surface_id_range> Periodiic Interval <intervals>

Surface Scheme Circle
Surface <surface_id_range> Scheme Circle [Interval <intervals>]

Surface Scheme Curvature page 94
Surface <surface_id_range> Scheme Curvature

Surface Scheme Dice
Surface <surface_id_range> Scheme Dice

Surface Scheme Map page 94
Surface <surface_id_range> Scheme Map

Surface Scheme Morph
Surface <surface_id_range> Scheme Morph
Surface <surface_id_range> Scheme Morph {Source Node <id> Target Node <id>}
Surface <surface_id_range> Scheme Morph {Source Edge <id> Target Edge <id>}
Surface <surface_id_range> Scheme Morph
 {Source Vertex <id> Target Vertex <id>}
Surface <surface_id_range> Scheme Morph
 {Source Curve <id> Target Curve <id>}

Surface Scheme Pave page 94
Surface <surface_id_range> Scheme Pave

Surface Scheme Submap page 94
Surface <surface_id_range> Scheme Submap

Surface Scheme Triangle page 94
Surface <surface_id_range> Scheme Triangle

CHAPTER

154 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Surface Scheme TriMap
Surface <surface_id_range> Scheme TriMap

Surface Scheme TriPave
Surface <surface_id_range> Scheme TriPave

Surface Size page 88
Surface <surface_id_range> Size [<intervals>| Smallest Curve]

Surface Sizing Function page 98, 103
Surface < id > Sizing Function Type { Curvature | Linear | Interval | Inverse |

Test | Exodus} [Min <min_val> Max <max_val>]

Surface Smooth Scheme page 125
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]

Weight Jacobian
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]

Weight Area
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]

Weight Inverse [Area]
Surface <surface_id_range> Smooth Scheme Laplacian [Fixed]
Surface <surface_id_range> Smooth Scheme Centroid Area Pull [Fixed]

Surface Submap Smooth
 Surface <id> SubMap Smooth <on|off>

Surface Vertex Types
 Surface <surface_id> Vertex <vertex_id> Type {end|side|corner|reversal}
 Surface <surface_id> Vertex <vertex_id> Type {triangle|notriangle}

Surface Visibility page 49
Surface <surface_id_range> { on | off }
Surface <surface_id_range> Visibility { on | off }

Title page 137
Title ’<title>’

Torus page 70
[Create] Torus Major [Radius] <R1> Minor [Radius] <R2>

Unite page 74
Unite <body_id> With <body_id>
Unite Body <body_id_list> [All]

Up page 46
[View] Up <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Version page 41
Version

Vertex
Vertex <vertex_id_range> {on | off}

CHAPTER

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual155

Vertex Label
Vertex <vertex_id_range> Label {on | off | name | id | interval}

Vertex Visibility page 49
Vertex { on | off }
Vertex Visibility { on | off }

Video
Video { on | off }

Video Initialize page 51
Video Initialize [<number_of_frames>]
Video Initialize ‘base_filename’ pict [Xsize <xsize>] [Ysize <ysize>]

Video Snap page 51
Video Snap

View At page 45
[View] At <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

View From page 46
[View] From <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

View List page 47
View List

View Reset
View Reset

View Up page 46
[View] Up <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Volume Default Scheme
 Volume Default Scheme {map | submap | plaster | weave}

Volume DicerSheet Interval
Volume <volume_id_range> DicerSheet Interval <interval>

Volume Geometry Visibility page 50
Volume <volume_id_range> Geom { on | off }
Volume <volume_id_range> Geometry Visibility { on | off }

Volume Interval page 88
Volume <volume_id_range> Interval <intervals>
Volume <volume_id_range> Interval {Hard|Soft|Default}
Volume <volume_id_range> Interval {Even|Odd}

Volume Label
Volume <volume_id_range> Label {on | off | name | id | interval}

Volume Mesh Visibility page 50
Volume <volume_id_range> Mesh { on | off }
Volume <volume_id_range> Mesh Visibility { on | off }

CHAPTER

156 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Volume Scheme Curvature
Volume <volume_id_range> Scheme Curvature

Volume Scheme Dice
Volume <volume_id_range> Scheme Dice

Volume Scheme Map page 106
Volume <volume_id_range> Scheme Map

Volume Scheme Submap page 106
Volume <volume_id_range> Scheme Submap

Volume Scheme Plaster page 106
Volume <volume_id_range> Scheme Plaster

Volume Scheme Project page 106
Volume <volume_id> Scheme Project Source Surface <surface_id_list>

Target Surface <surface_id>

Volume Scheme Rotate page 106
Volume <volume_id> Scheme Rotate Source Surface <surface_id_list>

Target Surface <surface_id>

Volume Scheme Translate page 106
Volume <volume_id> Scheme Translate

Source Surface <surface_id_list> Target Surface <surface_id>

Volume Scheme Weave page 106
Volume <volume_id_range> Scheme Weave

Volume Size page 88
Volume <volume_id_range> Size [<interval_size>|Smallest Curve]

Volume Smooth Scheme page 125
Volume <volume_id_range> Smooth Scheme Laplacian
Volume <volume_id_range> Smooth Scheme Equipotential [Fixed]

Volume Visibility page 50
Volume <volume_id_range> { on | off }
Volume <volume_id_range> Visibility { on | off }

WebCut Body page 76
Webcut Body <body_id> Face <face_id> [Vector <from_vertex> <to_vertex>]
Webcut Body <body_id> Vertex <vertex_1> Vertex <vertex_2>

Vertex <vertex_3> [Vector <from_vertex> <to_vertex>]

Weight Hexes page 126
Weight Hexes Surface <range> <weight>

CHAPTER

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual157

Zoom page 47
[Graphics] Zoom <X_min> <Y_min> <X_max> <Y_max>

Animation Steps <number>
[Graphics] Zoom Cursor Animation Step <number>
[Graphics] Zoom Screen <Scale_Factor> Animation Steps <number>
[Graphics] Zoom Reset
[Graphics] Zoom {group|body|volume|surface|curve|vertex} <entity_id>

CHAPTER

158 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual159

Appendix B: Examples
▼ General Comments…159

▼ Simple Internal Geometry Generation…160

▼ Octant of Sphere…161

▼ Airfoil…163

▼ The Box Beam…164

▼ Thunderbird 3D Shell…167

▼ Assembly Components…170

The purpose of this Appendix is to demonstrate the capabilities of CUBIT for
finite element mesh generation as well as provide a few examples on the use of
CUBIT. Some examples also demonstrate the use of the ACIS test harness as
well as other related programs. This Appendix is not intended to be a step-by-
step tutorial.

▼ General Comments
CUBIT is based upon the ACIS solid modeling kernel. Solid models can be created within
CUBIT or imported in the form of an ACIS geometry file1. Current means of generating ACIS
solid models external to CUBIT include:

• ACIS Test Harness

• FASTQ via the FASTQ to ACIS translatorfsqacs2

• Aries ConceptStation

• PRO/Engineer via a PRO/Engineer to ACIS translator

These examples show model construction using internal CUBIT geometry creation, the ACIS
Test Harness, and the FASTQ translator. Those methods provide the capability of semi-
automatically generating a mesh in batch mode in much the same manner as FASTQ [5],
GEN3D [10], GREPOS [11], and GJOIN [12].

A CUBIT journal file is included for the examples shown in this appendix. ACIS journal files
are also provided for the examples that require geometry generated by ACIS. The user can

1. ACIS typically adds the filename suffix “.sat” to the output files it writes in text format; therefore, theses files are typically

referred to as “.sat” files or “ACIS .sat” files. CUBIT cannot read binary ACIS files.

2. Thefsqacs users manual is reproduced in Appendix C, “Fsqacs: A FASTQ to ACIS Command Interpreter” on page 163

APPENDIX B Examples

160 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

reproduce the examples interactively by simply entering each of the lines in the journal files as
commands to CUBIT or ACIS. The examples assume that the command line version of CUBIT
will be used. The examples can also be run using the Graphical User Interface version of
CUBIT; however, the details for doing this are not given in this appendix. The journal files
included in the example are also distributed with CUBIT and they may be executed using the
Playback ’filename’ command.

The examples in this appendix each cover several of CUBIT’s mesh generation capabilities. The
CUBIT features exercised by each example are shown in Table B-1.

▼ Simple Internal Geometry Generation
This simple example demonstrates the use of the internal geometry generation capability within
CUBIT to generate a mesh on a perforated block. The geometry for this case is a block with a
cylindrical hole in the center. It illustrates thebrick , cylinder , subtract , pave , andtranslate
commands and boolean operations. The geometry to be generated is shown in Figure B-1. This
figure also shows the curve and surface labels specified in the CUBIT journal file. The final
meshed body is shown in Figure B-2. The CUBIT journal file is:

Internal Geometry Generation Example
Brick Width 10. Depth 10. Height 10. # Create Cube
Cylinder Height 12. Radius 3. # Create cylinder through Cube
View From 3 4 5 # Update viewing position
Display

Examples
Geometry
Features

Surface Meshing
Features

Volume
Meshing
Features

P
rim

iti
ve

s

B
oo

le
an

s

G
eo

m
et

ry
 E

di
tin

g

G
eo

m
et

ry
 C

on
so

lid
at

io
n

C
ur

ve
 B

ia
s

C
ur

va
tu

re
-b

as
ed

M
ap

pi
ng

P
av

in
g

T
ria

ng
le

 T
oo

l

B
ou

nd
ar

y
La

ye
r

To
ol

P
ro

je
ct

T
ra

ns
la

te
/R

ot
at

e

M
ap

pi
ng

P
la

st
er

in
g

Internal Geometry x x x x

Sphere Octant x x x x x x x x

Airfoil x x x

Box Beam x x

Thunderbird x

Assembly Components x x x

Table B-1 CUBIT Features Exercised by Examples.

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual161

Subtract 2 From 1 # Remove cylinder from cube—create hole
Display
Body 3 Size 1.0 # Default element size for model
Surface 10 Interval 10 # Change intervals on cylinder surface
Curve 15 to 16 Interval 20 # Change intervals around cyl. circ.
Surface 11 Scheme Pave # Front surface paved
Volume 3 Scheme Translate Source 11 Target 12 #Remainder

of block will be meshed by
translating front surface to back surface

Mesh Volume 3 # Create the mesh
Graphics Mode Hiddenline
Display # Hiddenline view of cube (Figure B-2)

The first two lines create a 10 unit cube centered at the origin and a cylinder with radius 3 units
and height of 12 units also centered at the origin. The cylinder height is arbitrary as long as it is
greater than the height of the brick. Thesubtract command then performs the boolean by
subtracting the cylinder (body 2) from the block (body 1) to create the final geometry (body 3).
The remainder of the commands simply assign the desired number of intervals and then
generate the mesh. Note that since the cylindrical hole is a “periodic surface,” there are no edges
joining the two curves so the number of intervals along its axis must be set by the surface
interval command. The steps required for generating this geometry and mesh using the
Graphical User Interface are given in the Tutorial in Chapter 2.

▼ Octant of Sphere
This example also illustrates the internal geometry generation capabilities of CUBIT to generate
an octant of a sphere. The procedure used is to generate the octant by intersecting a brick with
a sphere. The octant is then split into two pieces—a central “core” and an outer “peel” which
are both meshable using the sweeping schemes. This example uses thesphere , brick ,
cylinder , intersect , copy , subtract , merge , pave , project , androtate commands.

The following annotated CUBIT journal file will generate the mesh shown in Figure B-3.

Sphere Radius 10. # Generate Sphere (Body 1)
Brick Width 12 Depth 12 Height 12 # Generate Cube (Body 2)

Figure B-1 Geometry for Cube with Cylindrical Hole

15
17

18

19

28

20

27

16
21

22

26

23

24

25

Curve Labels

10

11

12

13

14

15

16

Surface Labels

APPENDIX B Examples

162 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Body 2 Move 6. 6. 6. #Move Cube to Enclose Octant
Graphics Mode SmoothShade # Only way to see a sphere
Display
Intersect 1 With 2 # Generate Octant (Body 3)
Display
Cylinder Height 22 Radius 3 #Generate Cylinder (Body 4)
Body 3 To 5 Copy # Copy Octant (Body 5)

#and Cylinder (Body 6)
#and another octant (Body 7)

Intersect 4 With 5 # Create Core (Body 8)
View From 1 2 3
Intersect 3 With 6 # Create Another Core (Body 9)
Subtract 8 From 7 # Create Peel (Body 10)
Merge All # Coalesce Redundant Surfaces
#
End of Geometry Generation.
“Core” is volume/body 9
“Shell” is volume/body 10
#
volume 9 Size 0.5
Surface 33 Scheme Pave # Pave end of core
Mesh Surface 33
volume 9 Scheme Project Source 33 Target 31 #Generate core mesh
curve 44 interval 10 #set compatible target intervals
Mesh volume 9
Display #Make sure it’s there
#
volume 10 Size 0.5 #Make intervals agree for rotate
Surface 37 Scheme Pave # Pave face of peel
Mesh Surface 37
volume 10 Scheme Rotate Source 37 Target 40 #Generate Peel Mesh
Mesh volume 10
Display
Export Genesis ’Octant.gen’ # Write out the mesh

If the generated mesh should consist of one material, theblock command could be used to
merge the peel and core into a single material block. Note that during a boolean operation (unite,
intersect, and subtract), the bodies used in that boolean are destroyed so it is sometimes

Figure B-2 Generated Mesh for Cube with Cylindrical Hole

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual163

necessary to create extra copies of a body prior to using them in a boolean operation. Also,

during boolean operations, many bodies are created and deleted and it is difficult to remember
which bodies exist at certain times1. It is recommended that comments be added to the journal
file to make it easier to determine what is being done in the file.

▼ Airfoil
A simple two-dimensional airfoil is used in this example to demonstrate the use of the boundary
layer tool and paving. The commands used to generate the geometry for this problem, using the
ACIS Test Harness, are not included here. This example uses thecurve bias, boundarylayer
and pave commands. The CUBIT commands used to mesh this problem are:

File: foil.jou
#
Air Foil Example
#
journal off
Import Acis ’foil.sat’
View From 100 0 0 Up 0 0 1 # Set up View
AutoCenter On
Display
Volume 1 Interval 14 # Set Meshing Parameters
Curve 4 Interval 24
Curve 2 Interval 24
Curve 5 To 6 Interval 18
Curve 6 Bias 1.1
Curve 5 Bias 0.909
BoundaryLayer 1 First Layer 0.5 Growth 1.3

1. The CUBIT Developers are very much aware of the problems this causes during the generation of complicated meshes and are

implementing methods to permit user-defined naming of bodies and volumes. This capability relies on the persistent ID

concept recently added to ACIS.

Figure B-3 Generated Mesh for Octant of Sphere

APPENDIX B Examples

164 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

BoundaryLayer 1 Surface 1 Curve 5 to 6
Surface 1 Scheme Pave
Mesh Surface 1 # Create the Mesh
Display
Graphics zoom .25 .4 .45 .6
geometry visibility off
display
geometry visibility on
display

The mesh generated by these commands is shown in Figure B-4. In this example, curves 5 and
6 (the curves used to define the shape of the airfoil) use biased interval spacing to place more
elements towards the front of the airfoil. A boundary layer is designated on either side of the
airfoil, which produces elements with high aspect ratios for several layers around the airfoil. The
parameters to theboundarylayer command specify the depth of the first and second rows of
elements, with the boundary layer growth factor inferred from these data. The paving scheme
generates the mesh outside the boundary layer.

▼ The Box Beam
A simple example using ACIS/CUBIT is the box beam buckling problem shown in Figure B-5.
A description of an analysis which uses this type of mesh is found in Reference [15]. This
example uses themerge , nodeset andblock commands and the mapping mesh generation
scheme.

The input file for the ACIS Test Harness for the box beam example is1:

Figure B-4 Airfoil mesh generated using the boundary layer tool and paving.

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual165

File: boxBeam.mon
Side = {Side = 1.75}
Height = {Height = 12.0}
Upper = {Upper = 2.0}

block lowerSection width {Side/2.0} depth {Side/2.0} height
{Height - Upper}
block upperSection width {Side/2.0} depth {Side/2.0} height
{Upper}

move lowerSection {Side/4.0} {Side/4.0} {(Height - Upper)/2.0}
move upperSection {Side/4.0} {Side/4.0} {Upper/2.0 + Height -
Upper}

group lowerSection upperSection as boxBeam

save boxBeam to boxBeam.sat

In this example, it is assumed that subsequent analyses will take advantage of the problem
symmetry and therefore only one-quarter of the box beam will be meshed. It is worth noting that
there are a variety of ways to construct a solid model for this problem; however, experience thus
far with ACIS and CUBIT indicates that the easiest way to model the box beam is to use ACIS
block primitives1. Even though subsequent meshing will only be performed on the faces of the
solid model, the entire 3D body is saved as an ACIS.sat file. The CUBIT journal file for the box
beam example is:

1. This file must be preprocessed by Aprepro prior to being input to the ACIS Test Harness.

1. This geometry can also be generated using the internal CUBIT Brick primitive.

Figure B-5 Box Beam example

APPENDIX B Examples

166 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

File: boxBeam.jou - ?? no such file

Thickness = {Thickness = 0.06}
Crease = {Crease = 0.01}
XYInts = {XYInts = 10}
ZInts = {ZInts = 90}
UpperInts = {UpperInts = 15}

Import Acis ’boxBeam.sat’
#Display

Merge All
Label Surface on
#Display

Label Curve on
#Display

Curve 1 To 8 Interval {XYInts}
Curve 13 To 16 Interval {XYInts}

Curve 9 To 12 Interval {ZInts-UpperInts}
Curve 21 To 24 Interval {UpperInts}

?? the following fail ??
Mesh Surface 3
Mesh Surface 6
Mesh Surface 9
Mesh Surface 12

NodeSet 1 Curve 1
NodeSet 2 Curve 4

NodeSet 1 Move {-Crease} 0 0
NodeSet 2 Move 0 {Crease} 0

Block 2 Surface 3
Block 2 Surface 6

Block 1 Surface 9
Block 1 Surface 12

Block 1 To 2 Attribute {Thickness}

Export Genesis ’boxBeam.exoII’
Quit

Commands worth noting in the CUBIT journal file include:

• Block, Block Attribute Allows the user to specify that shell elements for the
surfaces of the solid model are to be written to the output (EXODUSII) database,
and that shell elements be given a thickness attribute. This is necessary since
CUBIT defaults to three-dimensional hexahedral meshing of solid model vol-
umes.

• NodeSet Move Allows the user to actually move the specified nodes by a vec-
tor (∆x, ∆y, ∆z). This is advantageous for the buckling problem, since the numer-
ical simulation requires a small “crease” in the beam in order to perform well.

• Merge Allows the user to combine geometric features (e.g. edges and surfaces).

Other commands in the journal file should be straightforward. Since the problem is sufficiently
simple to mesh using a mapping transformation, specification of a meshing “scheme” is
unnecessary (mapping is the default in CUBIT).

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual167

Finally, note that both the ACIS monitor file (boxBeam.mon) and the CUBIT journal file
(boxBeam.jou) contain macros that are evaluated using Aprepro. Themakefile used to semi-
automatically generate the mesh is given below:

File: Makefile

boxBeam.g:boxBeam.exoII
exo2exol boxBeam.exoII boxBeam.g

boxBeam.exoII:boxBeam.sat boxBeam.jou
aprepro boxBeam.jou | cubitb
rm cubit.jou

boxBeam.sat: boxBeam.mon
aprepro boxBeam.mon | acis
rm wjbohnh1.*

clean:
@-rm *.sat *.exoII *.g

While this particular example is a trivial use of the software, it does serve to demonstrate a few
of the capabilities offered by ACIS and CUBIT.

▼ Thunderbird 3D Shell
This example is the three-dimensional paving of a shell shown in Figure B-6. The 2D wireframe
geometry of the thunderbird is given by the following FASTQ file:

Figure B-6 Sandia Thunderbird 3D shell - ?? picture is different now!! ??

APPENDIX B Examples

168 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

#File: tbird.fsq
TITLE
MESH OF SANDIA THUNDERBIRD

$ block {e = .2} int= {isq = 20}
$ number of elements in block thick {iblkt = 5 } block thickness
{blkt=.2 }
$ block angle {angle=15}
$ magnification factor = {magnificationFactor=1.0}
$ bird {bthick = .018} {ithick = 3} {idepth = 20}
$ {pi = 3.14159265359} {rad=magnificationFactor/pi} {bdepth=1.}
$ preferred normalized element size = {elementSize=0.06}
$ number of intervals along outside edges =
$ {border_int=5} {corner_int=10} {side_int=20}
$ {outsideIntervals= 2*corner_int+side_int}
$ {boxTop=.2} {topIntervals = 8}

$ {insideCurveInt=8}

$ {MAG=magnificationFactor/3.0}

$ {middleInside=MAG*0.97}
$ {xCurveStartInside=MAG*0.60}
$ {yCurveStartInside=MAG*0.93}
$ {curveMiddleInside=MAG*0.81}

$ {xCurveStartOutside=MAG*0.75}
$ {yCurveStartOutside=MAG*1.17}
$ {middleOutside=MAG*1.20}
$ {curveMiddleOutside=MAG*1.01}
$ {boundingBox = MAG*1.5}

$ Thunderbird Coordinates

POINT 1 {MAG*-.40} {MAG*.78}
POINT 2 {MAG*-.40} {MAG*.59}
POINT 3 {MAG*-.22} {MAG*.59}
POINT 4 {MAG*-.22} {MAG*.40}
POINT 5 {MAG*-.75} {MAG*.40}
POINT 6 {MAG*-.78} {MAG*-.09}
POINT 7 {MAG*-.75} {MAG*-.58}
POINT 8 {MAG*-.53} {MAG*-.60}
POINT 9 {MAG*-.54} {MAG*-.23}
POINT 10 {MAG*-.42} {MAG*-.23}
POINT 11 {MAG*-.42} {MAG*.07}
POINT 12 {MAG*-.24} {MAG*.07}
POINT 13 {MAG*-.27} {MAG*-.80}
POINT 14 {MAG*.27} {MAG*-.80}
POINT 15 {MAG*.24} {MAG*.07}
POINT 16 {MAG*.42} {MAG*.07}
POINT 17 {MAG*.42} {MAG*-.23}
POINT 18 {MAG*.54} {MAG*-.23}
POINT 19 {MAG*.53} {MAG*-.60}
POINT 20 {MAG*.75} {MAG*-.58}
POINT 21 {MAG*.78} {MAG*-.09}
POINT 22 {MAG*.75} {MAG*.40}
POINT 23 {MAG*.22} {MAG*.40}
POINT 24 {MAG*.21} {MAG*.78}
POINT 25 {MAG*0.0} {MAG*.80}

$ lines for Tbird

LINE 1 STR 1 2
LINE 2 STR 2 3
LINE 3 STR 3 4
LINE 4 STR 4 5
LINE 5 CIRM 5 7 6
LINE 6 STR 7 8
LINE 7 STR 8 9
LINE 8 STR 9 10

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual169

LINE 9 STR 10 11
LINE 10 STR 11 12
LINE 11 STR 12 13
LINE 12 STR 13 14
LINE 13 STR 14 15
LINE 14 STR 15 16
LINE 15 STR 16 17
LINE 16 STR 17 18
LINE 17 STR 18 19
LINE 18 STR 19 20
LINE 19 CIRM 20 22 21
LINE 20 STR 22 23
LINE 21 STR 23 24
LINE 22 STR 24 1 0 7 1.0

$ REGIONS

SIZE {elementSize*MAG}

REGION 1 1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 *
 -16 -17 -18 -19 -20 -21 -22

SCHEME 0 X
BODY 1
EXIT

A command interpreter program,fsqacs 1, has been developed to convert FASTQ geometry
commands to equivalent ACIS Test Harness commands (outputs an ACIS monitor file). Note,
fsqacs ignores any meshing information in the FASTQ file since there is currently no means
of passing the mesh parameters through the ACIS solid modeler to the CUBIT session. It should
be noted that the 2D wireframe geometry can be directly constructed using wires in the ACIS
Test Harness; however, there may be instances when it is more convenient to use the command
interpreter.

After executingfsqacs , the resulting ACIS monitor file may be included in a subsequent ACIS
session by simply using theinclude command as illustrated by the following file:

#File: tbird3d.mon

include tbird.acs
roll
view scale 200
#draw
cylinder cyl1 height 1.25 radius 0.5
rotate cyl1 by 90 about x
#draw
sweep wire f1 by 1.0
#draw
intersect f1 with cyl1 as tbird3d
#draw
list
save tbird3d to tbird3d.sat

Note that the ACIS.mon file demonstrates how 3D solid models may be constructed starting
from an initial FASTQ profile followed by typical solid modeling commands (e.g. sweep,
intersect) resulting in the desired geometry.

In this example, only the 3D shell of the thunderbird is desired for the finite element model, and
thus, the block command is used to specify that only elements on the surface are to be created.
The following CUBIT journal file demonstrates current 3D paving capability:

1. Thefsqacs users manual is reproduced in Appendix C, “Fsqacs: A FASTQ to ACIS Command Interpreter” on page 163

APPENDIX B Examples

170 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

#File: tbird3d.jou

Import Acis ’tbird3d.sat’
#Display
View From 6 3 10
Label Surface on
Display
Draw Surface 23
Draw Surface 24

Surface 24 Size 0.03
Surface 24 Scheme Pave
Mesh Surface 24
Draw Surface 24

Block 1 Surface 24
Block 1 Attribute 0.03

▼ Assembly Components
Finally, a more practical example of ACIS/CUBIT is demonstrated by meshing an electronics
assembly package. Figure B-7 shows a section of the assembly model containing three
components: the accelerometer, the timer, and the radar. Also shown is the low density foam
encapsulating these components. Note that the foam is of conical shape and the timer and radar
units both have draft angles.

In this case, the ACIS solid model is constructed on a component by component basis, and the
final model calledaccelLayer.sat is generated by grouping the separate ACIS volumes
together as one ACIS body. The user may prefer to create the entire solid model in a single ACIS
session. However, for demonstration purposes, the model constructed here consists of five
ACIS.mon files and one FASTQ input file that is converted to ACIS input usingfsqacs . A

Figure B-7 Components in electronics assembly package.

Assembly Components

Accelerometer

Timer

Radar

Encapsulant

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual171

makefile is used to manage the input and output files and efficiently generate the model. The
mesh generated for this assembly is shown in Figure B-8.

The complete geometric description is given by the following input files.

#File: timer.mon

option props on
cylinder cyl1 height 2.107 radius 2 top 2.362
view from 0 0 1 scale 50

block topBlock width 6 depth 6 height 6
move topBlock 0 3 3
rotate topBlock by -4.41 about x
move topBlock 0 .8976 -1.0535

intersect topBlock with cyl1 as timer
#draw
save timer to timer.sat

#File: radar.mon

option props on
cylinder cyl1 height 2.107 radius 2 top 2.362
block topBlock width 6 depth 6 height 6
move topBlock 0 3 3
rotate topBlock by -4.41 about x
move topBlock 0 .8976 -1.0535

block rightBlock width 6 depth 6 height 6
move rightBlock 3 0 3
rotate rightBlock by 8.734 about y
move rightBlock 0 0 -1.0535
move rightBlock 1.787 0 0
copy rightBlock as leftBlock

Figure B-8 Generated mesh for the electronics assembly package.

APPENDIX B Examples

172 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

reflect leftBlock along x
unite rightBlock with leftBlock as sliceBlocks
#view from 0 0 1 scale 50
#draw

unite topBlock with sliceBlocks
#draw
subtract sliceBlocks from cyl1 as radar
#draw

block bottomBlock width 6 depth 6 height 6
move bottomBlock 0 -3.125 0

subtract bottomBlock from radar
#draw
save radar to radar.sat

#File: accel.mon

include accel.acs
view from 0 0 1 scale 50
#draw

sweep wire f1 by 2.107 direction 0 0 1
move f1 0 0 -1.0535
copy f1 as accel
save accel to accel.sat

#File: foam.mon

option props on
cylinder cyl1 height 2.107 radius 2 top 2.362
view from 0 0 1 scale 50

block rightBlock width 6 depth 6 height 6
move rightBlock 3 0 3
rotate rightBlock by 8.734 about y
move rightBlock 0 0 -1.0535
move rightBlock 1.787 0 0
copy rightBlock as leftBlock
reflect leftBlock along x
unite rightBlock with leftBlock as sliceBlocks
#draw

subtract sliceBlocks from cyl1 as hole
block bottomBlock width 6 depth 6 height 6
move bottomBlock 0 -3.125 0
subtract bottomBlock from hole
#draw hole

retrieve accel.sat as accel
unite accel with hole
#draw hole

cylinder foam height 2.107 radius 2.124 top 2.486
subtract hole from foam
#draw
save foam to foam.sat

#File: accelLayer.mon

option props on
view from 0 0 1 scale 50

retrieve timer.sat as timer
retrieve radar.sat as radar
retrieve accel.sat as accel
retrieve foam.sat as foam

APPENDIX B Examples

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual173

#draw

group timer radar accel foam as accelLayer
#draw
save accelLayer to accelLayer.sat

ACIS commands worth noting in this example include:

• option props on Inserts an edge or “scribe line” along the outer surface of a
cylinder. This changes theperiodic1 surface into a surface with only one bound-
ing exterior loop of edges. Some CUBIT meshing algorithms require this type of
solid model when constructing geometry using cylinders, spheres, or tori.

• save Individual components may be saved as separate ACIS solid models.

• retrieve Any valid ACIS.sat file may be retrieved and used to perform booleans
and/or transformations in an ACIS session.

• group Individual components (ACIS bodies) may be grouped together to create
a single ACIS.sat file for an assembly.
The resulting solid model is meshed in CUBIT using the following commands.

#File: accelLayer.jou
journal off
Import Acis ’accelLayer.sat’
Merge All
Display
View From 3 4 -5
Display
front face of foam encapsulant
Surface 28 Size .07
Surface 28 Scheme Pave
Mesh Surface 28
front face of accelerometer
Surface 3 Size .07
Surface 3 Scheme Pave
Mesh Surface 3
front face of radar
Surface 7 Size .07
Surface 7 Scheme Pave
Mesh Surface 7
front face of timer
Surface 16 Size .07
Surface 16 Scheme Pave
Mesh Surface 16
Display
foam encapsulant
Volume 4 Interval 12
Volume 4 Scheme Project Source 28 Target 29
Mesh Volume 4
accelerometer
Volume 3 Interval 12
Volume 3 Scheme Project Source 16 Target 17
Mesh Volume 3
radar
Volume 2 Interval 12
Volume 2 Scheme Project Source 7 Target 10
Mesh Volume 2
Volume 2 Interval 12
timer
Volume 1 Scheme Project Source 3 Target 4

1. A periodic surface is one which is not contained within a single exterior loop of edges. It is termed periodic because the regular

parameterization of the surface will have a jump from0 to2π in the periodic direction.

APPENDIX B Examples

174 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Mesh Volume 1
#Display
Block 1 Volume 1
Block 2 Volume 2
Block 3 Volume 3
Block 4 Volume 4
Export Genesis ’accelLayer.exoII’

This example demonstrates that setting the number of intervals for every edge in a 3D solid
model can be a very tedious task. When possible, users should use geometry consolidation to
reduce the amount of effort involved in performing this step. Additionally, clever use of the body
interval command can also significantly reduce time and effort. In this example, all components
have the same number of intervals in the z-direction. It is advantageous to set this value for all
edges parallel to the z-axis by using the body interval command. Finally, when a mesh is
projected from a source surface to a target surface, if one of the surfaces is larger than the other
(i.e., if the swept region contains a draft angle), a better quality mesh will usually be generated
if the smaller of the two surfaces is used as the source surface.

▼ Whisker Weaving
The following example demostrates the ability to whisker weave a volume defined by the
surface mesh, without any underlying ACIS geometry.

#File: ???.jou
brick width 10
volume 1 interval 3
mesh surface 1 to 6
block 1 surface 1 to 6
export genesis “block3-3-3.gen”
display
pause
reset
import geometry mesh “block3-3-3.gen” block 1
display
pause
volume 1 scheme weave
set primal on
set query off
volume 1 smooth scheme laplacian
mesh volume 1
display

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual175

Appendix C: CUBIT Installation
▼ Licensing…175

▼ Distribution Contents…176

▼ Installation…176

▼ HyperHelp Installation…176

This Appendix contains information about the licensing and redistribution
restrictions attached to CUBIT, the distribution contents, and installation
instructions. All questions pertaining to obtaining a license for CUBIT should
be directed to:

Marilyn K. Smith
Technology Programs Department
Division 1503, MS-0833
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0833
Fax: (505) 844-9297, Email: mksmith@sandia.gov

▼ Licensing
CUBIT is distributed in statically linked executable form for each supported platform.
Supported platforms include the HP 9000 series running HP-UX1, Sun SPARCstations running
SunOS2 and Solaris, and the SGI running IRIX3. Additional platforms will be added as
required.

Note: CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE
COPIED TO ANOTHER COMPUTER AND THE NUMBER OF USER SEATS ON
EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and our license
agreements with them limit the number of user seats at Sandia National Laboratories and limit
the number of users who are doing work in conjunction with Sandia National Laboratories.

1. HP-UX is a registered trademark of Hewlett-Packard Company.

2. Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.

3. IRIX is a registered trademark of Silicon Graphics, Inc.

APPENDIX C CUBIT Installation

176 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Hence, CUBIT cannot be copied and redistributed without affecting the licensing agreement
with the vendors who have proprietary interests in code modules within CUBIT.

Code distributions within Sandia National Laboratories are managed by an informal
memorandum. Code distributions outside Sandia National Laboratories are managed by either
a Use Notice memorandum or by a formal license agreement depending upon the code recipient.
Use Notice and license agreement formats have been developed by the legal department at
Sandia National Laboratories to protect the copyrights of code vendors and to protect the
commercialization of Sandia National Laboratories copyrights to the CUBIT and SEACAS
codes.

▼ Distribution Contents
In addition to the CUBIT executable, a code distribution can include example inputs and a test
suite for CUBIT and, depending upon the nature of the request for CUBIT, a code distribution
could include certain codes from the Sandia National Laboratories Engineering Analysis Code
Access System [14] (SEACAS). Codes in SEACAS which could be used with CUBIT include
finite element analysis codes, graphical postprocessing codes, and non-graphical pre- and
postprocessing codes. Note that all codes, whether CUBIT or SEACAS codes, run under UNIX1

operating systems.

Distributions containing other programs in addition to CUBIT will be supplied in tar format. For
users who cannot access the tar file through ftp, the tar file will be written to magnetic or CD-
ROM media and mailed. Due to possible exposure of the code and subsequent violation of
copyrights and export control regulations, no electronic mailing of CUBIT or other codes is
permitted.

▼ Installation
CUBIT and supporting CUBIT examples are installed simply by unpacking the tar file and
moving the executables to their final directory. Examples and test problems for CUBIT include
a README file which provides information needed to run the test problems and examples.

Any SEACAS code distributed with CUBIT will be in source code only. The compilation,
linking, and installation of executables is managed by a very complete and extensive installation
script. A complete set of installation procedures is provided with the SEACAS codes.

▼ HyperHelp Installation
CUBIT uses an online help system from Bristol Technology called HyperHelp. This online help
system allow the viewing of this document and any supporting documentation online. An X
Window system is required to run HyperHelp.

1. UNIX is a registered trademark of UNIX Systems Laboratories Inc.

APPENDIX C CUBIT Installation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual177

The HyperHelp Viewer files distributed with CUBIT are shown in Table C-1, “HyperHelp
Distribution Files,” on page 177.

This guide describes how to install your copy of HyperHelp from the HyperHelp installation
media. To install HyperHelp 4, you must copy the HyperHelp files from the installation media,
set up the HyperHelp environment.

System Requirements
Although HyperHelp4.0 supports many platforms and operating systems, the hardware and
software requirement as supplied by the CUBIT distribution are as follows.

Hardware Requirements

• CPU

HP 9000 Series 700/800 systems

Silicon Graphics systems

Sun SPARC systems

• Disk Space

HyperHelp Viewer: 13MB (includes sample files and printer configuaration files)

• Printer

Postscript Level 1 and Level 2

PCL Level 4 and Level 5

Software Requirements

• Operating System

HP-UX 9.05

IRIX 4.0.5F or IRIX 5.0

SunOS 4.1/Solaris 1.1

 SunOS 5.3/Solaris 2.3 (avaiable shortly)

Table C-1HyperHelp Distribution Files

Filenames Description

gunzip.hp700.Z gunzip.sun4.Z gunzip.sgi.Z gunzip utility

hp700R51.tar.gz hp700R52.tar.gz HyperHelp for HP

sgiR41.tar.gz sgiR42.tar.gz HyperHelp for SGI IRIX4 and IRIX5

sun4R41.tar.gz sun4R42.tar.gz HyperHelp for Sun OS 4.1/Solaris 1.1

runtime.tar.gz Printer Configuration Files for All Platforms

APPENDIX C CUBIT Installation

178 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

• Windowing Environment

X11R5/Motif1.2

X11R4/Motif1.1.4

OpenWindows 3.0

Copying HyperHelp Files
Identify the directory you want to install HyperHelp in, create that directory (if necessary), and
cd to it.

For example, if you want to install HyperHelp in/opt/help , enter the following commands:

mkdir /opt/help

cd /opt/help

The HyperHelp installation procedure will create ahyperhelp subdirectory in the current
working directory.

Uncompress and unzip the HyperHelp files with the following commands:

uncompress *.Z

./gunzip. arch *.gz

Thearch represents your platform architecture (for example, sun4 or hp700).

Unarchive each file that ends with the.tar extension as follows:

tar xpvffilename.tar

The following table shows the HyperHelp installation directory structure:

Setting Up the HyperHelp Environment
Set theHHHOME environment variable to the location of the HyperHelp files.

C shell users: Add the following to your.cshrc or .login file:

setenv HHHOME install_dir /hyperhelp

Korn shell or Bourne shell users: Add the following to your.profile file:

HHHOME=install_dir /hyperhelp;export HHHOME

Add $HHHOME/bin to your PATH environment variable.

If you have an earlier version of HyperHelp installed on your system, make sure you add
$HHHOME/bin BEFORE the old HyperHelp path in your PATH environment variable.

Directory Description

install_dir/hyperhelp/bin Contains the HyperHelp Viewer.

install_dir/hyperhelp/Xp Contains Xprinter configuration files.

install_dir/hyperhelp/RELEASE Release information text file.

install_dir/hyperhelp/hoh.hlp How to Use HyperHelp help file.

APPENDIX C CUBIT Installation

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual179

Activate your HyperHelp X resources with the following command:

cp $HHHOME/app-defaults /usr/lib/X11/app-defaults/HyperHelp

If you are unable to get access to this directory, you can append the contents of$HHHOME/
app-defaults to $HOME/.Xdefaults .

Log out and log back in to your system to restart your X server.

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual181

Appendix D: Available Colors

Table 6-2 in this Appendix lists the colors available in CUBIT at this time. All
color commands require the specification of the color name. The table in this
appendix lists the color number (#), color name, and the red, green, and blue
components corresponding to each color for reference.

Table 6-2Available Colors

 # Color Name Red
Gree

n
Blue

0 black 0.000 0.000 0.000

1 red 1.000 0.000 0.000

2 green 0.000 1.000 0.000

3 yellow 1.000 1.000 0.000

4 blue 0.000 0.000 1.000

5 magenta 1.000 0.000 1.000

6 cyan 0.000 1.000 1.000

7 white 1.000 1.000 1.000

8 grey 0.500 0.500 0.500

9 orange 1.000 0.647 0.000

 10 pink 1.000 0.753 0.796

 11 brown 0.647 0.165 0.165

 12 gold 1.000 0.843 0.000

 13 lightblue 0.678 0.847 0.902

 14 lightgreen 0.000 0.800 0.000

 15 salmon 0.980 0.502 0.447

 16 coral 1.000 0.498 0.314

 17 purple 0.627 0.125 0.941

 18 paleturquoise 0.686 0.933 0.933

 19 lightsalmon 1.000 0.627 0.478

 20 springgreen 0.000 1.000 0.498

 21 slateblue 0.416 0.353 0.804

 22 sienna 0.627 0.322 0.176

 23 seagreen 0.180 0.545 0.341

 24 deepskyblue 0.000 0.749 1.000

 25 khaki 0.941 0.902 0.549

 26 lightskyblue 0.529 0.808 0.980

 27 turquoise 0.251 0.878 0.816

 28 greenyellow 0.678 1.000 0.184

 29 powderblue 0.690 0.878 0.902

 30 mediumturquoise 0.282 0.820 0.800

 31 skyblue 0.529 0.808 0.922

 32 tomato 1.000 0.388 0.278

 33 lightcyan 0.878 1.000 1.000

 34 dodgerblue 0.118 0.565 1.000

 35 aquamarine 0.498 1.000 0.831

 36 lightgoldenrodyellow 0.980 0.980 0.824

 37 darkgreen 0.000 0.392 0.000

Table 6-2Available Colors

 # Color Name Red
Gree

n
Blue

APPENDIX D Available Colors

182 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

 38 lightcoral 0.941 0.502 0.502

 39 mediumslateblue 0.482 0.408 0.933

 40 lightseagreen 0.125 0.698 0.667

 41 goldenrod 0.855 0.647 0.125

 42 indianred 0.804 0.361 0.361

 43 mediumspringgreen 0.000 0.980 0.604

 44 darkturquoise 0.000 0.808 0.820

 45 yellowgreen 0.604 0.804 0.196

 46 chocolate 0.824 0.412 0.118

 47 steelblue 0.275 0.510 0.706

 48 burlywood 0.871 0.722 0.529

 49 hotpink 1.000 0.412 0.706

 50 saddlebrown 0.545 0.271 0.075

 51 violet 0.933 0.510 0.933

 52 tan 0.824 0.706 0.549

 53 mediumseagreen 0.235 0.702 0.443

 54 thistle 0.847 0.749 0.847

 55 palegoldenrod 0.933 0.910 0.667

 56 firebrick 0.698 0.133 0.133

 57 palegreen 0.596 0.984 0.596

 58 lightyellow 1.000 1.000 0.878

 59 darksalmon 0.914 0.588 0.478

Table 6-2Available Colors

 # Color Name Red
Gree

n
Blue

 60 orangered 1.000 0.271 0.000

 61 palevioletred 0.859 0.439 0.576

 62 limegreen 0.196 0.804 0.196

 63 mediumblue 0.000 0.000 0.804

 64 blueviolet 0.541 0.169 0.886

 65 deeppink 1.000 0.078 0.576

 66 beige 0.961 0.961 0.863

 67 royalblue 0.255 0.412 0.882

 68 darkkhaki 0.741 0.718 0.420

 69 lawngreen 0.486 0.988 0.000

 70 lightgoldenrod 0.933 0.867 0.510

 71 plum 0.867 0.627 0.867

 72 sandybrown 0.957 0.643 0.376

 73 lightslateblue 0.518 0.439 1.000

 74 orchid 0.855 0.439 0.839

 75 cadetblue 0.373 0.620 0.627

 76 peru 0.804 0.522 0.247

 77 olivedrab 0.420 0.557 0.137

 78 mediumpurple 0.576 0.439 0.859

 79 maroon 0.690 0.188 0.376

 80 lightpink 1.000 0.714 0.757

 81 darkslateblue 0.282 0.239 0.545

 82 rosybrown 0.737 0.561 0.561

 83 mediumvioletred 0.780 0.082 0.522

 84 lightsteelblue 0.690 0.769 0.871

 85 mediumaquamarine 0.400 0.804 0.667

Table 6-2Available Colors

 # Color Name Red
Gree

n
Blue

CHAPTER

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual183

CHAPTER

184 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual185

References
1 T. D. Blacker and M. B. Stephenson, ‘Paving: a new approach to automated quadrilateral mesh generation’, SAND90-0249,

Sandia National Laboratories, (1990).

2 M. B. Stephenson, S. A. Canann, and T. D. Blacker, ‘Plastering: a new approach to automated, 3D hexahedral mesh genera-
tion’, SAND89-2192, Sandia National Laboratories, (1992).

3 G. D. Sjaardema, et. al.,CUBIT Mesh Generation Environment, Volume 2: Developers Manual, SAND94-1101, Sandia Na-
tional Laboratories, (1994).

4 Spatial Technology, Inc.,ACIS Test Harness Application Guide Version 1.4, Spatial Technology, Inc., Applied Geometry, Inc.,
and Three-Space, Ltd., (1992).

5 T. D. Blacker,FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National Laboratories, (1988).

6 L. A. Schoof,EXODUS II Application Programming Interface, internal memo, Sandia National Laboratories, (1992).

7 W. A. Cook and W. R. Oakes, ‘Mapping methods for generating three-dimensional meshes’,Comp. mech. eng., Volume 1,
67-72 (1982).

8 R. E. Jones,QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088, Sandia National Laboratories, (1974).

9 R. E. Tipton, ‘Grid Optimization by Equipotential Relaxation’, unpublished, Lawrence Livermore National Laboratory,
(1990).

10 A. P. Gilkey and G. D. Sjaardema,GEN3D: A GENESIS Database 2D to 3D Transformation Program, SAND89-0485, San-
dia National Laboratories, (1989).

11 G. D. Sjaardema,GREPOS: A GENESIS Database Repositioning Program, SAND90-0566, Sandia National Laboratories,
(1990).

12 G. D. Sjaardema,GJOIN: A Program for Merging Two or More GENESIS Databases, SAND92-2290, Sandia National Lab-
oratories, (1992).

13 G. D. Sjaardema,APREPRO: An Algebraic Preprocessor for Parameterizing Finite Element Analyses, SAND92-2291, San-
dia National Laboratories, (1992).

14 G. D. Sjaardema,Overview of the Sandia National Laboratories Engineering Analysis Code Access System, SAND92-2292,
Sandia National Laboratories, (1993).

15 S. C. Lovejoy and R. G. Whirley,DYNA3D Example Problem Manual, UCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

16 Open Software Foundation, Inc.,OSF/MotifTM User’s Guide Revision 1.2, PTR Prentice Hall, Englewood Cliffs, New Jersey,
(1993).

17 J. M. Osier,Keeping Track, Managing Messages with GNATS, The GNU Problem Report Management System, Users manual
for GNATS Version 3.2, Cygnus Support, October 1993.

18 L. M. Taylor and D. P. Flanagan, Pronto 3D—A Three-Dimensional Transient Solid Dynamics Program, SAND87-1912, San-
dia National Laboratories, (1989).

19 S. W. Attaway, unpublished, (1993).

CHAPTER

186 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual187

Glossary

B

Body. A body is simply a collection or set of volumes. It differs from volumes only in the fact that
booleans are only performed between bodies, not between volumes. The simplest body
contains one volume. 64

Brick. A brick is a hexahedral element defined by six connected faces. A brick is owned by the
enclosing volume. 82

C

Curve. A curve is a line (not necessarily straight) which is bounded by at least one but not more
than two vertices. 64

E

Edge. An edge is defined by a minimum of two nodes. Additional nodes may exist on the edges of
higher-order elements. An edge on a curve is owned by that curve, an edge in a surface is
owned by that surface, and an edge in a volume is owned by that volume 82

Element Blocks. Element Blocks (also referred to as simply, Blocks) are a logical grouping of el-
ements all having the same basic geometry and number of nodes. 133

F

Face. A face is defined by four connected edges. A face on a surface is owned by that surface, a
face in the interior of of a volume is owned by that volume. 82

G

Geometry primitives. Classes of general geometric shapes which are differentiated by basic param-
eters. CUBIT supports the brick, pyramid, prism, cylinder, torus, frustum, and sphere. 66

H

Hard Point. A vertex which is located in the interior of a surface. It is used to force a node location
to that specific geometric location. 64

APPENDIX

188 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

N

Node A node is a single point in space. A node at a vertex is owned by that geometric vertex, a
node on a curve is owned by that curve, a node on the interior of a surface is owned by that
surface, and a node in a volume is owned by that volume. 81

Nodeset. Nodesets are a logical grouping of nodes also accessed through a single ID known as the
Nodeset ID. 133

P

Periodic Surface. A periodic surface is a surface which is not contained within a single exterior
loop of edges. It is termed periodic because the regular parameterization of the surface will
have a jump from 0 to 2p in the periodic direction. 64

S

Sideset. Sidesets represent a grouping of element sides and are also referenced using an integer
Sideset ID. 134

Surface. A surface in CUBIT is a finite bounded portion of some geometric surface (finite or infi-
nite). A set of surfaces bound the volume in a volume. A surface is bounded by a set of
curves. 64

V

Vertex. A vertex occupies a single point in space. A vertex is used to bound a curve and/or to spec-
ify a specific location for a node. 64

Volume. Volumes are volumetric regions and are always bounded by one or more surfaces. For
practical consideration, volumes will always be bounded by two or more surfaces. 64

APPENDIX

189 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

APPENDIX

190 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual191

Index

Symbols

$HOME/.cubit 19, 20
.cubit 19, 20
.Xdefaults 21
.Xresources 21

Numerics

2-manifold topology 65

A

ACIS 24, 147, 159
Test Harness 24, 71, 77, 159, 169

Active
Window 43

adaptivity 25
airfoil 163
Angle

Perspective 45, 47, 146
Animation 155

Pan 146, 150
Rotate 151
View 139, 145, 154, 155
Zoom 146, 157

Aprepro 167
Aries® ConceptStation 24, 77, 159
aspect ratios 164
Assembly Components 170
At 45, 47, 139, 155
Attribute 134

Block 134, 139
Autocenter 44, 145
Autoclear 44, 48, 145
Axis 44, 145

B

Background Color 43, 50, 141
-batch 19, 20
Bias 88, 143

Reverse 143
Block 162, 166

Attribute 134, 139
Color 50, 141
Curve 134
Draw 144
Element Type 134, 139
Geometry Color 50
Geometry Type 139
Mesh Color 50
Surface 134
Visibility 140
Volume 134

Body 64
Color 50, 141
Copy 72, 140
Decomposition 156
Draw 48, 144
Geometry Color 50, 141
Geometry Visibility 140
Interval 88, 140, 174
Interval Size 88, 140
Label 51, 148
List 52, 54, 148
Mesh 149
Mesh Color 50, 141
Mesh Visibility 140
Move 72, 140
Reflect 73, 140
Restore 73, 140
Rotate 72, 140
Scale 72, 140
Visibility 50, 140
Webcut 156

Booleans 73 INDEX

192 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Booleans 73
Intersect 73, 147, 161
Subtract 73, 152, 160, 161
Unite 73, 154

Border 44, 145
Boundary Condition 82, 134

Contact Surface 134
NodeSet 133, 136
SideSet 134, 136

BoundaryLayer 103, 105, 163
Curve 141
Parameters 141
Surface 141

Box Beam 164
Brick 66, 141, 142, 160, 161

C

Cellular Topology 65
Center 44, 45, 145
Clear 45, 48, 145
Color 50

Background 43, 50, 141
Block 50, 141
Body 50, 141

Geometry 141
Mesh 141

Geometry 141
Menu 50
Mesh

Surface 142
Volume 142

Node 50, 141
NodeSet 50
Nodeset 141
SideSet 50, 141
Surface 50, 142

Geometry 142
Mesh 142

Table 181
Volume 50, 142

Geometry 142
Mesh 142

Command Line
Echo 41, 145
Interface 39

Constraints Menu 136
Contact Surface 134
Copy 161

Body 72, 140
Mesh 128, 142

Create 66
Brick 66, 142
Cylinder 66, 67, 143
Dialog Box 66
Frustum 66, 68, 142, 145
Prism 66, 68, 142, 151
Pyramid 66, 68, 143, 151
Sphere 66, 69, 143, 152
Torus 66, 69, 143, 154
Window 43

Cube with Hole 28, 160
cubit 19
CUBIT_HELP_DIR 21
CUBIT_OPT 20, 21
cubitb 19, 40
cubitHelpGUI.hlp 21
cubitx 19, 21
Cursor

Pan 146, 150
Zoom 47, 157

Curvature
Curve Scheme 143
Surface Scheme 153
Volume Scheme 156

Curve 64, 135
Bias 143, 147, 163
Block 134
BoundaryLayer 105
Curvature 143
Delete Mesh 126, 144
Draw 48, 144
Equal 143
Interval 88, 143, 147
Interval Size 88, 143, 147
Label 51, 148
List 52, 54, 148
Merge 79
Mesh 90, 149
NodeSet 136, 150
Reverse Bias 89, 143, 147
Scheme

INDEX Export

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual193

Bias 88, 143, 147
Curvature 143
Equal 88, 143

SideSet 136, 152
Type 143

Cylinder 66, 67, 142, 143, 160, 161

D

Debug 58
List 148
Set 151

-debug 20, 58
Decompose 143
Decomposition 75, 156
Delete

Face 127, 144
Mesh 126, 144
Window 43

DISPLAY 20
Display 48, 144, 150
Draw 48

Block 144
Body 48, 144
Curve 48, 144
Edge 48, 144
Face 48, 144
Hex 48, 144
Loop 144
Node 48, 144
NodeSet 48, 144
SideSet 48, 145
Skeleton 145
Surface 48, 145
Vertex 48, 145
Volume 48, 145

Mesh 155

E

Echo 41, 145
List 148
Set 151

Edge
Draw 48, 144

Label 51, 148
Editing

Mesh 124
Element Block 25, 133
Element Type 87, 139

Block 134
Encapsulated 147
Environment Variable

CUBIT_HELP_DIR 21
CUBIT_OPT 20, 21
DISPLAY 20
HOME 20
PATH 20

EPS 51, 147
Equal 88, 143
Equipotential 125

Area 126
Error 58
Example

Assembly Components 170
Box Beam 164
Cube with Hole 28, 160
Octant of Sphere 161
Thunderbird 3D Shell 167

Execution Options
-batch 19, 20
-debug 20, 58
-fastq 20
-help 19
-Include 20
-information 20, 58
-initfile 19, 20
-input 20
-maxjournal 20
-noinitfile 19
-nojournal 19, 20, 21, 42
-solidmodel 19
-warning 20, 58

Exit 41, 145
Exodus 133
ExodusII 127
Export

Genesis 137, 145

Face INDEX

194 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

F

Face
Delete 127, 144
Draw 48, 144
Label 51, 148
List 52, 54, 148

False (toggle) 22
FASTQ 24, 70, 147

Import 70
-fastq 20
Filename 22
Files

$HOME/.cubit 19, 20
.Xdefaults 21
.Xresources 21
cubitHelpGUI.hlp 21
Exodus 133
ExodusII 127
Genesis 133, 137, 145

FlatShade 44, 146
From 45, 46, 47, 145, 155
Frustum 66, 68, 142, 145
fsqacs 159, 169

G

Genesis 133, 137, 145
Export 137

Geometry
Booleans 73
Color 141

Body 50
NodeSet 50
SideSet 50
Surface 50, 142
Volume 50, 142

Creation 66
Decomposition 75
Definition 63
Label 51, 148
Manipulation 71
Menu 66
Merge 24, 50, 161, 166, 174
Primitives 66
Type 139

Visibility 49, 140, 145
Surface 153
Volume 155

Graphics
Autocenter 44, 145
Autoclear 44, 48, 145
Axis 44, 145
Border 44, 145
Center 45, 145
Clear 45, 48, 145
Display 48
Draw 48
Line Width 45, 146
List

View 47
Mode

FlatShade 44, 146
HiddenLine 43, 146
Painters 44, 146
PolygonFill 44, 146
SmoothShade 44, 146
WireFrame 43, 146

Mode Type 43
Pan 146, 150
Perspective 47, 146

Angle 45, 47, 146
Rotate 46
Text Size 51
Window

Active 43
Create 43
Delete 43

Window Create 43
Window Size 43, 146
Zoom 47, 146, 157

Cursor 47
Reset 47
Screen 47

GUI 39

H

Hard point 64
Hard Set 86, 88
Hardcopy 51, 147
Hardware Platforms 25

INDEX List 52

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual195

Help 61, 147
Hyperhelp 61, 147

-help 19
Hex

Draw 48, 144
Label 51, 148
List 52, 54, 148
Weight 126, 156
Weight Surface 126, 156
Weighting Function 126

HiddenLine 43, 146
HOME 20
Hyperhelp 61, 147

I

Import
Acis 147
Fastq 70, 147
Mesh 103, 128, 147

-Include 20
Information 58

List 148
Set 151

-information 20, 58
-initfile 19, 20
Initialization File 19
Initialize

Video 51, 155
-input 20
Intersect 73, 147, 161
Interval

Body 88, 140
Curve 88, 143, 147
Default 82
Hard Set 86, 88
Size

Body 88, 140
Curve 88, 143, 147
Surface 88, 154
Volume 88, 156

Surface 88, 153
Volume 88, 155

J

Journal
List 148
Pause 42, 150
Playback 42, 150
Record 42, 151
Set 151

Journal Off 19, 20, 42, 148
-journalfile

Execution Options
-journalfile 19

L

Label 50
All 51, 148
Body 51, 148
Curve 51, 148
Edge 51, 148
Face 51, 148
Geometry 51, 148
Hex 51, 148
Mesh 51, 148
Node 51, 148
Surface 51, 148
Vertex 51, 148
Volume 51, 148

Laplacian 125
Length-weighted Laplacian 125
Line Width 45, 146
List 52

Body 52, 54, 148
Curve 52, 54, 148
Debug 148
Echo 148
Face 52, 54, 148
Hex 52, 54, 148
Information 148
Journal 148
Model 148
Node 148
Nodes 52, 54
Settings 58, 148
Surface 52, 54, 148
Totals 148

List Debug 148 INDEX

196 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Vertex 52, 54, 148
View 47, 48, 148, 155
Volume 52, 54, 148
Warning 148

List Debug 148
Loop 109, 144

Draw 144

M

makefile 167
Manifold model 65
Map 94

Scheme
Surface 153
Volume 106, 156

-maxjournal 20
Menu

Color 50
Constraints 136
Geometry 66
Graphics Mode Type 43
View 45
Visibility 48

Merge 24, 50, 161, 166, 174
All 78, 149
Curve 79
General 78
Only Curves 79
Only Surfaces 79

Mesh
Body 149
Color 141

Block 50
Body 50
NodeSet 50
SideSet 50
Surface 50, 142
Volume 50

Copy 128, 142
Curve 90, 149
Delete 126, 144
Editing 124
Import 103, 128, 147
Label 51, 148
Modify Smooth 124

Smooth
Modify 124

Surface 105, 149
Visibility 49, 140, 149

Surface 153
Volume 105, 124, 149

Visibility 155
Messages

Debug 58
Error 58
Information 58
Warning 58

Model
attributes 24
List 148

Move
Body 72, 140
NodeSet 127, 150

N

No (toggle) 22
Node

Color 50, 141
Draw 48, 144
Label 51, 148
List 52, 54, 148
Repositioning 127
Visibility 49, 149

NodeSet 25, 133, 136
Color 50, 141
Curve 136, 150
Draw 48, 144
Geometry Color 50
Mesh Color 50
Move 127, 166
Move To 150
Surface 136, 150
Vertex 136, 150
Visibility 49, 150, 152
Volume 136, 150

-noinitfile 19
-nojournal 19, 20, 21, 42
Non-manifold topology 65

INDEX Scheme 82

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual197

O

Octant of Sphere 161
Off (toggle) 22
On (toggle) 22
option props on 173
Output

PICT 51
PostScript 51

P

Painters 44, 146
Pan 150

Cursor 146
Parameter 22

Optional 23
PATH 20
Pause 42, 150
Pave 23, 94, 160, 161, 163

Surface Scheme 153
Perspective 47, 146

Angle 45, 47, 146
PICT 51
Plaster 25

Volume Scheme 106, 111, 156
Playback 42, 150
Plot 150
PolygonFill 44, 146
PostScript 51, 147
PostScript Begin 25
PostScript End 51
Primitives 66

Brick 66, 141, 142
Cylinder 66, 67, 142, 143
Dialog Box 66
Frustum 66, 68, 142, 145
Geometry 66
Prism 66, 68, 142, 151
Pyramid 66, 68, 143, 151
Sphere 66, 69, 143, 152
Torus 66, 69, 143, 154

Prism 66, 68, 142, 151
PRO/Engineer 24, 71, 77, 159
Project 161

Volume Scheme 106, 108, 109, 156

Pyramid 66, 68, 143, 151

Q

Quit 41, 145, 151

R

Record 42, 151
Stop 42, 151

Reflect
Body 73, 140

Repositioning
Node 127

Reset 41, 151
View 155
Zoom 47, 157

Restore
Body 73, 140

Reverse Bias 89, 143
Rotate 46, 151, 161

Body 72, 140
Continuous 46
Volume Scheme 106, 108, 111, 156

S

Scale
Body 72, 140

Scheme 82
Bias 88
Curvature 143, 153
Designation 105
Equal 88
Map 94

Surface 153
Volume 106

Pave 94, 153
Plaster 106, 111
Project 106, 108, 109
Rotate 106, 108, 111
Sweep 108
Translate 106, 108, 111
Triangle 94, 96, 153
Volume 106

Screen INDEX

198 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Curvature 156
Map 156
Plaster 156
Project 156
Rotate 156
Translate 156
Weave 156

Weave 106, 113
Screen

Zoom 157
Set

Debug 151
Echo 151
Information 151
Journal 151
Warning 151

Settings
List 58, 148

SideSet 25, 134, 136
Color 50, 141
Curve 136, 152
Draw 48, 145
Geometry Color 50
Mesh Color 50
Surface 136, 152
Visibility 49, 152

Size
Body 140
Curve 143, 147
Surface 154
Volume 156

Skeleton
Draw 145

Smooth
Equipotential 125
Equipotential Area 126
Equipotential Fixed 125
Equipotential Generic 126
Equipotential Inverse Area 125, 126
Equipotential Jacobian 125
Laplacian 125
Length-weighted Laplacian 125
Modify Mesh 124
Scheme 154, 156
Surface 124, 125, 152
Volume 125, 152

Weight
Area 125
Inverse Area 125
Jacobian 125

SmoothShade 44, 146
Snap

Video 51, 155
-solidmodel 19
Source Surface 106, 174
Sphere 66, 69, 143, 152, 161
String 22
Subtract 73, 152, 160, 161
Surface 64, 135, 153

Block 134
BoundaryLayer 105
Color 50, 142
Copy

Mesh 128
Curvature 153
Delete Mesh 126, 144
Draw 48, 145
Geometry Color 50, 142
Interval 88, 153
Interval Size 88, 154
Label 51, 148
List 52, 54, 148
Mapping 94
Merge 79
Mesh 105, 149

Visibility 153, 154
Mesh Color 50, 142
NodeSet 136, 150
Scheme

Curvature 153
Map 94, 153
Pave 94, 153
Triangle 94, 153

SideSet 136, 152
Smooth 124, 152

Equipotential 125
Equipotential Area 126
Equipotential Fixed 125
Equipotential Generic 126
Equipotential Inverse Area 126
Equipotential Jacobian 126
Scheme 154

INDEX Volume 64, 135

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual199

Weight
Area 125
Inverse Area 125
Jacobian 125

Source 106
Target 106
Visibility 50, 154
Weight Hexes 126, 156

Sweep
Volume Scheme 108

T

Target Surface 106
Test Harness 24
Text Size 51
Thunderbird 3D Shell 167
Title 137, 154
Toggle 22
Topology

2-manifold 65
Cellular 65
Non-manifold 65

Torus 66, 69, 143, 154
Totals

List 148
Translate 160

Volume Scheme 106, 108, 111, 156
Triangle 94, 96

Surface Scheme 153
True (toggle) 22

U

Unite 73, 154
Up 45, 46, 47, 154, 155
User interface 39

V

Version 41, 154
Vertex 64, 154

Delete Mesh 126, 144
Draw 48, 145
Label 51, 148

List 52, 54, 148
NodeSet 136, 150
Visibility 49, 155

Video 51
Initialize 51, 155
Snap 51, 155

View
At 45, 47, 139, 155
Autocenter 44
Autoclear 44, 48
Border 44
Clear 48
FlatShade 44
From 45, 46, 47, 145, 155
HiddenLine 43
List 47, 48, 148, 155
Menu 45
Painters 44
Perspective

Angle 47
PolygonFill 44
Reset 155
SmoothShade 44
Up 45, 46, 47, 154, 155
Window Size 43
WireFrame 43

Visibility
Block 140
Body 50, 140
Body Mesh 140
Geometry 49, 140, 145

Volume 155
Menu 48
Mesh 49, 149

Surface 153, 154
Node 49, 149
NodeSet 49, 150, 152
SideSet 49, 152
Surface 50

Geometry 153
Mesh 153, 154

Vertex 49, 155
Volume 50, 156

Mesh 155
Volume 64, 135

Block 134

Warning 58 INDEX

200 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

Color 50, 142
Copy

Mesh 128
Delete Mesh 126, 144
Draw 48, 145
Geometry

Color 142
Visibility 155

Geometry Color 50
Interval 88, 155

Size 156
Interval Size 88
Label 51, 148
List 52, 54, 148
Map 106
Mesh 124, 149

Color 142
Draw 155
Visibility 155

Mesh Color 50
Meshing 105
NodeSet 136, 150
Scheme 106

Curvature 156
Map 106, 156
Plaster 106, 111, 156
Project 106, 108, 109, 156
Rotate 106, 108, 111, 156
Sweep 108
Translate 106, 108, 111, 156
Weave 106, 113, 156

Smooth 125, 152
Equipotential 125
Equipotential Fixed 125
Laplacian 125
Scheme 156

Visibility 50, 156

W

Warning 58
List 148
Set 151

-warning 20, 58
Weave

Volume Scheme 106, 113, 156

Webcut
Body 156

Weight 125
Weight Hexes

Surface 126, 156
Weighting Function

Hex 126
Window

Active 43
Create 43
Delete 43

Window Create 43
Window Size 43, 146
WireFrame 43, 146

Y

Yes (toggle) 22

Z

Zoom 47, 146, 157
Cursor 47, 157
Reset 47, 157
Screen 47, 157

INDEX Zoom 47, 146, 157

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual201

Zoom 47, 146, 157 INDEX

202 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

INDEX Zoom 47, 146, 157

Document Version 11/10/97 CUBIT Version 1.14 Reference Manual203

Zoom 47, 146, 157 INDEX

204 CUBIT Version 1.14 Reference Manual Document Version 11/10/97

